
Placement-and-routing-based Register Allocation
for Coarse-grained Reconfigurable Arrays

Bjorn De Sutter
Ghent University - IMEC
brdsutte@elis.ugent.be

Paul Coene Tom Vander Aa
Interuniversity Micro-Electronics Center

{coene,vanderaa}@imec.be

Bingfeng Mei

meibf@yahoo.com

Abstract
DSP architectures often feature multiple register files with sparse
connections to a large set of ALUs. For such DSPs, traditional reg-
ister allocation algorithms suffer from a lot of problems, including
a lack of retargetability and phase-ordering problems. This paper
studies alternative register allocation techniques based on place-
ment and routing. Different register file models are studied and
evaluated on a state-of-the art coarse-grained reconfigurable array
DSP, together with a new post-pass register allocator for rotating
register files.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, retargetable compilers

General Terms Algorithms, Design, Performance

Keywords register allocation, placement and routing, coarse-
grained, reconfigurable arrays

1. Introduction
Many applications contain loops that exhibit large amounts of par-
allelism. To exploit this, processors have to offer a high execution
bandwidth. In embedded application domains, VLIW DSPs are
popular because of their good performance/power ratio and com-
piler support. Unfortunately, VLIW architectures do not scale well,
as the power consumption and delay of a register file (RF) scales
super-linearly with its number of ports. While clustering overcomes
this problem to some extent, clustered VLIWs still feature quite
large, multi-port, and hence power-hungry, RFs. Alternatively, di-
rect connections between arithmetic logic units (ALUs) can be
added to the DSP data paths. For example, by making the forward-
ing paths on pipelined processor explicitly accessible through the
instruction set architecture (ISA), many RF accesses can be omitted
for short-lived values [25]. This creates opportunities for lowering
the number of RF ports without paying a price in obtained IPC.

Another example of architectures with explicit connections be-
tween ALUs are coarse-grained reconfigurable arrays (CGRAs) [22,
24], of which Figure 1 depicts an example. CGRAs can be seen as
coarse-grained FPGAs in which look-up tables have been replaced
by word-wide ALUs and RFs, and in which a new CGRA configu-
ration can be loaded every cycle. As such, a CGRA can also be seen

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES ’08 June 12–13, 2008,Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-60558-104-0/08/06. . . $5.00

Figure 1. An example CGRA featuring one shared RF, 16 ALUs,
12 local RFs, and a sparse interconnect.

as an extension of a clustered VLIW to a more generic, 2D type of
VLIW in which all components, including the multiplexers of the
interconnect network, are programmed explicitly every cycle with
an ultra long instruction word. An important difference between
CGRAs and clustered VLIWs is that a typical CGRA ALU is not
connected to a single RF via multiple implicit connections. Instead
each ALU can be connected to multiple RFs via a heterogeneous
interconnect topology. As such, it can occur that the two or more in-
puts of an ALU are connected to different sets of RFs. Conversely, a
single RF port may be shared by more than one ALU. This allows
data to flow between multiple RFs and ALUs, which is required
for executing complex loops at high instruction-level parallelism
(ILP), while still using single-ported, power-efficient RFs. Also, to
reach higher clock frequencies, additional pipelining latches can be
inserted nearly anywhere in the interconnect network of the data
path. Because CGRA instances optimized for different application
domains can differ significantly in the number of RFs and ALUs
and in interconnect topology, CGRA code generation techniques
ideally should be retargetable. For example, they should support
RFs that are tightly coupled to single ALUs, as well as RFs that are
shared between a number of ALUs.

To the best of our knowledge, traditional code scheduling and
register allocation strategies fail in targeting CGRA architectures or
clustered VLIW architectures with explicit forwarding paths. For
one thing, when there are a large number of small RFs, splitting the
register allocation in the separate cluster assignment [19, 10] task
with or without instruction replication [2] and intra-cluster regis-
ter allocation does not work anymore. Furthermore, with sparsely
connected RFs and ALUs, the assumption of most code schedulers
that an ALU is connected to its corresponding RF through exclusive
implicit connections does not hold anymore. So even code gener-
ation algorithms that integrate cluster assignment with instruction
scheduling and register allocation in one phase [31] do not scale to
CGRA-like architectures.

151

Figure 2. (a) A diamond-shaped data flow graph, (b) a simple data path consisting of ALUs only, (c) the corresponding time-space routing
graph, and (d) the mapped data flow graph.

This paper studies placement and routing (P&R)-based code
generation techniques as an alternative to existing register alloca-
tion algorithms. A comprehensive overview and a comparison of
different RF models are presented, and a novel register allocation
algorithm is presented that enables the use of more compact RF
models, thus leading to significantly smaller exploration spaces and
hence faster compilation. We do not claim that the proposed alloca-
tor or the used models can outperform known code generation tech-
niques for more traditional (clustered) VLIW architectures. We do
claim, however, that those known techniques do not apply to CGRA
architectures, while P&R-based techniques do.

Section 2 presents the general principle of code generation
based on P&R. Section 3 presents several models for different RF
properties. Section 4 discusses the problem of rotating RF models
in conjunction with modulo-scheduling, and Section 5 presents a
new post-pass scheduler that solves this problem. An evaluation of
the discussed models is presented in Section 6. Section 7 discusses
related work, and conclusions are drawn in Section 8.

2. Placement and Routing based Code
Generation

For architectures with programmable connections between ALUs,
a compiler not only needs to schedule operations and perform
register allocation. On top of that it also needs to decide how
data values will be transported from their producing operations
to their consuming operations. In other words, the compiler needs
to decide through which connections the data will be moved from
one ALU to another. Stated in terms that originate from the FPGA
synthesis world [3], the compiler needs to place and route the
code. Placement decides where and when each operation will be
executed, and routing decides through which connections the data
will flow as required by the data dependence graph (DDG).

To understand the concept of P&R in the context of compiler
code generation, consider the DDG of a code fragment depicted in
Figure 2(a) and the simple architecture in Figure 2(b). The problem
of placement and routing consists of mapping the DDG onto a
space-time graph that models the computational resources and the
routing resources (the connections) of an architecture. In hardware
synthesis terminology, the latter graph is called the routing resource
graph (RRG) [3]. In this graph, each resource is replicated at every
cycle in the schedule. In other words, each node n(r, t) in the
graph corresponds to resource r at cycle t. The RRG1 modeling
the example architecture is shown in Figure 2(c).

Figure 2(d) shows the mapped DDG. From this mapped DDG,
all assembly code can be derived. In general, a DDG mapping onto

1 In this RRG, as in all later RRGs in this paper, ALUs are modeled by
means of single nodes. Alternatively, all ALU input and output ports can
be modeled as separate nodes, as in [23]. Not to overload the figures, and
because this paper focuses on the RF modeling rather than on the ALU
modeling, we omit the separate ALU port nodes from the RRGs.

a RRG is valid if each node in the RRG is part of at most one
routed dependency. In hardware synthesis speak, each architecture
pin (=node) should only be used in one routed net (=routed depen-
dency) or, in other words, no pin should be overused.

Numerous algorithms have been devised to perform P&R in
hardware synthesis [3], and variations have been designed for code
generation purposes [17, 23]. Throughout most of this paper, the
exact algorithm used is irrelevant. We therefore postpone refer-
ences to any specific algorithm until the evaluation section.

3. Register File Models
Just like ALUs are modeled with nodes that are replicated every
cycle in the RRG, RF resources will be modeled with nodes and
edges. As such, each RF is modeled with an appropriate RRG
subgraph. By adapting the edges in this subgraph, different RF
properties can be modeled.

3.1 Basic Model
Figure 3(a) depicts the basic model of a RF with one write port,
one read port, and three registers. The single write port is modeled
by the in node. All connections from (potentially multiple) ALU
output ports or from other components to the RF write port will
be modeled with edges to the in node, in every cycle of the RRG.
Likewise, the out node models the read port. Connections on the
processor from this port to ALU input ports or other components
will be modeled with edges starting at this out node. Such connec-
tions, that basically constitute the net-list of the architecture, are
modeled with thin dotted edges as in Figure 3(a). When there are
more ports, additional in and out nodes are added to the RF’s RRG
subgraph. Furthermore, each register is modeled with one internal
node, in this case nodes r1, r2, and r3.

In the RF’s RRG subgraph, edges from the in node to an
internal node model the fact that a value written via the write port
can be stored in a register. Edges from the internal nodes to the out
node model the fact that a value stored in a register can be read
via the read port. Finally, edges connecting the internal nodes in
one cycle to their counterparts in the next cycle model the fact that
stored values can stay in the RF from one cycle to the other, which
is of course the main functionality of a RF.

Figure 3(b) shows how register allocation to this RF can be done
by means of P&R. Two routed dependencies in the DDG are shown
with bold edges, one with a solid net, and one with a dotted net.
The solid net shows that a value produced on some ALU0 in cycle
0 is written to r1 in cycle. This value is later read in cycle 1 to be
consumed on ALU2, and again in cycle 2 to be used on ALU3. In the
mean time another value, corresponding to the second dependency
shown with the dotted net, was produced by ALU1 and written to
r2 in cycle 1. This value is read from r2 in cycle 3, when it is
consumed by ALU4.

The router does not need to do the register allocation explicitly:
it just needs to find routes from ALUs on which producing opera-

152

Figure 3. The RRG subgraphs of three RFs with three registers and one write and one read port.

tions have been placed to ALUs on which the consuming operations
have been placed. Once these have been found, the register alloca-
tion is derived from the routes. This advantage of not needing to do
explicit register allocation is really huge. For one thing, in case the
router finds a route between two ALUs that does not pass through a
RF’s RRG subgraph, this implies that the router has found a direct
connection between two ALUs, such as a forwarding path, that will
be exploited in the generated schedule. To enable this exploitation,
the routing algorithm itself does not need to be adapted. In fact, the
routing algorithm does not even need to know whether there are di-
rect connections or not, or whether there are RFs or not, or whether
the RF ports are shared for multiple ALUs or not. As soon as the
appropriate RRG is built, all edges and nodes in it are equal to
the router. Consequently, a P&R routing algorithm using the above
RRG model for RFs, however those RFs are connected to other
components, will be able to exploit them. Likewise, the router will
be able to store short-lived values in latches on forwarding paths or
on buses. This can be observed from the RRG subgraphs of such
components as depicted in Figure 4(b) and 4(c). These subgraphs
show that latches and buses are in fact nothing more than RFs with
limited storage times and with only one internal register (of which
the node has been merged with the in node in the RRG subgraph).
Just like the router will exploit RFs or direct connections, it will
exploit latches and buses.

3.2 Registers with and without Forwarding
When taking a closer look at the edges in Figure 3(a), it becomes
clear that the register file modeled here is a register file with an
internal forwarding network. Indeed, a data dependence can be
routed through it within a single cycle, which models that a value
being written to the register is already available at its output.

To model a non-rotating RF that lacks internal forwarding, it
suffices to change the edges of the RF’s RRG subgraph, as depicted
in Figure 3(c). Indeed, in this RRG subgraph, a net modeling a
dependence cannot enter the RF and exit it in the same cycle: a
value being written to the RF can first be read one cycle later.

3.3 Rotating and Non-rotating Registers
Just like it suffices to adapt an RF’s RRG subgraph to model the
presence or absence of internal forwarding, it suffices to adapt the
edges to turn a non-rotating RF into a rotating one. Figure 3(d)
depicts the RRG subgraph of a RF of which the registers rotate
between cycle 2 and 3. Obviously, mixed combinations of RFs in
which only part of the registers rotate can also be modeled easily.

3.4 Multi-nets and Instruction Replication
The data dependence modeled with the solid net in Figure 3(b) is
a dependence from one producer to two consumers. Its net goes
from one source node (ALU0 in cycle 0) to two sink nodes (ALU2
in cycle 1 and ALU4 in cycle 2). As it has multiple sink nodes, this
net is called a multi-net. An important question to answer is the
following: where can the subnets constituting a multi-net diverge?
In Figure 3(b), this happens at the internal node r1 in cycle 1.

The answer to this question is simple: wherever the instruction
encoding of the architecture allows you to have diverging multi-
nets. For example, when a RF read port is programmed on a CGRA,
the address of the register addressed must be set. Whether the value
will be propagated over more than one outgoing connection or not
does not matter: only one address needs to be set. So a multi-net can
diverge at out nodes of RF RRG subgraphs. Similarly, a register
can be read in some cycle and still hold the same value for later
cycles. Therefore a multi-net can also diverge in internal nodes of
RF RRG subgraphs.

When a value is written through a RF write port, the destination
address needs to be set. As only one address can be encoded
for each port, the value can only be written to one register —
through one port that is. This limitation can be modeled in a P&R
algorithm by disallowing multi-nets to diverge at in nodes of RF
RRG subgraphs. To let a router actually take these limitations into
account, it suffices to annotate all RRG nodes with a diverge
attribute. Thus, this does not complicate routers significantly. In
all the RRGs depicted in this paper, the nodes that allow diverging
multi-nets are marked with a black dot in the middle of the nodes.

153

Figure 4. The RRG subgraphs of muxes, latches and buses.

Please note that, depending on how the programming of muxes,
ALUs, RFs, buses, etc. is encoded in the CGRA’s ISA, diverging
may occur at many nodes other than RF nodes. For example, a
value being put on a bus may be read by multiple components at-
tached to the bus. When such a diversion happens, the disjoint parts
of the subnets of a multi-net may be routed through different (sets
of) RFs. Or it may happen that one subnet passes through a RF,
while another subnet does not. Both cases correspond to instruction
replication [2] as used on clustered VLIWs, where instructions (and
hence there computation results) are replicated on multiple clusters
to reduce the required amount of intercluster communication. With
P&R-based code generation, this “replication” over multiple clus-
ters or RFs can be performed as a side-effect of the routing. No ad-
ditional, architecture-dependent compiler heuristics or algorithms
are needed.

3.5 Schedule and Allocation Validity
The validity of the schedule and the register allocation determined
by the result of a P&R using the above models is easily checked:
it suffices that each RRG node occurs in only one net. In that
case each resource will be used at most once in every cycle. No
additional requirements need to be tested besides this sufficient
condition. This means that all information needed to generate a
valid schedule is present in just the DDG and the RRG. With
respect to the quality of the generated schedules, this implies that
the quality depends solely on the ability of the P&R strategy to
explore all valid placements and routings on an RRG. The P&R
algorithm does not need to know that it models an architecture
with specific RFs. In other words, no heuristics ever need to be
implemented that depend on specific RF properties.

For that reason, we believe P&R-based code generation tech-
niques to be highly retargetable, and definitely more easily retar-
getable than traditional instruction scheduling and register alloca-
tion techniques. We will demonstrate this even more in Section 4,
when simple changes to the RRG are presented to support modulo-
scheduling of loops.

Another important advantage of not needing to impose addi-
tional requirements on validity or of not needing to implement ad-
ditional heuristics is that all resources can be exploited maximally:
when all nodes in an RF’s RRG subgraph are used in nets during
some cycles, the RF is used to its full capacity. This contrasts with
heuristics that may steer register allocation algorithms in a direction
that is good on average, but suboptimal in certain cases. In our case,
the ability to find the optimal solutions depends on the ability of the
router to explore all valid placements and routings. While this is far
from guaranteed, as P&R is an NP-complete problem [21], it is at
least independent of the specific target architecture for one which
is developing or using a compiler.

3.6 Compact Models
With the RF RRG subgraphs presented until now, RRG graphs
become huge. As a result, the number of routes that need to be
explored by P&R algorithms becomes huge as well. To reduce
that number, more compact models with fewer nodes are wanted.
To that end, alternative models in which all internal register are
modeled with a single node can be used. Figure 5(b) presents such
a compact model for a rotating RF with two registers, of which the
original model is depicted in Figure 5(a). With the compact model
every node gets an associated capacity that models the number of
values that can pass through it simultaneously. The validity check
for a schedule and allocation then simply needs to check whether
the number of nets routed through a node is not higher than the
node’s capacity.

Especially for large RFs, the compact model can result in much
smaller RRGs, and thus in more complete, or faster, exploration of
the P&R solution space.

Of course, the downside of the compact models is that no ac-
tual register allocation has been performed. Compared to clustered
VLIWs, only a cluster assignment has been performed by a router
using the compact models: it has been decided which value will be
stored in which RFs, but not in which registers inside those RFs.
For that reason, a post-pass register allocator will need to allocate
the live ranges that correspond to the placed and routed code.

For this post-pass register allocation, there is one important re-
quirement that differentiates it from traditional register allocators:
as P&R-based techniques are usually much slower than traditional
code generation techniques, one cannot afford having to redo a
placement and routing because of a failing post-pass register al-
location. In other words, the register allocator should find a valid
allocation without needing changes to the found placement. Still in
other words, no spill code can be inserted!

Fortunately, for normal code, the capacity checks performed
on RF RRG nodes guarantee that a valid schedule and a valid
allocation exist because the number of registers that needs to be
stored in a RF never exceeds the RF’s capacity. As we will see in
the next section, however, this guarantee is not as easily obtained
for cyclic code such as in software-pipelined loops.

4. P&R-based Modulo Scheduling
4.1 Modulo Scheduling
To map software-pipelined loops onto a CGRA, the presented mod-
els support a form of modulo-scheduling [29]. The objective of
modulo-scheduling is to engineer a schedule for one iteration of
a loop such that this same schedule can be initiated at regular, as
short as possible, intervals, taking into account data dependences
and resource constraints. This interval in terms of cycles is termed
initiation interval (II) [18], essentially reflecting the performance

154

Figure 5. Depicted are (a) A multi-node RF model for II = 2 for a rotating RF with one read port, one write port and two registers, (b) the
corresponding single-node model, and (c-d) a mapping trial of two life ranges onto the RF models.

of the scheduled loop. Generally, modulo-scheduling algorithms
rely on an abstract architecture model called modulo reservation
table (MRT) [18] to impose the modulo resource constraints. In the
MRT, there are (issue width) * II reservation slots; one per issue
slot per time slot. Thus, modulo-scheduling is simplified into an
acyclic scheduling problem on the MRT.

In order to enable modulo-scheduling using P&R algorithms
that use our RRG models, it suffices to add a MRT on top of the
RRG. Basically, instead of modeling each resource of the architec-
ture in the MRT, each node n(r, t) in the RRG is mapped on the
MRT entry n(r, t mod II). For modulo scheduling, the validity
check now is no longer performed directly on nodes in the RRG,
but instead on the MRT entries. Instead of counting the nets routed
through each node in the RRG, we now count, for each entry in the
MRT, the nets routed through the nodes that were mapped onto that
entry, and apply the validity check on that count. Apart from that,
nothing fundamental needs to change to the P&R technique to let it
generate modulo schedules.

4.2 Rotating Register Files
In Figure 6(a), the live ranges of three variables v0, v1, and v2 are
depicted for a software-pipelined loop with II = 3. The schedule
of one iteration is 7 cycles long, hence there are 3 pipeline stages.
The value v1,i−1 of variable v1, i.e., the value of v1 produced in
iteration i − 1, is live from cycle 0 (when it is produced) to cycle
6 (when it is last consumed) in the depicted time domain. As such,
it overlaps with the live range of v1,i. As long as both values are
live together, they both need to be stored, and therefore at least
two registers are required (assuming that the values are stored in a
RF). These overlaps are depicted in Figure 6(B) in a modulo-time
graph. As the code that produces v1,i is exactly the same as the
code that produced v1,i−1 3 cycles earlier, v1,i will be moved to
the same register R to which v1,i−1 was moved 3 cycles earlier.

By consequence, the only way to store both constants somewhere
together is to copy or to move the value v1,i−1 to a location other
than R before it is overwritten in R with v1,i.

In general, in modulo-scheduled loops, multiple values of the
same variable need to be stored (in an RF or in latches or in con-
nections with high latency) simultaneously whenever a live range is
longer than II cycles. To support this without having to insert ex-
plicit copy operations or move operations in the schedules, rotating
RFs can be used. These RFs rotate at the end of a pipeline stage, be-
ing every II cycles, and rotate values from previous iterations into
neighboring registers before they are overwritten by values from
new iterations. We refer to [16] for additional information on the
use of rotating registers in software-pipelined loops. What is im-
portant in the context of this paper, is that registers typically rotate
at the end of each pipeline stage of a software-pipelined loop, i.e.,
after every II cycles.

4.3 Determining Register File Capacities
Now suppose we are using a P&R-based code generation technique
to map a modulo-scheduled loop with II = 2 on an architecture
with a RF with 2 registers, with one write port and with one read
port. The corresponding RRGs with the multi-node and with the
compact models are depicted in Figure 5(a) and Figure 5(b).

We will now study whether it is possible to accommodate two
live ranges in this RF: one range from cycle 0 to cycle 1, and a
second range from cycle 1 to cycle 2. These ranges are depicted in
solid and dotted edges in Figure 5(c). The first range is depicted
twice to illustrate that the resources it uses are not only used at
cycles 0 and 1, but also at 0 + II and 1 + II , at 0 + 2 ∗ II and
1 + 2 ∗ II , and so on.

When the capacity is chosen to be two, as indicated in Figure 5,
the allocation on the compact model as depicted in Figure 5(c)
seems valid: at most two nets, corresponding to the two live ranges,

155

Figure 6. Lifetimes in consecutive iterations when II = 3.

are routed through a node. When looking at the RRG mapping in
Figure 5(d) however, which is one of the possible multi-node model
mappings corresponding to the compact model mapping, we note
that the schedule is not valid. Indeed, node r1 in cycle 2 is used in
two nets. A similar problem occurs for all other multi-node model
mappings that correspond to the compact model mappings.

This example shows that choosing the number of registers in a
rotating RF as the capacity of the internal node of an RRG subgraph
does not guarantee that a valid allocation exists. To provide such a
guarantee, which we need as argued in Section 3.6, we rely on the
proof by Touati and Eisenbeis [32] that a valid register allocation in
a rotating RF exists when the number of simultaneously live values
in an RF, termed cyclic register requirement or CRR, is at least one
smaller than the number of registers of that RF, i.e., if

CRR + 1 ≤ #RF (1)

This means that the number of DDG edges that can be routed
through an internal RF node in the compact model needs to be lim-
ited to #RF-1. In other words, when the capacity in a RF RRG graph
is set to #RF-1, the existence of a valid allocation is guaranteed. The
only remaining problem then is to find this allocation.

5. Traveling Salesman Solution for Rotating RFs
Before we present our post-pass register allocator that can find a
valid allocation, we want to repeat that introducing spill code is
not an option. The context of our register allocator is that in which
a P&R algorithm has spent a (very) long time on finding a valid
schedule for which it has guaranteed that a valid allocation exists.
Our job is to find at least one such valid allocation without requiring
updates to the found schedule for inserting spill code.

Consider the example in Figure 6. Different values of v0, v1, ...
vN−1, each belonging to a different iteration, exist simultaneously
in the software pipelined loop. These so-called circular excessive
values v0,i, v0,i−1, . . . 2 must be mapped to adjacent rotating reg-
isters, such that the rotation mechanism in the RF will address the

2 The ordering of the circular excessive values needs to correspond to the di-
rection in which registers are rotated and the signs (addition or subtraction)
in the formulas.

Figure 7. Two possible solutions for rotating RF allocation.

correct values when a new iteration is started, which coincides with
the start of a new software pipeline stage. Defining a sequence S as
a mapping of {0, 1, ..., N−1} to {v0, v1, ..., vN−1}, the rightmost
circular excessive value of the ith element in the sequence vS(i)

can share a register with the leftmost one of the next value in the
sequence vS((i+1) mod N) when the modulo lifetime of vS(i) ends
before the modulo lifetime of vS((i+1) mod N) begins. For exam-
ple, performing an allocation in the order (v0, v1, v2) (top Figure 7)
uses 6 registers, while the order (v2, v1, v0) (Figure 7b) gives 7. In
the first solution, v0,i−1 and v1,i can share register r1, thereby re-
ducing the total number of required registers. This illustrates clearly
that the chosen sequence influences the quality of the solution.

In general, the register allocation problem can be solved by
finding a sequence that meets the rotating RF capacity constraint.
It is useful to define a distance function d(va, vb) as the number
of unused register time slots when vb follows va in the allocation
sequence. In Figure 7, d(v0, v1) = 1, d(v1, v2) = 2, d(v2, v0) =
0, and d(v1, v0) = 2.

The total number RS of registers used by the sequence S can
then be written as:

RS =

∑N−1
i=0 L(vS(i)) + d(vS(i), vS((i+1) mod N))

II
(2)

in which L(vi) is the life time of vi: the number of cycles elapsed
between its production and last consumption. Because of con-
straint (1) on the CRR, there exists at least one valid sequence
Svalid that uses a small enough number of registers to guaran-
tee allocatability. Looking at equation (2), the number of regis-
ters used by a sequence Smin can be minimized by minimizing∑N−1
i=0 d(vSmin(i), vSmin((i+1) mod N)), since the sum of the life

times is the same for all sequences and depends only on the sched-
ule of the software pipelined loop. Since Smin does not use more
registers than Svalid, it must be a valid, allocatable sequence.

Minimizing the sum of distances can be regarded as an asym-
metric traveling salesman problem (TSP), which consists of finding
the cheapest round trip that visits each city exactly once and then
returns to the starting city, given a number of cities and the costs
for traveling from from each city to each other city. In asymmetric
variants, the cost for going from city A to city B is not necessarily
the same as for going from B to A. Applied to the register allo-
cation problem, we consider v0, v1, v2, .., vN−1 to be cities, with
their distances as defined above. An exact solution can be found
using the algorithm described in [7].

By using this algorithm as a post-pass register allocator, we have
a method to use more compact RF models. Since our method ex-
cludes the many schedules in which we would be able to find a valid
allocation even if CRR=#RF, setting the capacity of a RFs internal
node to #RF-1 can in theory result in suboptimal exploitation of the

156

RFs. Fortunately, we will see in the evaluation that we pay no such
price in practice.

6. Experimental Evaluation
To evaluate the strength of our register allocation models and the
associated register allocator, we ran them in a modulo-scheduling
P&R-based compiler for the ADRES (Architecture for Dynami-
cally Reconfigurable Embedded Systems) template [22]. ADRES
processors feature a VLIW operating mode for executing non-loop
code, and a CGRA like the one depicted in Figure 1 for executing
high-ILP, modulo-scheduled loops that have been transformed into
hyperblocks [20] to expose the ILP.

6.1 Compilation Framework
The ANSI C compiler that targets ADRES processors is called
DRESC (Dynamically Reconfigurable Embedded Systems Com-
piler). It uses the RRG with a MRT on top of it to schedule code for
the array. More details on the used compiler algorithm can be found
in [23]. Here we limit the discussion to some ADRES/DRESC fea-
tures that are important for this evaluation.

First, it is important to know that the VLIW mode and the array
mode share the L1 scratch-pad memory. Hence data can be passed
between the two modes via the shared memory. Furthermore, the
VLIW mode and the array mode share one RF, like the shared RF
in Figure 1. This RF can hence also be used to pass data from the
VLIW mode to the array mode and vice versa. When this needs
to happen, the placer of the compiler’s P&R algorithm places vir-
tual operations corresponding to live-in and live-out dependencies
on the shared RF’s nodes in the RRG, and the router routes the
nets corresponding to those dependencies, just like it routes any
other dependencies. This way, only the placement step needs to
be adapted to deal with live-in and live-out values that are passed
through the shared RF. As for modeling RFs with different proper-
ties, the router does not need to be adapted at all.

The P&R algorithm in DRESC is based on congestion nego-
tiation [3] and simulated annealing (SA). The SA starts with an
invalid, congested schedule. Congestion in this context means that
a resource (a connection or an ALU) is used to perform more tasks
in a cycle than it can actually execute. For an ALU, for example,
congestion corresponds to executing more than one operation in the
same cycle. For a connection, it corresponds to propagating more
than one value, or, in other words, being used to route two nets in
the same cycle. The cost function used in our SA includes conges-
tion. The SA starts with a schedule with a high cost function, i.e.
a lot of congestion, and then tries to minimize the congestion by
moving operations around in the schedule until a congestion-free,
valid schedule is found. During every iteration of the SA, opera-
tions are moved to random new positions in the RRG, after which
their dependences are rerouted, and the new cost, including the new
congestion, is computed. If the delta in cost of such a move is ac-
ceptable for the SA, the move is accepted. Otherwise, alternative
moves are tried.

We should note that simply by using SA, common wisdom tells
that long compilation times can be expected. In our case, every tried
move of an operation in the RRG during the SA involves computing
new routes for its incoming and outgoing nets. Therefore the router
is the inner loop of our compiler, in which about 95% of the
compilation time is spent.

Data is passed from VLIW mode to array mode whenever a loop
is entered that was compiled for the array mode. The VLIW code
leaves the live-in data in the shared RF (which is the VLIW mode’s
main RF), and control is transferred to the array controller, much
like control would be transferred from a caller function to a calling
function. When the loop finishes executing in the array mode, the
live-out data is found in the shared RF, and control goes back to

the VLIW mode, much like control is transferred upon a function
return. This way, an ADRES processor can run both non-kernel
code and kernel code without a lot of switching overhead, and co-
code generation in the DRESC compiler is relatively easy as well.
The non-kernel code is mapped to the VLIW mode with compiler
techniques like graph coloring and list scheduling. These are not
considered in this paper. Here we focus on the modulo-scheduled
code of the array mode.

6.2 Benchmarks and Target Processors
For our experiments, we have compiled a number of micro-
benchmarks existing of one or two kernels, as well as a number of
applications containing many kernels, for two ADRES instances3.

The first ADRES instance is designed for multimedia applica-
tions, and for this one we compiled an IDCT micro-benchmark,
an MPEG-2 decoder, and a more complex H.264 video decoder,
for which we report on the most time-consuming loops. The array
mode of this instance is very similar to the architecture depicted
in Figure 1. It is a 32-bit architecture that features 16 ALUs, 12
small rotating RFs with 4 registers (8 of which have 1 read and 1
write port, and 4 of which have 2 read ports and 1 write port), and
one shared RF of 64 registers, of which 32 registers are rotating.
The shared RF has 6 read ports and 3 write ports, as needed by the
3-issue VLIW mode of this machine. To support low latencies in
VLIW mode, the shared RF offers forwarding. The 12 local RFs do
not. This architecture does not contain the buses (thick lines) de-
picted in Figure 1. Instead, the interconnect between the ALUs and
RFs is based solely on a mesh-like interconnect that connects ALUs
and RFs to their immediate neighbors in the array. Besides all usual
arithmetic and logic operations. all ALUs can execute specific mul-
timedia operations such as clipping, and two-way SIMD operations
(which are programmed by means of intrinsics). 8 ALUs contain
multipliers, and 4 can also perform load/store operations.

The other instance targets software-defined radio (SDR) code,
and for this one we compiled typical kernels as found in wireless
standards: FFTs, data shuffling operations, demapping kernels, etc.
This architecture differs significantly from the multimedia instance.
The ALUs and local RFs are basically the same, but in this case
they are 64-bit wide, and all local registers have 2 read ports. Also,
the ALUs now can execute 64-bit SIMD operations in saturated
arithmetic, including operations like complex fixed-point multipli-
cations. The interconnect of the SDR instance is based on mesh-
plus (which connects all elements to direct neighbors and to neigh-
bors one hop away), and it features both horizontal and vertical
busses that connect all components per row and per column. Fi-
nally, only 16 of the 64 registers of the shared RF are now rotating.

Because the performance targets of the SDR instance and the
multimedia instance are different, they need to be clocked at differ-
ent speeds: 400 MHz for the SDR instance, and 300 MHz for the
multimedia instance. To achieve these speeds in the 90 nm TSMC
GP standard cell process technology, pipelining latches needed to
be inserted in the interconnect to avoid overly long combinatorial
paths. Since the speeds of the two instances are different, and be-
cause muxes on the SDR instance have more inputs (there are more

3 A much wider range of architectures has been targeted to study other
aspects of ADRES and DRESC [4, 8]. Those studies show that the compiler
is indeed retargetable to a wide range of ADRES instances. We limit this
paper to two ADRES instances because these are the ones for which we
have spent a lot of effort in optimizing the source C code, for example
by means of inserting SIMD intrinsics, and for which we have working,
synthesizable VHDL. The SDR ADRES instance is being taped out in Q1
2008 as part of a full SDR MPSoC platform. The multimedia ADRES
instance has been verified at the gate-level as well, before and after layout.
This illustrates that these ADRES instances are real DSP cores that work,
and not only virtual architectures that live in simulators.

157

multimedia ADRES SDR ADRES

Figure 8. Pipelining latches inserted in the two instances.

Multi-node RF Compact RF
instance vertices edges vertices edges
multimedia 698 2274 568 (-19%) 1579 (-31%)
SDR 653 2313 552 (-15%) 1620 (-30%)

Table 1. Sizes of the RRGs per cycle.

connections), more latches needed to be inserted in the SDR in-
stance. Conceptually, the latches are inserted in between local RFs
and the corresponding ALUs as depicted in Figure 8.

Together with the differences in the interconnect topology, the
different pipelining schemes of both instances ensure that these
instances significantly different RRGs. The number of nodes per
cycle in the instances RRGs is depicted in table 1. These numbers
include all muxes, latches, RFs, ALUs, etc in the array data path.
It can be seen that the compact models of rotating RFs reduce the
sizes of the RRGs significantly: with about 30% less edges, the
router should explore about 30% less routes.

6.3 Compilation Results
To evaluate our modeling of registers and the TSP-based register
allocator, we mapped all our benchmark kernels to one of the two
instances. The results are presented in Table 2.

The first column contains the name of each kernel. The second
and third column contain theoretical lower bounds for the obtain-
able II [28]. ResMII, the resource-minimal II, is the lower bound
caused by resource constraints. Consider, for example, a loop with
68 operations. To execute these on an architecture with 16 FUs, at
least 5 cycles are needed, so the II will be at least 5. RecMII, or
the recurrence-minimal II is the lower bound on II caused by recur-
rent (i.e. loop-carried) data dependencies. If an iteration depends
on operations in a previous iteration that take RecMII cycles to ex-
ecute, it cannot start executing before these RecMII cycles have
gone. The numbers ResMII and RecMII are included in this table
to give an idea of how well our compiler techniques are able to ap-
proximate the theoretical optimal performance when the mininam
II = max(RecMII,ResMII) is reached.4

Next, we present the compilation times, the obtained II, and the
obtained instructions-per-cycle (IPC) for the code compiled with
the multi-node RF models of Sections 3.1, 3.2, and 3.3. Together
with the IIs, we’ve included the difference with the minimal II. It
can be seen that the difference is most often very small, and in a
large number of loops, it is even 0 or 1. As a result, very high IPCs
are obtained. It is only when the RecMII dominates the ResMII,
i.e. when the schedule quality is bound by data dependencies, that
low IPCs are obtained. This demonstrates the effectiveness of our
compiler techniques.

For the compact models of Section 3.6, we’ve included the same
numbers in Table 2 plus the compilation time ratios (lower is better)
and IPC ratios (higher is better) relative to the multi-node models,
and the time spent in the TSP post-pass register allocator. It can be

4 Please note that max(RecMII,ResMII) is only an upper bound, which is
not guaranteed to be achievable.

seen that the time spent in the TSP allocator is negligible compared
to the P&R compilation times. Overall, the compact models are
24% faster, which is due to the reduction in size of the RRGs.

Sometimes however, the compilation times increase. This is due
to the nature of the SA algorithm. This algorithm relies on a limited
number of random placement trials, and as the cost function used
for the two RF models is not identical, the compiler traverses the
exploration space in a different order. For that reason, it sometimes
takes more SA rounds before a valid schedule is found in the ex-
ploration space, and hence more time. As a result of this different
traversal, not only the number of SA rounds differs, but so do the
found schedules. In this respect, we observed no significant differ-
ences in the quality of the obtained schedules: in some cases the
multi-node model yields better results, in other cases the compact
model finds the highest IPC.

The final 5 columns in Table 2 depicts the number of nets
that are routed through 0, 1, 2, 3, or 4 different RFs (using the
compact RF models). The 0 RF case corresponds to the router
finding direct connections between ALUs to route a net. The other
cases correspond to the router storing a value in at least one RF
to propagate it from the producing operation to the consuming
operation in the schedule. The cases 2, 3 and 4, correspond to the
router implementing replication in 2, 3 and 4 RFs, as discussed in
Section 3.4. From the numbers, it is clear that replication is indeed
performed by the compiler.

7. Related Work
The most popular approach for allocating registers is based on
graph coloring [9, 5]. Using an interference graph, which models
overlapping live ranges, live ranges are allocated and spill code is
inserted according to the heuristics used. Callahan and Koblenz [6]
applied this register allocation hierarchically to regions of code
such as nested loops rather than to whole procedures. This way,
they were able to reduce the number of spill code operations in-
serted in the frequently executed code, thus reducing the number
of dynamic memory accesses. Register coalescing [12, 26] aims
at elimination copy operations from schedules by coalescing live
ranges. The heuristics used to do so take into account the increased
difficulty of allocating the resulting longer live ranges. Because
graph coloring techniques can require large computation times (as
the size of the interference graph is in the worst case quadratic to
the number of live ranges), linear scan allocators [27] have been
proposed that traverse the live ranges only once.

All these techniques try to minimize the (dynamic) amount of
spill code inserted into a program. Our post-pass allocator solves
a different problem. In our case, a long time has been spent by
the compiler in generating a valid (modulo) schedule, for which a
register allocation for each RF (or bank or cluster) is guaranteed
to exist. The sole task of our post-pass register allocator is to find
one such valid schedule without spill code. This follows from the
fact that inserting spill code in the (modulo-)scheduled code is
impossible without having to regenerate the schedule from scratch.
While the latter is a problem in simple VLIW register allocators
as well, regenerating a simple VLIW schedule from scratch for a
basic block or hyperblock takes much less time. Also the existing
work on regional register allocation is not applicable in our context,
as the proposed models are used on single hyperblocks of code
anyway. Furthermore, register coalescing is not relevant in our case,
as the DDG for which we generate a schedule does not contain copy
operations. Whether or not a value is stored more than once in a RF
(as with copy operations) is decided by the router in the same way
as it decides to perform value replication [2] or not.

Earliest work on register allocation for software pipelined loops
was done by Rau, et al. [30]. This work defines MAXLIVE as
the maximum number of simultaneously live values in the loop

158

Multi-node RF graph Compact RF graph + TSP Net distribution
Kernel Res

MII
Rec
MII

time
(s)

II IPC
time
(s)

time
ratio

II IPC
IPC
ratio

TSP
(ms)

0
RFs

1
RF

2
RFs

3
RFs

4
RFs

FIR shift 3 1 125 3 (+0) 12.67 67 0.54 3 (+0) 12.67 1.00 1.50 25 13 1
mat mul 4 1 130 5 (+1) 9.40 208 1.60 4 (+0) 11.75 1.25 1.76 27 26 1
idct 1 9 1 218 11 (+2) 13.09 186 0.85 11 (+2) 13.09 1.00 2.79 75 59 4
idct 2 14 1 682 16 (+2) 13.31 273 0.40 16 (+2) 13.31 1.00 3.47 92 96 2
SDR kernels
demapQAM64 4 1 66 6 (+2) 9.83 45 0.68 6 (+2) 9.83 1.00 0.57 57 8
fft 8 2 298 12 (+4) 10.25 156 0.52 12 (+4) 10.25 1.00 1.74 94 24 2
R8 8 1 58 11 (+3) 11.09 53 0.91 11 (+3) 11.09 1.00 1.53 92 24 3
R2 6 1 34 10 (+4) 8.30 25 0.74 10 (+4) 8.30 1.00 0.77 74 13
fft1024 8 1 268 10 (+2) 12.40 156 0.58 11 (+3) 11.27 0.91 2.46 80 45 1
ifft64 8 2 302 12 (+4) 10.25 156 0.52 12 (+4) 10.25 1.00 1.70 94 24 2
DataShuffle 14 1 356 16 (+2) 9.56 478 1.34 16 (+2) 9.56 1.00 2.13 118 30
MPEG2 kernels
Dequantize Non Intra 2 1 37 2 (+0) 9.50 19 0.51 2 (+0) 9.50 1.00 1.07 15 10
Dequantize Intra 2 1 28 2 (+0) 8.50 25 0.89 2 (+0) 8.50 1.00 0.94 14 7 2
Add Block 1 3 1 24 3 (+0) 11.00 27 1.13 3 (+0) 11.00 1.00 1.18 17 13 2
Saturate 1 4 2 219 5 (+1) 11.00 153 0.70 5 (+1) 11.00 1.00 1.45 27 17 2 1
Fast IDCT 1 5 1 94 9 (+4) 8.78 111 1.18 8 (+3) 9.88 1.13 1.52 44 26 2
Fast IDCT 2 7 1 600 8 (+1) 13.00 392 0.65 8 (+1) 13.00 1.00 2.56 50 43 3 1
component prediction 1 4 2 49 4 (+0) 8.25 57 1.16 4 (+0) 8.25 1.00 1.17 12 15 1
component prediction 2 3 2 39 4 (+1) 9.50 19 0.49 3 (+0) 12.67 1.33 1.32 24 12 1
component prediction 3 3 2 84 4 (+1) 13.00 18 0.21 4 (+1) 13.00 1.00 1.24 30 12 2
component prediction 4 4 2 37 5 (+1) 10.40 39 1.05 4 (+0) 13.00 1.25 1.40 35 16
component prediction 5 4 2 44 4 (+0) 12.25 37 0.84 4 (+0) 12.25 1.00 1.28 25 18 1
component prediction 6 5 2 439 5 (+0) 13.60 205 0.47 5 (+0) 13.60 1.00 1.64 39 24 1
component prediction 7 4 2 138 5 (+1) 12.40 41 0.30 5 (+1) 12.40 1.00 1.91 35 22
component prediction 8 5 1 67 6 (+1) 11.33 88 1.31 6 (+1) 11.33 1.00 1.66 37 26 1
component prediction 9 5 1 67 6 (+1) 11.33 56 0.84 6 (+1) 11.33 1.00 1.88 37 26 1
h.264 kernels
put h264 horiz qpel 4 2 30 6 (+2) 8.17 29 0.97 5 (+1) 9.80 1.20 1.23 31 17
put h264 qpel mc02 5 2 38 7 (+2) 10.29 28 0.74 9 (+4) 8.00 0.78 1.33 51 21 1
put h264 qpel mc11 1 5 2 32 5 (+0) 13.60 22 0.69 5 (+0) 13.60 1.00 1.26 46 23 1
put h264 qpel mc11 2 6 2 71 7 (+1) 12.57 82 1.15 8 (+2) 11.00 0.88 2.28 63 26 3
put h264 chroma mc00 3 2 190 4 (+1) 9.25 77 0.41 4 (+1) 9.25 1.00 1.39 17 21 1
put h264 chroma mc 7 2 478 10 (+3) 10.90 305 0.64 10 (+3) 10.90 1.00 2.91 69 41 3
put h264 qpel mc00 4 5 2 71 6 (+1) 12.50 74 1.04 6 (+1) 12.50 1.00 1.48 50 27
put h264 qpel mc20 5 2 39 5 (+0) 13.20 23 0.59 5 (+0) 13.20 1.00 0.94 47 21
put h264 qpel mc01 6 2 54 8 (+2) 10.12 46 0.85 8 (+2) 10.12 1.00 2.07 56 25 1
put h264 qpel mc22 6 2 100 7 (+1) 12.29 26 0.26 7 (+1) 12.29 1.00 1.85 59 29 2
put h264 qpel mc21 8 2 37 10 (+2) 12.40 41 1.11 9 (+1) 13.78 1.11 1.87 81 46 1
put h264 qpel mc12 10 2 153 13 (+3) 11.54 83 0.54 13 (+3) 11.54 1.00 2.69 104 47 5
filter mb 1 6 2 837 7 (+1) 12.14 165 0.20 8 (+2) 10.62 0.87 2.65 43 41 2 1 1
filter mb 2 6 7 490 10 (+3) 8.90 240 0.49 10 (+3) 8.90 1.00 2.43 54 34 2
filter mb 3 5 1 188 6 (+1) 12.17 119 0.63 6 (+1) 12.17 1.00 2.27 35 29 4 1
filter mb 4 3 2 37 4 (+1) 11.00 19 0.51 4 (+1) 11.00 1.00 1.50 24 20
filter mb 5 7 1 507 10 (+3) 11.00 404 0.80 10 (+3) 11.00 1.00 2.77 54 44 4 1
wrapped idct loop 3 4 1 84 5 (+1) 12.00 133 1.58 5 (+1) 12.00 1.00 1.75 37 22 3 1
find frame end 4 6 52 7 (+1) 3.86 34 0.65 7 (+1) 3.86 1.00 0.46 21 15
ff h264 idct add 2 3 1 32 4 (+1) 12.00 21 0.66 4 (+1) 12.00 1.00 1.33 28 18 1
Average 0.76 1.02

Table 2. Experimental results of compiling numerous loops in several micro-benchmarks and full applications to two ADRES instances.

to approximate the number of registers required for the sched-
ule. They also provide several algorithms to find an allocation us-
ing MAXLIVE registers. Hendren et al. [14] propose a hierarchi-
cal graph-based approach to reach a a global allocation (not only
loops) in a short amount of time with a number of registers close
MAXLIVE and that limits the spills that are needed.

In some cases MAXLIVE registers do not suffice for a valid allo-
cation. Eisenbeis et al. [11] propose a graph called meeting graph.
Using this graph they prove MAXLIVE + 1 registers is always suf-
ficient to find a valid allocation. Itoga, et al. [15], claim they have a
method using spiral graphs to find a valid allocation using the min-
imum number of registers in polynomial time. However, the paper
carrying the proof [13] is in Japanese, which we cannot read.

On architectures without rotating registers, Eisenbeis, et al. [11]
proposes applying some of the above techniques on unrolled loops.
Although that proposal is as efficient as the original techniques in
terms of register usage, it suffers from increased code size.

Koes et al. [17] proposed a global register allocator that uses an
expressive RF time-space representation that resembles our multi-
node RF models. Their representation is called a multi-commodity
network flow graph, and it is used to represents spill code optimiza-
tion, register preferences, copy insertion, and constant rematerial-
ization in one model. Just like a P&R-based code generator maps
data dependencies on nets through registers, so does their method.
They do not apply it in a modulo-scheduler, however, and they only
apply it to more traditional architectures like the x86.

The compact RF model was already presented by Mei et al.
in [23]. Lacking a post-pass register allocator like the TSP allocator
presented in this paper, and using only the insufficient condition
check MAXLIV E ≤ capacity during P&R, Mei’s compiler
could fail to produce valid schedules for some loops. The multi-
node RF model and the compact RF model combined with the TSP
allocator presented in this paper offer valid alternatives.

159

In its current state, our RRG models do not model all RF
features found in modern processors. For example, pairs of registers
that can be addresses as single wide registers to store SIMD vectors
or wider numerical data [1] are not modeled. This is future work.

8. Conclusions and Future Work
In this paper, we have proposed a generic register file model that
supports code generation, including register allocation, based on
placement and routing techniques that originate from the FPGA
synthesis world. Our routing resource graphs can easily be adapted
to model rotating and non-rotating register files with different la-
tencies and with different numbers of ports. Register allocation,
including cluster (or bank) assignment and value replication, are
then performed by the standard router, which does not need to
be adapted for different register file properties or when different
types of interconnects are used to connect register files to ALUs.
We have also presented more compact models that can be used to
perform cluster or bank assignment and value replication as part of
the routing, but which require a post-pass register allocator to per-
form the register allocation. We presented such a post-pass alloca-
tor that is guaranteed to find a solution following a simple validity
check in the router. Both the original and the compact models have
been demonstrated to work well on two high ILP ADRES architec-
tures onto which we compiled a large number of modulo-scheduled
loops from multimedia and software-defined radio applications.

References
[1] AHN, M., AND PAEK, Y. Fast code generation for embedded

processors with aliased heterogeneous registers. Trans. on HiPEAC
2, 2 (2007), 40–59.

[2] ALETÀ, A., CODINA, J. M., GONZÁLEZ, A., AND KAELI, D.
Removing communications in clustered microarchitectures through
instruction replication. ACM Trans. Archit. Code Optim. 1, 2 (2004),
127–151.

[3] BETZ, V., ROSE, J., AND MARGUARDT, A. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[4] BOUWENS, F., BEREKOVIC, M., GAYDADJIEV, G., AND DE SUT-
TER, B. Architecture enhancements for the ADRES coarse-grained
reconfigurable array. In Proc. of HiPEAC Conf. (2008).

[5] BRIGGS, P., COOPER, K. D., AND TORCZON, L. Improvements to
graph coloring register allocation. ACM Trans. Program. Lang. Syst.
16, 3 (1994), 428–455.

[6] CALLAHAN, D., AND KOBLENZ, B. Register allocation via
hierarchical graph coloring. SIGPLAN Not. 26, 6 (1991), 192–203.

[7] CARPANETO, G., DELL’AMICO, M., AND TOTH, P. Exact solution
of large-scale, asymmetric traveling salesman problems. ACM Trans.
Math. Softw. 21, 4 (1995), 394–409.

[8] CERVERO, T. Analysis, implementation and architectural exploration
of the H.264/AVC decoder onto a reconfigurable architecture.
Master’s thesis, Universidad de Los Palmas de Gran Canaria, 2007.

[9] CHAINTIN, G., AUSLANDER, M., CHANDRA, A. K., COCKE,
J., HOPKINS, M., AND MARKSTEIN, P. Register allocation via
coloring. Computer Languages 6, 1 (1981), 47–57.

[10] CHU, M., FAN, K., AND MAHLKE, S. Region-based hierarchical
operation partitioning for multicluster processors. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (2003), pp. 300–311.

[11] EISENBEIS, C., LELAIT, S., AND MARMOL, B. Circular-arc graph
coloring and unrolling. In Proceedings of the 5th Twente Workshop
on Graphs and Combinatorial Optimization (Twente, Netherlands,
May 1997), U. Faigle and C. Hoede, Eds., pp. 71–74.

[12] GEORGE, L., AND APPEL, A. W. Iterated register coalescing. ACM
Trans. Program. Lang. Syst. 18, 3 (1996), 300–324.

[13] HARAIKAWA, T., SOENO, M., YAMASHITA, Y., AND NAKATA,
I. Register allocation frameworks for slide-window architecture.
Transactions of Information Processing Society of Japan 39, 9 (1998),
2684–2694. (in Japanese).

[14] HENDREN, L. J., GAO, G. R., ALTMAN, E. R., AND MUKERJI, C.
A register allocation framework based on hierarchical cyclic interval
graphs. In Compiler Construction (1992), pp. 176–191.

[15] ITOGA, H., HARAIKAWA, T., YAMASHITA, Y., AND TANAKA, J.
Register allocation for software pipelining with predication using
spiral graph. In Proceedings of the International Symposium on
Future Software Technology (ISFST2001) (2001), pp. 58–65.

[16] KIM, S., AND MOON, S.-M. Rotating register allocation for
enhanced pipeline scheduling. In PACT ’07: Proceedings of the 16th
International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007) (2007), pp. 60–72.

[17] KOES, D. R., AND GOLDSTEIN, S. A global progressive register
allocator. In Proc. PLDI (2006), pp. 204–215.

[18] LAM, M. S. Software pipelining: an effecive scheduling technique
for VLIW machines. In Proc. PLDI (1988), pp. 318–327.

[19] LAPINSKII, V. S., JACOME, M. F., AND VECIANA, G. A. D. Cluster
assignment for high-performance embedded vliw processors. ACM
Trans. Des. Autom. Electron. Syst. 7, 3 (2002), 430–454.

[20] MAHLKE, S., LIN, D., W.Y., C., HANK, R., AND BRINGMANN,
R. Effective compiler support for predicated execution using
the hyperblock. In MICRO 25: Proceedings of the 25th annual
international symposium on Microarchitecture (1992), pp. 45–54.

[21] MARX, D. Eulerian disjoint paths problem in grid graphs is NP-
complete. Discrete Appl. Math. 143, 1-3 (2004), 336–341.

[22] MEI, B., VERNALDE, S., VERKEST, D., MAN, H. D., AND
LAUWEREINS, R. ADRES: An architecture with tightly coupled
VLIW processor and coarse-grained reconfigurable matrix. In Proc.
of Field-Programmable Logic and Applications (2003), pp. 61–70.

[23] MEI, B., VERNALDE, S., VERKEST, D., MAN, H. D., AND
LAUWEREINS, R. Exploiting loop-level parallelism for coarse-
grained reconfigurable architecture using modulo scheduling. IEE
Proceedings: Computer and Digital Techniques 150, 5 (2003).

[24] PARK, H., FAN, K., KUDLUR, M., AND MAHLKE, S. Modulo graph
embedding: Mapping applications onto coarse-grained reconfigurable
architectures. In Proc. CASES (2006).

[25] PARK, I., POWELL, M. D., AND VIJAYKUMAR, T. N. Reducing
register ports for higher speed and lower energy. In MICRO 35:
Proceedings of the 35th annual ACM/IEEE international symposium
on Microarchitecture (2002), pp. 171–182.

[26] PARK, J., AND MOON, S.-M. Optimistic register coalescing. ACM
Trans. Program. Lang. Syst. 26, 4 (2004), 735–765.

[27] POLETTO, M., AND SARKAR, V. Linear scan register allocation.
ACM Trans. Program. Lang. Syst. 21, 5 (1999), 895–913.

[28] RAU, B. R. Iterative modulo scheduling. Tech. rep., Hewlett-Packard
Lab: HPL-94-115, 1995.

[29] RAU, B. R., AND GLASER, C. D. Scheduling techniques and an eas-
ily schedulable horizontal architecture for high performance scientific
computing. In Proc. 20th Annual Workshop on Microprogramming
and Microarchitecture (1981), pp. 183–198.

[30] RAU, B. R., LEE, M., TIRUMALAI, P. P., AND SCHLANSKER,
M. S. Register allocation for software pipelined loops. In Proc.
PLDI (1992), pp. 283–299.

[31] TERECHKO, A. S., AND CORPORAAL, H. Inter-cluster communi-
cation in vliw architectures. ACM Trans. Archit. Code Optim. 4, 2
(2007), 11.

[32] TOUATI, S.-A.-A., AND EISENBEIS, C. Cyclic register pressure
and allocation for modulo scheduled loops. Tech. Rep. 4442, INRIA,
April 2002.

160

