Program Obfuscation: A Quantitative Approach

Bertrand Anckaert, Matias Madou,
Bjorn De Sutter, Bruno De Bus

and Koen De Bosschere
Ghent University

ABSTRACT

Despite the recent advances in the theory underlying obfus-
cation, there still is a need to evaluate the quality of practical
obfuscating transformations more quickly and easily. This
paper presents the first steps toward a comprehensive eval-
uation suite consisting of a number of deobfuscating trans-
formations and complexity metrics that can be readily ap-
plied on existing and future transformations in the domain
of binary obfuscation. In particular, a framework based on
software complexity metrics measuring four program prop-
erties: code, control flow, data and data flow is suggested. A
number of well-known obfuscating and deobfuscating trans-
formations are evaluated based upon their impact on a set of
complexity metrics. This enables us to quantitatively eval-
uate the potency of the (de)obfuscating transformations.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General—protection mech-
anisms; K.4.4 [Computing Milieux|: Electronic Com-
merce—security

General Terms

Measurement, Security

Keywords

Program Obfuscation, Quantification, Metrics

1. INTRODUCTION

The goal of program obfuscation is to delay program un-
derstanding. Barak et al. [5] have shown that no omnipotent
obfuscation exists, while Appel [1] has shown that deobfus-
cation is NP-easy. Still many transformations have been
proposed that do, intuitively, make the understanding of a
program harder, and in some cases even impossible [23].

Obfuscating transformations aim to transform the pro-
gram into a semantically equivalent program which is much
harder to understand for an attacker. The most popular
transformations are the insertion of opaque predicates [12],
the flattening of the control flow graph [34], the insertion of
self-modifying code [3] and corrupting the disassembly [22].
Obfuscation researchers typically insert complex code or data
structures into programs, thus supposedly making the pro-
grams harder to analyze. Very few papers, however, discuss

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

QoP’07, October 29, 2007, Alexandria, Virginia, USA.

Copyright 2007 ACM 978-1-59593-885-5/07/0010 ...$5.00.

15

Bart Preneel
Katholieke Universiteit Leuven

the resilience of their proposed transformations or even the
complexity of the obfuscated code.

In addition to the popular obfuscating transformations,
recent papers discuss how these transformations can be (par-
tially) undone. For example, the default control flow flatten-
ing was broken by applying well known static and dynamic
analyses [33]. However, the reverse transformation is not
perfect: breaking the flattening algorithm leaves a few ad-
ditional edges in the program. In this paper we evaluate
how obfuscating and deobfuscating transformations affect
the understanding of the program. To this end, we apply
software complexity metrics to evaluate the quality of the
applied obfuscating and deobfuscating transformations.

This paper takes the first step in creating a unified suite
for the evaluation and comparison of obfuscating and de-
obfuscating transformations. Its major contribution is the
proposal of a framework for comparing and evaluating ob-
fuscating transformations by means of a unified set of quan-
titative metrics and a corresponding taxonomy measuring
four program properties; code, control flow, data and data
flow. These metrics as such do not evaluate the resilience
of the transformations. Although there sometimes exists a
deobfuscating transformation, it is unknown if it is applica-
ble to all obfuscated programs due to requirements of the
deobfuscating transformation or the additional protection
by tamper- resistance transformations. For example, break-
ing control flow flattening [33] might require a control flow
graph which can be hidden through additional transforma-
tions. As such, deobfuscating transformations can provide a
lower bound to how well the complexity can be reduced when
a specified set of obfuscating transformations has been ap-
plied: future deobfuscating transformations can reduce the
complexity even further, while additional protecting trans-
formations can render them less powerful.

This paper focuses on the obfuscation of binary executa-
bles, containing no symbolic information. We limit ourselves
to automated transformations, that can be applied by tools
such as compilers or binary rewriters. Finally, we focus on
techniques that protect against an attacker who knows how
to run a program. This excludes techniques such as total
program encryption which offers no protection against legit-
imate owners of software, who possess all the keys.

This paper is organized as follows. Section 2 discusses the
need of an evaluation suite and motivates why the evalu-
ation in cryptography cannot be used. Section 3 presents
concrete metrics for evaluating program obfuscating trans-
formations, which are evaluated experimentally in Section 4.
Conclusions are drawn in Section 5.

2. AN EVALUATION SUITE

Our ultimate goal is an evaluation suite that allows re-
searchers to compare the complexity of their applied obfus-
cating transformations. Similar evaluation suites exist in

other domains, e.g., the SPEC benchmark suite allows com-
paring compiler optimization techniques, computer architec-
tures and processor implementations or the StirMark [30]
suite which tests the robustness of image watermarking al-
gorithms. Our evaluation suite will contain deobfuscating
transformations and complexity metrics.

Clearly, such an evaluation suite can never replace a thor-
ough theoretical evaluation of the applied obfuscating trans-
formations. Unfortunately, theoretical advances in this field
are, while definitely worthwhile, slow. On one side of the
spectrum, Barak et al. [5] have shown that perfect obfus-
cation is impossible. On the other side of the spectrum,
provable obfuscations for complex access control functional-
ities in the random oracle model [23] and for hash functions
under non-standard number-theoretic assumptions [8] have
been constructed.

In between these two extremes, there is a large gap for
which little theoretical background is available. Many trans-
formations have been proposed that do, intuitively, make
the understanding of a program harder, while not having
provable properties. One high-profile example is the Inter-
net telephony software by Skype [6], which has allegedly
been thoroughly obfuscated. The goal is obvious, to hide its
business model from rival companies to prevent competing
products from offering the same level of service or even from
inter operating with the existing installed base of Skype.

This lack of theoretical background contrasts with the do-
main of cryptography, where the notions used include se-
mantic security (which is the computational version of per-
fect secrecy as achieved by the one-time pad) and indistin-
guishability of ciphertexts [15]. An encryption scheme is
considered to be secure in the latter sense if it infeasible for
a computationally bounded attacker who is given a cipher-
text C', and two plaintexts P; and P», to determine with
probability essentially better than 1/2 which plaintext was
encrypted. With a one-time pad, an attacker can always
by luck guess the right key and decrypt, but of course this
does not endanger the security of encryption, just like the
existence of random deobfuscating transformations does not
endanger the strength of obfuscating transformations.

We could consider a similar distinguishing test to eval-
uate obfuscating transformations. In such a test, an at-
tacker would be given any two plain programs (with the
same functionality) and one obfuscated program. The ob-
fuscating transformation would be considered strong enough
if enough time would be needed to determine which of the
two plain programs corresponds to the obfuscated one.

Unfortunately, this is not possible. Fundamentally, obfus-
cation differs from encryption in at least three aspects. First,
there is no need for the existence of an inverse transforma-
tion. Secondly, an attacker is not necessarily looking for
the original program, and an attack can be successful with-
out finding the original program. And thirdly, ciphertext
should be meaningless without the key while an obfuscated
program should still execute within reasonable performance
constraints without additional information.

Even if it were possible to create a transformation which
passes the distinguishing test, it would not be very useful
within the context of obfuscation. To show this, we discuss
an example where this test is passed, but the goals of obfus-
cation are not met. Suppose that we have invented a new,
superior algorithm P;, and we have also invented a second
algorithm, P», that is, in all respects, as efficient as P;. We

16

then apply a transformation on either P; or P; resulting in
an equivalently complex version C. Suppose that it is im-
possible to tell with a probability significantly higher than
1/2 whether C' is derived from P; or P», then the test is
passed. However, if C is no more complex than either P;
or P», this inability is of no concern to an attacker. Indeed,
an attacker can simply analyse C' to understand the inner
workings, with all the good properties of both P; and P-.

Clearly, an obfuscation metric should indicate whether or
not an obfuscated program is more complex than the original
with respect to program understanding.

Similar to how the SPEC benchmark suite has evolved
over time because of changes in computer architecture, and
compiler optimizations, we believe an obfuscation evaluation
suite should evolve over time. For example, when new types
of code constructs are inserted in programs as a way to ob-
fuscate them, the deobfuscating transformations should be
adapted to the existence of those constructs. This can be
compared to the evolution of StirMark [30] and to the inclu-
sion of ever more complex programs in performance bench-
marks to avoid benchmark-specific compiler optimizations.
Furthermore, just like the SPEC performance benchmark
suite has been used with multiple metrics, such as execu-
tion time, instructions per cycle, operations per milliwatt,

. we expect an obfuscation evaluation suite to be used with
multiple metrics.

While no generally applicable evaluation metrics have been
proposed for use in the research of binary obfuscation, so-
lutions have been proposed for other domains. On the one
hand, Collberg [11] proposed the use of software complex-
ity measures to guide the Java-obfuscator tool to choose the
best sequence of obfuscating transformations [19]. On the
other hand, specific evaluation metrics have been proposed
by authors presenting new obfuscating transformations, such
as Linn’s confusion factor [22], but these lack general appli-
cability. Other metrics require a decompilation step before
the actual measurement can happen. Finally, metrics such
as the depth of parse trees to measure the strength of source
code obfuscation [16] are not applicable in the domain of
binary obfuscation.

3. CONCRETE METRICS

In this section, we propose to apply concrete Software
Complexity Metrics (SCMs) on four fundamental program
properties: instructions, control flow, data flow and data.
This proposal is based on the following observations.

Most importantly, we believe these four properties, al-
though not always fully orthogonal, are as close as possible
to a four-dimensional space in which concrete, mostly in-
dependent, SCMs can be applied on all four axes. Let us
consider a concrete problem to illustrate this: the sorting of
credit card numbers. If the instructions implementing the
sort are not recognizable, surely the sorting algorithm itself
is not recognizable. Knowing all instructions, however, does
not necessarily imply that we know all possible execution
sequences of those instructions, i.e., the control flow. To un-
derstand the sorting algorithm, one certainly needs to know
its control flow. But even if we understand that, it may
not be clear which data is being moved when, or why. So
without having at least a partial understanding of the data
flow, the algorithm will not be understood. Finally, even
if we know that an array of numbers is being permuted, as
happens with in-place sorting, and on what basis the per-

mutation takes place, we do not necessarily know what the
actual data is. It might be, e.g., that the credit card num-
bers have been hashed or encrypted.

Furthermore, we believe that these axes roughly corre-
spond to four phases in program obfuscation, which will ease
the positioning of proposed obfuscating transformations on
the axes. First, a developer might want to change his al-
gorithms to hide which data is being computed. This type
of transformation happens at the source level, as it requires
domain-specific knowledge of the application. Secondly, an
obfuscator will try to hide which concrete operations are
being executed on which data. This type of transforma-
tion can also often be achieved by transforming source code.
Next, the obfuscator of a program will try to hide the or-
der in which the (obfuscated) operations of a program will
be executed. This type of transformation will typically be
performed at the intermediate code level used by compilers.
Finally, the obfuscator might try to hide the executed oper-
ations themselves. This will most likely be implemented in
a post-pass tool, such as a link-time rewriter.

Likewise, an attacker will attack a program in the reverse
order. First he will try to see which instructions are being
executed. Then he will try to determine the control flow, and
finally he will try to track the data on which the program
operates to understand the implemented algorithms or to
extract sensitive data from the program.

3.1 Instructions

Obviously, the static and dynamic sizes of the set of in-
structions used in a program can be used as a simple SCM.
The reasoning behind this SCM is that programs become
more complex when more different instructions are (poten-
tially) executed [17]. Note that dynamic coverage analy-
sis will not take into account unreachable code added to a
program. Such analysis will hence make sure that adding
unreachable code is not considered useful.

Related complexity metrics on instruction complexity are
possible too: higher weights could be given to more complex
instructions, for a wide range of instruction complexity met-
rics. For example, rare instructions, for which an attacker
might need to consult the reference manual in order to un-
derstand them, might be considered more complex [13]. Al-
ternatively, the weight might depend on the number of non-
immediate operands of instructions. The latter can either be
statically, meaning the number of source (register) operands
of an instruction, or dynamically. In the latter case, the
number of different numerical values of the operands can
even be taken into account.

3.2 Control Flow

The order in which the instructions are executed is equally
important. This order is reflected in the control flow. In
general, the more complicated the control flow, the more
complex a program. For source code, several control flow
SCMs have been proposed.

McCabe [26] proposed the use of the cyclomatic number
e—n+2p, in which e is the number of edges, n the number of
nodes, and p the number of connected components. As such
it is an indication of the number of decision points in the
program and represents the number of linearly independent
paths through the code. Woodward [36] proposes to use the
knot count. This measures the unstructuredness of a CFG,
as it measures the number of crossings of control flow arrows
in a graph. The more crossings there are, the more difficult

17

it is to follow the execution of a program. To make the
knot count independent of the layout of the CFG, all code
is represented in a vertical layout, in the order in which it
appears in the source code, and all edges are drawn on the
same side of the sequence. Harrison [18] proposed using a
combination of program size and control flow, in which nodes
(basic blocks) are weighted with their nesting depth. Clearly,
many SCMs can be constructed. They have in common that
adding edges to a graph increases the measured complexity.

3.3 Data Flow

Data flow relates to the production and consumption of
numerical values by instructions. In executable programs,
this usually involves the propagation of (untyped) values
through registers and through memory locations.

SCMs based on static program representations can include
the size of sets of live values, the size of points-to sets, num-
bers of def-use pairs [32], the size of program slices, etc. The
reasoning behind such SCMs is that the larger the sets are,
the more information will need to be remembered by an at-
tacker to understand a program. A well known, concrete ex-
ample of such SCMs is the fan-in/fan-out [20] of procedures,
being the number of formal parameters and the number of
global data structures read/written by procedures.

For dynamic program representations consisting of pro-
gram traces, similar properties can be considered. Distance-
based SCMs that relate to the distance (in number of exe-
cuted cycles) between productions and consumptions of val-
ues can be considered. The reasoning there is that longer
distances will force the attacker to look at the traces with
wider windows, i.e., to use larger working sets when trying
to extract knowledge from the traces.

Finally, there also exist SCMs on data structures used in
a program. For example, Munson and Khoshgoftaar [27]
attribute a constant complexity to scalar variables, while
the complexity of an array increases with the number of its
dimensions and with the complexity of the element type,
and the complexity of a record increases with the number
and complexity of its fields. At first sight, such SCMs may
seem useless because binary programs only operate on data
in memory locations. Deobfuscating transformations exist,
however, that decompile programs to the extent that stack-
allocated, statically allocated, or even dynamically allocated
heap data are given meaningful semantics. Balakrishnan
and Reps [4], e.g., are able to differentiate between spilled
data and procedure parameters in stack-allocated data.

3.4 Data

Concrete SCMs on data, i.e., on values occurring dur-
ing a program’s execution or in its statically allocated data,
are much harder to develop than SCMs on the three al-
ready discussed program properties. This results from the
fact that obfuscating transformations that try to hide the
meaning of actual values occurring in a program, most of-
ten rely on domain-specific knowledge and about specific,
high-level semantic knowledge about the algorithms being
obfuscated. Furthermore, obfuscating transformations such
as the ones relying on transforming data from one field to a
second, isomorphic field (e.g., homomorphic encryption [29])
are applied manually at the source code level. As such, these
transformations are out of scope for this paper.

4. EXPERIMENTAL EVALUATION

For our quantitative approach, we have adopted a number
of SCMs to the domain of binary executables. We then

evaluated the impact of existing obfuscating transformations
on these SCMs. Furthermore, we have evaluated how well
existing deobfuscating transformations succeed in undoing
the added complexity. These results have been obtained
from the C programs of the SPECint 2000 benchmark suite.

4.1 Evaluated Complexity Metrics

The SCMs we used reside on the axes of code and control
flow. First, we measured the static instruction count, i.e.,
the number of instructions in a CFG. Next, we measured
the cyclomatic number and the knot count, see Section 3.2.

One of the most important requirements for SCMs in this
domain is that they can be evaluated no matter what level
of obfuscation has been applied to the binaries. We can-
not rely on external information about the binary such as
source code, heuristics about the used compiler or linker,
... Therefore, all metrics are computed using only informa-
tion collected about the dynamic execution. Constructing
the control flow graph containing only executed code is more
precise than the static control flow graph. There is no un-
certainty about the code in the former graph while the latter
graph may be hard to construct in the first place.

To obtain these numbers, we constructed CFGs from dy-
namic traces collected with Diota [25], a dynamic instru-
mentation tool for the x86 architecture. The reconstructed
graphs contain only basic blocks that were executed dur-
ing the coverage analysis, together with edges along which
control was transferred during the analysis. As such, the re-
constructed graphs are non-conservative, and much smaller
than the static, conservative graphs used to obfuscate. Con-
sequently, they have a lower observed complexity. In prac-
tical attacks, we believe it is this sort of graph that is con-
structed and studied by attackers.

To get to a fair comparison, the same coverage analysis
and graph reconstruction was applied on the original, obfus-
cated, and deobfuscated programs.

As far as we know, no techniques like ours have previously
been developed to derive SCMs from traces. We therefore
enter a new domain in the area of SCMs that we believe to
be relevant in the context of software protection.

4.2 [Evaluated Obfuscation Techniques

We have implemented some of the more popular existing
structural obfuscating transformations for the x86 architec-
ture by means of the retargetable link-time binary rewriting
framework Diablo [7].

Control Flow Flattening.

Control flow flattening, as described by Wang [34] and
Chow [9], tries to obscure the original control flow of a pro-
gram by ensuring that one basic block, the redirect block,
is the sole, common predecessor of all basic blocks in a pro-
cedure, as well as their sole, common successor. To guide
control flow at run time, a switch table and a variable are
inserted and the redirect block will redirect the control flow
based upon the entry of the switch table identified by the
variable. Flattening takes a central part in an industrial ob-
fuscation tool by Cloakware Inc.[9]. An attack against this
technique is discussed in [33].

In our implementation, each function is flattened individ-
ually, so each function has exactly one redirect block, and
hence one switch table. A new entry basic block is added to
the function to ensure that control flows from its new entry
point to its original entry point over the redirect block.
Static Disassembly Thwarting.

18

Linn and Debray [22] insert branch functions and data into
a program’s code to thwart its static disassembly. In par-
ticular, they try to thwart the advanced disassembly heuris-
tics discussed by Schwarz et al. [31]. Branch functions are
functions that do not return to the caller; instead control
is transferred to a different address computed from the re-
turn address on the stack and offset passed to the branch
function. Furthermore, where possible, data is inserted in
the code to try to get a linear disassembler out of align-
ment. In our implementation, a branch function is inserted
and all unconditional jumps are transformed into calls to it.
Secondly, all conditional jumps are inverted, which again in-
troduces unconditional jumps. Finally, junk data is inserted
after these newly-created call instructions as well.

Binary Opaque Predicates.

Opaque predicates [12, 28] have a property that is known
at obfuscation time, but which is hard to discover after-
wards. By using them for guiding control flow at run time,
the control flow of a program can be cluttered with unre-
alizable paths. In the case of the binary opaque predicates
that we implemented for this research, this property is the
fact that they always evaluate to true (Vx € Z, 2|x + z for
example), or always evaluate to false (Vx € Z, z? < 0 for
example). The opaque predicates we inserted are taken from
Arboit [2]. To avoid simple elemination, link-time liveness
analysis and constant propagation are used to ensure that
the inserted predicate computations do not change the orig-
inal program behavior, and to ensure that the inputs of the
predicate computations are not constant values.

4.3 Evaluated Deobfuscation Techniques

In many recent papers, the authors explicitly or implicitly
assume that either no automated program analysis tools will
be used, or that only static analysis is used. This assumption
is reflected in the titles of some publications. For example,
Wang’s technical report ”Software tamper resistance: Ob-
structing static analysis of programs” [35], and "Obfuscation
of executable code to improve resistance to static disassem-
bly” by Linn et al. [22]. Consequently, the authors typically
do not try to defend against the use of non-conservative,
(partially) automated, dynamic analyses.

In general, conservatism means reporting weaker proper-
ties than the ones that may actually be true. This guaran-
tees soundness, but often at the cost of information that
is too imprecise to be useful. Attackers know this, and
hence they rely on non-conservative analyses. In practice,
advanced debuggers, such as SoftICE and IDA Pro are al-
ready commonly used. These tools allow for the incorpora-
tion of dynamically obtained information to form a view of
the program. By contrast with conservative, static analyses,
the information obtained dynamically is very precise, as it
describes exactly what has happened during the execution.
As this information only describes what has happened dur-
ing a limited number of executions, it is not guaranteed to
be sound information for all possible executions. For that
reason, attackers will often be conservative only under re-
alistic assumptions. They might assume, for example, that
the calling conventions will be respected or that instructions
will not overlap. In the end, attackers choose to use non-
conservative analyses, either dynamic or static, whenever it
suits them, or whenever they need to.

We implemented two existing deobfuscating transforma-
tions to attack control flow flattening and static disassembly
thwarting. These attacks are based on an existing hybrid

static-dynamic attack [24] on watermarks based on branch
functions [10]. A similar attack can be used to remove calls
to a branch function which were inserted to thwart the static
disassembly of a program. The static part of the attack con-
sists of searching for the calls to the branch function in the
binary image of the program. In our attack, we used the ad-
vanced static disassembly method introduced by Kruegel et
al.[21]. The dynamic part consists of subsequently executing
the branch function under the control of a debugger, thus ex-
tracting the correspondence between the branch function’s
callers and its branch targets. As we simply execute the
branch function on its inputs obtained from the static anal-
ysis to detect this correspondence, the obfuscation by the
branch function cannot be improved by using perfect hash
tables or any other type of computation. Thus, this deob-
fuscating transformation does not depend on the “strength”
of the branch function computations. Finally, each call to
the branch function is replaced by an unconditional jump to
the correct target.

A similar attack can be mounted against a binary ob-
fuscated with control flow flattening [33]. The static part
identifies the switch block and the jump-instructions to this
block. The dynamic part then consists of executing the last
instructions of the jump block to figure out which entry in
the switch-table is used to transfer control. Finally, the
jumps towards the switch are transformed into conditional
and unconditional jumps directly to their target.

The deobfuscating transformations were limited to replac-

ing part of the obfuscating instructions by simpler, but equally

long instructions such as no-ops. Thus, not all instruc-
tions inserted during obfuscation are eliminated by the deob-
fuscating transformation. Also, the basic blocks constitut-
ing the program are not reordered during deobfuscation be-
cause the deobfuscation transformation does not construct
the whole-program control flow graph. Consequently, the
numbers we present in Section 4.4 are upper bounds that
can still be lowered if one is only interested in building
CFGs suited for program understanding, but not in gen-
erating working binaries out of them. Finally, we note that
we are aware of one attack based on abstract interpretation
which describes a group of easily breakable opaque pred-
icates [14]. We did not find a general attack on opaque
predicates in literature.

4.4 Impact of the Obfuscation Techniques

The static CFG contains unreachable code as well as reach-
able code. Of the reachable code, a large fraction is not
executed during our tracing. Consequently, the numbers
obtained from the dynamically constructed CFG are lower
than those obtained from the static CFG. This is partic-
ularly so for the control flow metrics, because the dynamic
version does not include the conservative estimate of indirect
control flow transfers and the corresponding edges.

As can be seen in Table 1, none of the obfuscation tech-
niques have a decreasing effect on the SCMs. For these
benchmarks and with respect to the set of considered SCMs,
the transformation based on opaque predicates is less potent
than control flow flattening and static disassembly thwart-
ing. Note that we consider a transformation T less potent
than a transformation U with respect to a set of benchmarks
B and a set of metrics M, if for every benchmark b € B, for
every metric m € M, m(T(b)) < m(U(b)).

Furthermore, it can be noted that this transformation
does not affect the cyclomatic number or the knot count.

19

This is the result of computing the SCMs on the part of the
CFG that was actually executed during a particular run.
Therefore, the unrealizable paths do not appear in the met-
rics. As such, for simple opaque predicates, one basic block
and one edge is added and the net impact on the cyclo-
matic number is zero. The impact on the knot count is also
zero because the introduced edges do not cross any exist-
ing edges. We would like to note that this result does not
imply that opaque predicates are not useful: we have only
evaluated a straightforward transformation based upon this
concept. Opaque predicates are a valuable primitive that
have applications in many more domains.

Static disassembly thwarting is more powerful with re-
spect to the cyclomatic number, while flattening is more
powerful with respect to the instruction count and knot
count. As a result, static disassembly thwarting and flat-
tening cannot be ordered with respect to the set of SCMs
considered. We thus get the following partial ordering:

flatten)

opaque < < static disassembly thwarting

The cyclomatic number increases more through flatten-
ing than through static disassembly thwarting. This can
be explained because each basic block is considered for flat-
tening, while static disassembly thwarting only takes basic
blocks ending with a jump into account. The knot count, on
the other hand, is less after flattening than after static dis-
assembly thwarting. The latter obfuscation technique uses a
single redirection function, which causes many control trans-
fers from all around the program to a single location. This
results in many crossings. Flattening, on the other hand,
has a switch block in each function limiting the new knots
to crossing edges within the function itself.

In distinct cases, it is possible to compute the complexity
of each obfuscated function based on the number of basic
blocks b in the original function. For example, the cyclo-
matic number (CN) and knot count (KC) are for each flat-
tened function given by: the CN = b and KC = b(b—1)/2.

4.5 Impact of the Deobfuscation Techniques

Rows three and five of Table 1 illustrate how successful
the deobfuscation techniques described in Section 4.3 are
at eliminating the introduced complexity. Both deobfuscat-
ing transformations reduce the control flow metrics close to
the complexity of the original program. Furthermore, the
deobfuscation of flattening with respect to the cyclomatic
number is perfect.

On the other hand, there is no significant reduction in the
instruction count. As discussed earlier, the deobfuscating
transformations replace part of the instructions inserted by
obfuscation by simpler, but equally long instructions such
as a sequence of no-ops. If required, an attacker can filter
out these useless instructions when inspecting the program
for the purpose of understanding.

Clearly, the obfuscating transformations increase the com-
plexity of the program while the attacks lower the observed
complexity to little more than the complexity observed on
the original programs, the residue complexity.

5. CONCLUSIONS

We discussed why cryptographic tests are not suited to
evaluate program obfuscation techniques, and instead pro-
posed a quantitative approach based on software complexity
metrics. Concrete metrics were presented for the program

[Benchmarks | gzip | vpr | gce [mcf [crafty | parser | perlbmk | gap [vortex [bzip2 | twolf [% Increase]
(a) Instruction Count
[Original [5,955] 13,010] 120,017] 5569] 31,004] 22,404] 45,410] 20,102] 64,048] 7,000] 24,386] |
im Lobf_| 6.872] I15.735] 153.003 6.331] 36.450] 20,320] 54.752] 23482] 7T0574| B8.136] 28.075] 16.71)
[deobf| 6,395 14,763 141,028 5.073| 33,304] 24,570 49,076 21,470 67.088| 7,584 25,099] 759]
Flotton LODI | 12.869] 24.363| 213,383 12.400] 53841] 50,113 78.035] B8876] 122314 15,645] 50.750] 82.53
[deobf| 11,247 21,744 193,624 10,687 49,154] 44,204] 70,600 34,406 | 106,460 13,640] 44,845 | 62.75 |
[Opaque [obf | 6,652] 15,360] 142,103] 6,242] 36,038] 24,823] _ 48,776] 22,447] _ 69,862] 4,617] 27,510] 9.61]

(b) Cyclomatic Number

[Original [373] 907 | 13,892] 279] 2,584 | 2,530 | 4,201 | 2,450 | 3,640 | 425 | 1,818] |
Linn [obf [481 1,139] 16,880 370 3,149 2,908 | 5,307 | 2,902 | 4,697 | 578 | 2,297 | 22.99
[deobf| — 374] 914 | 14,026 280] 2,594 | 2,546 | 4,251 | 2,469 | 3,688 | 426 | 1,825 0.89]

Flatten [obf [1,069] 1,992] 22,079 992] 4,573] 4,806 | 7,827 | 4,325 10,795] 1,333] 4,504 | 94.25
[deobf| 373] 907 | 13,892 279] 2,584 | 2,530 | 4,201 | 2,450 | 3,640 | 425 | 1,818] 0.00]
[OpaqueJobf [373] 907 | 13,892] 279] 2,584 2,530 | 4,201 | 2,450 | 3,640 | 425 | 1,818 0.00]

(c) Knot Count

[Original [32,872 255,040 [20,641,152 [25,312] 673,238] 545,958 3,882,824[2,109,978 [9,738,816 37,828 841,126 |]
Linn [obf [87,544]603,364 [63,002,032 [62,318 [1,918,236 [1,409,816 [11,409,782 [3,974,202 [20,067,392 [110,920 [1,946,986 | 169.68 |
[deobf] 33,766 | 266,356 | 21,936,152 [25,986 | 694,522 587,928 4,186,978 2,172,332 10,144,128 39,150 859,756 | 5.58]

Flatten [obf [77,328]315,712]22,331,272[56,480 [1,335,528 973,822] 4,168,312 2,285,332]10,586,828 [148,254 [1,177,930 | 12.05 |
[deobf] 35,9481260,720 | 20,689,076 [27,976 | 688,930 563,418 3,899,462 [2,124,090 [9,778,766 | 40,988 855,886 | 0.47]
[Opaque [obf [32,872]255,040 [20,641,198 [25,312] 673,238 545,958 [3,882,824[2,109,978] 9,738,816 37,828 841,126] 0.00]

Table 1: (a) Instruction count, (b) cyclomatic number and (c) knot count computed on the machine code of
the C-programs of the SPECint 2000 benchmark suite.

properties of code, control flow, data flow and data. Finally,
these metrics have been applied to existing obfuscation tech-
niques and existing attacks and we have demonstrated that
our quantitative approach is suited to evaluate and compare
the resulting complexity from obfuscation techniques.

6. REFERENCES

[1] A. Appel. Deobfuscation is in np, August 2002.

[2] G. Arboit. A method for watermarking java programs via
opaque predicates. In ICECR-5, 2002.

[3] D. Aucsmith. Tamper resistant software: an implementation.
Information Hiding, Lecture Notes in Computer Science,
1174:317-333, 1996.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses in
x86 executables. In Proc. Int. Conf. on Compiler
Construction, pages 5-23, 2004.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im)possibility of obfuscating
programs. Advances in cryptology, LNCS, 2139:1-18, 2001.

[6] P. Biondi and F. Desclaux. Silver needle in the skype. In
BlackHat Europe, 2006.

[7] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De
Bosschere. Link-time optimization of ARM binaries. In Proc.
LCTES, pages 211-220, 2004.

[8] R. Canetti. Towards realizing random oracles: Hash functions
that hide all partial information. CRYPTO 1997.

[9] Cloakware Corp: S. Chow, H. Johnson, and Y. Gu. Tamper
Resistant Software - Control Flow Encoding, Patent US
6,779,114, Filed 1999, Granted 2004.

[10] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn, and
M. Stepp. Dynamic path-based software watermarking. In
Proc. PLDI, 2004.

[11] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148, University
of Auckland, 1997.

[12] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Conf.
POPL, pages 184-196, 1998.

[13] C. Cook. Information theory metric for assembly language.
Software Engineering Strategies, pages 52—-60, 1993.

[14] M. Dalla Preda, M. Madou, K. De Bosschere, and
R. Giacobazzi. Opaque predicates detection by abstract
interpretation. Algebraic Methodology and Software
Technology, LNCS 4019:81-95, 2006.

[15] O. Goldreich. The foundations of cryptography. 2004.

[16] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An
approach to the objective and quantitative evaluation of
tamper-resistant software. ISW, LNCS, 1975:82—-96, 2000.

20

(17]
(18]

(19]

(20]

[21]

(22]
(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

[36]

M. Halstead. Elements of Software Science. Elsevier, 1977.
W. Harrison and K. Magel. A complexity measure based on
nesting level. SIGPLAN Not., 16(3):63-74, 1981.

K. Heffner and C. Collberg. The obfuscation executive.
Information Security Conference (ISC04), 2004.

S. Henry and D. Kafura. Software structure metrics based on
information flow. IEEE Transactions on Software
Engineering, 7(5):510-518, 9 1981.

C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static
disassembly of obfuscated binaries. In Proc. of the 13the
USENIX Security Symposium, pages 255—270, 2004.

C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. Proc. CCS 03.

B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and
techniques for obfuscation. In EUROCRYPT, 2004.

M. Madou, B. Anckaert, B. De Sutter, and K. De Bosschere.
Hybrid static-dynamic attacks against software protection
mechanisms. In Proc. DRM 2005.

J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA: Dynamic
Instrumentation, Optimization and Transformation of
Applications. In Proc. Int. Conf. on Parallel Architectures
and Compilation Techniques (PACT), september 2002.

T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308-320, 1976.

J. Munson and T. Khoshgoftaar. Measurement of data
structure complexity. J. Syst. Softw., 1993.

G. Myles and C. Collberg. Software watermarking via opaque
predicates: Implementation, analysis, and attacks, 2004.

P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. LNCS, 1592:223-238, 1999.

F. Petitcolas, R. Anderson, and M. Kuhn. Attacks on
copyright marking systems. In Information Hiding, pages
218-238, 1998. citeseer.nj.nec.com/petitcolas98attacks.html.
B. Schwarz, S. Debray, and G. Andrews. Disassembly of
executable code revisited. In Proc. WCRE 2002.

K. Tai. A program complexity metric based on data flow
information in control graphs. In Proc. ICSE, pages 239—248,
1984.

S. Udupa, S. Debray, and M. Madou. Deobfuscation: Reverse
engineering obfuscated code. In Proc. WCRE 2005.

C. Wang. A Security Architecture for Survivability
Mechanisms. PhD thesis, Department of Computer Science,
University of Virginia, October 2000.

C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical
Report CS-2000-12, University of Virginia, 12 2000.

M. Woodward, M. Hennel, and D. Hedley. A measure of
control flow complexity in program text. IEEE TSE, 1979.

