
LANCET: A Nifty Code Editing Tool

Ludo Van Put Bjorn De Sutter Matias Madou Bruno De Bus

Dominique Chanet Kristof Smits Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{lvanput,brdsutte,mmadou,bdebus,dchanet,ksmits,kdb}@elis.ugent.be

ABSTRACT
This paper presents Lancet, a multi-platform software vi-
sualization tool that enables the inspection of programs at
the binary code level. Implemented on top of the link-
time rewriting framework Diablo, Lancet provides several
views on the interprocedural control flow graph of a pro-
gram. These views can be used to navigate through the
program, to edit the program in a efficient manner, and
to interact with the existing whole-program analyses and
optimizations that are implemented in Diablo or existing
applications of Diablo. As such, Lancet is an ideal tool to
examine compiler-generated code, to assist the development
of new compiler optimizations, or to optimize assembly code
manually.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
graphical environments; D.3.4 [Programming Languages]:
Processors—optimization

General Terms
Design, Experimentation

Keywords
visualization, optimization, instrumentation, assembler, bi-
nary code

1. INTRODUCTION
During the last decades, an extensive range of (graphi-

cal) software engineering tools has been developed. These
tools most often operate on high level, abstract program
representations, such as graphical program blocks (e.g., Lab-
view), screen widgets (Glade), or object-oriented languages
(Eclipse, Visual Studio .NET, ...). But despite the ability
to work with abstract program representations, there still

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE ’05 Lisbon, Portugal
Copyright 2005 ACM 1-59593-239-9/05/0009 ...$5.00.

exist numerous scenarios in which both researchers and de-
velopers need to examine assembler code.

A first scenario that comes to mind is the development
of compiler optimizations. First, existing code has to be
scanned for inefficiencies in order to discover interesting op-
portunities for new compiler optimizations. Once such an
opportunity is found, a compiler researcher might try to
apply an the appropriate optimization manually to evalu-
ate its influence on execution speed or power consumption.
Obviously this requires the ability to examine and edit the
assembler code. If successful, the researcher may start im-
plementing the necessary analyses and the automated trans-
formation in his compiler. At this stage, he needs to verify
that the resulting changes to the compiled programs are as
intended. Again, assembler code needs to be examined.

Another important scenario is that of an embedded pro-
grammer. These days, embedded programs are most often
written in higher-level programming languages, of which ex-
ecutable code is generated automatically by compilers. It
is not unusual however, that performance critical kernels of
an application, such as loops that need to handle streaming
media in real time, are optimized manually because the com-
piler cannot exploit architectural peculiarities. Or that cer-
tain (partially) automated optimizations are triggered man-
ually, for example if a developer decides that one hot loop
needs to be unrolled while another hot loop, for whatever
reason, need not be unrolled.

Finally, sometimes a program does not perform as ex-
pected. In that case, a developer needs to be able to study
the generated code to get insights in the bottlenecks. Maybe
an optimization was unexpectedly not applied by the com-
piler, or maybe some combination of statements resulted in
a particularly bad instruction schedule. In this scenario, it is
important that the developer can navigate through the pro-
gram easily, that he can find the hot spots efficiently, and
that he can extract information about those hot spots, such
as the results of data flow analysis. The latter can learn the
developer why some optimization was not applied.

To the best of our knowledge, there exist no tools today to
support the tasks described above on a complete program.
To fill that gap, this paper presents Lancet (Lancet is A
Nifty Code Editing Tool), a GUI on top of the link-time pro-
gram editing framework Diablo. In short, Lancet provides
an interface to navigate through a graph representation of a
binary program, edit the program, and interact with a wide
range of analyses and transformations.

The remainder of this paper is structured as follows. Sec-

tion 2 provides an overview of Lancet’s functionality and
its implementation. The use of Lancet in a plethora of
user scenarios is discussed in Section 3. Section 4 discusses
related work, and conclusions are drawn in Section 5.

2. OVERVIEW
Lancet basically is a graphical user interface to Dia-

blo [3] (http://www.elis.ugent.be/diablo), a link-time pro-
gram rewriter that has been used to implement, amongst
others, several link-time optimizers [2, 5] and the program
instrumentation toolkit FIT [4].

This section presents an overview of Lancet’s base func-
tionality and implementation. Some specific user scenarios
for which we have implemented specific features in Lancet

are discussed in Section 3.

2.1 Functionality
To carry out the scenarios described in the introduction,

Lancet supports a number of interactions with the internal
program representation that the Diablo framework builds
of a statically linked program.1 This core representation
mainly consists of an interprocedural control flow graph of
a whole program. Furthermore, Lancet offers an interface
to trigger many of the lower-level and higher-level program
analyses and transformations that Diablo implements. To-
gether, these two interfaces offer the following functionality:

Program Navigation and Examination. Lancet can vi-
sualize the call graph of a program and the control flow
graphs (CFGs) of the procedures. Obviously, zooming and
panning these graphs is possible. Moreover, by hovering over
nodes or edges, additional information is presented. For ex-
ample, when hovering over an edge, this edge is highlighted
and the blocks at its head and tail are shown in a pop-up
window. This is useful in complex graphs where it is diffi-
cult to follow individual edges. Also, when hovering over a
basic block, data flow information, such as liveness on regis-
ter contents, can be shown. Through the color of the nodes
in these graphs, users can quickly locate the frequently exe-
cuted code. The profile information required hereto can be
gathered with FIT [4], the instrumentation tool developed
on top of Diablo. This profile information may include
execution counts of conditional instructions, and if so, the
CFGs indicate by means of colors which instructions are
frequently executed. A screenshot showing some graphs is
depicted in Figure 1.

Furthermore, lists of basic blocks and procedures can be
searched by sorting them on different properties (procedure
names, execution counts, addresses, etc.). This also allows
for easy targeting of important code.

Finally, it is important to note that all this navigation
can happen in multiple windows, on different snap-shots of
a program. As such, the user can compare the CFG of a
procedure before and after optimizations have been applied.

Program Editing. Besides navigating the graphs of a pro-
gram, Lancet also provides means to edit the graphs. For

1
Diablo currently does not work on dynamically linked

code or self-modifying code. While the latter poses prob-
lems for which we have no obvious solutions yet, the lacking
support for dynamically linked code is purely an implemen-
tation issue. So far, we simply have not had the research
incentive to add support for dynamically linked code.

example, additional basic blocks can be added to CFGs with
a mouse click. Heads and tails of edges in the graph can
be dragged and dropped to different basic blocks. Pop-up
menus provide more high-level functionality such as splitting
basic blocks, forwarding edges, etc.

Furthermore, the instructions in basic blocks can be edited
in an instruction editing window. Currently, only the ARM
and x86 assemblers are supported, but adding support for
additional architectures is a rather simple task. To resched-
ule code, instructions can also be dragged and dropped. Fig-
ure 1 also includes the instruction editing window.

Optimization Triggering. As a large number of interpro-
cedural analyses and optimizations have been implemented
in Diablo while developing link-time optimizers, it was ob-
vious that a user of Lancet should be able to trigger these
analyses and optimizations, after which the resulting code
can be examined. To that extent, Lancet offers an easy
interface to enable/disable all optimizations that a user of
Diablo can otherwise control through command-line op-
tions.

2.2 Implementation
To implement the provided functionality, Lancet basi-

cally consists of a number of communication channels be-
tween three libraries.

The most important underlying library is Diablo, our
link-time code editing framework. Because Diablo was pre-
viously used in numerous applications, a large number of
analyses and code transformations have already been imple-
mented. So on top of the low-level operations that Diablo

offers on its internal program representation, a large number
of mid-level to high-level analyses and transformations are
available. These range from, e.g, computing interprocedural
dominators or removing unreachable code to simply adding
instructions to basic blocks, or adding edges to a CFG.

Diablo these days includes all the necessary backends to
rewrite statically linked programs of different architectures
(ARM, x86, IA64, Alpha, MIPS), and different object file
formats (ECOFF, ELF), and to construct their interproce-
dural control flow graphs, which contain the disassembled in-
structions. It are these graphs that the Lancet user views.
Currently, Lancet only supports the ARM and x86 targets
however.

After a user has edited a program, Diablo provides all the
necessary functionality to write the transformed program to
disk again. In this process, all necessary relocation is au-
tomatically performed by Diablo. Unlike simple program
editors that only allow local changes in order not to change
code size, the user of Lancet can edit the assembler code
of a whole program without having to worry about changing
addresses calculations. This allows a user to insert instruc-
tions, or to replace specific instructions with instructions
that occupy more bytes.

Besides Diablo, we have also used the libraries Gtk2

- GnomeCanvas (http://www.gnome.org) and Graphviz

(http://www.graphviz.org). Graphviz can layout and visu-
alize graphs that are described in the .dot format, a textual
graph description that enables the embedding of additional
information in a graph’s nodes and edges. We use this capa-
bility to include information on nodes and edges that is to
be shown in pop-up windows when hovering over the nodes
or edges.

Figure 1: A screenshot of Lancet, showing a number of views on the program rawcaudio, compiled for the
ARM architecture. In the upper right window, the block entitled “BBL Information” shows the liveness
information that appears after hovering over the basic block shown in gray. This gray marks that the block
is frequently executed, as can be seen from its execution count of 147520. On the right of each conditional
instruction, the number of times its condition evaluated to true is also presented. The upper left window
shows part of the program call graph, while the lower left window shows the list of functions in the program,
sorted on “heat”, i.e., on number of instructions times their execution count. The middle window shows the
instruction editing window. Existing instructions can be unconditionalized, and dragged and dropped. New
instructions can be typed (as is partially done on the right side of the window, and prepended or appended
to the basic block. Finally, the lower right window is the main window of Lancet, from which different views
can be opened, and optimizations or analyses can be triggered.

The actual displaying of all graphs and menus is imple-
mented with GnomeCanvas. GnomeCanvas directly of-
fers clickable objects on a canvas, which facilitated the im-
plementation of interactive graph editing tremendously.

3. APPLICATIONS
This section describes how Lancet supports a number

of applications such as the user scenarios described in the
introduction. For most of these applications a great deal of
functionality has already been implemented, for others the

implementation is ongoing or future work. We will mention
for each scenario what functionality is not implemented yet
at the time of writing.

3.1 Program Visualization
Compiler writers, instruction set architects, embedded sys-

tems programmers, and advanced compiler course teachers
all need to study machine code, most of which will be gener-
ated by compilers. These developers and instructors can all
benefit from a graphical presentation of the machine code

using control flow graphs that highlight interesting parts.
Having a view on the internals of a program leads to im-

proved understanding of the software. When programming
a certain part of an application, it is not always clear how
the code fits in the total picture or from where it will be
called. A graphical interface that lets the user explore and
navigate his program including all library code, from the
function level down to the machine code level, can give un-
usual but useful information. With no source code available,
a view on the control flow graph of the program is a nec-
essary requirement to analyze or reverse engineer a piece of
software.

With Lancet, a user can easily navigate through the final
code of a compiled program. By presenting the user a control
flow graph of individual functions, the presented information
is detailed and clear, but not overwhelming. At the function
level, a user can get an overview of the program, aided by the
possibility of viewing a call graph of the complete program.
When more detail is necessary, the user can zoom in on
a CFG and follow function calls by opening the CFG of a
called function with a single click.

3.2 Program Surgery
With the term program surgery, we mean the act of dis-

secting a compiled program, locating a problem and interac-
tively editing the program in order to remove the problem.

User scenarios that need program surgery include the man-
ual application of known optimizations to kernel loops of
embedded applications, manual experimentation with new
optimizations, and program cracking.

Obviously Lancet offers the possibility of dissecting a
compiled program, including all the linked in library code.
In fact, this dissection is all done by the Diablo framework.
Being able to look at library code in the same manner as one
looks at his own compiled code, offers an important advan-
tage. More precisely, it allows one to treat all precompiled
system libraries, that are most often not available as source
code in proprietary development environments, as any other
code.

If a program’s execution is experienced as problematic
(crashing, too slow, etc.), collecting profile information can
be done with Lancet’s cousin FIT [4]. Using the collected
profiles, Lancet’s navigation allows easy targeting of the
hot or problematic code.

With interactive editing, we mean more than just editing
the program as any hacker can do by means of a hexadecimal
editor. First, the editing in Lancet is carried out at a
much more abstract level, being the level of the program’s
control flow graph. Not only can one perform simple atomic
operations on the control flow graph, such as moving edges,
one can also perform more complex, aggregate operations
such as adding a preheader to a loop, or duplicating a whole
procedure.

More importantly, the editing process can interact with
the existing data flow analyses implemented in Diablo. Dur-
ing the editing process a user can get feedback from Lancet.
Figure 2 illustrates this with an example. In the figure, we
see the instruction at address 0x80c1904 being moved down
with a drag and drop operation. During this operation,
the info box at the bottom of the window warns the user
that this motion breaks a register dependency. Obviously,
this example of supervised, interactive editing is rather triv-
ial. It is not hard to think about more advanced types of

Figure 2: A screenshot showing basic block editing
window while an instruction is moved

analyses-supported feedback that can guide the manipula-
tion by a programmer. For example, when inserting new
instructions, Lancet may warn the programmer that he is
overwriting a live value, and ask whether it is OK to insert
the necessary spill code. Also, when eliminating an instruc-
tion, Lancet could warn the user of possible side-effects
such as a changed stack frame layout.

Finally, this type of interactive editing could be extended
to allow the user to specify which optimization should be
applied to which code fragment. For example, Lancet

could provide a list of all hot loops in the program, to-
gether with different unrolling techniques, and ask which
techniques should be applied to which loops2. In short,
Lancet forms an ideal framework to apply assembler code
refactoring.

One of the most important advantages of Lancet in these
scenarios, is the ability to produce, at any time, a working
executable from the edited graph. Because of this, the user
can easily test whether the edited program still operates
correctly.

3.3 A Priori Optimization Estimation
and Rapid Prototyping

When developing a new code optimization, it can be hard
to predict its effectiveness without first applying and testing
it. In general, a developer can walk two paths. An obvious
path consists of manually trying out the transformation and
testing the manipulated code. The alternative path is to
make a rapid, buggy prototype implementation, and to try
to improve the prototype’s robustness until it operates cor-
rectly on some set of test programs. On both paths, using

2This scenario is not implemented because Diablo does not
offer multiple loop unrolling techniques even though it can
detect loop in the interprocedural CFG.

graphical code editing software can alleviate the task, as we
will describe in this section.

When the first of the above paths is followed, the de-
veloper wants to try out a transformation by hand before
starting the implementation of an optimization algorithm.
By doing so, the developer can evaluate the potential of his
transformation a priori, and save the implementation effort
if the result is disappointing. The implementation effort for
a complex transformation can turn out to be high and al-
though applying a transformation by hand could also take
some time, a priori estimation could save the programmer
a significant amount of time.

Many advanced transformations require additional infor-
mation about the program, such as liveness information.
Since it is time-consuming to gather this information by
hand, a lack of such information would often prohibit a de-
veloper to implement the transformation by hand. Lancet

can present the user all information that can be extracted
from the program using the analyses that have been imple-
mented in the underlying framework, Diablo. When the
information is presented in a clear way, the programmer can
concentrate on his transformation instead of having to spend
time analyzing the program.

To demonstrate this, we have added the possibility to
show liveness information to the user upon request. In Fig-
ure 2, liveness information before and after the basic block
is shown at the top and bottom of the assembly code listing.
Additional information, like constant propagation informa-
tion or dominance information can be added easily.

If a developer is more confident about the effectiveness of
his transformation, or when manual application has shown
that his transformation is worthwhile, he will try to build a
working prototype in order to run some tests on a limited
set of benchmarks. When the new technique is promising,
the prototype implementation has to be refined to account
for corner cases and previously unseen code constructs. The
refinement of a transformation is typically a lengthy process,
as unanticipated corner cases and worst-case scenarios can
arise with every new test program that is added to a devel-
opers regression test suite, or with every new transformation
that triggers bugs in existing ones.

We believe that the use of graphical code editing software
and the possibility to interact with the transformation can
shorten the refinement process considerably.

3.4 Transformation Visualization, Feedback
and Steering

A compiler or whole program rewriter can transform a
program in numerous ways. For a programmer or researcher
it is however not always clear how code is transformed through-
out the optimization process. A graphical code editor can
show the differences in the control flow graph before and af-
ter a transformation has been applied. With this possibility,
the user can understand how his program is transformed, or
why it is not transformed the way he intended it.

Transformation visualization opens up even more interest-
ing possibilities. Why not make the user interact with the
optimization process? Before a transformation is applied to
a certain part of the program, a lot of pre-conditions are
evaluated to locate valid optimization targets. This evalu-
ation typically consists of numerous checks, and when one
of the checks fails, no optimization is applied. Instead of
ignoring the optimization possibilities and bailing out, the

user can be prompted for interaction and assist in collecting
additional information (*), thus steering the optimization
process. For example, if the compiler analyses cannot find
a free register needed for an optimization, Lancet can ask
the user if he knows a free register. This is especially in-
teresting to optimize manually written assembler code, of
which Diablo cannot make aggressive assumptions about
code properties such as calling convention adherence. The
assumptions that a compiler cannot make on such code can
be complemented with additional information provided by
the user.

Furthermore, once the necessary communication channels
will be implemented in Lancet to support this scenario, it
can also be used to obtain better insights in the application
of existing algorithms. For example, it would then be trivial
to provide the user with a list of code fragments on which
a transformation has been applied, and another list of code
fragments on which the transformation was not applied, and
for what reason the transformation was not considered ap-
plicable (*). With this feedback, the user can easily pinpoint
lacking pre-conditions or pre-conditions that can be relaxed
because they are in fact too conservative.

We are currently finalizing an interface for Diablo that
allows the specification of pre-conditions to be used both
in standard optimizers, and in scenario’s where steering or
feedback are wanted. To provide the functionality for the
scenario’s described in this section, Lancet will provide
multiple implementations of this interface. At run-time, the
implementation can then be chosen at any given moment,
thus providing the highest flexibility for the user to switch
between fully automated transformations, steering or feed-
back.

3.5 Point-Wise Instrumentation
The most common way to gather run-time information

about a program, is to use an instrumentor or a simulator.
Both methods most often come with a run-time overhead
however. Instrumentation is generally faster than simula-
tion, but it can still lead to unacceptable slow-downs.

To eliminate some of the overhead, instrumenting unin-
teresting code can be avoided. Instrumentation tools like
FIT [4] or ATOM [10], let the user build custom instru-
mentors. In an instrumentation code file, the user specifies
at which type of program points in the program the instru-
mentation code from a separate analysis code file has to be
inserted. These program points can be basic block entries,
single instructions, procedure entries, program exit points,
etc. However, when only some specific instructions have to
be instrumented, for example to collect the addresses used
by a specific load instruction while debugging a program,
the instrumentation process can be simplified with the use
of a point-and-click instrumentor.

With a graphical interface, a user can explore the program
to be instrumented and select the points at which instrumen-
tation code should be inserted. Lancet builds on the same
framework that FIT has been built on. Just like in FIT or
ATOM, the user can provide the instrumentation code him-
self in a separate file, but we add the possibility to select it
from a built-in collection of common instrumentation rou-
tines. As is the case in FIT, all optimizations available in
the underlying link-time framework can be used to further
minimize the instrumentation overhead.

Point-wise instrumentation lets a user gather detailed run-

time information to assist the analysis of the input program.
As discussed in Section 3.4, the information can be fed back
to the data flow analysis. In future work instrumentation
and feedback driven analysis could be integrated in a dedi-
cated environment to combine static and dynamic analysis
for program rewriting.

4. RELATED WORK
To the best of our knowledge, we do not know any soft-

ware tool that offers all functionality that is combined in
Lancet. Existing software tools mostly offer a subset of
the possibilities available in our tool.

Almost all tool-chains can present the user a textual rep-
resentation of a program’s content. With the objdump utility
from the GNU Binutils (http://www.gnu.org) for example,
a program’s sections and symbols can be shown, as well as
a disassembled listing of the binary code. Datarescue Ida
Pro (http://www.datarescue.com/idabase/) is a multiplat-
form disassembler that is able to show a control flow graph
of disassembled code, but it lacks the capability to edit the
program or to incorporate data flow analysis information.

Using the Ida Pro disassembler and GrammaTech’s Code-
Surfer system (http://www.grammatech.com/) Balakrish-
nan et al. [1] have built CodeSurfer/x86, a platform for ana-
lyzing x86 executables. CodeSurfer/x86 works at the binary
level and uses value-set analysis (VSA) to reconstruct an in-
termediate representation. This intermediate representation
can then be ’browsed’, similar to the navigation method de-
scribed in Section 2.1. Using the results of the VSA, an
analyst can partially recover the memory behaviour of the
executable. CodeSurfer/x86 is designed to analyse the be-
haviour of malicious programs and offers no rewriting capa-
bilities.

The aiPop optimizer suite (http://www.absint.com/aipop/)
is a code compaction framework that works at the assembly
code level [7]. A GUI lets the user select the transformations
to be applied. aiPop can show CFGs of the input program,
but manually editing the graphs or the code, even without
supervision, is impossible.

A number of binary rewriters have been described in lit-
erature [11, 9, 6]. They are developed for several goals, but
none of them offer a graphical interface to the internal pro-
gram representation or allow fine-grained code editing.

Of all existing tools, the interactive compiler environment
VISTA [12] bears the most resemblance to Lancet. VISTA
offers most functionality that is offered by Lancet and ad-
ditionally allows for specifying the optimization ordering,
a feature that has been extensively used to study optimal
application orders for compiler optimizations [8]. On the
other hand, VISTA lacks some of the interesting features
ofLancet.

First of all, VISTA works at the compiler level and works
on an RTL (Register Transfer Language) intermediate rep-
resentation. The user can view the CFG of the compiled
code and can edit individual intermediate instructions, but
in VISTA the displayed CFG is nothing more than a list of
instructions connected by edges. In VISTA, related, con-
nected basic blocks are hence not displayed next to each
other. Lancet, because of its use of Graphviz shows much
more practical graphs from which the control flow can be de-
rived easily. Furthermore, VISTA’s operation on a compile-
time intermediate code representation implies that no whole-
program overview is available and thus no whole-program

optimizations are possible. Moreover, the use of a generic
RTL representation of a program hinders the exploit of ar-
chitecture specific features. For example, in VISTA, a user
cannot insert specific ARM instructions.

5. CONCLUSIONS
We have developed Lancet, a graphical, interactive, multi-

platform, link-time binary program rewriter. Lancet pro-
vides several views on the internal representation of an input
program and a user can navigate through or modify these
representations. We described applications that arise from
the availability of a graphical program rewriter. Some ap-
plications are novel and are solely enabled by the use of a
graphical program rewriter. Other possible applications of
Lancet simplify or ease existing tasks. We introduced the
concept of program surgery and point-wise instrumentation,
and we explored the possibility to let a programmer interact
with program analysis and optimization. As such, Lancet

opens new ways of exploring and modifying compiled pro-
grams.

6. ACKNOWLEDGMENTS
The authors would like to thank the Institute for the Pro-

motion of Innovation by Science and Technology in Flan-
ders (IWT) and the Fund for Scientific Research Flanders
(FWO) for their financial support. This research is also par-
tially supported by Ghent University and by the HiPEAC
network.

7. REFERENCES
[1] G. Balakrishnan, R. Gruian, T. W. Reps, and

T. Teitelbaum. Codesurfer/x86-a platform for
analyzing x86 executables. In R. Bod́ık, editor, CC,
volume 3443 of Lecture Notes in Computer Science,
pages 250–254. Springer, 2005.

[2] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and
K. De Bosschere. System-wide compaction and
specialization of the linux kernel. In Proc. of the 2005
ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), 2005. To appear.

[3] B. De Bus. Reliable, Retargetable and Extensible
Link-Time Program Rewriting. PhD thesis, Ghent
University, 2005.

[4] B. De Bus, D. Chanet, B. De Sutter, L. Van Put, and
K. De Bosschere. The design and implementation of
FIT: a flexible instrumentation toolkit. In PASTE ’04:
Proc. of the ACM-SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering,
pages 29–34, New York, NY, USA, 2004. ACM Press.

[5] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and
K. De Bosschere. Link-time optimization of ARM
binaries. In Proc. of the 2004 ACM
SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), 2004.

[6] B. De Sutter, B. De Bus, K. De Bosschere, and
S. Debray. Combining global code and data
compaction. In Proc. of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Embedded Systems, pages 29–38, 2001.

[7] D. Kästner. PROPAN: A retargetable system for
postpass optimizations and analyses. In Proceedings of
the 2000 ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems
(LCTES’00), 2000.

[8] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Paek, and K. Gallivan.
Finding effective optimization phase sequences. In
LCTES ’03: Proc. of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for
embedded systems, pages 12–23, New York, NY, USA,
2003. ACM Press.

[9] R. Muth, S. K. Debray, S. A. Watterson, and
K. De Bosschere. alto: a link-time optimizer for the
compaq alpha. Software - Practice and Experience,
31(1):67–101, 2001.

[10] A. Srivastava and A. Eustace. ATOM: A System for
Building Customized Program Analysis Tools. In
Proc. Conference on Programming Languages Design
and Implementation (PLDI), pages 196–205, 1994.

[11] A. Srivastava and D. W. Wall. Link-time optimization
of address calculation on a 64-bit architecture. In
Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 49–60, 1994.

[12] W. Zhao, B. Cai, D. Whalley, M. W. Bailey, R. van
Engelen, X. Yuan, J. D. Hiser, J. W. Davidson,
K. Gallivan, and D. L. Jones. Vista: a system for
interactive code improvement. In LCTES/SCOPES
’02: Proc. of the joint conference on Languages,
compilers and tools for embedded systems, pages
155–164, New York, NY, USA, 2002. ACM Press.

