
DIABLO : a reliable, retargetable and extensible
link-time rewriting framework

(Invited Paper)

Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutterand Koen De Bosschere
Ghent University

Sint-Pietersnieuwstraat 41, Ghent, Belgium
Telephone: +32 9 264 33 67

Fax: +32 9 264 35 94

Abstract— Modern software engineering techniques introduce
an overhead to programs in terms of performance and code
size. A traditional development environment, where only the
compiler optimizes the code, cannot completely eliminate this
overhead. To effectively remove the overhead, tools are needed
that have a whole-program overview. Link-time binary rewri ting
is an effective technique for whole-program optimization and
instrumentation. In this paper we describe a novel framework
to reliably perform link-time program transformations. Th is
framework is designed to be retargetable, supporting multiple
architectures and development toolchains. Furthermore it is
extensible, which we illustrate by describing three different
applications that are built on top of the framework.

I. I NTRODUCTION

Software systems, whether they are targeted towards the
embedded or the general-purpose market, are becoming ever
more complex. In order to manage this complexity, and to
reduce development costs and time-to-market, developers turn
towards modern software-engineering techniques like code
reuse and component-based development. However, raising
the abstraction level at which programs are written typically
also incurs a lot of overhead. Not only is computer-generated
code often not as efficient as hand-written assembler code, but
separately developed libraries and components are typically
too generic for the specific application in which they are used.
Library code, for example, typically contains numerous tests
that check for exceptional conditions that never arise in the
specific context in which the code is eventually used.

Even before the advent of modern software engineering
techniques, research has pointed out that traditional devel-
opment environments, based on precompiled library code,
cannot completely eliminate the overhead introduced by the
use of library code [1], [2]. In such traditional development
environments, only the compiler performs optimizations on
the generated code. As the compiler only processes one
source code file at a time, and doesn’t process the linked-
in libraries and components at all, its optimizations lack the
scope required to remove the overhead from modern software
engineering techniques.

To effectively remove this overhead, one needs tools that
have a whole-program overview, both for collecting informa-
tion about the program and for optimizing it. In this paper, we

present a collection of such tools, all based on the DIABLO

link-time program rewriting framework.
The remainder of this paper is organized as follows:

Section II gives an overview of the DIABLO framework.
Section III describes an optimizing linker built on top of
the framework. This linker optimizes primarily for program
size, but it also applies speed optimizations if they do not
negatively impact the code size. Section IV discusses link-time
optimization opportunities in an operating system kernel (in
particular the Linux kernel), and describes how this kernelcan
be specialized for the specific hardware/software combination
of a particular embedded device. In Section V we show how
a generic and precise program instrumentation system can be
built on top of the DIABLO framework. Sometimes, automated
optimization of the program is not enough. It can be beneficial
for the developer to inspect the low-level program code and
manually identify and remove any remaining bottlenecks.
Section VI describes a graphical tool that visualizes and
analyses a program’s control flow graph at the machine code
level, and allows for manual modification of the program’s
machine code. Related work will be interweaved in the text
but it will mostly be discussed at the end of each section.
Finally, conclusions are drawn in Section VII.

II. D IABLO , A LINK -TIME BINARY REWRITING

FRAMEWORK

In this section we discuss the techniques involved in link-
time binary rewriting. We further highlight the most important
data structure involved in DIABLO , the augmented whole-
program control flow graph. Next we discuss the architecture
of our link-time binary rewriting framework.

A. Link-time Rewriting

A link-time rewriter applies analyses and transformationson
the code and data of a program when the program’s compiled
or assembled object files are being linked. Unfortunately,
compiled object code is hard to manipulate, so before a link-
time rewriter can do anything else, an easy to manipulate
representation of the input program needs to be constructed.
Constructing such a representation from compiled code is
generally considered a difficult problem, but at link-time extra



Fig. 1. Overview of the operation of our link-time rewriter.

information is available that can considerably simplify this
process.

When the linker combines the data and code stored in
the different object files into an executable program it will
first extract three types of meta-information from the object
files [3]. Relocation informationprovides information about
the temporary addresses used in the object file’s code and data
sections, and how these temporary (or relocatable) addresses
in the object files need to be adapted (or relocated) once the
object file sections get a place in the final program.Symbol
informationdescribes the correspondence between relocatable
addresses and global entities in the code and data, such
as procedures and global variables. Symbol information is
used by the linker to resolve each object file’s references
to externally declared symbols, such as global variables or
procedures. Finally,alignment informationdescribes how each
object file section should be aligned in the linked program.

The meta-information used by the linker can also be used
by the link-time rewriter to simplify the construction of an
easy to manipulate representation of the program. Relocation
information is now used to detect all computable addresses
in programs, and hence to approximate the possible targets of
indirect control flow transfers conservatively. Symbol informa-
tion is used to detect additional properties of compiler gener-
ated code. For example, if a compiled procedure is defined by
a global symbol, which means it is callable from outside its

own compilation unit, the compiler must have generated it in
accordance with the calling conventions. Otherwise, it cannot
expect callers from other modules to know how to call such
a procedure.

The operation of our link-time rewriter is summarized in
Figure 1. The rewriter reads all object files constituting a
program, together with the linker map produced by the original
linker. The latter file describes where all sections from the
object files are found in the final executable. Using this map
file, our rewriter first relinks the application in exactly the
same way as the original linker. This way, the rewriter is able
to collect all possible information on the executable, including
the aforementioned information available in the object files, as
well as any information added or used by the standard linker
itself. Thus, we can guarantee that the rewriting operationis
performedreliably [4].

After the linking phase, the linked program is disassembled
and an intermediate representation is constructed that is fit
for program analysis and manipulation. Once the diverse
transformations are applied, the intermediate representation is
transformed into a linear program representation, after which
the code is reassembled. All addresses are relocated, and the
modified executable is written to disk.

B. The Augmented Whole-Program CFG

As we explained in the previous section, a link-time rewriter
needs to create an easy to manipulate representation of the



input program. Most link-time rewriters operate on a whole-
program control flow graph (WPCFG), which consists of the
combined control flow graphs of all procedures in the program.
The nodes of the WPCFG consist of basic blocks which
contain instructions that are typically modelled very closely
to the native machine code instructions. Usually, analyseson
this WPCFG treat the processor registers as global variables
and consider memory to be a black box.

The WPCFG usually contains a lot of indirect control flow
transfers, for example instructions that jump to an addressthat
is stored in a register. To model indirect control flow elegantly,
a virtual unknown nodeis usually added to the WPCFG. As
we mentioned in Section II-A, relocation information informs
us on the computable addresses in a program, and hence
on the potential targets of indirect control flow transfers.
The basic blocks at these addresses become successors of
the unknown node, and basic blocks ending with indirect
control flow transfers become its predecessors. By imposing
conservative properties on the unknown node, we are able
to handle unknown control flow conservatively in any of the
applied program analyses and transformations. For example,
during liveness analysis, it is assumed that the unknown node
consumes and defines all registers.

Instead of using a simple WPCFG, our framework builds
and works on an Augmented WPCFG or AWPCFG. Besides
nodes modeling the program’s basic blocks, the AWPCFG
also contains nodes for all data sections in the object files,
such as the read-only, zero-initialized or mutable data sections,
the global offset table section, etc. Furthermore, the edges
in the graph are not limited to the control flow edges that
model possible execution paths. Instead the AWPCFG also
containsdata reachability edgesthat connect the occurrences
of relocatable addresses with the nodes to which the addresses
refer. For example, an instruction computing a relocatable
address of some data section will be connected to the node
corresponding to that data section. Likewise, if the relocatable
address of some data or instruction in node A is stored in a
data section B, a data reachability edge from B to A will be
present. As such, the data reachability edges model code/data
that is reachable/accessible indirectly, i.e., through computed
jumps or indirect memory accesses.

C. DIABLO ’s design

Our link-time rewriting framework is implemented as a
collection of independent levels of abstraction. The most im-
portant of these levels is the DIABLO -kernel level. It provides
generic, platform independent transformations at link-time.
This level is depicted in Figure 1 in the horizontal middle
bar. The architecture of our framework was designed with
retargetability and extensibility in mind. We have therefore
abstracted away as much details as possible from the kernel
level.

To be easily retargetable to different architectures as well
as different development environments, the DIABLO -kernel
level builds upon a backend level, as shown at the bottom
of Figure 1. In this level architecture dependent low-level

functionality is provided, like e.g. instruction assemblyand
disassembly procedures, as well as architecture dependent
transformation related functionality, like peephole optimiza-
tions. The backend level also contains the toolchain dependent
functionality. Differences between toolchains are found in
the object file format, the symbol resolution of the native
linker, etc. DIABLO currently supports 4 different architectures
(ARM, Alpha, x86 and MIPS) and 3 different toolchains (Gcc,
ARM ADS and ARM RVCT).

A typical DIABLO -based application is depicted in the top
part of Figure 1. Most of these DIABLO -based applications are
small: they consist of a sequence of calls to the functionality
from the DIABLO -kernel layer that is needed to perform the
necessary link-time rewriting tasks. A link-time optimizer, e.g.,
consists of a call to the kernel to constructed the AWPCFG,
followed by calls to different analyses and optimizations on
the AWPCFG and finally a call to write out an executable
representation of the AWPCFG. In the following sections we
will evaluate different DIABLO -based applications, to show
that this system is veryextensible.

III. L INK -TIME OPTIMIZATIONS

On top of DIABLO , we have implemented a collection of
analyses and optimizations targeting code size reduction [5]
to demonstrate the compaction possibilities of an optimizing
linker. We will discuss the most effective optimizations and
the results obtained with the optimizing linker.

The analyses and optimizations all work on the AWPCFG.
When the initial AWPCFG is built, some basic blocks and
data sections remain unconnected which implies that those
blocks will never be executed or accessed in any program run.
To remove the unreachable parts of the AWPCFG, a fixpoint
elimination algorithm based on the algorithm by [6] is used.
Our algorithm iteratively marks basic blocks and data sections
as reachable and accessible. A basic block is marked reachable
when there exists a path from the entry point of the program to
the basic block. A data section is marked accessible if a pointer
that can be used to access the data (which is determined by
relocation information) is produced in a reachable basic block
or if a pointer to the data section is stored in an accessible
data section.

Useless code elimination removes all instructions that only
produce dead values in registers and have no side effects
(e.g. storing a value in memory). To determine which values
are dead, a context-sensitive interprocedural register liveness
analysis is used, which is based on [7].

Constant propagation determines which registers at some
program point hold constant values. This is done by using a
fixpoint computation that propagates register contents forward
through the program. Instructions generate constant values
if the source operands have constant values or when a load
instruction loads data from the read-only data sections of the
program. Although code and data addresses depend on the
final layout of the binary, we treat them as constants by prop-
agating a symbolic value which references the corresponding



Fig. 2. The fraction of the program size, executed cycles anddissipated
energy for a set of benchmarks.

memory location. The results of constant propagation are used
to optimize the binary in the following ways:

• Unreachable paths following conditional branches that
always evaluate in the same direction are eliminated.

• Constant values are encoded as immediate operands when
possible.

• Conditional instructions whose condition always evalu-
ates to true or false are eliminated or unconditionalized.

• Constant folding, i.e. replacing a calculated expression
by its value.

Factoring is a compaction technique that merges identical
fragments of a program. This can be done at both procedure-
level and basic-block-level granularity. All but one of the
identical fragments are removed from the program and the
AWPCFG is adapted by inserting calls, returns and the nec-
essary spill code. This introduces some run-time overhead,
which implies that factoring cannot be applied on frequently
executed parts of the program without causing a slowdown.

The optimization possibilities of link-time rewriting are
illustrated in Figure 2. This figure shows the compaction
results for a set of benchmarks compiled with the ARM
RVCT 2.1 compiler. This compiler is renowned for its ability
to produce very compact code. We applied our compaction
techniques on the benchmarks, limiting factoring to the less
frequently executed code. The energy dissipation and executed
cycles were measured using Sim-Panalyzer [8]. The average
code size reduction was 18.5%, while the execution time is
reduced by 12.3 % and the energy dissipation is reduced by
10.1%. These results clearly indicate the usefulness of link-
time optimization. It also shows that generating smaller code
doesn’t need to imply a performance penalty.

IV. KDIABLO : COMPACTION AND SPECIALIZATION OF THE

L INUX KERNEL

Linux is becoming more and more popular for use in
embedded systems. The advantages are obvious: there are
no licensing fees involved, the system designer has complete
control over the source code, etc. However, using Linux as
opposed to a conventional embedded operating system incurs
a massive size overhead: the Linux kernel can be up to an order

of magnitude larger than a conventional embedded operating
system kernel for the same system.

This overhead comes from the fact that Linux isn’t designed
from the ground up to be as small as possible. Rather, the
design is geared towards offering a very general computing
environment on a wide range of general-purpose systems,
while still having a maintainable code base. Because of the
generality requirement, there are a lot of features in the kernel
that are not needed for embedded systems. For example, Linux
offers some boot-time configurability through the use of the
so-called “kernel command line”. The boot loader passes this
command line to the kernel, which parses it and uses it to set
a number of configuration variables. On an embedded system,
where there is no control over the boot process, this command
line will be fixed over the lifetime of the system. Consequently,
boot-time configuration is not needed and the kernel’s code
should be optimized for the specific values of the configuration
variables. However, this kind of fine-grained configurationis
not implemented because of maintainability issues.

Part of the overhead can be removed by applying link-time
optimization techniques as described in Section III. However,
if more information about the target system’s hardware and
software configuration is known, more aggressive optimization
is possible. It is possible tospecializethe kernel for a specific
target system, removing the overhead incurred by unneeded
features. This combination of link-time optimization and spe-
cialization for the Linux kernel is implemented in kDiablo [9].

kDiablo supports the Linux 2.4 kernel for ARM and i386
systems. In addition to the standard link-time optimizations,
kDiablo offers the following specializations:

• Initialization code motionThere are a lot of procedures
and data structures in the Linux kernel that are only used
during system initialization. In order to reduce the run-
time memory footprint of the kernel, the Linux developers
have annotated this code and these datastructures so that
they can be removed from memory once they are no
longer needed.
However, this annotation is independent of the kernel
configuration, so only code that is guaranteed to be “ini-
tialization code” in all possible kernel configurations can
be annotated. kDiablo will run an analysis on the kernel’s
control flow graph that can find extra initialization code
for this specific kernel configuration. By annotating this
code as well, the run-time memory footprint of the kernel
can be reduced.

• Unused system call eliminationFor a lot of embedded
systems, all applications that will ever run on the system
are known in advance. If so, it is possible to analyse these
applications at design time and make a list of all system
calls that they use. The handler code for all unused system
calls can then be removed from the kernel. On our test
systems, only 83 of the 245 systems calls were needed.
All other system calls could be removed from the kernel
without impacting the correctness of the system.

• Boot-time configuration overhead removalAs mentioned
before, the Linux kernel offers a boot-time configuration



feature that allows the user to specify the values of
some configuration variables at boot time. This feature
is unnecessary on embedded systems, but cannot be
removed from the kernel.
There are two kinds of overhead associated with this
feature. On the one hand, there is the parsing code that
interprets the configuration string and sets the variables
to their appropriate values. On the other hand, the kernel
code is not optimized for specific values of these config-
uration variables: sometimes a path in the code can only
be taken if a variable has a specific value. If it is known
in advance that the value of this variable is something
else, this code path could be removed from memory.
kDiablo can remove the parameter parsing code from the
kernel, and set the configuration variables to their correct
value at link time. Using constant propagation techniques,
the code is then optimized for these values.

Through application of both link-time optimization and
specialization of the kernel, kDiablo is capable of removing
about 16% of the run-time memory footprint of the kernel on
our test systems.

V. FIT, A BINARY INSTRUMENTATION FRAMEWORK

Some code optimizations, both at compile time and at link
time, require up front knowledge of the program’s dynamic
behaviour. For example, profile-guided branch layout uses
the program’s execution profile, which is measured during
program execution, to relayout the conditional branches inthe
program to reduce the probability of branch mispredictions.
The tools used to collect this run-time information should
satisfy a number of criteria:

• ExtensibilityThe tool should allow to answer a number
of different questions about the program’s run-time be-
haviour. The developer has to be able to specify which
information he wants to collect, and at which program
points this information should be collected.

• Precision The collected information should be precise.
The program’s execution should not be influenced by the
fact that information is collected.

• Portability Ideally, the same tool should be usable on all
different architectures a developer is likely to encounter.

• SpeedFor practical reasons, the execution slowdown due
to information collection should be as low as possible.

To collect the needed information, one can rely on sampling,
simulation or instrumentation. While sampling is the fastest
method, it does not give accurate results. While simulation
appears to be the easiest way of collecting accurate infor-
mation, it is also very slow. Instrumentation, which means
interweaving the information-collecting instructions with the
regular program, is an order of magnitude faster, and can be
just as flexible and accurate as simulation. Instrumentation can
be done either statically or dynamically. Dynamic instrumen-
tors insert the analysis code on the fly. This has the advantage
of being able to instrument self-modifying or JITted code, at
the cost of being rather slow. Static instrumentation techniques,

that rewrite the binary before execution, are a lot faster, but
they cannot handle self-modifying or dynamically generated
code.

We have developed our own static instrumentor on top of
the DIABLO framework, called FIT [10]. FIT implements an
ATOM-compatible [11] interface, and is designed to satisfy
the aforementioned criteria as much as possible:

• ExtensibilityJust like ATOM, FIT is actually not as much
an instrumentor as aninstrumentor generator. The user
specifies which analysis code should be inserted into the
program, and at what program points (e.g. at the start of
the program, at the end of each basic block, before each
conditional branch instruction, . . . ) this code should be
inserted. FIT then generates a custom instrumentor that
rewrites programs to insert the analysis code.

• PrecisionAdding instrumentation code to a program can
influence the run-time behaviour in very subtle ways. For
example, if the analysis code opens a file to write some
results in, and the standard C library routines are used for
this purpose, this means that the opened file will appear in
the C library’s internal data structures. If the program-to-
be-instrumented later on performs a file operation that
causes the C library routines to iterate over the list
of all open files, the extra opened file will be iterated
over as well. As a consequence, the execution of the
instrumented program deviates from the execution of the
uninstrumented program. A second example concerns the
addresses of code and data structures. Inserting analysis
code and data into the program causes the original code
and data to be moved. If no compensating measures
are taken, any code that relies on specific addresses
(this can be as simple as printing the address of a
procedure or data structure) will execute differently in the
instrumented program. Both examples can be illustrated
with ATOM, which contains no compensating measures
for these problems.
FIT does compensate for these issues. The first problem
is solved by linking the analysis code against a special-
purpose C library that does not share any data structures
with the regular C library. To solve the second problem,
FIT will intelligently add calls to an address translation
routine whenever an original address is needed.

• Portability As FIT is built on top of the DIABLO frame-
work, it can easily be ported to different architectures. If
an architecture is supported by the DIABLO framework,
porting FIT just requires porting the support C library
and porting one source code file that implements the
platform-specific instrumentation instructions. Currently,
FIT supports the ARM, i386 and Alpha architectures.

• SpeedFIT will use all analyses and optimizations avail-
able in DIABLO to reduce the speed impact of the added
instrumentation code. In addition, if less precision is
needed, FIT can turn off part of the address translation
calls, which will reduce the speed impact. With full
precision instrumentation, basic block tracing on the i386
architectures slows the program down with a factor of



8.11 on average. If the precision is reduced, the slowdown
drops to a factor of 3.36 on average.

There are a lot of different binary instrumentation toolkits
available, but to the best of our knowledge, none of them
satisfies all criteria we mentioned at the beginning of this
section. The best-known tool is ATOM [11], which served as
an inspiration for many of the later instrumentation toolkits.

VI. LANCET, A GUI FOR PROGRAM SURGERY

As shown in the previous sections, our framework facilitates
the modification of a complete program at different levels of
abstraction, going from linker sections down to instruction
level. All modifications described in the previous sectionsare
applied algorithmically. There is no possibility to manually
interact with the program contents and even the smallest
change to an instruction needs to be explicitly coded in the
application. The DIABLO framework can visualize its internal
CFG representation through an external program, but these
graphical representations merely give a snapshot of the CFGs
at a specific transformation phase.

In a number of cases, it would be beneficial if the user
could control the transformation process by hand. To make
this possible, a graphical user interface is needed that lets the
user interact with CFGs, allowing him to study the effect of
different optimizations and allowing him manually edit the
program’s machine code.

Lancet [12], the GUI built on top of DIABLO lets the user
transform a binary at the instruction level. Instructions can be
inserted, moved and deleted, similar to the VISTA interactive
compiler environment [13]. Additionally, the control flow
graph structure itself can be edited: basic block and edges
can be added or removed. During this process, Lancet offers
feedback to the user: if a given modification would change the
semantics of the program (i.e. if a newly inserted instruction
overwrites a live register value) the user is alerted to thisfact.

Lancet can be used to make small changes to a binary
in case it fails to meet performance or energy consumption
constraints. If profile information is available, Lancet can
highlight the most frequently executed code, i.e. the code
on which an assembly programmer should concentrate his
efforts. As such, both the benefits of compilation and assembly
programming are combined in a single programming environ-
ment. On top of this, Lancet can be used to provide a more user
friendly instrumentation interface, by enabling the insertion of
instrumentation code at user-selected program points.

To the best of our knowledge there are no existing tools
that offer all possibilities described here. Some existingtools
offer a subset of Lancet’s features. The aiPop optimizer suite
(http://www.absint.com/aipop/) is a code compaction frame-
work that works at the assembly code level [14]. aiPop can
show the CFGs of the input program but editing the graphs is
impossible.

VII. C ONCLUSION

Link-time binary rewriting is a reliable program transfor-
mation technique that has many applications. We have built a

framework that is proven to be retargetable and extensible.On
top of this framework, a collection of cooperating tools has
been built that can eliminate part of the overhead introduced by
modern software engineering systems. Link-time compaction
for example is able to shrink code size optimized benchmarks
by more than 18% on average. Using profile information
provided by our instrumentation tool, FIT, and judiciously
applying optimizations, this code size reduction comes with
an execution speed-up of 12.3%.

ACKNOWLEDGMENT

Ludo Van Put is supported by the Institute for the Promotion
of Innovation by Science and Technology in Flanders (IWT).
Dominique Chanet is supported by the Fund for Scientific
Research - Flanders (FWO). This research is also partially
supported by Ghent University and by the HiPEAC network.

REFERENCES

[1] R. Muth, S. Debray, S. Watterson, and K. De Bosschere, “alto: a
link-time optimizer for the compaq alpha,”Software - Practice and
Experience, vol. 31, no. 1, pp. 67–101, 2001.

[2] S. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler techniques
for code compaction,”ACM Transactions on Programming Languages
and Systems, vol. 22, no. 2, pp. 378–415, 3 2002.

[3] J. Levine,Linkers & Loaders. Morgan Kaufmann Publishers, 2000.
[4] B. De Bus, “Reliable, retargetable and extensible link-time program

rewriting,” Ph.D. dissertation, Ghent University, 2005.
[5] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere,

“Link-time optimization of ARM binaries,” inProc. of the 2004 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), 2004, pp. 211–220.

[6] B. De Sutter, B. De Bus, K. De Bosschere, and S. Debray, “Combining
global code and data compaction,” inProc. of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embedded Systems,
2001, pp. 29–38.

[7] R. Muth, “Alto: A platform for object code modification,”Ph.D. disser-
tation, University Of Arizona, 1999.

[8] http://www.eecs.umich.edu/˜panalyzer/.
[9] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere,

“System-wide compaction and specialization of the linux kernel,” in
Proc. of the ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems, 2005, pp. 95–104.

[10] B. De Bus, D. Chanet, B. De Sutter, L. Van Put, and K. De Bosschere,
“The design and implementation of FIT: a flexible instrumentation
toolkit,” in PASTE ’04: Proc. of the ACM-SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, 2004, pp. 29–
34.

[11] A. Srivastava and A. Eustace, “ATOM: A System for Building Cus-
tomized Program Analysis Tools,” inProc. Conference on Programming
Languages Design and Implementation (PLDI), 1994, pp. 196–205.

[12] L. Van Put, B. De Sutter, M. Madou, B. De Bus, D. Chanet, K.Smits,
and K. De Bosschere, “LANCET: A Nifty Code Editing Tool,” inPASTE
’05: Proc. of the ACM-SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, 2005.

[13] W. Zhao, B. Cai, D. Whalley, M. W. Bailey, R. van Engelen,X. Yuan,
J. D. Hiser, J. W. Davidson, K. Gallivan, and D. L. Jones, “Vista: a
system for interactive code improvement,” inLCTES/SCOPES ’02: Proc.
of the joint conference on Languages, compilers and tools for embedded
systems. New York, NY, USA: ACM Press, 2002, pp. 155–164.

[14] D. Kästner, “PROPAN: A retargetable system for postpass optimizations
and analyses,” inProceedings of the 2000 ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems (LCTES’00),
2000.


