
Link-Time Optimization of IA64 Binaries

Bertrand Anckaert, Frederik Vandeputte, Bruno De Bus, Bjorn De Sutter, and
Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41 9000 Gent, Belgium

{banckaer, fgvdeput, bdebus, brdsutte, kdb}@elis.UGent.be

Abstract. The features of the IA64 architecture create new opportu-
nities for link-time optimization. At the same time they complicate the
design of a link-time optimizer. This paper examines how to exploit some
of the opportunities for link-time optimization and how to deal with the
complications. The prototype link-time optimizer that implements the
discussed techniques is able to reduce the code size of statically linked
programs with 19% and achieves a speedup of 5.4% on average.

1 Introduction

On the EPIC (Explicitly Parallel Instruction Computer) platform, the compiler
determines which instructions should be executed in parallel. This responsibility
corresponds to the belief that better performance can be achieved by shifting
the parallelism extraction task from hardware (as in superscalar out-of-order
processors) to the compiler: the hardware becomes less complex and the compiler
can exploit its much wider view on the code [8].

Unfortunately compilers only have a fragmented program view: most com-
pilers compile and optimize all source code files independently of each other.
Even when all source code is compiled together, the libraries are still compiled
separately, and hence not optimized for any specific program. The resulting lack
of compile-time whole-program optimization is particularly bad for address com-
putations: As the linker decides on the final program layout in memory, code
and data addresses are not known at compile time. The compiler therefore has
to generate relocatable code, which is most often far from optimal.

Optimizing linkers try to overcome these problems by adding a link-time
optimization pass in the tool chain. Optimizing linkers take compiled object files
and precompiled code libraries as input, and optimize them together to produce
smaller or faster binaries. In this paper we present our link-time optimizer for
the IA64 architecture. Our main contributions are:

– We extend the existing work on Global Offset Table optimizations by creat-
ing a second global pointer at link-time.

– We show how existing link-time liveness analysis can be adapted to deal with
the rather peculiar register files of the IA64 architecture.

– We demonstrate how the set of branch registers can be exploited more effec-
tively with whole-program optimization.



This paper is organized as follows. Section 2 presents a short overview of our
link-time optimizer. IA64-specific whole-program analyses and optimizations are
the topic of Section 3. Our results are summarized in Section 4, and Section 5
discusses related work. We conclude in Section 6.

2 Link-time Optimizer Overview

Our link-time optimizer for the IA64 architecture is developed on top of Dia-
blo [3] (http://www.elis.ugent.be/diablo), a portable and retargetable link-time
program editor framework. Any application developed with Diablo first links the
compiled program object files and the needed library code. The linked program
is disassembled, and an interprocedural control flow graph (ICFG) is constructed
via call-backs to object file format and architecture back-ends. Given the rather
clean nature of the IA64 application binary interface, the ICFG construction
is trivial. Nodes in the ICFG model basic blocks, while edges model execution
paths. Basic blocks consist of an instruction sequence, in which each instruction
has both an architecture-independent and architecture-dependent part.

On the ICFG all whole-program analyses and optimizations are performed
iteratively, since applying one optimization may trigger other optimization op-
portunities. The core of Diablo provides a number of architecture-independent
analyses and optimizations, such as interprocedural liveness analysis and un-
reachable code elimination that operate on the architecture-independent part
of the instruction representation. Additional architecture-dependent analyses
and optimizations, such as peephole optimization, and semantics-based anal-
yses, such as constant propagation, rely on call-backs.

Once all optimizations are applied, the code layout is determined (optionally
using profile information), and the code is scheduled into the parallel instruction
bundles of the EPIC, and assembled into binary code again.

3 IA64 Whole-Program Optimizations

This section discusses some IA64-specific whole-program optimizations.

3.1 Global Offset Table optimizations

Since the linker determines the final memory layout of the code and data in a
program, the compiler does not know the final addresses of (statically allocated)
global data. It must therefore assume that the data may be distributed through-
out the 64-bit address space. Since 64-bit addresses cannot be encoded into a
single instruction efficiently, the compiler generates code that indirectly accesses
global data. Before each data access, the data’s address is loaded from a Global
Offset Table (GOT) using a special purpose global pointer (GP) register that
always points to the GOT.

Unfortunately the compiler has to assume that one GOT will not suffice for
the final program. First, the compiler does not know how much data will end



up in the final program. Moreover, the size of a GOT is limited: all addresses
in a GOT need to be accessed through the same base GP value, and the GP-
relative offsets used to access the elements in the table is limited by 22-bit width
of immediate instruction operands. As a result, each compiler module (a single
source code file or a group of files compiled together) is given a separate GOT.
Every time control flow enters a module, the GP’s value is reset to point to the
corresponding GOT. The major drawbacks of this solution are that (1) global
data accesses require additional loads because of the indirection through the
GOT, and (2) the GP value needs to be reset again and again.

The latter drawback can be overcome at link-time by combining the small
GOTs of different modules into fewer larger GOTs, eliminating all GP resets
when control flow crosses the corresponding module boundaries. The former
drawback can be avoided for global data that is allocated nearby the GOT itself,
by computing the data’s address with an addition to the GP instead of loading
it from the GP. Both solutions are well known and were implemented on the
Alpha 64-bit platform [9]. On the IA64 however, the read-only data section is
not located nearby the GOT, as on the Alpha, and therefore much fewer address
loads can be converted into additions.

Our link-time solution to this problem is to create a second GP to point to
the read-only data. This second GP is created by eliminating all existing uses
of the general-purpose register GR3, after which we use GR3 as a second GP:
loads through the original GP are then converted to additions to the second GP.

To eliminate the existing uses of GR3, we rename them. At each program
point where renaming is required, either a free register already is available, which
is detected through liveness analysis, or we create a free register by adding
spill code that spills a register to the stack. Fortunately this spilling is rarely
needed. In single-threaded applications on the IA64/Linux platform, the special-
purpose Thread Pointer register (GR13) can always be used. In almost all other
applications we examined, only the special setjmp() and longjmp() C-library
procedures use all registers, forcing us to insert register spills.

By merging smaller GOTs into larger GOTs —mostly one GOT suffices—
4% of all instructions can be eliminated on average. By converting loads from
the GOT into additions, the static number of load instructions is reduced on
average with 16.1%, while the number of executed loads decreases with 11.1%.
Roughly one third of these improvements results from using a second GP.

3.2 Liveness Analysis

As a result of the optimizations of the previous section, most of the address
computations involving the GOT become superfluous. Other optimizations, such
as copy propagation, also render certain instructions useless, meaning that the
values they produce are never used, which are hence dead. In order to actually
eliminate those useless instructions, interprocedural liveness analysis is needed.
This backward data flow analysis solves the following flow equations [6]:

∀ n ∈ N : livein(n) = Consumed(n) ∪ (liveout(n) \Defined(n)), (1)



∀ n ∈ N \ C : liveout(n) =
⋃

s∈succ(n)

livein(s), (2)

∀ c ∈ C : liveout(c) = (Saved(p) ∩ livein(r)) ∪ Consumed(p). (3)

N denotes the set of basic blocks and C denotes the set of basic blocks ending
with a procedure call. Equation (1) states that all registers used in a block before
being defined (= consumed) and all registers that are live at the end without
being defined, are live upon entry to the block. Equation (2) implements the
confluence of edges and equation (3) tells us which registers are live at procedure
call-site c. Muth [6] describes in detail how to solve these equations.

ALLOC

RETURN

c

dummycall

CALL

dummyreturn

r

local(c) output(c)

output(p)

local(c) output(c)

local(p) output(p)

32 40

32 40

32

time

Control Flow Register Window

p

r32,r41

r34 

Live Registers

46

46

Fig. 1. Dummy blocks simulate the behaviour of the register stack.

Straightforward application of these equations is incorrect on the IA64 archi-
tecture, since register windows are used to ease parameter passing. With register
windows, every procedure call involves automatic register renaming. This process
is depicted in Figure 1. Each procedure has a limited view on the register stack
file, which always begins at register r32, and is divided in local (including the
input registers) and output registers. When a call is executed, the register win-
dow moves and the local registers of the caller are no longer visible to the callee.
Supposing the first output register of the caller was r40, this register is named
r32 after the call. The caller can resize its window with the alloc instruction.
When a return is executed, the register window of the caller is restored.

This register renaming needs to be modeled correctly in our liveness analysis.
Our solution consists of adding dummy blocks to the ICFG prior to calls and at
continuation points, as depicted in Figure 1. Note that they are added at the call
site, as the number of local registers at the call site determines the renaming.
Their flow equations are:

∀d ∈ Dummyreturn : livein(d) = Rencallee(livein(r) ∩ output(c)) (4)
∀d ∈ Dummycall : livein(d) = (livein(r) ∩ local(c)) (5)

∪(Rencaller(livein(p)) ∩ output(c))

The functions local() and output() return the set of the local and output
registers of a given procedure respectively. Rencaller() maps the name of a reg-
ister at the callee site to the name it has at the caller site. Rencallee() does the
opposite. In our example Rencaller(r32) = r40 and Rencallee(r40) = r32.



As equation (1) operates only within a basic block, no additional measures
need to be taken to assure its correctness. Equation (4) corrects the liveness in-
formation that is propagated to the end of a callee site as a result of equation (2).
Without this equation the registers with names r32 and r41 would be considered
to contain live values at the callee site, while the others might be considered to
contain dead values (depending on the other successors). This is however incor-
rect due to the register stack mechanism: the value of the register named r32 in
the register window of the caller is not visible to the callee, while the register
named r41 is called r33 in the register window of the callee. The resulting liveness
information should be that r33 contains a live value and that the other registers
might contain dead values. As a result of equation (4) livein(dummyreturn) =
Rencallee({r32, r41} ∩ {r40, . . . , r46}) = Rencallee({r41}) = {r33}, and the cor-
rect information is propagated to the callee site.

At first sight the correctness of equation (3) can be restored by adapting
only the computation of the Consumed(p) and Saved(p) sets. The renaming
cannot take place within these functions as these sets depend only on the callee
p, while the renaming depends on the number of local registers of the caller,
and this number is not necessarily constant for all callers of a procedure. Clearly
a more complex solution is needed, resulting in equation (5). The first part
states that local registers that are live at the return site are live at the call-
site. Essentially these are live registers that are saved accross the call. The
second part assures that values in output registers, live at the called proce-
dure p are live at the dummycall block. The Rencaller is needed because the
output registers will be renamed after the call. In our running example this re-
sults in livein(dummycall) = ({r32, r41} ∩ {r32, . . . , r39})∪ (Rencaller({r34})∩
{r40, . . . , r46}) = {r32} ∪ ({r42} ∩ {r40, . . . , r46}) = {r32, r42}.

3.3 Branch Register Optimization

The IA64 architecture has eight branch registers, which can be used to store
return addresses of procedure calls or to store target addresses of indirect jumps
and procedure calls. However, our measurements on the code produced by the
GCC compiler have learned us that only 2 of these 8 registers are used frequently:
register B0 to store return addresses, and register B6 to store target addresses.

This inefficient use of the branch registers is due to calling conventions. When
a procedure calls another procedure and stores the return address in a branch
register, the second procedure has to know where the return address has been
stored. Since a procedure from a separately compiled module or library cannot
know all its callers, a fixed branch register has to be used, in this case B0. When
the second procedure in turn calls another procedure, it also uses register B0
to store the return address. Therefore the first return address has to be saved
before the call and restored afterwards.

To avoid this spilling of return addresses as much as possible, we have im-
plemented the following link-time solution: all procedures get assigned a value
ranging from 0 to 6, each indicating one of the branch registers B0-B5 and B7
in which the return addresses of the the procedure’s callers will be stored. In



the call graph of the whole program, leaf procedures (i.e. procedures that do not
call any other procedure) are assigned the value 6. Other procedures are then
iteratively given the minimum value of their callees minus 1, or, if this would
result in a negative number, the (standard) value 0. Once all procedures are
assigned a value, all instructions using the branch registers are adjusted accord-
ingly. Whenever a procedure still has a callee with the same value, a register
spill remains, but otherwise they are eliminated.

Please note that exceptions to this simple solution have to be made in the
presence of indirect procedure calls, i.e. calls through function pointers. For
such calls, the possible targets can only be estimated at link-time. The set of
procedures that can be called indirectly is limited however, and a link-time
optimizer can derive this set from the relocation information available in the
object files of the program. All procedures in this set are assigned the value 0.

Still our branch register optimization is applied to 10% of all procedures,
reducing the number of saves and restores of branch registers by 5% on average.

3.4 Code Layout and Scheduling

When the analyses and optimizations are finished, the control flow graph is serial-
ized and the instructions are scheduled. Code placement may have an important
impact on the performance of an application as it may improve caching and re-
duce the number of page faults. We implemented a profile-based closest-is-best
technique, based on Pettis and Hansen [7]. As a result the number of cycles lost
waiting for instructions is reduced by 38% on average. The average performance
impact is moderate however because, except for the vortex benchmark, instruc-
tion latency is not a major bottleneck. In Vortex instruction latency accounts
for 7% of the execution time, and there we achieve a speedup of almost 3%.

More important than code layout is code scheduling. This is particularly the
case on the IA64 architecture, where the compiler needs to convey explicit in-
formation on the parallelism between instructions to the processor. Instructions
that can be executed in parallel need to be clustered into instruction groups.
These instruction groups are then mapped onto bundles. Each bundle has three
41-bit instruction slots and a 5-bit template that indicates the types of the in-
structions in the slots and the borders between instruction groups. The fact that
the number of allowed combinations of instruction types and borders is limited
to 32 complicates the scheduling process and as a result, it is often necessary to
insert no-op instructions when no useful instruction can be found.

We implemented two local scheduling algorithms in our link-time optimizer:
a list scheduler [1] and the so called noptimizer. The noptimizer is based on [4].
It can operate with different cost functions, to either minimize the number of no-
op instructions, or to minimize the number of instruction groups and as a result
the number of execution cycles. The noptimizer is a branch and bound version
of the optimal scheduling algorithm, but its search depth is severely limited, to
limit the execution time of the scheduler. Still, compared to the original binaries
produced by the GCC compiler, the noptimizer is able to reduce 18% of all
no-ops on average, with an overall compaction of 5%.



In order to increase the amount of parallelism, we also developed a global
scheduling algorithm, the so-called globtimizer, which is roughly based on [10]. It
is a branch and bound algorithm as well and it uses a cost function (number of no-
op instructions, number of instruction groups, etc.) to optimize the instruction
sequence. The idea here is to move instructions up and down between basic blocks
using predication, schedule those basic blocks with a local algorithm and compare
the quality of the solution with those of other configurations. The structure of
the flow graph remains untouched however, so no basic blocks are merged or
split like many other global scheduling algorithms do.

Currently some simple combinations and structures of basic blocks are con-
sidered to move instructions between blocks. Nevertheless, combined with the
noptimizer, it is able to further reduce the number of no-op instructions by 23%.

4 Experimental Evaluation

0

5

10

15

20

25

30

gzip vpr mcf parser vortex bzip2 perlbmk avg

Benchmarks

C
od

e 
si

ze
 r

ed
uc

tio
n 

(%
) 

 

0

2

4

6

8

10

12

gzip vpr mcf parser vortex bzip2 perlbmk avg

Benchmarks

Im
pr

ov
em

en
t (

%
) 

 

Execution time
IPC

Fig. 2. Experimental results: code compaction, speedup and IPC improvement

To evaluate our link-time optimizer, we used 7 programs from the SPECint2000
benchmark suite. We compiled them with the GCC compiler (v3.2) and linked
them with the glibc library (v2.3.1). The experiments were performed on a 4-way
Intel Itanium multiprocessor system, running Linux 2.4.18.

Our results are summarized in Figure 2. The code size is reduced on average
with 19%. The major contributions come from unreachable code elimination
(9.64%), instruction scheduling and bundling algorithms (5.22%) and reduction
of load instructions (3.27%). We also achieve an average speedup of 5.4%. The
IPC (instructions per cycle) improves up to 11%, and 4.1% on average. The
speedup is mainly caused by the reduction of load instructions and, in the case
of vortex, by profile-guided code layout.

5 Related Work

Srivastava and Wall describe the optimization of GOT accesses on the Alpha
architecture [9], for which both Alto [6] and Spike [2] are link-time optimizers.
By contrast, Diablo [3], the framework we used for link-time optimization, is
portable and retargetable. We also extended the existing work on GOT optimiza-
tion on the Alpha by introducing a second GP to fully exploit this optimization
on the IA64 architecture.



Numerous EPIC-specific scheduling algorithms have been developed. In [5]
and [10], Integer Linear Programming is used to obtain an optimal local and
global schedule respectively. We adopted the filosophy in [10] and designed a
branch and bound version, in which the structure of the flow graph is also pre-
served. A technique for minimizing the number of no-op instructions is pre-
sented in [4]. We extended this work by integrating branch instructions tighter
into the bundling process and by filling up partially filled bundles more care-
fully. More details on our extensions, including source code, can be found at
http://www.elis.ugent.be/diablo.

6 Conclusions

We have shown how link-time optimization is able to improve the code quality
of IA64 code, which is crucial given the EPIC paradigm. By optimizing the
Global Offset Table address computations, the use of the branch registers and
by improving the code schedules, code size reductions of 19% on average were
achieved, together with an average speedup of 5.4%.

Acknowledgements

This research was funded by Ghent University, by the Institute for the Promotion
of Innovation by Science and Technology in Flanders (IWT) and by the Fund
for Scientific Research-Flanders (FWO-Flanders).

References

1. E. Coffman: Computer and Job-Shop Scheduling Theory. Jon Wiley & Sons. (1976).
2. R. Cohn, D. Goodwin and G. Lowney: Optimizing Alpha Executables on Windows

NT with Spike. Digital Technical Journal. 9 (1998) 3–20.
3. B. De Bus, D. Kästner, D. Chanet, L. Van Put and B. De Sutter: Post-pass com-

paction techniques. Communications of the ACM. 46 (2003) 41–46.
4. S. Haga and R. Barua: EPIC instruction scheduling based on optimal approaches.

Annual workshop on Explicitly Parallel Instruction Computing Architectures and
Compiler Techniques. 1 (2001) 22–31.

5. D. Kästner and S. Winkel: ILP-based instruction scheduling for IA64. Proc. of
Languages, Compilers and Tools for Embedded Systems. (2001) 145–154.

6. R. Muth, S. Debray, S. Watterson and K. De Bosschere: alto: A Link-Time Optimizer
for the Compaq Alpha. Software Practice and Experience. 31 (2001) 67–101.

7. K. Pettis and R. Hansen: Profile guided code positioning. Proc. of the ACM SIG-
PLAN Conf. on Programming Language Design & Implementation. (1990) 16–27.

8. M. Schlansker and B. Ramakrishna Rau: EPIC: Explicitly Parallel Instruction Com-
puting. IEEE Computer. 33 (2000) 37–45.

9. A. Srivastava and D. Wall: Link-time optimization of address calculation on a 64-bit
architecture. Programming Languages Design and Implementation. (1994) 49–60.

10. S. Winkel: Optimal global scheduling for itanium processor family. Explicitly Par-
allel Instruction Computing Architectures and Compiler Techniques. (2002) 59–70.


