The Design and Implementation of FIT:
a Flexible Instrumentation Toolkit

De Bus, Bruno
bdebus@elis.ugent.be

Van Put, Ludo
lvanput@elis.ugent.be

Chanet, Dominique
dchanet@elis.ugent.be

De Sutter, Bjorn
brdsutte@elis.ugent.be

De Bosschere, Koen
kdb@elis.ugent.be

Electronics and Information Systems (ELIS) Department
Ghent University, Sint-Pietersnieuwstraat 41
9000 Gent, Belgium

ABSTRACT

This paper presents FIT, a Flexible open-source binary code
Instrumentation Toolkit. Unlike existing tools, FIT is truly
portable, with existing backends for the Alpha, x86 and
ARM architectures and the Tru64Unix, Linux and ARM
Firmware execution environments. This paper focuses on
some of the problems that needed to be addressed for provid-
ing this degree of portability. It also discusses the trade-off
between instrumentation precision and low overhead.

Categories and Subject Descriptors

C.4 [Computer Systems Organization|: Performance of
Systems— Measurement techniques; D.2.5 [Software En-
gineering]: Testing and Debugging—tracing;diagnostics;
D.3.4 [Programming Languages|: Processors—code gen-
eration;compilers

General Terms

Experimentation, Performance

Keywords

performance, code abstraction, code compaction

1. INTRODUCTION

Compiler and computer architecture research depends on
the analysis of run-time program information, and during
the last decades many tools for collecting run-time informa-
tion have been developed: emulators [1], static instrumen-
tation tools (8, 9], run-time instrumentation tools [3, 5] and
hardware monitoring tools [11]. This paper presents FIT, a
Flexible Instrumentation Toolkit for static instrumentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PASTE’ 04, June 7-8, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-910-1/04/0006 ...$5.00.

29

While in theory a program can be instrumented at any
point in a compiler tool chain, in practice it is simplest
and most useful to add instrumentation code in a post-
compilation executable code rewriting step. Most impor-
tantly, this ensures that the instrumentation does not influ-
ence the compiler code generation. Moreover, it enables the
instrumentation of precompiled library code.

Several link-time or post-link-time executable code rewrit-
ing systems have been developed in the past [7], but they
all fail with respect to at least one usability criterium. Our
new binary code instrumentation toolkit FIT combines the
following usability properties:

e Portability FIT at the moment has back-ends for the
Alpha, x86 and ARM architectures, and for the Tru64-
Unix, Linux and ARM Firmware Suite execution en-
vironments. Support for the IA64 and MIPS32 archi-
tectures is under construction.

e [Fxtensibility FIT’s user interface is implemented as a
collection of wrappers on top of the open-source ex-
ecutable code editing framework Diablo. To extend
FIT, it suffices to add more wrappers around the ex-
isting analyses and transformations.

e Precision FIT can guarantee that all addresses occur-
ring in the original program remain unchanged.

e Tunability When full precision is not needed, FIT can
disable it to minimize the instrumentation overhead.

In the remainder of this paper, Section 2 first discusses
the shortcomings of existing related work. Section 3 then
presents FIT, focusing on how FIT overcomes the previously
mentioned shortcomings. In Section 4, the performances of
different precisions of instrumentation are compared, and
conclusions are drawn in Section 5.

2. RELATED WORK

Before presenting FIT in more detail in the Section 3, this
section briefly discusses existing work in the field of binary
code instrumentation and the shortcomings thereof. Given
the very large number of existing run-time information col-
lection tools, we limit ourselves to one example for each of
three classes of instrumentors: Diota [3] for dynamic instru-
mentation, Simics [4] for emulation and ATOM [9] for static

/\/

user user
instrumentation analysis
code /wcode\/
custom
ATOM instrumentation user application
tool

instrumente
user
application

Figure 1: The ATOM instrumentation process

instrumentation. To the best of our knowledge, they have
at least one of their shortcomings in common with all other
existing tools, for which we refer to [7].

2.1 Dynamic Code Instrumentation

Dynamic code instrumentation works by intercepting the
normal program execution and by inserting instrumentation
code in the code to be executed. This enables the instru-
mentation of self-modifying code and dynamically generated
code. For example, Diota [3] is able to instrument code gen-
erated by the JIT compiler in the Sun Java Virtual Machine.

We believe the existing dynamic instrumentors suffer from
three shortcomings, of which the first two are fundamental:

e The program entities about which compilers need run-
time information, such as basic blocks and procedures,
are unknown or at best approximated at run-time.

e Implementing run-time instrumentation in an OS-less
run-time environment, as on some embedded systems,
is practically not viable, if not impossible.

e No existing dynamic instrumentor uses whole-program
analyses to minimize the instrumentation overhead.

2.2 Simulation

Simulation can be seen as a special form of dynamic in-
strumentation. Besides being orders of magnitude slower
than true instrumentation, most simulators, such as Sim-
ics [4], suffer from the fact that they simulate whole-systems,
including kernel code. As a result, they cannot differentiate
between code from different applications and kernel code.

2.3 Static Binary Code I nstrumentation

ATOM [9] is the most commonly used binary instrumen-
tation tool. Like FIT, ATOM is developed on top of a more
general-purpose binary code editing framework that can also
be used to optimize programs [10].

ATOM'’s instrumentation process is depicted in Figure 1.
In a first step, the user runs ATOM on two files that describe
how the program should be instrumented. The instrumen-
tation file describes at what program points the program
should be instrumented, and the analysis file describes what
analysis code should be called at those program points. A
simple example of such files to collect basic block counts is
depicted in Figure 2.

Without going into too many details, the InstrumentInit
procedure in the instrumentation code file in Figure 1(a)

30

(a) instrumentation code file:

void InstrumentInit(int pl, char **p2) {
AddCallProto("ProgEnd()");
AddCallProto("ProgBegin(int)");
AddCallProto("RecordBlock(int)");
AddCallProto("PrintBlock(long,int)");
}

void Instrument(int argc, char **xargv, Obj *obj){
int nblocks=0; Proc *p; Block *b;

for (p=GetFirstObjProc(obj);p!=NULL;p=GetNextProc(p))
for (b=GetFirstBlock(p); b!=NULL;b=GetNextBlock(b)){
AddCallBlock(b,BlockBefore, "RecordBlock" ,nblocks) ;
AddCallProgram(ProgramAfter, "PrintBlock",BlockPC(b),
nblocks++) ;

}

AddCallProgram(ProgramBefore, "ProgBegin",nblocks) ;
AddCallProgram(ProgramAfter, "ProgEnd") ;
}

—
=3
=

analysis code file:
extern int block_info[]; FILE* fp;

void ProgBegin(int nblocks){
fp = fopen("counts.output","w");
block_info = calloc(nblocks,sizeof (int));

}

void RecordBlock(int x){
block_info[x]++;

}

void PrintBlock(long x, int y){
fprintf (fp,"%1x %d\n",x,block_infol[yl);
}

void ProgEnd(){
fclose(fp);
}

Figure 2: Two files specify a basic block execution
counter in ATOM’s C-language user interface.

registers 4 analysis routines. The Instrument procedure de-
scribes where calls to the analysis routines should be added,
what arguments need to be passed to them, and when they
should be executed. For example, the last line states that
the procedure ProgEnd should be called after the instru-
mented program has finished executing. For each basic
block, PrintBlock should also be called after the program
has executed, with as arguments the address (PC) of the
block, and the index in the array that stores the execution
counts. Every time a block is executed, RecordBlock will
be called with the appropriate index. The four analysis rou-
tines are written in C in the analysis code file depicted in
Figure 2(b).

From these two files, which are first compiled into ob-
ject code, ATOM creates a custom executable code rewriter
whose input will be an executable program, and whose out-
put will be the instrumented program.

The main advantage of ATOM is its user-friendly and flex-
ible interface, allowing to specify very simple or very com-
plex analysis routines, ranging from basic block counters to
cache simulators. ATOM has several important drawbacks
however. Most importantly, instrumentation with ATOM
may change the program behavior in at least three ways.

First, ATOM'’s C-library code shares its data with the pro-
gram’s C-library code. Obviously, the basic blocks executed

in the fopen procedure called in the analysis code in Figure 2
should not be counted. ATOM guarantees this by linking
uninstrumented copies of C-library procedures into the in-
strumented program. These uninstrumented copies are then
called from the analysis code. However, these copies share
their data with their instrumented duplicates. As a result,
the behavior of the instrumented code may be disturbed.
For example, all handlers of open files are collected in a
linked list in the C-library. By opening a file in the analysis
code, an additional element is inserted in the shared linked
list, thus disturbing all original (now instrumented) program
code that traverses the list.

Secondly, although the output of the ATOM basic block
execution counter will contain the correct, original basic
block addresses, the instrumented program itself operates
on the code addresses of the instrumented code. These are
different because instrumentation code was inserted in be-
tween the original code. When program behavior depends
on such addresses, instrumentation will again disturb the
program. A trivial example of this is a program that out-
puts the address of its main procedure: the output will differ
in ATOM-instrumented program. A more subtle example
was detected by Moseley et al [6]: in the program gcc from
the SPECint95 benchmark suite, addresses are used as keys
for a hashtable. Obviously, when the keys change, the dis-
tribution of the hashtable’s contents over its buckets also
changes. To measure this distribution to optimize perfor-
mance, ATOM cannot be used.

Finally, we reject the claim by the authors of ATOM [9]
that ATOM is easily portable, because ATOM heavily relies
on the fact that there is a huge gap in the memory address
space between the data segment of a program, and the code
segment. On Tru64Unix, this gap in the address space is
not used by regular applications, and ATOM exploits it by
letting the instrumentation code store its own data there,
and by storing parts of the instrumented code and the unin-
strumented versions of the C-library routines. As a result,
all data in the original programs is located at exactly the
same addresses in the instrumented program. Whenever the
analysis code needs an address of some data, it can use its
address in the instrumented program. This is definitely not
possible on platforms that lack such an unused gap between
two program segments. Hence we claim that ATOM is not
at all portable to such systems.

3. THEDESIGNOFFIT

Because a lot of compiler and computer architecture re-
searchers are familiar with ATOM, we decided to make FIT’s
interface backwards compatible with ATOM’s interface.

3.1 Overall Design

From the ground up, the overall design of FIT was chosen
to overcome the problems with instrumentors described in
the previous section, and to meet the portability, extensi-
bility, precision and tunability requirements set forth in the
introductory section.

Therefore FIT consists of three parts, as depicted in Fig-
ure 3: the FIT front-end, the FIT instrumentation libraries
and the FIT support libraries. Just like the ATOM-front-
end, FIT depends on an instrumentation file to guide the
instrumentation process and on an analysis file to specify
the code that must be executed at run-time. FIT’s front-
end consists of a script that creates (1) an instrumentor

31

and (2) compiled analysis code. In concreto, the instrumen-
tation file is compiled with the host compiler and linked to
the FIT instrumentation libraries to produce the instrumen-
tor depicted on the right of Figure 3. The analysis code is
compiled using the target compiler and linked with the FIT
support libraries that provide the standard C-functionality
required on the target platform by the analysis code.

The thus generated instrumentor depicted on the right of
Figure 3 is then run on a binary program to instrument it:
it links the analysis code into the binary, and rewrites the
binary to call the analysis code with the desired parameters.

The internal organization of FIT’s instrumentation libra-
ries is depicted in the instrumentor in Figure 3. Basically
these libraries form a software stack on top of Diablo [2],
a binary code editor framework that is designed from the
ground up to be portable and retargetable. It can be down-
loaded from http://www.elis.ugent.be/diablo. Diablo con-
sists of a core framework, extended with different object
file format and architecture back-ends. Together the core
and back-ends provide functionality to read and write ob-
ject files, to disassemble and assemble code, and to create,
manipulate and layout interprocedural control flow graphs
(ICFG). Datastructures in Diablo have both an architecture-
dependent and an architecture-independent part, which en-
ables the implementation of both architecture-independent
and architecture-dependent analyses and transformations.

FIT’s architecture-dependent instrumentation routines
(ADIRs) extend Diablo and add additional functions that
are commonly used when instrumenting a binary. The ADIR
module for each architecture describes for example how reg-
isters should be spilled to the stack, how a function call to
the analysis routines should be implemented and how pa-
rameters should be passed.

The architecture-independent instrumentation routines
(AIRs) provide the high-level interface that is used to de-
scribe instrumentors in the instrumentation C-files. Parts of
this interface are used in the instrumentation file in Figure 2.
Furthermore, the AIR take care of a lot of bookkeeping that
is used to guarantee precise execution of the instrumented
program (see Section 3.4).

The FIT support libraries provide procedures that are
normally provided by the standard C-library. The reasons
for duplicating this functionality are discussed in 3.4.1.

3.2 Portability

When designing FIT, we tried to impose as few restric-
tions on the target architecture as possible. The portable
binary code framework allows us to do so. In addition, FIT
was designed to enable the implementation of a new archi-
tecture backend with only basic knowledge of FIT’s infras-
tructure. Porting FIT to a new architecture consists of two
tasks that can easily be split into separate subtasks: creating
a new backend for Diablo and adding the necessary ADIRs.
FIT’s modular design allows a developer to implement and
test these different tasks separately.

As opposed to many other instrumentors, FIT does not
rely on special operating system support or architecture-
specific features. Instead all necessary functionality can be
provided by the support libraries.

3.3 Extensibility

A run-time information collection tool that generates in-
sufficient information is of course of no use to the user.

CROSSCC

FIT
support
code

FIT
frontend

executable

script

custom instrumentor
instrument.o

——

[

instrumented
executable

AR FIT
ADIR
Arm |Alpha] x86 | MIPS | IA64
. Diablo
Diablo core

Figure 3: The design of FIT

A tool that generates excessive information makes post-
processing of the information obligatory to sift out the useful
information and introduces more overhead than necessary.

Most instrumentation tools are tailored toward one spe-
cific type of information gathering. They are hard to extend
and it is hard to turn off unnecessary functionality. ATOM
is one of the few existing tools that solve this problem, by
allowing the user to specify both the instrumentation and
the analysis code. It is for this reason that ATOM has be-
come so popular, and it is for this reason that we decided to
be backwards compatible with ATOM.

Still, ATOM’s interface is fixed and cannot be extended.
This sometimes severely complicates the analysis code, re-
sulting in unnecessary run-time overhead. Moreover, the ar-
chitectural properties for which the ATOM interface allows
to query are specifically tailored for the Alpha architecture.
To be useful on other architectures, e.g., with predicated
instructions or EPIC architectures, an interface extension is
needed that can query their specific instruction properties.

FIT is perfectly well suited for such extensions, as the
whole user interface of FIT consists of nothing more than
wrappers around Diablo’s internal interfaces. As a conse-
quence of this design, every query in Diablo can easily be
exported as a FIT query. For example, FIT allows to check
whether or not predicated instructions are executed. This
feature has proven useful to guide the profile-based opti-
mization of ARM binaries with Diablo.

3.4 Precision

This section discusses how FIT solves the problems that
were pinpointed in section 2.3. These problems were related
to the disturbance of the original program execution and
ATOM’s assumption that data sections are not moved.

3.4.1 Avoiding shared C-library data structures

The disturbance of the run-time data structures of the
program caused by C-library calls in the analysis code can
be avoided to a large extent by not using the simple ap-
proach of duplicating C library code. Instead, the added
instrumentation code should use its own (limited) support
library, or even direct system calls, to open and write files
and request services from the operating system. For the
Tru64Unix, Linux and ARM Firmware environments, FIT
comes with such support libraries. Adding additional ones
is straightforward.

32

FIT can also revert to using the standard C-libraries of the
target architecture. This allows to use FIT without need-
ing to write a target-specific library, but this will obviously
cause disruptions in the execution of the instrumented pro-
gram. Moreover, using a standard C-library for instrumen-
tation with FIT will usually result in slower instrumented
programs: since typical program analysis code only uses a
small subset of the full C-library functionality, the custom
libraries (we have written so far) are much more lightweight,
and thus faster, than the standard libraries. For example,
some procedures have become so small that Diablo can in-
line them in the instrumented code.

Please note that some intrusion may still be noticeable
with separate support libraries. For example, if we return to
our example of opening a file in the instrumentation code,
it’s easy to see that using a direct open() system call in-
stead of the C library’s fopen() routine does no longer alter
the list of open files in the original program. Still the file
handle numbers returned by the operating system for any
files subsequently opened by the original programs will have
changed, because one file handle is now in use by the instru-
mentation code.

It should also be noted that special care needs to be taken
when the analysis code dynamically allocates memory, as
this changes the layout of the heap, and thus interferes with
the data structures of the original program. The solution to
the latter problem, as proposed by [9], is to split the heap
in two, and let the instrumentation code allocate memory
from the far end of the free memory range.

3.4.2 Allowing Changed Data Addresses

As mentioned before, ATOM relies on the fact that code
instrumentation on the Tru64Unix platform does not require
moving the data of a program in memory. This is not true in
other execution environments. Hence, the instrumentation
code in FIT needs to take into account that data addresses
may have changed. The easiest way to do so is to trans-
late each address occurring in the instrumented program.
Suppose we are instrumenting a program to simulate a data
cache. Before each load and store, a call is inserted to the
Cache() procedure with one argument: the original address
at which data is accessed. A straightforward solution is il-
lustrated in pseudo-code in Figure 4(b). Before Cache() is
called, its argument is translated from its new to its original
value.

(a) original code:

add r2,r3,r4 ; r2 = r3+réd
load r1,10(r2) ; load the value at r2+10 into ri

(b) instrumentation code (ordinary translation)

add r2,r3,r4

rl = translateToOriginal (r2+10)
call Cache(rl)

load r1,10(r2)

(c) instrumentation code (reverse translation)

add r2,r3,r4

call Cache(r2+10)

r2 = translateToNewAddress(r2)
load r1,10(r2)

Figure 4: An ordinary and reverse address transla-
tion example.

This simple translation is only a partial solution however.
Both FIT’s and ATOM’s interfaces include an EffAddrValue
primitive that passes the effective address of a memory oper-
ation to an analysis routine. When a user uses this primitive
in the code instrumentation file, FIT will insert the address
translation in the instrumented program, as it knows by def-
inition that the requested value is an address.

The latter is not always the case however. Suppose we
want to trace the contents of register r3 in the program
fragment in Figure 4(a). Do we need to translate r3’s value?

In general, it is undecidable whether a register will hold an
address or another value at some program point. Sometimes
a register at some point can even hold both addresses and
other values, as when the hashtable mentioned in Section 2.3
is used with both addresses and other values as keys. In such
cases, it is undecidable whether or not translation is needed.

3.4.3 Reverse Trandation

Fortunately, an alternative solution exists for the prob-
lem of changing code and data addresses. Instead of using
the new addresses of all code and data throughout the in-
strumented program, we can revert the translation process:
the program keeps working with the old addresses, and only
where necessary, the old addresses are translated to new
addresses. This guarantees that at every point in the execu-
tion of the instrumented program, all values in memory and
registers are identical to those at the corresponding point
in the execution of the original program. Whenever the
program actually uses an address, for accessing memory or
jumping to another location, compensating code is inserted
that translates the old address to the correct new value and
uses this one instead. This is depicted in Figure 4(c). In the
instrumented program, r2 would still contain the original
address of the data it will load, and after translation, it will
load the correct (old) data from its new address.

Note that it is not trivial to rewrite the program in this
way. The easy part is making sure all addresses stored in
the data sections remain unchanged: it suffices to relocate
them with their original values. The hard part is making
sure all indirect control flow transfers and system calls re-
main correct. For indirect control flow transfers, such as
procedure calls through function pointers, the potential tar-
gets are often unknown at instrumentation time. Yet im-
mediately prior to the call, the target address should be

33

original code:
jmp *%eax

instrumentation code:

sub $4, %esp
pusha
push jeax

call translateToNewAddress
mov %eax, 36(%esp)

add $4, %esp

popa

ret

Figure 5: Translating the jump destination for an
indirect jump on the i386

translated, and after the call the original address should be
restored, as well as all registers that were overwritten dur-
ing the translation. It goes without saying that some rather
complex code is required to implement this.

A nice example of this can be found on the i386 platform,
in the case of an indirect jump where all register values are
live, and so there is no scratch register available to tem-
porarily store the new destination address. Figure 5 shows
the actual code involved. First, a slot is allocated on the
stack. Next, all registers are pushed on the stack, followed
by the argument to the translate function. After the call,
%eax contains the translated address, which is stored in the
stack slot we reserved in the beginning. Then, the stack and
all registers are restored to their original state, leaving only
the translated address on the stack. The ret instruction,
which implements a procedure return, pops the new address
off of the stack and finally performs the jump.

System calls are problematic because they often have poin-
ters as arguments. The kernel can then do anything it likes
with the memory pointed to by the system call arguments,
including reading other pointers in this memory and derefer-
encing those as well. This implies that not only the pointer
passed to the system call, but also all pointers that are reach-
able through it, should be translated before the system call,
and restored after it. This is impossible, but there is a prac-
tical solution to the problem: we patch the operating sys-
tem kernel to perform the translations itself prior to actually
dereferencing any pointer coming from user space.

While this sounds rather intimidating, it is in fact pretty
easy, as the kernel typically uses only a limited set of macros
and functions to interface with user space memory, so only
these need to be adapted. For the Linux 2.4.24 kernel, this
patch amounts to 377 changed lines of source code, and it
results in no measurable slowdown for the execution of non-
instrumented programs.

So far, we have only patched the Linux kernel for the i386
architecture, and on that platform, FIT gives the user the
option to choose between ordinary and reverse translation,
or in other words, between faster and more accurate instru-
mentation. The precision of our reverse translation imple-
mentation was validated by comparing the resulting traces
to traces collected with Diota.

4. EVALUATION

We have measured the slowdowns caused by the added
instrumentation code for two common applications: gener-
ating a trace of the executed basic blocks and generating a

gogoe

slowdown

20x{
10x+

-
3

® ARM block trace, ordinary translation
o ARM block + memory access trace, ordinary translation

Cjpeg
crc
dipeg 1,
encode m_ |

rawcaudio

B
o749 -_‘%:
ravxdaudioé_[j
vortn?)[%lﬁ
AVERAGEAETL'L

m {386 block trace, ordinary translation
0 i386 block trace, reverse translation
= i386 block + memory access trace, ordinary translation
m {386 block + memory access trace, reverse translation

Figure 6: Program slowdowns

combined trace of basic blocks and memory accesses on the
ARM and 1386 architectures, for nine benchmarks from the
SPECint2000, MiBench and MediaBench suites.

Figure 6 shows the slowdowns for the ARM Linux plat-
form, using ordinary address translation and for the i386
Linux platform, using both ordinary and reverse address
translation. On the ARM, basic block tracing, which only
involves writing an address to a buffer at the start of every
basic block, slows down the execution 2.9 times on average.
Memory access tracing slows down the execution by a fac-
tor of 21.53 on average. This much bigger slowdown results
from the higher number of memory accesses, each requiring
the translation of an address as explained in Section 3.4.2.

On the i386 the slowdowns for the ordinary address trans-
lation are about the same as for the ARM, with basic block
tracing increasing the execution time by a factor of 3.36 on
average, and combined basic block and memory access trac-
ing increasing execution time by a factor of 20.64 on average.

The overhead increases significantly with reverse address
translation: the average slowdown for basic block tracing
rises to 8.11, that of combined block and memory tracing
rises to 29.15. The overhead incurred by reverse address
translation consists of two parts: (a) translation of desti-
nation addresses for memory accesses, and (b) translation
of the destination of all indirect control flow transfers (this
includes function returns). In the case of combined block
and memory tracing, part (a) is compensated by the fact
that it is no longer necessary to translate memory addresses
before they are passed on to the instrumentation routines.
In the encode benchmark, there are no indirect control flow
transfers in hot code, so the overhead of reverse translation
disappears. On the other hand, crc performs a number of
function calls in hot code, which causes part (b) of the over-
head to dominate. This shows clearly in the results.

5. CONCLUSIONS

With FIT, our ATOM-compatible Flexible Instrumenta-
tion Toolkit, and its backends for the x86, ARM and Alpha
architectures, we have proven that the implementation of a
truly portable, extensible binary code instrumentor is pos-
sible. Using reverse address translation we have also shown
how less intrusive instrumentation can be implemented.

6. ACKNOWLEDGEMENTS

Bjorn De Sutter, as a Postdoctoral Research Fellow, and
Dominique Chanet, as a PhD. student, are supported by the
Fund for Scientific Research - Flanders (FWO). Bruno De
Bus and Ludo Van Put are supported by the Institute for
the Promotion of Innovation by Science and Technology in
Flanders (IWT). This research is also partially supported
by Ghent University.

7. REFERENCES

[1] R. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution profiling. ACM
SIGMETRICS Performance Fvaluation Review,
22(1):128-137, May 1994.

[2] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and
K. De Bosschere. Link-time optimization of ARM
binaries. In Proc. of the 2004 ACM
SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), 2004.

[3] J. Maebe, M. Ronsse, and K. De Bosschere. Diota:
Dynamic instrumentation, optimization and
transformation of applications. In Compendium of
Workshops and Tutorials Held in conjunction with
PACT02: International Conference on Parallel
Architectures and Compilation Techniques, 2002.

[4] P. Magnusson, M. Christensson, J. Eskilson,

D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 2002.

[5] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic,

K. Kunchithapadam, and T. Newhall. The paradyn
parallel performance measurement tool. IEEE
Computer, 28(11):37-46, 1995.

[6] P. Moseley, S. Debray, and G. Andrews. Checking
program profiles. In Third IEEE International
Workshop on Source Code Analysis and Manipulation,
pages 193-202, 2003.

[7] J. Pierce, M. D. Smith, and T. Mudge.
Instrumentation tools. In T. M. Conte and C. E.
Gimarc, editors, Fast Simulation of Computer
Architectures. Kluwer Academic Publishers, 1995.

[8] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong,
H. Levy, and B. Bershad. Instrumentation and
Optimization of Win32/Intel Executables Using Etch.
In Proc. of the First USENIX Windows NT
Workshop, Seattle, WA, 8 1997.

[9] A. Srivastava and A. Eustace. ATOM: A System for
Building Customized Program Analysis Tools. In
Proc. Conference on Programming Languages Design
and Implementation (PLDI), pages 196-205, 1994.

[10] A. Srivastava and D. Wall. Link-time optimization of
address calculation on a 64-bit architecture. In Proc.
of the 1994 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 4960, 1994.

[11] E. H. Welbon, C. C. Chan-Nui, D. J. Shippy, and
D. A. Hicks. Power2 performance monitor. /BM
Journal of Research and Development, 38(5).

