Software Piracy Prevention through Diversity

Bertrand Anckaert
banckaer@elis.ugent.be

Bjorn De Sutter
brdsutte@elis.ugent.be

Koen De Bosschere
kdb@elis.ugent.be

Electronics and Information Systems Department
Ghent University
Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

ABSTRACT

Software piracy is a major concern for software providers,
despite the many defense mechanisms that have been pro-
posed to prevent it. This paper identifies the fundamental
weaknesses of existing approaches, resulting from the static
nature of defense and the impossibility to prevent the dupli-
cation of digital data. A new scheme is presented that en-
ables a more dynamic nature of defense and makes it harder
to create an additional, equally useful copy. Furthermore
it enables a fine-grained control over the distributed soft-
ware. Its strength is based on diversity: each installed copy
is unique and updates are tailored to work for one installed
copy only.

Categories and Subject Descriptors

K.5.1 [Legal Aspects Of Computing]: Hardware/Soft-
ware Protection—copyrights;licensing; D.2.0 [Software En-
gineering]: General—protection mechanisms; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and En-
hancement

General Terms

Economics, Legal Aspects

Keywords

Copyright Protection, Software Piracy Prevention, Identi-
fication, Authentication, Intellectual Property Protection,
Diversity, Tailored Updates

1. INTRODUCTION

According to reports on software piracy [14, 17], no exist-
ing protective measures have been able to meet the major
challenge posed by software piracy. Among the approaches
that have been explored in recent history to address the
problem of software piracy are legal, ethical and technical
means.

Permission to make digital or hard copies of all or part of this work for

Legal means are based on the fear of consequences of vio-
lating piracy laws. But while in most software piracy cases
the legal means are available, prosecution on a case by case
basis is economically inviable. Furthermore, it is conceived
as bad publicity and can take a long time.

Ethical measures relate to making software piracy morally
unappealing. While the intentions are laudable, it takes
even more effort and time to change the moral standards of
a large group of people.

The existing technical means almost all have a static na-
ture of defense, in which a protection mechanism is built into
the distributed software. Once this protection is broken no
further steps can be taken to protect the intellectual prop-
erty. And since any static protection is eventually broken,
the existing techniques are not satisfactory at all.

To tackle this problem, this paper presents an alternative
technical protection scheme, whose strength is based on di-
versity. In the scheme we present, each installed copy of
a program is unique. More precisely, each installed copy
differs enough from all other installed copies to guarantee
that successful attacks on its embedded copyright protec-
tion mechanism cannot be generalized successfully to other
installed copies.

Furthermore, the proposed scheme includes software up-
dates to migrate from a static nature of defense to a more
dynamic one. In particular, software updates in our scheme
are crafted to ensure that they work for one, and only one,
installed copy. When updates are no longer provided for
installed copies that are known to be illegitimate, a pirate
needs to break through a new line of defense with every
critical update.

An additional advantage of the proposed scheme is a fine-
grained level of control over the distributed copies. This
follows from the fact that a software provider in our scheme
can enable the installation of a copy on an arbitrary number
of machines, or even tolerate an arbitrary level of software
piracy. We will refer to the latter as piracy discrimination.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of related work and identifies the
fundamental weaknesses of existing technical means. Sec-
tion 3 introduces the software distribution model we will as-
sume, and the new scheme is presented in Section 4. Claims

personal or classroom use is granted without fee provided that copies arefor the benefits of the scheme are made in section 5 and

not made or distributed for profit or commercial advantage and that copies the need for piracy discrimination is discussed in Section 6.
bear this notice and the full citation on the first page. To copy otherwise, to Practical issues are considered in Section 7 and the addi-

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
DRM’04, October 25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-969-1/04/001(5.00.

tional costs of the proposed scheme are explored in Section 8.
Finally, Section 9 concludes.

2. RELATED WORK

This section provides an overview of related work and
identifies the fundamental weaknesses of the existing tech-
nical means for software piracy prevention.

2.1 Overview

Software diversity [5] as such has received little attention
in the academic literature. Until now its application has
been limited to protecting a trusted host against attacks
from malicious code such as viruses. The fundamental idea
is simple: in nature, genetic diversity provides protection
against an entire species being wiped out by a single virus
or disease. The same idea applies to software, with respect
to resistance to the exploitation of software vulnerabilities
and program-based attacks. This way an exploit crafted to
succeed on one instance will not necessarily work against a
second [18].

In contrast with software diversity, piracy prevention has
drawn a lot of attention from both the software industry and
the academic community. This large interest in piracy pre-
vention is largely due to the huge financial losses attributed
to software piracy, and has resulted in a plethora of technical
means. These include hardware-based and software-based
approaches.

All hardware-based approaches we are aware of use to-
kens. In these schemes, it is impossible to execute the pro-
gram without the presence of a trusted hardware compo-
nent, such as a specific CD, dongle, smart card, ... The link
between the token and the software can be weak or strong.
We call the link weak when the software merely checks for
the presence of the token. When the software cannot run
without the information or functionality of the token, we
call the link strong.

The most common software-based approaches are also
based on the use of a token such as a license key, a license
file or an activation code. Likewise the token can be weakly
or strongly linked to the software. An example of a strongly
linked software token is an encrypted program where the
token contains the decryption key.

While software watermarking and fingerprinting [6, 19]
are not techniques that prevent the copying of software itself,
they dissuade the pirate by increasing the likelihood of being
caught. This is done by adding an identification to each
released copy, making it possible to trace the original creator
or legitimate owner of the copy.

One advantage of fingerprinting over most other copy pro-
tection techniques is that it is more difficult for an attacker
to be sure that he has removed a fingerprint, than it is to
be sure that a copy protection mechanism has been cracked.
Whereas the latter can easily be tested, i.e. a copy works or
does not work, the fact that no more fingerprint is present is
not decidable, and hence a pirate can modify a fingerprinted
program at will, but when he wants to use or redistribute
it illegally, the fear that he could be identified remains. On
the other hand, fingerprinting comes with the obvious dis-
advantage of its reliance on cumbersome legal measures.

Like fingerprinting, software aging [15], increases the like-
lihood of the pirate being caught. This technique relies heav-
ily on program updates, which are crafted to ensure that
more recent versions can read the output of older versions,
but not vice versa. For this technique to work, it is assumed
that illegitimate users interact only with the original pirate
to obtain these updates. As a result pirated software be-

comes either decreasingly usable because it is not kept up
to date, or the interaction with the original pirate increases
and as a result his likelihood of being caught increases as
well. With software aging, what a legitimate user pays for
is the guarantee of continuing access to updates. This pro-
tection mechanism can therefore be seen as a dynamic form
of protection.

Techniques such as tamper-proofing [3, 12] and obfusca-
tion [7] do not prevent software piracy as such, but can be
used to reinforce and protect other mechanisms. Tamper-
proofing, which makes it hard to modify the program, makes
it harder to remove embedded protection mechanisms. Ob-
fuscation, which makes a program more difficult to analyze,
can be used to hide the location of the protection mecha-
nism.

A combined hardware-software approach is used by the
Trusted Computing Platform Alliance (TCPA), the prede-
cessor of the Trusted Computing Group [10]. Its intention
is to define specifications for a hardware-assisted, OS-based,
trusted system that would become an integral part of stan-
dard computing platforms. Microsoft also started a com-
parable initiative: Palladium. While it is hard to assert
the security of these systems as they only exist on paper to-
day, it seems unlikely that a universal adaptation of trusted-
computing-enabled systems will happen in the near future.

2.2 Fundamental Flaws

None of the existing techniques for software piracy pre-
vention provide adequate protection, since all of them have
been broken.

Furthermore, any future software protection scheme will
eventually be broken because it must depend on the opera-
tion of a finite state machine. Given enough time and effort,
this finite state machine can be examined and ultimately
modified at will by a malicious host running the software,
because the owner of the software cannot impose restrictions
on the hosts means to inspect the program. This contrasts
with the model of a benign host and malicious code, such
as in the case of worms and viruses. In these cases the host
can prevent the code from modifying the host by restricting
the actions that untrusted code is allowed to perform.

As a consequence, our problem in which the code is be-
nign, and the host malicious, results in a more severe at-
tack model, in which any static line of defense will sooner
or later be broken. For example, only a few months were
needed to create a key generator for the activation of Win-
dows XP [11], which was one of the most complete systems,
including on-line activation and links to the hardware.

The question thus becomes not whether or not a static
protection will be broken, but when it will be broken, and
what happens once it is broken. Unfortunately, once a copy
is available that undoes the static copy protection or no
longer carries the identification of the perpetrator, it can
be distributed virtually unlimited and the software provider
can no longer enforce its copyright.

In short, it is the static nature of existing defense mecha-
nisms that makes them bound to fail.

Another reason why static software protection techniques
are so susceptible to attacks is that, while the first copy is
very expensive to produce, subsequent copies are inexpen-
sive to reproduce and distribute. This is an important facil-
itating condition for software piracy. Hence its elimination
will make software piracy less attractive.

Although it may at first sight seem counterproductive
to increase the marginal cost of producing an additional,
equally useful copy of a piece of software, we are convinced
that there is no (other) silver bullet to prevent software
piracy. This conviction is confirmed by the lack of protec-
tion provided by the current technologies. When marginal
costs approach zero, they do so not only for the software
producer, but also for the pirate. If software producers are
to prevent piracy, the ease with which an equally useful copy
can be created should be diminished.

As in the world of physical objects, where each object is
unique and the cost to reproduce it is non-zero, we believe
that the only way to achieve useful reproduction at non-zero
costs is to make each legitimate copy unique. In fact, most
of the technical mechanisms for piracy prevention already
mimic this situation to some extent. This is most obvious
for hardware-based mechanisms, as they combine the soft-
ware with a unique, hard to duplicate, physical object. The
software approaches also use a part that is unique for each
installed copy, such as a license number, license file, activa-
tion code, decryption key or fingerprint. Software aging uses
a key to identify legal owners of a copy and TCPA identifies
the host computer and operating system.

A fundamental drawback of these schemes however is that
these unique parts are not part of the original program. In-
stead they were added for the purpose of copyright protec-
tion. We believe that this is one of the reasons why they have
proven to be relatively easily removed or circumvented.

3. SOFTWARE DISTRIBUTION MODEL

In the remainder of the paper, we will consider a simple
software distribution model that consists of the following
participants:

e software providers, who want to maximize their
profits now and in the future;

e legitimate users, who are willing to pay for the soft-
ware and want to use it without being impaired by the
piracy prevention mechanism;

e pirates, who have the technical skills and the desire
to circumvent the piracy prevention mechanism and
want to minimize the risk of being caught;

e illegitimate users, who have no technical skills and
want to enjoy the same privileges as legitimate users
without proper compensation.

We will further assume that the number of pirates is lim-
ited.

In this paper, we do not consider the form of piracy where
parts of an application are reused by a competing software
provider. Instead we focus on piracy where it relates to the
copying of an entire, possibly altered, application. As we
will show the scheme presented in this paper impedes most
forms of software piracy under realistic assumptions.

4. THE PIRACY PREVENTION SCHEME

The core of our protection scheme consists of two levels
of diversification. At the first level each distributed copy is
different. At the second level every installation of a specific
copy is different. We will refer to a specific copy installed on

a specific machine as an instance, and to an instance-specific
update as a tailored update.

An instance must be activated through interaction with
the software provider and contains links to the hardware to
insure that an instance cannot simply be copied to another
machine.

The software provider maintains a database that keeps
track of the legitimate instances and their characteristics.
The instances are crafted in such a way that they differ
significantly, allowing the creation of updates fit for one in-
stance and one instance only in such a way that a tailored
update cannot easily be generalized for other instances.

When a user requests an update, he needs to identify the
instance he wants to obtain the update for. The software
provider then checks if the request is legitimate, looks up
the characteristics of the instance and generates a tailored
update.

5. BENEFITS OF THE SCHEME

This section discusses how the proposed scheme overcomes
the limitations of existing piracy prevention techniques and
how it impedes most forms of software piracy.

5.1 Improvements over Previous Approaches

The protection scheme presented in this paper overcomes
the fundamental flaws common to almost all existing tech-
nical means for software piracy prevention. As a result of
using tailored updates, the protection mechanism migrates
from a static nature of defense to a dynamic nature. Since
every instance is unique and since tailored updates are only
provided for legitimate updates, the pirate needs to break
through a new line of defense with every critical update.
An update is said to be critical if it is necessary to ensure a
continued secure functioning of the software, including data
exchange with other (updated) copies. If such an update is
not applied, illegitimate software cannot be kept sound and
up to date.

The marginal cost of producing an additional, equally use-
ful copy is increased as a result of the diversity and the links
to the hardware. While we cannot prevent the duplication
of digital data this prevents the copy from having practical
value. The part of the program giving it its uniqueness, as
common to many protection schemes, is in this scheme ex-
tended to the program as a whole, resulting in a very strong
link, which has the advantage that it the cannot be sepa-
rated as easily.

The scheme can furthermore be seen as a form of fin-
gerprinting in which the program itself is the fingerprint
that identifies a particular instance. As such it inherits the
advantages of distributing unique versions: each copy can
be identified which makes it possible to track unauthorized
copies to their source. It provides a means for generating
unique registration numbers which can be verified by the
programs themselves at various points and by the manu-
facturer to insure that no corruptions have taken place in
the distribution. The proposed scheme doesn’t rely on legal
measures however.

Of the existing techniques, software aging has the merit of
being the only scheme with a dynamic nature of defense. We
believe however that the used software distribution model
and the made assumptions are unrealistic. Furthermore, the
number of forms of software piracy against which it provides
protection is too limited.

In the software distribution model used for software ag-
ing [15], the original pirate is held responsible for the subse-
quent updates. The authors assume that legitimate and il-
legitimate users do not cooperate and that illegitimate users
interact only with the original pirate, both for the purpose
of obtaining the original software and for obtaining updates.
We believe that it is more realistic to see the pirate as an
ubiquitous entity, meaning that the pirate providing the ini-
tial software and the pirate providing subsequent updates
are not necessarily the same person or organization. Fur-
thermore we believe that legitimate and illegitimate users
do interact to exchange updates. The model we use, and
in which our scheme protects against piracy, is hence much
more realistic. This is confirmed by the Global Report on
Software Piracy [17]: The unauthorized copying of personal
computer software for use in the office or at home or ”shar-
ing” of software among friends and co-workers is the most
pervasive form of piracy encountered and is estimated to be
responsible for more than half the total revenues lost by the
industry.

In our protection scheme, the relaxation of the constraints
imposed by the model used for software aging is possible
through the diversity of instances. As a result, the exchange
of updates between legitimate users and illegitimate users
poses no threat, as these are not fit for the illegitimate in-
stances.

By contrast, the fact that an update works for all instances
in the scheme of Jakobsson et al. introduces an additional
complication for software aging: when two requests for an
update for the same instance occur, they cannot distinguish
between a repeated request as result of an interrupted trans-
mission and a request by a clone. To overcome this problem
they introduce conflict resolution. In our scheme, an update
only works for one instance and other instances have no use
for this update. Hence we can simply transmit a legitimate
update every time it is requested.

5.2 Countered Forms of Piracy

Many forms of software piracy [13, 17] exist and it is im-
portant that a protection scheme impedes as many of them
as possible. We therefore continue with a survey of these
forms and show how the scheme makes them inviable.

5.2.1 Cracks and serials

Cracks and serials are forms of software piracy that consist
of legally obtaining an evaluation version and subsequently
entering a copied license code or applying a generic patch
that undoes the copy protection.

This a widespread form of piracy. It is so popular be-
cause of the small amount of information that needs to be
exchanged illegally. It is clear that it is easier to illegally
distribute and obtain a license code or a patch than a com-
plete program. The problem for defenders is to find a way
to increase the difficulty of enabling an additional copy by
reducing the uniformity of the distributed software. In our
scheme, since all distributed evaluation versions are differ-
ent, a patch for one instance will not necessarily work on
another instance. Moreover the distributed evaluation ver-
sions can be designed to be incompatible with the license
codes of other copies.

5.2.2 Softlifting and hard disk loading

The term softlifting refers to the act of piracy where one
copy is legally obtained and installed on more computers
than allowed.

Hard disk loading is the unauthorized installation of copies
of software onto the hard disks of personal computers, often
as an incentive for the end user to buy the hardware.

Both forms consist of installing software on more com-
puters than allowed by the license. In these cases, we can
expect exchange of updates between the legitimate user of
a copy and the illegitimate users of the same copy. We as-
sume that a software provider cannot easily become aware
of these forms of piracy because of the limited size of the
communities sharing a copy.

The scheme proposed in Section 4 involves interaction be-
tween the user and the software provider to activate an in-
stance as a primary, static line of defense against this form of
piracy. Even though this protection can eventually be bro-
ken, the diversity insures that only one copy of the software
will be broken at a time.

When the first line of defense is broken, a second, dy-
namic line of defense is provided by the diversification at
installation. As a result the characteristics of an illegiti-
mate instance will not be considered legitimate and updates
will not be provided. This way these instances cannot be
kept sound and up to date. However, this diversification
can be turned off as well in order to insure that the ille-
gal instances are identical to the legal instance. To enable
the illegal instances the links between the hardware and the
software need to be broken. We note that it can be harmful
to change the installed code to remove the links to the hard-
ware as it might cause subsequent updates to fail. Changing
the program might change the characteristics which deter-
mine the update. An alternative attack would be to emulate
the hardware.

Both lines of defense need to be broken before illegitimate
users can fully enjoy the software. As a result of the diversi-
fication an attack would ideally work on only one distributed
copy. As each copy needs to be cracked separately and as
we assume a limited number of pirates, we can conclude
that, given the limited size of the sharing communities, this
form of piracy will no longer have a significant impact on
the revenues of the software provider.

5.2.3 Internet piracy and software counterfeiting

Internet piracy is the act of making unauthorized copies of
copyrighted software available to others electronically. Soft-
ware counterfeiting is the illegal duplication and distribution
of copyrighted software in a form designed to make it appear
legitimate.

Both forms consist of installing a piece of software on more
computers than allowed. The scale is typically larger than
of the forms discussed in the previous paragraph. We as-
sume that there cannot be a continuing interaction between
the pirate and the illegitimate users, as the exposure of the
pirate and thus the risk of legal action against him would
be too high.

We only consider the case in which both lines of defense
are already broken. We limit ourselves to this case because
of the following reasons: if the first line of defense is not
broken and the user is charged per activation of an instance,
this will bring no harm to the software provider. It will
instead be a free distribution and advertising channel. If

the second line of defense is not broken illegitimate users
will not be able to keep their software sound and up to date,
since we insure that the update for a specific instance cannot
easily be derived from an update targeted toward another
instance.

In practice, the majority of versions pirated this way has
the same origin. For example, most of the pirated versions
of windows XP were tied to a few volume license product
keys [16]. Given the large scale, the software provider proba-
bly can become aware of the piracy, for example, by search-
ing the Internet for illegally distributed copies. Alterna-
tively, as these illegitimate versions need to be kept sound
and up to date and there cannot be a continuing interaction
with the original pirate, many requests for updates will be
made from many different locations for the same instance.
This would also rise the suspicion of the software provider.
If an instance is considered to be corrupted, the software
provider will no longer provide updates for these instances,
thereby impairing the illegitimate users.

5.2.4 Mischanneling

Mischanneling refers to the form of piracy where, e.g., an
academic license is used for commercial purposes. To our
knowledge this is the only form of piracy of an entire pro-
gram against which our scheme does not provide protection.
In fact, we are not aware of any technical protection against
this form of piracy.

6. IMPACT OF INCREASED PROTECTION
ON THE USER BASE AND PIRACY DIS-
CRIMINATION

This section provides an economic model of the impact of
protection on the user base. It is loosely based on the work
by Conner and Rumelt [8] and Altinkemer and Guan [1]. We
also discuss how the proposed scheme allows the software
provider to act appropriately.

In the following discussion, we index each potential user
by i¢. Let p be the price of the software, v; the value of
the software to the user and c¢; the cost of obtaining and
maintaining an illegitimate copy.

From an economical point of view, the sets of legitimate
users (L), illegitimate users (I) and users who do without
(D) would then be given by:

L = {i:p < min(v,c)}
I = {i:a < min(vi,p)}
D = {i:vi < min(c,p)}

We assume that an increase in the level of protection [does
not influence legitimate users, meaning that the price p and
value of the software v; remains unchanged with changing
levels of protection. The cost of obtaining and maintain-
ing an illegitimate copy increases however with increasing
levels of protection as the cost of breaking the protection
mechanism increases. As a result, the number of poten-
tial pirates decreases, making it harder to obtain illegit-
imate software, cracks or updates. With set x; denoting
set x under protection level [, the following property holds:
n>m = Ly, C L,\Dy, C D,. Only users out of I,,, might
have moved to L, or D, when the protection level changed
from m to n. Under these conditions increasing the level of
protection can only increase the number of legitimate users,
not decrease it.

This simple approach does not take network externalities
into account however. The market of software is very suscep-
tible to network externalities. A larger group of users that
uses the same piece of software leads to an increase of the
exchangeability of data and an increase in the production
of complementary goods. This corresponds to Metcalfe’s
law which states that the usefulness of a network equals the
square of the number of users.

Let U = L U I be the total number of users, v{ the value
of the software to user ¢ in the absence of other users and
fi(U) the increase in value when there are U software users.
Each f; is positive and increasing in U. The sets of users
now become:

L {i:p < min(v) + f;(U),c:)}
I = {i:¢ < min(v} + fi(U),p)}
D = {i:+f;(U) < min(c,p)}

Under these conditions, the set of legitimate users L can
decrease with increasing levels of protection I. Some of
the otherwise illegitimate users might, e.g., choose to do
without, resulting in a decrease of the user base U and a
decrease of the value added because of network externali-
ties fi(U), as a result of which p might become higher than
min(v} + fi(U),).

The impact of the higher protection level on L is de-
termined by the strength of network externalities and the
protection elasticity of the user base U. Strong protection
mechanisms are thus useful only when network externalities
are weak or when the protection elasticity of the user base
is low. This is, e.g., the case for niche products with a high
consumer surplus and when the product is not easily substi-
tutable. In other cases it is desirable to tolerate some level
of piracy, thereby minimizing the impact on the user base.

Another incentive to tolerate some level of piracy are
switching costs. Piracy can help to lock-in consumers in
an earlier phase and lead to higher profits in a later phase.
In our model, software providers want to maximize their
profits now, but also in the future. Users that have illegit-
imately used a program for a while and want to turn to a
legal version can be expected to stick to the software they
are used to because switching implicates additional costs.
These include learning costs, transaction costs (because the
installation and implementation of a new software system
is not a trivial task) and artificial costs: an update can for
example be cheaper than the full version. In some cases the
pirate does not have the financial capabilities of obtaining
the software legally, but he can be expected to do so in the
future.

The proposed scheme enables a fine-grained control over
the distributed copies and allows a software provider to tol-
erate an arbitrary level of piracy. This is made possible
through the activation and the tailored updates. A soft-
ware provider can choose which instances are activated and
for which instances updates are provided. Furthermore he
knows the origin of the instance for which an activation or
update is requested because of the diversity.

A software provider could this way tolerate, e.g., piracy
of a Chinese version. This way the user base can grow and
the consumers grow accustomed to the software. When they
will have to choose which software to buy in the future, they
will be more likely to buy the software they are familiar
with. The distribution of a Chinese-language version or,
for example, regional codes as in DVDs can be used as a

simple form of diversification to assure that the software is
not suited for other markets.

Other cases would require a more fine-grained level of di-
versification and would better exploit the full strength of the
proposed scheme. As an example, two installations of a copy
for private use could be allowed to enable a user to use the
same copy on a desktop and on a laptop. On the other hand
a copy for commercial use can be limited to one installation
or exactly as many as agreed upon in the license.

The relevance of piracy discrimination in practice is best
illustrated by the following citation: Although about three
million computers get sold every year in China, people don’t
pay for the software. Someday they will, though. And as
long as they’re going to steal it, we want them to steal ours.
They’ll get sort of addicted, and then we’ll somehow figure
how to collect sometime in the next decade. (Public dialog
between Bill Gates, founder and CEO of Microsoft Corpo-
ration, and Warren Buffet, chairman of Berkshire Hathaway
Inc., 1998).

7. PRACTICAL CONSIDERATIONS

This section discusses a number of practical problems and
possible solutions related to the proposed scheme. First, the
dependency on updates is discussed, then we explore the
possibilities to diversify executables and to insure that an
update only works for one instance.

7.1 Reliance on Updates

The dynamic nature of the scheme is only possible through
updates. In the presence of the Internet, they can be dis-
tributed easily and the updating process can be done auto-
matically by the program. Nowadays software updates are
used for the following purposes:

e to fix bugs;

to add security patches;
e to support new hardware and new file formats;
e to keep a program compatible with other programs;

e to add new functionality.

The first four categories are considered to be critical. Up-
dates increase the cost ¢; for illegitimate users. If they want
to enjoy the same privileges as legitimate users, they need to
find an update suited for their instance with every update.

We believe that, for most types of commercial software, a
frequency of one update every couple of months will inflict
enough damage on illegitimate users to persuade them to
become legitimate.

However, if the frequency of updates normally required is
too low, we can artificially increase the necessity for updates.
Obviously, introducing bugs or security flaws to make up-
dates necessary is not an option and introducing new hard-
ware is too expensive.

For document-producing programs we can apply software
aging [15]. This way instances that are not kept up to date
are unable to read the output of more recently updated in-
stances. As such we can consider the output to be of a
different file format. This decreases the value of a pirated
instance as it cannot be kept compatible with legitimate in-
stances.

Legitimate users could be favored by providing them with
access to a collection of add-ons or extra features. As a
result, the value of the program for legitimate users will be
higher than for illegitimate users as these add-ons or features
will not work for illegitimate instances.

Another approach is to move from the model in which a
user pays for the continued use of the software to a model
where a user rents the software for a limited amount of time.
The software could disable itself, unless it is updated to
enable the software for an additional time-period. This is
however a static form of defense, making it possible for a
pirate to remove the disabling code. While the diversity
insures that each copy needs to be cracked separately, a
full, cracked version could still be distributed, defeating this
defense mechanism. Therefore this approach must be com-
bined with other types of updates, which should be tailored
not to work with instances where the time limitation is re-
moved.

7.2 Diverse Instances and Tailored Updates

The core of the protection scheme requires the instances
to differ in such a way that updates can be tailored to work
for one instance and one instance only. In this section, we
will discuss a possible approach to achieve this.

A typical program consists of a large number of files, con-
taining code or data. A distributed update contains the
necessary information to convert the program to a newer
version. Obviously, no information needs to be included re-
garding unmodified files as this would only make the update
larger. Also, new files need to be included entirely.

There are two possibilities for changed files: in a full-file
update the entire file is included, whereas with an incre-
mental update only the changes over the installed version
are specified. The former has the advantage that when dif-
ferent users have different installed versions, e.g., because
some users have updated their software more regularly than
others, the same update can still be provided to all the users.
An incremental update has the advantage that it is smaller,
but different updates are necessary for different installed ver-
sions. This problem is sometimes solved by providing up-
dates incremental to the original version of the files, which
needs to be provided by the user by inserting the installa-
tion disk. We will now discuss how our scheme can be put
into practice in both of these cases.

7.2.1 Full-file updates

When using full-file updates it is useless to apply the di-
versification within a single file as the full file will be included
in the update. We thus need to diversify the interfaces be-
tween the different files to insure that a file in a tailored up-
date cannot function correctly with an illegitimate instance.

For data files, the content can be encrypted and decrypted
using an instance-specific key. The same technique can be
applied for the interface between code files, in which ar-
guments passed to functions and the values returned can
be encrypted. The keys could be hidden by techniques for
white-box cryptography [4] to make it more difficult to cir-
cumvent this protection.

Alternatively, all data, arguments or return values can be
transformed to an instance-specific domain, provided that
the computations are also transformed to this domain.

instance | machine code | assembly

1 29 c2 sub Yeax ,hedx
83 c2 ff add $-1,%edx
19 c9 sbb Yecx,hecx
83 c1 01 add $1,%ecx

2 29 c9 sub Yhecx,hecx
29 c2 sub Yheax,hedx
83 fa 01 cmp $1,%edx
83 d1 00 adc $0,%ecx

Figure 1: Two corresponding code fragments for two
instances of Intel machines/software.

instance | machine code | assembly update

1 29 c2 sub %heax,%hedx | 00 00
83 c2 ff add $-1,%edx 00 00 00
19 c9 sbb %hecx,hecx | 00 00
cl e9 1f shr $31,%ecx 42 28 le

2 29 c9 sub %hecx,hecx | 00 00
29 c2 sub %eax,%hedx | 00 00
83 c2 ff add $-1,%edx 00 38 f1
83 d1 00 adc $0, %ecx 00 00 00

Figure 2: The two corresponding code fragments af-
ter their update, and the bitwise difference (update)
with the original code.

7.2.2 Incremental updates

The main incentive for full-file updates is that it facili-
tates the distribution as the same update can be used by
each user. Clearly this is no longer a valid argument in
our protection scheme since it requires the updates to be
instance-specific.

Recent research by the author [2] shows that the number
of equivalent code sequences is exponential in the number
of instructions and is huge for any code sequence of consid-
erable length. Therefore it is possible to generate a large
number of binary differing code files that are equivalent, i.e.
they perform the same operation. As a result every instance
can have code files that differ significantly on a binary level.
When an update only specifies which bits in the existing file
need to be flipped to migrate to the new version, it is clear
that this will not work for other instances.

An example might help to clarify things. Suppose we have
two users, user 1 and user 2, and that the original program
executed the following operation: %ecx = (Jeax == %edx))
(%heax,%ecx and %edx are registers). Then the code for each
user could be as depicted in Figure 1.

If this code, for some reason, needs to be updated to
(hecx = (%eax != %edx)), then we could migrate the code
to the code sequences depicted in Figure 2.

The rightmost column indicates which bits of the original
version need to be flipped for each user to migrate to the
new version. Clearly, these updates would not work for the
wrong instance.

However, it would be relatively easy to generalize these
incremental updates to instance-independent updates: a pi-
rate could simply monitor which files have changed by ap-
plying the update and include these files entirely in a full-file
update.

Fortunately, this form of diversification can be combined
with the ones discussed for full-file updates. If we, e.g., en-
code function arguments, they will be wrongfully decoded if
the file containing that function is crafted for the wrong in-
stance, thereby impairing this form of generalization. In our
running example, one of the instances could take the negate
of one of the arguments before calling the function and the
function could take the negate of the passed argument before
executing the operation. This way, the correct functioning
is assured for that instance, but if the file was separated
from that instance and moved to another instance without
this conversion, it would clearly no longer work correctly.

As incremental updates allow for an additional technique
to make diverse code files and as this technique can be com-
bined with the techniques discussed for full-file updates, it
is the preferred updating method for our scheme.

7.3 Identification of Legitimate Instances

When an update is requested, the instance for which it
has to be tailored needs to be identified. This can be done
through a simple serial number of some sort which is as-
signed to an instance at activation. The database would
then keep track of the serial numbers that identify legal in-
stances. The database also contains the necessary infor-
mation to reconstruct the characteristics of that instance.
If the instance is considered to be legitimate, the software
provider tailors an update that migrates that instance to the
new version of the software.

The software provider does not need to worry about il-
legitimate users that request an update for a legitimate in-
stance as it will not work for their instances. However, he
will keep a log of the different requests to track illegitimate
copies as described in Section 5.2.3. When many requests
for the same instance have different origins, this will rise the
suspicion of the software provider and he will classify this
instance as illegitimate.

To assure that the original legitimate owner is not dam-
aged as a result (he might not have been aware of the piracy),
he should contact him and provide him with an update that
migrates his instance to a new instance, with a new serial
number.

Clearly, this update should not be provided to the ille-
gitimate users. However, if illegitimate users would choose
to become legitimate through correct compensation in order
to obtain full access to the updates in the future, a similar
process can be used to migrate their illegitimate instance to
a new legitimate instance.

We also note that a legitimate user could accidentally re-
quest an update for the wrong instance. As a result his
software might no longer function correctly. Again, we do
not want to damage the legitimate user that has, e.g., made
a typographical error when submitting the serial number.
Therefore, each update should check whether it is applied
to the expected instance, e.g., by comparing a checksum over
the files that will be changed to the expected checksum.

The integrity of the database needs to be assured for the
correct operation of the scheme. This can be achieved by
the usual means to ensure data integrity for data centers,
including an off-site mirror data center.

8. COSTS OF THE PROPOSED SCHEME

The cost of the development and maintenance of the in-
frastructure required by our scheme is considerable and

should be justified by the additional revenues that can be
expected from the number of illegitimate users that will turn
legitimate in the presence of our software piracy prevention
scheme. Let d denote a protection level with diversity, w a
protection level without diversity and C; the total cost of
the software at protection level [. Clearly, the application
of the scheme is only worthwhile if p|Lg \ L] > Cq — Cu.
As already noted in Section 6, |Lq \ Lw| is determined by
the strength of network externalities and the protection elas-
ticity of the user base and as such depends on the market
conditions under which the software distributor operates.
These conditions will also determine the optimal level of
piracy discrimination.

The key element of the proposed scheme, diversity, signi-
fies an additional cost Cy — C,, for the software provider.
While distributing identical copies provides an enormous
economic leverage, this is not the case for non-identical
copies.

The creation of non-identical copies and tailored updates
is considerably more complicated than having a uniform in-
stalled base. The fixed costs include the development of
the software for the diversification of programs and the cre-
ation of tailored updates, while the marginal costs include
the computing and distribution costs per instance.

The computing costs consist of the additional cost per in-
stance for the purchase and maintenance of hardware needed
for the creation of non-identical copies and tailored updates,
as well as the costs associated to the database that keeps
track of legitimate instances and contains the necessary in-
formation to create tailored updates. To reduce the com-
puting costs, the process of diversification and the creation
of tailored updates should be fully automated. This could
be achieved by adding an additional pass in the tool chain
during compilation or at link time [9]. This way it will not
interfere with the source code and it could be guaranteed to
be semantic-preserving (except for the case where we want
to prevent that a license code is valid for multiple instances).

The pressing of CDs is no longer economically viable when
all distributed copies are unique. In this case it is more
advantageous to burn them, but the cost per disk will be
higher. While it might be acceptable to distribute the ini-
tial software this way, physical distribution of non-identical
updates on a regular basis would significantly increase the
cost per instance. Fortunately, in many cases, the updates
could be digitally distributed, given the widespread use of
the Internet. As a result, the distribution costs for the up-
dates can be minimized.

Furthermore the debugging process will be complicated
as error reports will be instance-dependent. This could be
circumvented by storing a mapping from each specific in-
stance to the original software, and by applying the reverse
mapping to bug-reports.

While the effort will likely be worthwhile for larger soft-
ware providers as the costs can be distributed over a larger
number of repentant illegitimate users, the effort might be
too big for smaller software providers. In the latter case a
specialized company could take care of the generation and
distribution of copies and updates. As the process can take
place at link time, this requires no disclosure of source code.

9. CONCLUSION

This paper presented a new scheme for the protection of
software against piracy. Its strength is based on diversity:

each installed copy is unique. Updates are tailored to fit
one instance and one instance only. This way the ease with
which a useful additional copy can be created is diminished.
Furthermore, as illegitimate instances cannot be kept sound
and up to date unless a new line of defense is broken with
every critical update, this results in a dynamic nature of
defense.

We pointed out the improvements over previous approaches
and argued that it makes most forms of software piracy more
difficult in a realistic model under realistic assumptions.

Acknowledgments

The authors would like to thank the Flemish Institute for
the Promotion of Scientific-Technological Research in the
Industry (IWT), the Fund for Scientific Research - Belgium
- Flanders (FWO) and Ghent University for their financial
support.

10. REFERENCES

[1] K. Altinkemer and J. Guan. Analyzing protection
strategies for online software distribution. Journal of
Electronic Commerce Research, 4(1):34-48, 2003.

[2] B. Anckaert, B. De Sutter, and K. De Bosschere.
Steganography for executables. Technical Report
R104.003, ELIS, Ghent University, 2004.

[3] H. Chang and M. Atallah. Protecting software code by
guards. Security and Privacy in Digital Rights
Management, LNCS, 2320:160-175, 2002.

[4] S. Chow, P. Eisen, H. Johnson, and P. Van Oorschot.
White-box cryptography and an AES implementation.
Selected Areas in Cryptography, LNCS, 2595:250-270,
2003.

[5] F. Cohen. Operating system evolution through
program evolution. Computers and Security,
12(6):565-584, 1993.

[6] C. Collberg and C. Thomborson. Software
watermarking: Models and dynamic embeddings. In
Principles of Programming Languages, pages 311-324,
1999.

[7] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
Report 148, Dept. of Computer Science, Univ. of
Auckland, 1997.

[8] K. Conner and R. Rumelt. Software piracy: an
analysis of protection strategies. Management Science,
37(2):125-139, 1991.

[9] B. De Bus, D. Kastner, D. Chanet, L. Van Put, and
B. De Sutter. Post-pass compaction techniques.
Communications of the ACM, 46:41-46, 2003.

[10] E. Felten. Understanding trusted computing: will its
benefits outweigh its drawbacks. IEEE Security and
Privacy, 1(03):60-62, 2003.

[11] Heise Online. Crack und Keymaker aktivieren
Windows XP, February 2002.
http://heise.de/newsticker/meldung/24775.

[12] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan.
Dynamic self-checking techniques for improved tamper
resistance. Security and Privacy in Digital Rights
Management, LNCS, 2320:141-159, 2002.

[13] International Planning and Research Corporation.
Software Management Guide, 2003.

[14] International Planning and Research Corporation.
First Annual BSA and IDC Global Software Piracy
Study, July 2004.

[15] M. Jakobsson and M. Reiter. Discouraging software
piracy using software aging. Security and Privacy in
Digital Rights Management, LNCS, 2320:1-12, 2002.

[16] Microsoft. Microsoft Knowledge Base Article - 326904.

[17] Software and Information Industry Association.
Report on global software piracy, 2000.

[18] P. van Oorschot. Revisiting software protection.
Information Security, LNCS, 2851:1-13, 2003.

[19] R. Venkatesan, V. Vazirani, and S. Sinha. A graph
theoretic approach to software watermarking.
Information Hiding, LNCS, 2137:157-168, 2001.

