
A Coarse-Grained Array based Baseband Processor
for 100Mbps+ Software Defined Radio

Bruno Bougard, Bjorn De Sutter, Sebastien Rabou, David Novo, Osman Allam, Steven Dupont, Liesbet Van der Perre

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
E-mail: bruno.bougard@imec.be

ABSTRACT
The Software-Defined Radio (SDR) concept aims to enabling cost-
effective multi-mode baseband solutions for wireless terminals.
However, the growing complexity of new communication standards
applying, e.g., multi-antenna transmission techniques, together with
the reduced energy budget, is challenging SDR architectures. Coarse-
Grained Array (CGA) processors are strong candidates to undertake
both high performance and low power.
The design of a candidate hybrid CGA-SIMD processor for an SDR
baseband platform is presented. The processor, designed in TSMC
90G process according to a dual-VT standard-cells flow, achieves a
clock frequency of 400MHz in worst case conditions and consumes
maximally 310mW active and 25mW leakage power (typical
conditions) when delivering up to 25,6GOPS (16-bit). The mapping
of a 20MHz 2x2 MIMO-OFDM transmit and receive baseband
functionality is detailed as an application case study, achieving
100Mbps+ throughput with an average consumption of 220mW.

1. INTRODUCTION

Wireless technology is considered as a key enabler of many
future consumer products and services. To cover the extensive
range of applications, future handhelds will need to
concurrently support a wide variety of wireless
communication standards. The growing number of air
interfaces to be supported makes traditional implementations
based on the integration of multiple specific radios and
baseband ICs cost-ineffective and claims for more flexible
solutions. Software Defined Radios (SDR), where the
baseband processing is deployed on a programmable or
reconfigurable hardware, has been introduced as the ultimate
way to achieve flexibility and cost-efficiency [1].

Several SDR platforms have already been proposed in
academia and industry [1,2,3]. Most of these platforms
support the execution of current wireless standards such as
WCDMA (UMTS), IEEE 802.11b/g, IEEE 802.16. However,
a key challenge still resides in the instantiation of such
programmable architectures capable to cope with the 10x
increase both in complexity and in throughput required by
emerging standards relying on multi-carrier and multi-antenna
processing (IEEE 802.11n, LTE), still being cost effective.
Leveraging on the sole technology scaling is not sufficient
anymore to sustain the complexity increase. In order to
achieve the required high performance at an energy budget
acceptable for handheld integration (~300mW), architectures
must be revisited keeping in mind the key characteristics of
wireless baseband processing: high data level parallelism
(DLP) and data flow dominance.

In nowadays SDR platforms, Very Long Instruction Word
(VLIW) processors with SIMD (Single Instruction – Multiple
Data) functional units are often considered to exploit the data
level parallelism with limited instruction fetching overhead
[2,3]. In other approaches, data flow dominance is sometime
exploited in coarse-grained reconfigurable arrays (CGA) [4,5].
The first class of architectures have tighter limitations in
achievable throughput for a given clock frequency while the
seconds have as main disadvantage to require very low level
programming.

In this paper, we present the design, based on the
ADRES/DRESC framework [6], of a hybrid CGA-SIMD SDR
processor fully programmable from C-language. The core of
the processor is made of 16 densely interconnected 64-bit 4-
way SIMD functional units with global and distributed register
files. The CGA is associated with a 4-bank data scratchpad
(L1) and provides an AMBA2 interfaces for configuration and
data exchange. Besides, three functional units, operating as
VLIW and sharing the global register file, can execute C-
compiled non-kernel code fetched through a 32K 128-bit wide
instruction cache. When in array mode, C-compiled DSP
kernels are executed while keeping configurations in local
memories (one context per scheduled loop cycle) that are
configured through direct memory access (DMA). The
DRESC framework is used to transparently compile a single C
language source code to both the VLIW and the CGA
machines.

We focus on the design and the implementation of the
aforementioned processor in TSMC 90nm technology and
demonstrate its utilization as baseband engine for a 20MHz
2x2 MIMO-OFDM modem as in IEEE802.11n applications.
In section 2, the principal architecture level characteristics are
reviewed, both at the processor and at the core level. In
section 3, the design methodology and results are presented.
Importantly, the selection of process and standard-cells library
options is discussed as well as the approach followed to
minimize the processor power consumption. The goal is to
achieve a minimum total energy per task, assuming that the
processor will be embedded in a platform providing power
management and standby leakage control support [7]. The
processor performance and power consumption when
executing MIMO-OFDM baseband processing are discussed
in section IV. Conclusions are drawn in section V.

Fig. 1 Processor Top level Architecture

2. ARCHITECTURE
A. Processor architecture

The processor is designed to serve mainly as slave in multi-
core SDR platforms [7]. The top level block diagram is
depicted in Figure 1. The processor has an asynchronous reset,
a single external system clock and a half-speed (AMBA) bus
clock. Instruction and data flow are separated (Harvard
architecture). A direct-mapped instruction cache (I$) is
implemented with a dedicated 128-bit wide instruction
memory interface. Data is fetched from an internal 4-bank 1-
port-per-bank 16Kx32-bit scratchpad (L1) with 5-channel
crossbar and transparent bank access contention logic and
queuing. The L1 is accessible from external through an
AMBA2-compatible slave bus interface. The CGA
configuration memories and special registers are also mapped
to the AMBA bus interface via a 32-bit internal bus. After
reset and as soon as the external stall signal is de-asserted, the
processor start fetching VLIW instruction, resulting in a series
of cache misses leading to the load of the I$.
Besides, the processor has a level-sensitive control interface
with configurable external endianness and AHB priority
settings (settable priority between core and bus interface to
access L1), exception signaling, external stall and resume
input signals. Because of the large state, CGA-based
processors are typically non-interruptible. The external stall
and resume signals provide however an interface to work as a
slave in a multi-processor platform. The first is used to stop
the processor while maintaining the state (e.g. to implement
flow control at SOC level). Internally, a special stop
instruction can be issued that sets the processor in an internal
sleep state, from which it can recover at assertion of the
resume signal. The data scratchpad and special register bank
stay accessible through the AHB interface in sleep mode
Finally, for the sake of prototyping, a dedicated data debug
interface is implemented in the current design.

B. Core architecture
The core-level architecture is depicted in Figure 2. The

CGA module is further detailed in Figure 3. The core is
mainly made of a Global Control Unit (CGU), 3 predicated
VLIW Functional Units (FU), the CGA module and a 6-
read/3-write ports 64x64-bit Central Data and 64x1-bit
Predicate Register File (CDRF/CPRF).

Fig. 2 Processor core Architecture

VLIW and CGA operate the CDRF/CPRF in mutual

exclusion and hence its ports are multiplexed. This shared
register file naturally enables the communication between the
VLIW and the CGA working modes. The two modes often
need to exchange data as the CGA executes data-flow
dominated loops while the rest of the code is executed by the
VLIW.

The CGA is made of 16 interconnected units from which 3
have a two-read/one-write port to the global data and predicate
register files. The others have a local 2-read/1-write register
file. This local registers are less power hungry than the shared
one due to their reduced size and number of ports. The
execution of the CGA is controlled by a small size ultra wide
configuration memory. The latter extends the instruction
buffer approach, so common in VLIW architectures, to the
CGA. On this way the CGA instruction fetching power is
importantly reduced.

Fig. 3 CGA unit interconnection

TABLE 1

INSTRUCTION SETS

Op Group Instuction Semantic #
FUs

WW
[bits]

Delay
[cycles]

add, add_u dst = src1 + src2 Arith sub, sub_u dst = src1 - src2 0-15 1
or dst = src1 or src2
nor dst = src1 nor src2
and dst = src1 and src2
nand dst = src1 nand src2
xor dst = src1 xor src2

Logic

xnor dst = src1 xnor src2

0-15 1

lsl dst = src1 << src2 Shift lsr, asr dst = src1 >> src2 0-15 1
eq dst = src1 == src2
ne dst = src1 != src2
gt, gt_u dst = src1 > src2 (signed, unsigned)

Comp lt, lt_u
ge, ge_u
le, le_u

dst = src1 < src2 (signed, unsigned)
dst = src1 => src2 (signed, unsigned)
dst = src1 =< src2 (signed, unsigned)

0-15 1

Pred

pred_clear
pred_set,
pred_eq
pred_ne
pred_lt, pred_lt_u
pred_le, pred_le_u
Pred_gt, pred_gt_u
Pred_ge, pred_ge_u

dst = 0
dst = 1
dst = (scr1 == src2)
dst = (scr1 != src2)
dst = (scr1 < src2) (signed, unsigned)
dst = (scr1 =< src2) (signed, unsigned)
dst = (scr1 > src2) (signed, unsigned)
dst = (scr1 => src2) (signed, unsigned)

0-15

Mul mul, mul_u dst = src1 * src2 (32-bit) 0-15 2

Branch
jmp
jmpl
br
brl

PC = src2
PC = src2; R9 = PC + Y
PC = PC + X +imm<<2
PC = PC + X + imm<<2; R9=PC+Y

0 3

Ldmem

lu_uc
ld_u
ld_uc2
lc_c2
ld_i

dst = zext8-32(mem8[Rsrc1+src2])
dst = sext8-32(mem8[Rsrc1+src2])
dst = zext16-32(mem16[Rsrc1+src2]); dst = zext16-32(mem16[Rsrc1+imm<<1])
dst = sext16-32(mem16[Rsrc1+src2]); dst = sext16-32(mem16[Rsrc1+imm<<1])
dst = mem32[Rsrc1+Rsrc2) ; mem32[Rsrc1+imm<<1]

0-3 5/7

Stmem
st_c
st_c2
st_i

mem8[Rsrc1+imm] = Rsrc30-8
mem16[Rsrc1+imm<<1] = Rsrc30-15
mem32[Rsrc1+imm<<2] = Rsrc3

0-3

32

1

cga Execute loop in CGA mode
Control halt Drop to sleep mode ; waiting for resume signal - - -

c4add dst = | src1a + src2a | src1b + src2b | src1c + src2c | src1d + src2d |
c4sub dst = | src1a - src2a | src1b - src2b | src1c - src2c | src1d - src2d |
c4shiftR dst = | src1a >> src2 | src1b >> src2 | src1c >> src2 | src1d >> src2 | SIMD1
c4shiftL dst = | src1a << src2 | src1b << src2 | src1c << src2 | src1d << src2 |

0-15 1

d4prod dst = | src1a * src2a | src1b * src2b | src1c * src2c | src1d * src2d | SIMD2 c4prod dst = | src1a * src2b | src1b * src2a | src1c * src2d | src1d * src2c | 0-15

64

3
Div div dst = src1 / src2 0-1 24 8

VLIW and CGA functional units have 64-bit data-paths.
The supported functionality is distributed over several
different instruction groups. Table 1 lists the different groups
detailing some of the instructions comprised, the functional
units that implement such a group (see Fig. 3), the bit-width of
the operated word and the group execution latency in cycles. It
must be noticed that the basic instruction group (arith, logic,
shift, comp, pred, mul, branch) operates only on the 32 LSB
(Least Significant Bits) of the datapaths and registers.
Similarly, load/store instructions assume 32-bit physical
storage. Hence, 64-bit registers contents can only be
loaded/stored with two instructions. Only the special
instructions (group SIMD1, SIMD2), which are the hottest in
utilization, operate in 64-bit according to a 4x16-bit SIMD
alignment. Finally, the architecture also includes 2 hardwared
dividers which operate on the 24 LSB.

3. IMPLEMENTATION
A. Process and library selection

The architecture described above is implemented to reach
400MHz clock rate in worst-case condition when
implemented in 90nm technology. Hence it delivers up to 16
units x 4 way SIMD x 400MHz = 25.6GOPS (16-bit) as
foreseen to be sufficient to implement 2x2 20MHz MIMO-
OFDM at 100Mbps+ [8]. To achieve such a clock frequency
at maximum energy efficiency, TSMC90G process has been
selected. Although it is leakier, the 90G process has better
power-delay product that the 90LP process usually considered
for embedded application. Leakage in operation mode is
tackled with multi-VT design and, in standby, with third-party
substrate biased standard cell library and memory macros.

The current design is done with multiple VT standard cell
libraries with substrate-biasing support and single port register
file and SRAM macros. Multi-ported register files are
synthesized from RTL descriptions.

B. Power-aware Design and Verification Methodology
The micro-architecture implementation started with the

RTL description of the architectural components. To
minimize active power, we focused on clock gating. The RTL
descriptions of the functional units and multi-ported register
files have been written in such a way that automated fine-
grained clock gating was enabled during synthesis.
Furthermore, operand isolation was manually implemented in
the functional units to avoid the toggling of unused operators.

The RTL was validated by means of simulating the
execution of a functional regression test suite. The RTL
execution is compared with a STRL reference model. All
instructions, including all SIMD instructions, were covered
with specific test loops. The overall operation was tested with
the execution of a MIMO-OFDM baseband program covering
both basic instruction set and SIMD instructions.

2.55 mm

2.27 m
m

L1
 s

cr
at

ch
pa

d

I$

CGA Config mem

CGA Config mem

AHB

Core logic
(including registerfiles)

2.55 mm
2.27 m

m

L1
 s

cr
at

ch
pa

d

I$

CGA Config mem

CGA Config mem

AHB

Core logic
(including registerfiles)

2.27 m
m

L1
 s

cr
at

ch
pa

d

I$

CGA Config mem

CGA Config mem

AHB

Core logic
(including registerfiles)

Fig. 4 Processor layout and main building blocks

The RTL was then synthesized with Synopsys Design

CompilerTM without wire-load model but with 20% timing
over-constraint. Physical synthesis tools such as Synopsys
Physical CompilerTM have been excluded because not
leading to significant area or power benefit compared to the
proposed strategy. This results from the dominance of the
timing constraint. The drawback is that the timing can only be
reported after place & route. Clock gating is inserted and
optimized during synthesis. 95% of the flip-flops turn out to
be clock-gated with the appropriate activation signal. Finally,
scan test support and memory BIST logic were inserted.

The resulting netlist was simulated at gate level with the
same regression suite, plus specific testbench for scan test and

BIST behavior validation. Then, it was used as input for
physical design with Cadence SOC EncounterTM. Macros are
placed at the periphery as illustrated in Figure 4. Standard
cells placement is then optimized, followed by clock tree
synthesis and final place & route. After parasitic extraction
from the resulting layout, timing and power estimation was
carried out. Timing was checked with Synopsys
PrimeTimeTM. Power in VLIW and CGA mode was
estimated with Synopsys PrimePowerTM based on switching
activity traced during gate-level simulation.

C. Design Results
The final layout achieves a timing of <2.5 ns in worst case

conditions, which makes the operation of the processor at
400MHz possible. The critical path is located in the execution
stage of the functional units implementing the pipelined
multiplier. The die area reaches 5.79 mm2 including L1, I$
and configuration memories. The silicon occupation in the
standard cells area reaches 60% (9-layer back end). The area
breakdown is given in Figure 5. One can observe that the
memories occupy roughly 50% of the area. The CGA
functional units take 29%, followed by the VLIW units (8%)
and the global and distributed registerfile (5% and 3%).

FU VLIW

5%

FU CGA
29%

VLIW reg

8%

CGA reg

3%
CMEM

8%

DMEM

24%

U_ICACHE

22%

Peripherals
1%

FU VLIW

5%

FU CGA
29%

VLIW reg

8%

CGA reg

3%
CMEM

8%

DMEM

24%

U_ICACHE

22%

Peripherals
1%

Fig. 5 Processor Area Breakdown

4. PERFORMANCE AND POWER ANALYSIS

In order to evaluate the processor performance and power
consumption in its targeted operation conditions, the execution
of a MIMO-OFDM inner modem was profiled. Table 2
presents compilation and profiling data on the kernels of both
the preamble processing and the data processing. Notice that
the whole program is written in ANSI-C and compiled with
the DRESC framework. To exploit the 4-way SIMD
capabilities, intrinsic functions were introduced in the C code.
In total, the preamble processing takes 15,3us, which is higher
than the preamble elapsed time (8us). This introduces a
latency of 7.3us but do not hamper the throughput. For packet
data processing, loop merging is used so that two symbols are
processed in parallel, resulting in a processing time of 3.8us

per symbol, which is lower than the symbol elapsed time;
hence, guaranteeing real-time processing of a packet.

The processor executes the MIMO-OFDM running
mostly in CGA mode: for the data processing about 60% of
the time is spent in CGA mode, and for the preamble
processing, it is about 72% of the time. For the different
kernels, the main modes in which they are running are
indicated in Table 2, as well as the IPC obtained by running
the kernel in that mode. When a kernel is presented as running
in CGA mode, this means that the computations are all
performed in a loop that is mapped onto the ADRES CGA
mode. Of course there is still some VLIW code present in
those kernels. This VLIW code takes care of the stack frame
setup and cleaning in the C procedures implementing the
kernel, and of setting up the data for the CGA loop. Some
kernels are divided over two loops, and in that case some
VLIW code also glues the two CGA loops together. When a
kernel is presented as being run in VLIW mode, no loops were
present that can be mapped onto ADRES’s CGA mode. And
in case the kernel is presented as “mixed”, this means that it
contains a loop that is mapped to CGA mode, but that there is
also a significant part of VLIW mode preprocessing or
postprocessing going on in the kernel.

On our ADRES core, the number of instructions executed
per cycle (IPC) should be much higher in CGA mode, which
has 16 functional units at its disposal for executing software-
pipelined loops, than in VLIW mode, which has only 3 issue
slots available to execute largely sequential code. The IPC
numbers in Table 2 confirm this. On average, CGA-mode
kernels obtain an IPC of 10.31. So a utilization factor of
10.32/16 = 64.5% is obtained in CGA mode. In pure VLIW
mode code, the average IPC is 1.94, totalling a utilization of
1.94/3 = 64.6%. While it is coincidental that these two
utilization factors are so close together, the fact that they are in
the same range demonstrates that our ADRES core is a well
balanced mix of VLIW and CGA resources.

The processor power consumption is estimated based on
gate-level activity profile obtained from the gate-level
simulated execution of the aforementioned program. Static
and dynamic power consumptions are distinguished, as well as
dynamic power in non-kernel (VLIW) mode and in kernel
(CGA) mode. Results are depicted in Table 3. Power are given
for typical design corner (V=1V, nominal process, T=25C).
Leakage is extrapolated to typical leakage corner (V=1V,
nominal process, T=65C). The average power when executing
the reference program is 220mW.

TABLE 3
PROCESSOR POWER CONSUMPTION

 Active
(typical)

Leakage
(typical)

Leakage
(T=65C)

VLIW 75 mW 12.5 mW 25 mW
CGA 310 mW 12.5 mW 25 mW

Average 220 mW 12.5 mW 25 mW

TABLE 2
PROFILING OF THE SDM-OFDM CODE

 kernel mode IPC cycles
acorr mixed 3.47 122
fshift CGA 12.16 211
xcorr CGA 9.15 280
acorr mixed 3.47 194
fshift CGA 12.16 678
fft CGA (2x) 10.36 712
remove zero carriers VLIW 1.10 76
freq offset estimation CGA 6.32 314
freq offset compensation mixed 4.48 424
sample ordering VLIW 1.61 210
SDM processing CGA (2x) 9.90 1540
sample reordering VLIW 2.69 256
equalize coeff. calc. CGA 8.38 636
non-kernel code VLIW 1.69 452
total 8.05 6105

 = 15.3 us

fshift CGA 13.33 378
fft CGA (2x) 11.46 493
data shuffle VLIW 2.60 100
tracking VLIW 1.83 117
comp CGA 9.00 219
demod QAM64 CGA 12.04 224
total 10.34 1531

 = 3.8 us

P
re

am
bl

e
P

ro
ce

ss
in

g
D

at
a

P
ro

ce
ss

in
g

A further breakdown of the active power consumption

identifies which parts of the design consume most. In both
non-kernel and kernel mode, a significant share (respectively
28% and 38%) goes to the interconnect sub-system which
include buffers, multiplexers and pipeline registers between
the CGA functional units. In non-kernel, 22% and 21% further
go to the VLIW functional units and global register file
respectively; 13% to the L1, 10% to the I$. The CGA units
that are idle consume 2%. In kernel mode, after the
interconnect, the CGA functional units, configuration
memories and L1 dominates with respectively 25%, 13% and
10% of the power. The global and distributed register files
counts for 8% and 2%. The idle VLIW units and I$ consume a
remaining 5%.

VLIW ctrl
0%

FU VLIW
22%

FU CGA
2%

VLIW reg
21%

CGA reg
2%

CMEM
0%

DMEM
13%

I$
10%

peripherals
2%

Interconnect + mux
28%

Fig. 6a Power consumption breakdown in VLIW mode

VLIW ctrl
0%

FU VLIW
4%

FU CGA
25%

VLIW reg
6%

CGA reg
2%

CMEM
13%

DMEM
10%

I$
1%

peripherals
1%

CGA intercon - mux
- pipeline

38%

Fig. 6b Power consumption breakdown in CGA mode

5. CONCLUSIONS

The design of a hybrid CGA-SIMD baseband processor for
SDR is presented. The processor, designed in TSMC 90G
technology according to a dual-VT standard-cells flow,
achieves a clock frequency of 400MHz in worst case
conditions (corresponding to 25,6GOPS) and occupies 5.79
mm2 including L1, I$ and configuration memories. Two
operations modes are foreseen: non-kernel VLIW and kernel
CGA mode. In non-kernel mode, active power consumption is
estimated to 75.4mW while it reaches 310mW in CGA-
mapped loops. Static power consumption is 25mW at 65C,
which can be reduced in standby thanks to the substrate-
biasing support of the considered standard-cells library. The
processor is shown to be able to execute 20MHz 2x2 SDM-
OFDM baseband processing, achieving 100Mbps+ throughput,
consuming 220 mW.

6. REFERENCES
[1] J. Glossner, D. Iancu, L. Jin, E. Hokenek, M. Moudgill, "A

software-defined communications baseband design,"
Communications Magazine, IEEE, Vol. 41, pp. 120-128, 2003.

[2] K. Van Berkel, H. F., P. Meuwissen, K. Moeren, M. Weiss,
"Vector Processing as an Enabler for Software Defined Radio
in Handsets for 3G+WLAN Onwards," SDR Forum Technical
Conference, 2004, pp. 125-130.

[3] L. Yuan, L. Hyunseok, M. Woh, Y. Harel, S. Mahlke, T.
Mudge, C. Chakrabarti, K. Flautner, "SODA: A Low-power
Architecture For Software Radio," pp. 89-101, 2006.

[4] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C.
De Bartolomeis, L. Ciccarelli, R. Giansante, A. Deledda, F.
Campi, M. Toma, R. Guerrieri, "XiSystem: a XiRisc-based
SoC with reconfigurable IO module," Solid-State Circuits,
IEEE Journal of, Vol. 41, pp. 85-96, 2006.

[5] H. Singh, L. Ming-Hau, L. Guangming, F. J. Kurdahi, N.
Bagherzadeh, E. M. Chaves Filho, "MorphoSys: an integrated
reconfigurable system for data-parallel and computation-
intensive applications," Computers, IEEE Transactions on, Vol.
49, pp. 465-481, 2000.

[6] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins,
"Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling,"
Computers and Digital Techniques, IEE Proceedings-, Vol.
150, pp. 255-261, 2003.

[7] L. Van der Perre, B. Bougard, e. al., "Architectures and
Circuits for Software defined Radios: Scaling and Scalability
for Low Cost and Low Energy," International Solid State
Circuits Conference (ISSCC). San Francisco, CA, 2007.

[8] B. Bougard et al., “Energy Efficient Software Defined Radio
Solutions for MIMO-based Broadband Communication”, Proc.
European Signal Processing Conference, Poznan, Sept. 2007

