Software Protection Through Dynamic
Code Mutation

Matias Madou®, Bertrand Anckaert!, Patrick Moseley?, Saumya Debray?,
Bjorn De Sutter!, and Koen De Bosschere!

! Department of Electronics and Information Systems,
Ghent University, B-9000 Ghent, Belgium
{mmadou, banckaer, brdsutte, kdb}@elis.UGent.be
2 Department of Computer Science,
University of Arizona, Tucson, AZ 85721, U.S.A.

{moseley, debray}@cs.arizona.edu

Abstract. Reverse engineering of executable programs, by disassem-
bling them and then using program analyses to recover high level se-
mantic information, plays an important role in attacks against software
systems, and can facilitate software piracy. This paper introduces a novel
technique to complicate reverse engineering. The idea is to change the
program code repeatedly as it executes, thereby thwarting correct disas-
sembly. The technique can be made as secure as the least secure compo-
nent of opaque variables and pseudorandom number generators.

1 Introduction

To reverse-engineer software systems, i.e., to obtain an (at least partial) un-
derstanding of the higher-level structure of an executable program, a malicious
attacker can subvert many recent advantages in program analysis technology and
software engineering tools. Thus, the existing technology can help an attacker
to discover software vulnerabilities, to make unauthorized modifications such as
bypassing password protection or identifying and deleting copyright notices or
watermarks within the program, or to steal intellectual property.

One way to address this problem is to maintain the software in encrypted
form and decrypt it is as needed during execution, using software decryption [I],
or specialized hardware [I8]. Such approaches have the disadvantages of high
performance overhead or loss of flexibility, because software can no longer be
run on stock hardware.

To avoid these disadvantages, this paper instead focuses on an alternative
approach using code obfuscation techniques to enhance software security. The
goal is to deter attackers by making the cost of reverse engineering programs
prohibitively high.

The seminal paper on decompilation and reverse engineering [4] considers two
major difficulties in the process of reverse engineering programs. The first prob-
lem is that data and code are indistinguishable, as code on a Von Neumann

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 194-206] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Protection Through Dynamic Code Mutation 195

computer is nothing more than a specific type of (binary) data. The second
problem relates to self-modifying code, which does not follow the convention of
static code that there is a one-to-one mapping between instructions and memory
addresses.

In this paper, we propose a novel technique to automatically aggravate and /or
introduce these problems in existing programs. The basic idea is to mutate a pro-
gram as it executes, so that a region of memory is occupied by many different
code sequences during the course of execution. We show how this technique
undermines assumptions made by existing analyses for reverse engineering. Fur-
thermore, we claim that our technique can be made as secure as the least secure
component of opaque variables [5] and pseudorandom number generators [24].

The goal of this research is to deter “ordinary attackers” by making it sub-
stantially more difficult to reverse engineer the obfuscated code; it is consistent
with the prior work on code obfuscation, which aims primarily to raise the bar
against reverse engineering high enough so as to deter all but the most deter-
mined of attackers.

The remainder of this paper is structured as follows: SectionPldiscusses related
work. Our technique is introduced in Section [Bl The security of this technique
is the topic of Section @l An evaluation of the impact on the size and execution
time of the program is discussed in Section [6l Finally, conclusions are drawn in
Section

2 Related Work

The only other paper we are aware of that proposes dynamic code modifications
for obfuscation purposes is that of Kanzaki et al. [16], which describes a straight-
forward scheme for dynamically modifying executable code. The central idea is
to scramble a selected number of instructions in the program at obfuscation
time, and to restore the scrambled instructions into the original instructions at
run time. This restoration process is done through modifier instructions that are
put along every possible execution path leading to the scrambled instructions.
Once the restored instructions are executed, they are scrambled again. It is how-
ever not clear how the modifier instructions pose problems for a static analysis
targeted at restoring the original program.

There is a considerable body of work on code obfuscation that focuses on
making it harder for an attacker to decompile a program and extract high level
semantic information from it [6L[7,[2T.25]. Typically, these authors rely on the
use of computationally difficult static analysis problems, e.g., involving complex
Boolean expressions, pointers, or indirect control flow, to make it harder to
understand the statically disassembled program. Our work is complementary to
these proposals: we aim to make a program harder to disassemble correctly to
begin with, let alone recover high level information. If a program has already been
obfuscated using any of these higher level obfuscation techniques, our techniques
add an additional layer of protection that makes it even harder to decipher the
actual structure of the program.

196 M. Madou et al.

Researchers have looked into run-time code generation and modification,
including high-level languages and APIs for specifying dynamic code genera-
tion [3,12,13] and its application to run-time code specialization and optimiza-
tion [2L[17,[20]. Because that work focuses primarily on improving or extending a
program’s performance or functionality, rather than hindering reverse engineer-
ing, the developed transformations and techniques are considerably different
from those described in this paper.

A run-time code generation techniques that to some extent resembles the
technique proposed in this paper was proposed by Debray and Evans [I1] for
applying profile-guided code compression. To reduce the memory footprint of
applications, infrequently executed code is stored in compressed format, and de-
compressed when it needs to be executed. At any point, only a small fraction of
the infrequently executed code is in decompressed form. Because of the large de-
compression overhead however, the frequently executed code is always available
in decompressed, i.e., the original, form. Hence this compression technique does
not hide the frequently executed portions of a program, which are generally also
likely to contain the code one might wish to protect.

3 Dynamic Software Mutation

This section discusses the introduction of dynamic software mutation into a
program. We consider two types of mutation: one-pass mutation, where a pro-
cedure is generated once just before its first execution, and cluster-based mu-
tations, where the same region of memory is shared by a cluster of “similar”
procedures, and where we will reconstruct procedures (and thus overwrite other
procedures) as required during the execution. We first discuss our novel ap-
proach to run-time code editing (Sec. [B]). This will enable us to treat the
one-pass mutations (Sec. B.2)). Next, we look at how “similar” procedures are
selected (Sec. B3) and clustered (Sec. [34). Finally, we propose a protection
method for the edit scripts against attacks (Sec. B) and discuss our technique’s

applicability (Sec. 3.0).
3.1 The Run-Time Edit Process

Our approach is built on top of two basic components: an editing engine and
edit scripts. When some procedure, say f, is to be generated at run-time, it
is statically replaced by a template: a copy of the procedure in which some in-
structions have been replaced by random, nonsensical, or deliberately misleading
instructions. All references to the procedure are replaced by references to a stub
that will invoke the editing engine, passing it the location of the edit script
and the entry point of the procedure. Based upon the information in the edit
script, the editing engine will reconstruct the required procedure and jump to its
entry point.

Edit Script. The edit script must contain all the necessary information to con-
vert the instructions in the template to the instructions of the original procedure.

Software Protection Through Dynamic Code Mutation 197

This information includes the location of the template and a specification of the
bytes that need to be changed and to what value. The format we used to encode
this information is the following:

editscript = address <editblock>; <editblock>: ...<editblock>; $
editblock = m <edit>; <edit>s3 ...<edit>,,
edit

offset n byte; bytes ...byte,

An edit script starts with the address of the template, i.e., the code address
where the editing should start. It is followed by a variable sequence of edit blocks,
each of which specifies the number of edits it holds and the sequence thereof,
and is terminated by the stop symbol $. An edit specifies an offset, i.e., a number
of bytes that can be skipped without editing, followed by the number of bytes
that should be written and the bytes to write. As all the values in the edit
script, except the address, are bytes, this allows us to specify the modifications
compactly, while still maintaining enough generality to specify every possible
modification.

Editing Engine. The editing engine will be passed the address of the edit script
by the stub. It will save appropriate program state, such as the register contents,
interpret the edit script, flush the instruction cache if necessary, restore the saved
program state and finally branch to the entry point of the procedure, passed as
the second argument. Note that the necessity of flushing the instruction cache de-
pends on the architecture: on some architectures, such as the Intel IA-32 architec-
ture used for our current implementation, an explicit cache flush is not necessary.

Our approach to dynamic code editing modifies the template code in situ.
This is an important departure from classical sequence alignment and editing
algorithms [9], which scan a read-only source sequence, copying it over to a new
area of memory and applying modifications along the way where dictated by
the edit script. With in situ modifications this copying can be avoided, thereby
increasing performance. Insertion operations are however still expensive, as they
require moving the remainder of the source. Consequently, we do not support
insertion operations in our edit scripts. Instead only substitution operations are
supported. Deletion operations may be implemented by overwriting instructions
with no-op instructions, but as this introduces inefficiencies, we will avoid this
as much as possible.

3.2 One-Pass Mutations

We are now ready to discuss one-pass modifications. With this technique, we
scramble procedures separately, meaning that each procedure will have its own
template. Consequently, different procedures are not mapped to the same mem-
ory location. The idea at obfuscation time is to alter portions of a procedure
in the program. At run-time, these alterations are undone via a single round of
editing, just before the procedure is executed for the first time. To achieve this,
we place the stub at the entry point of the procedure. At the first invocation

198 M. Madou et al.

of the editing engine, this stub will be overwritten with the original code of the
procedure. This way, the call to the editor will be bypassed on subsequent calls
to the procedure.

3.3 Cluster-Based Mutations

The general idea behind clustering is to group procedures of which the instruction
sequences are sufficiently similar to enable the reconstruction of the code of each
of them from a single template without requiring too many edits. The procedures
in a cluster will then be mapped to the same memory area, the cluster template.
Each call to a clustered procedure is replaced by a stub that invokes the editing
engine with appropriate arguments to guide the edit process, as illustrated in
Figure [l

To avoid reconstructing a procedure that is already present, the editing engine
will rewrite the stub of a constructed procedure in such a way that it branches
directly to that procedure instead of calling the editing engine. The stub of the
procedure that has been overwritten, will be updated to call the editing engine
the next time it needs to be executed.

Clustering. Clustering is performed through a node-merging algorithm on a
fully-connected undirected weighted graph in which each vertex is a cluster of
procedures and the weight of an edge (A, B) represents (an estimate of) the
additional run-time overhead (i.e., the cost of the edits) required when clusters
A and B are merged.

The number of run-time edits required by a cluster, i.e., the number of con-
trol flow transfers between two members of that cluster, is estimated based on
profiling information drawn from a set of training inputs.

As usual, the clustering process has to deal with a performance trade-off. On
the one hand, we would like every procedure to be in an as large as possible
cluster. The larger we make individual clusters —and therefore, the fewer clus-
ters we have overall- the greater the degree of obfuscation we will achieve, since
more different instructions will map to the same addresses, thus moving further
away from the conventional one-to-one mapping of instructions and memory
addresses.

code data

f g cluster template f_edit_script

ar ..
b: ...
(S

dynamic g_edit_script
code

editor

Fig. 1. Run-time code mutation with clustered procedures

Software Protection Through Dynamic Code Mutation 199

On the other hand, the larger a cluster, the more differences there will likely be
between cluster members, resulting in a larger set of edit locations, and hence a
greater run-time overhead. Furthermore, this will result in an increasing number
of transitions between members within a cluster. With transition, we mean the
execution of one member of a cluster after the execution of another member.
Clearly, each transition requires editing the next procedure to be executed. Both
these factors increase the total run-time cost of the dynamic modification.

When our greedy clustering algorithm starts, each cluster consists of a single
procedure. The user needs to specify a run-time overhead “budget” (specified
as a fraction ¢ of the number of procedure calls n that can be preceded by a
call to the editing engine, i.e, budget=n x ¢). As we want all procedures to
be in an as large as possible cluster, we proceed as follows. First we try to
create two-procedure clusters by only considering single-procedure clusters for
merging. The greedy selection heuristic chooses the edge with the lowest weight
and this weight is subtracted from the budget. We then recompute edge weights
by summing their respective weights to account for the merge. When no more
two-procedure clusters can be created, we try to create three-procedure clusters,
using the same heuristic, and so on.

Merging clusters is implemented as node coalescing. This sets an upper bound
to the actual cost and hence is conservative with regard to our budget. This is
repeated until no further merging is possible. A low value for the threshold ¢
produces smaller clusters and less run-time overhead, while a high value results
in larger clusters and greater obfuscation at the cost of higher overhead. It is
important to note that two procedures that can be active together should not be
clustered. Otherwise, their common template would need to be converted into
two different procedures at the same time, which obviously is not possible.

These concepts are illustrated in Figure 2l The call graph is shown in Fig-
ure Pa). It is transformed into a fully connected new graph, where the initial

f2 3 f4
(a) Callgraph of the binary (b) Function clustering (n=1000) (c) Function clustering (budget=100)

(d) Clustering stepl (budget=90) (e) Clustering step 2 (budget=40)

Fig. 2. The creation of clusters, ¢=0.1

200 M. Madou et al.

nodes are clusters consisting of exactly one procedure. The weight given to the
other edges between two clusters is the number of transitions between the re-
spective procedures in those clusters, i.e., the number of calls to the editor that
would result from merging these two procedures. These values are collected from
a set of training inputs. The resulting graph is shown in Figure[2lb). We further-
more assume that ¢=0.1 and as the maximum number of procedure calls to the
editing engine n is 1000 (1043*20+50+2*1504160+200+220), a budget of 100
calls is passed to the clustering algorithm. To avoid clustering procedures that
can be active at the same time, the edges between such procedures are assigned
the value infinity, as illustrated in Figure [Z(c).

As our clustering algorithm starts with clusters consisting of a single proce-
dure, the algorithm looks for the edge with the smallest value, which is (f3, f5).
The weights of the edges of the merged cluster to the other clusters are up-
dated accordingly. Our graph now consists of three clusters consisting of single
procedure (f1, 2, and f4) and one cluster consisting of two procedures (Fig-
ure[2(d)). As it is still possible to make clusters of two procedures, the edge with
the smallest weight between the three clusters consisting of a single procedure
will be chosen (if its weight is smaller than our budget). This way, procedure
f2 and f4 are clustered (Figure 2le)). As we can no longer make clusters of
two procedures, the algorithm now tries to make clusters of size three. This is
impossible, however, and so the algorithm terminates.

3.4 Minimizing the Edit Cost

In this section, we will discuss how the template for a cluster is generated. This
is done in such a way that the number of edits required to construct a procedure
in the cluster from the template is limited.

This is achieved through a layout algorithm which maximizes the overlap
between two procedures. First of all, basic blocks connected by fall-through edges
are merged into a single block, as they need to be placed consecutively in the
final program. In the example of Figure 3] fall-through edges are represented by
dashed lines. Therefore, basic blocks 1 and 2 are merged. This process is repeated
for all procedures in the cluster. In our example, there are three procedures in
the cluster and the procedures each have two blocks. These blocks are placed
such that the number of edits at run-time is minimized, as illustrated in Figure[3l
The cluster template consists of sequences of instructions that are common to all
the procedures and locations that are not constant for the cluster. The locations
that are not constant are indicated by the black bars labeled a, b, c, and d.
These locations will be edited by the editing engine.

3.5 Protecting Edit Scripts

With the code mutation scheme described thus far, it is possible, at least in
principle, for an attacker to statically analyze an edit script, together with the
code for the editor, to figure out the changes effected when the editor is invoked
with that edit script. To overcome this problem, we will use a pseudorandom

Software Protection Through Dynamic Code Mutation 201

- -

Template

Fig.3

number generator seeded with an opaque variable [5]. A variable is opaque at
point p in a program, if it has a property at p which is known at obfuscation
time, but which is computationally difficult to determine analytically.

The basic idea is to combine the values statically present in the edit script
with a value generated by the pseudorandom number generator. As we know the
value of the seed (opaque variable) at obfuscation time, we can predict the values
that will be generated by the pseudorandom number generator. Therefore, it is
possible to write values in the edit script which will produce the needed values
when combined with the pseudorandom numbers. Every byte in the edit script is
then xor’ed with a byte created by the pseudorandom number generator before
it is passed to the editing engine.

3.6 Applicability

Dynamic code mutation relies fundamentally on statically constructing edit
scripts that can be used to carry out run-time code mutation. This presumes
that a program’s code is statically available for analysis and edit script con-
struction. Because of this, the technique is not applicable to code that is already
self-modifying. Dynamic code mutation also causes instruction opcodes and dis-
placements to change. New instructions are inserted in procedure stubs, and
displacements in branch and call instructions may change as a result of code
movement. This precludes the application of dynamic code mutation to pro-
grams that rely on the actual binary values of code locations (as opposed to
simply their instruction semantics), e.g., programs that compute a hash value of
their instructions for tamper-proofing.

Finally, the contents of the code locations change as dynamically mutating
code executes. This means that the technique cannot be applied to reentrant

202 M. Madou et al.

code such as shared libraries. Note that while this is an issue for multi-threaded
programs as well, we can deal with multi-threading using static concurrency
analyses to identify code regions that can be executed concurrently in multiple
threads [19], and use this information to modify clustering to ensure that code
regions that can execute concurrently in multiple threads are not placed in the
same cluster for mutation.

4 Security Evaluation
In this section we will discuss the security of our technique against attacks.

4.1 Broken Assumptions

While the omnipresent concept of the stored program computer allows for self-
modifying code, in practice, self-modifying code is largely limited to the realm of
viruses and the like. Because self-modifying code is rare nowadays, many analyses
and tools are based upon the assumption that the code does not change during
the execution.

Static disassemblers, e.g., examine the contents of the code sections of an
executable, decoding successive instructions one after another until no further
disassembly is possible [22]. Clearly these approaches fail if the instructions are
not present in the static image of the program.

Dynamic disassemblers by contrast, examine a program as it executes. Dy-
namic disassemblers are more accurate than static disassemblers for the code
that is actually executed. However, they do not give disassemblies for any code
that is not executed on the particular input(s) used.

In order to reduce the runtime overheads incurred, dynamic disassembly and
analysis tools commonly “cache” information about code regions that have al-
ready been processed. This reduces the runtime overhead of repeatedly disas-
sembling the same code. However, it assumes that the intervening code does not
change during execution.

Many other tools for program analysis and reverse engineering cannot deal
with dynamically mutating code either. For example, a large number of analyses,
such as constant propagation or liveness analysis require a conservative control
flow graph of the program. It is not yet fully understood how this control flow
graph can be constructed for dynamically mutating code without being overly
conservative. Through the use of self-modifying code, we cripple the attacker by
making his tools insufficient.

4.2 Inherent Security

While undermining assumptions made by existing analyses and tools adds a level
of protection to the program and will slow down reverse engineering, its security
is ad-hoc. However, no matter how good reverse engineering tools will become,
a certain level of security will remain. As long as the opaque variable or the
pseudorandom number generator are not broken, an attacker cannot deduce any

Software Protection Through Dynamic Code Mutation 203

other information than guessing from the edit script. Assuming that the opaque
variable and pseudorandom number generator are secure, it corresponds to a
one-time pad.

Depending on the class of expressions considered, the complexity of statically
determining whether an opaque variable always takes on a particular value can
range from NP-complete or co-NP-complete[8], through PSPACE-complete[23],
to EXPTIME-complete[14].

A lot of research has gone into the creation of secure pseudorandom number
generators. For our purposes, we need a fast pseudorandom number generator.
ISAAC [15] for example meets this requirement and, in practice, the results are
uniformly distributed, unbiased and unpredictable unless the seed is known.

5 Experimental Results

We built a prototype of our dynamic software mutation technique using Diablo, a
retargetable link-time binary rewriting framework[I0]. We evaluated our system
using the 11 C benchmarks from the SPECint-2000 benchmark suite. All our
experiments were conducted on a 2.80GHz Pentium 4 system with 1 GiB of main
memory running RedHat Fedora Core 2. The programs were compiled with gcc
version 3.3.2 at optimization level -03 and obfuscated using profiles obtained
using the SPEC training inputs. The effects of obfuscation on performance were
evaluated using the (significantly different) SPEC reference inputs.

The prototype obfuscator is implemented on top of the tool Diablo, which
only handles statically linked programs. In real-life however, most programs
are dynamically linked. To mimic this in our experiments, and obtain realistic
results, our prototype obfuscator does not obfuscate library procedures.

Table 1. Number of procedures that can be protected

bzip2 crafty gap gce gzip mcf parser perlbbmk twolf vortex vpr Mean
Nr of functions 31 105 848 1272 56 16 176 891 165 655 91
No protection 3.23% 571% 6.01% 20.68% 17.86% 0.00% 5.68% 11.78% 3.03% 1.22% 13.19% 8.04%

One-pass protection | 6.45% 6.67% 75.12% 46.15% 46.43% 25.00% 6.82% 80.13% 4.85% 41.07% 14.29% 32.09%
Cluster protection 90.32% 87.62% 18.87% 33.18% 35.71% 75.00% 87.50% 8.08% 92.12% 57.71% 72.53% 59.88%
[total protected 96.77% 94.29% 93.99% 79.32% 82.14% 100.00% 94.32% 88.22% 96.97% 98.78% 86.81% 91.96%

Table [shows the number of procedures that are scrambled by applying
our new obfuscation technique. The value of ¢ was set to 0.0005. Procedures
containing escaping edge can’t be made self-modifying in our prototype, as
it is impossible to make sure that the targeted procedure of the escaping edge
is present in memory. On all other procedures, we first applied the clustering
mutation. After this first pass, we scrambled the remaining procedures with the

! Escaping edges are edges where control jumps from one procedure into another
without using the normal call/return mechanism for interprocedural control trans-
fers. They are rare in compiler generated code, and can most often be avoided by
disabling tail-call optimization.

204 M. Madou et al.

24,41%

61,03%

Fig. 4. Number of procedures per cluster

one-pass mutation. On average this combined application of the two mutation
technique is capable of protecting 92% of all (non-library) procedures in the
programs.

In Figure[] the distribution of the number of procedures per cluster is shown.
The value of ¢ was set to 0.0005. On average, there are 3.61 procedures per
cluster.

Table 2. Relative execution time, ¢=0.0005

bzip2 crafty gap gce gzip mcf parser perlbmk twolf vortex vpr | geo. mean
Original (T_0) 89.140 159.303 128.227 36.623 42.757 429.057 305.060 1.423 611.513 87.820 90.369
Obfuscated(T_1) 88.037 229.567 150.853 39.697 43.753 429.583 317.573 1.183 618.850 168.170 173.340
Slowdown (T_1/T_0) 0.988 1.441 1.176 1.084 1.023 1.001 1.041 0.831 1.012 1.915 1.918 1.177

Table [2 shows the run-time effects of our transformations. On average, our
benchmarks experience a slowdown of 17.7%; the effects on individual bench-
marks range between slight speedups (for gzip and vpr), to an almost 2x slow-
down (for vortex). This slight speedup experience is due to cache effects. In
general, frequently executed procedures, and especially frequently executed pro-
cedures that form hot call chains, will be put in separate clusters. Hence these
procedures will be mapped to different memory regions. If the combined size of
the templates of all clusters becomes smaller than the instruction cache size, the
result is that all hot call chains consist of procedures at different locations in
the cache. Hence few or none hot procedures will throw each other out of the
instruction cache. For gzip and vpr, the resulting gain in cache behavior more
than compensates for the, already small, overhead of executing the edit scripts.

Figure Bl summarizes the run-time overhead of our transformations for dif-
ferent ¢’s. On average benchmarks are 31.1% slower with a $=0.005 and 5.9%
slower with ¢=0.00005.

Software Protection Through Dynamic Code Mutation 205

4.500
4.000 O ¢-0.005
3500 H -0.0005

X [0 ¢=0.00005
3.000
2.500
2.000 =
1.500 —
1.000 7
0.000 T T T T T T T T T

bzip2 crafty gap gce gzip mcf parser perlbmk twolf vortex vpr mean

Fig. 5. Execution time slowdown for different values of ¢

6 Conclusion

This paper introduces an approach to dynamic software protection, where the
code for the program changes repeatedly as it executes. As a result, a number
of assumptions made by existing tools and analyses for reverse engineering are
undermined. We have further argued that the technique is secure as long as the
opaque variables or random number generator have not been broken.

Acknowledgments

The authors would like to thank the Flemish Institute for the Promotion of
Scientific-Technological Research in the Industry (IWT), the Fund for Scientific
Research - Belgium - Flanders (FWO) and Ghent University for their financial
support. The work of Debray and Moseley was supported in part by NSF Grants
EIA-0080123, CCR-0113633, and CNS-0410918.

References

1. D. Aucsmith. Tamper resistant software: an implementation. Information Hiding,
Lecture Notes in Computer Science, 1174:317-333, 1996.

2. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-
mization system. In Proc. SIGPLAN ’00 Conference on Programming Language
Design and Implementation, pages 1-12, 2000.

3. B. Buck and J. Hollingsworth. An API for runtime code patching. The Interna-
tional Journal of High Performance Computing Applications, 14(4):317-329, 2000.

4. C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software -
Practice € Experience, pages 811-829, July 1995.

5. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles of Programming Languages 1998,
POPL’98, pages 184-196, 1998.

6. C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection. In IEEE Transactions on Software Engineering,
volume 28, pages 735-746, Aug. 2002.

206

7.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Madou et al.

C. S. Collberg, C. D. Thomborson, and D. Low. Breaking abstractions and un-
structuring data structures. In International Conference on Computer Languages,
pages 28-38, 1998.

S. A. Cook. The complexity of theorem-proving procedures. In Proc. 8rd ACM
Symposium on Theory of Computing, pages 151-158, 1971.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
McGraw Hill, 1991.

B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere. Link-time
optimization of ARM binaries. In Proc. of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 211-220, 2004.

S. K. Debray and W. Evans. Profile-guided code compression. In Proc. ACM
SIGPLAN 2002 Conference on Programming Language Design and Implementation
(PLDI-02), pages 95-105, June 2002.

D. Engler, W. Hsieh, and F. Kaashoek. ‘c: A language for high-level, efficient,
and machine-independent dynamic code generation. In Symposium on Principles
of Programming Languages, pages 131-144, 1996.

M. Hicks, J. Moore, and S. Nettles. Dynamic software updating. In Proc. SIGPLAN
Conference on Programming Language Design and Implementation, pages 13-23,
2001.

P. Hudak and J. Young. Higher-order strictness analysis in the untyped lambda
calculus. In Proc. 13th ACM Symposium on Principles of Programming Languages,
pages 97-109, Jan. 1986.

R. Jenkins. Isaac. In Fast Software Encryption, pages 4149, 1996.

Y. Kanzaki, A. Monden, M. Nakamura, and K. ichi Matsumoto. Exploiting self-
modification mechanism for program protection. In Proc. of the 27th Annual In-
ternational Computer Software and Applications Conference.

M. Leone and P. Lee. A Declarative Approach to Run-Time Code Generation. In
Workshop on Compiler Support for System Software (WCSSS), 1996.

D. Lie et al. Architectural support for copy and tamper resistant software. In Proc.
9th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 168-177, 2000.

S. Masticola and B. Ryder. Non-concurrency analysis. In PPOPP ’93: Proceedings
of the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 129-138. ACM Press, 1993.

F. Noel, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based run-
time specialization: Implementation and experimental study. In Proceedings of the
1998 International Conference on Computer Languages, pages 132-142, 1998.

T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a theoretical
basis and its implementation. In IEICE Transactions on Fundamentals, pages 176—
186, 2003.

B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revis-
ited. In WCRE ’02: Proceedings of the Ninth Working Conference on Reverse
Engineering (WCRE’02), pages 45-54. IEEE Computer Society, 2002.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In
Proc. 5th ACM Symposium on Theory of Computing, pages 1-9, 1973.

J. Viega. Practical random number generation in software. In Proc. 19th Annual
Computer Security Applications Conference, pages 129-141, 2003.

C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-based sur-
vivability mechanisms. In International Conference of Dependable Systems and
Networks, Goteborg, Sweden, July 2001.

	Introduction
	Related Work
	Dynamic Software Mutation
	The Run-Time Edit Process
	One-Pass Mutations
	Cluster-Based Mutations
	Minimizing the Edit Cost
	Protecting Edit Scripts
	Applicability

	Security Evaluation
	Broken Assumptions
	Inherent Security

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

