A COARSE-GRAINED ARRAY
ACCELERATOR FOR SOFTWARE-
DEFINED RADIO BASEBAND PROCESSING

A SHRINKING ENERGY BUDGET FOR MOBILE DEVICES AND INCREASINGLY COMPLEX

Bruno Bougard
IMEC

Bjorn De Sutter
Ghent University

Diederik Verkest
Lieshet Van der Perre

Rudy Lauwereins
IMEC

0272-1732/08/$20.00 © 2008 IEEE

COMMUNICATION STANDARDS MAKE ARCHITECTURE DEVELOPMENT FOR SOFTWARE-

DEFINED RADIO VERY CHALLENGING. COARSE-GRAINED ARRAY ACCELERATORS ARE

STRONG CANDIDATES FOR ACHIEVING BOTH HIGH PERFORMANCE AND LOW POWER. THE

C-PROGRAMMABLE HYBRID CGA-SIMD ACCELERATOR PRESENTED HERE TARGETS

EMERGING BROADBAND CELLULAR AND WIRELESS LAN STANDARDS, ACHIEVING UP TO

100-MBPS THROUGHPUT WITH AN AVERAGE POWER CONSUMPTION OF 220 MW.

eeeeee Wireless technology is considered a
key enabler of future consumer products and
services. To cover the extensive range of
applications, future handheld devices must
support a wide variety of wireless communi-
cation standards concurrently. The growing
number of air interfaces makes traditional
implementations based on the integration of
multiple specific radios and baseband ICs
cost-ineffective. By contrast, software-defined
radios (SDRs) achieve flexibility and cost-
efficiency by deploying baseband processing
on programmable or reconfigurable proces-
sors.! Researchers in academia and industry
have already proposed several SDR platforms,
of which most support current wireless
standards such as W-CDMA (UMTS)—
Wideband Code Division Multiple Access
(Universal Mobile Telecommunications Sys-
tem)—IEEE 802.11 b/g, and IEEE 802.16."7

However, a major challenge remains in
implementing emerging multicarrier and

Published by the IEEE Computer Society

multi-antenna standards while maintaining
cost-effectiveness: Compared to the current
wireless standards, standards such as IEEE
802.11 n and LTE (Long Term Evolution)
represent a tenfold increase in complexity
and in required throughput. Technology
scaling will no longer suffice to sustain the
complexity increase. Instead, we must revise
architectures to achieve the required perfor-
mance at energy budgets that are acceptable
for handheld integration (about 300 mW).
This revision must take into account the key
characteristics of wireless baseband process-
ing: Most of the computation time is spent
in inner loops (also known as kernels) that
feature high data-level parallelism (DLP)
and high instruction-level parallelism (ILP),
corresponding to simple control flow.

This article presents the design, imple-
mentation, and performance evaluation of a
C-programmable hybrid coarse-grained ar-
ray, single-instruction, multiple-data (CGA-

ACCELERATOR ARCHITECTURES

EEE MICRO

SIMD) SDR accelerator. This accelerator
exploits the high ILP available in SDR
kernels, combined with simple and effective
DLP support. Its programming flow is fully
integrated with that of the main CPU. A
unified compiler® maps the sequential,
nonkernel ANSI C code onto the main
CPU, while mapping the loops from that
same ANSI C code onto the accelerator.
The result is almost as energy efficient as
wide SIMD (vector) architectures, without
those architectures’ limited flexibility and
programming burden.

Existing SDR architectures

Some existing SDR platforms rely heavily
on wide SIMD to exploit DLP in kernels
with limited instruction fetch overhead.
Examples are NXP’s EVP16 processor?
and the SODA platform from the Univer-
sity of Michigan, Ann Arbor? A SODA
processor further reduces power consump-
tion by eliminating all hardware support for
variable vector widths. Instead, the pro-
grammer must know all vector widths and
write specific assembly code for them
manually. A major disadvantage of these
architectures is the lack of compiler support,
which stems from the fact that separate
wide SIMD data paths are very complex
targets to program. Furthermore, how well
future standards will map onto these wide
SIMD architectures with limited flexibility
remains an open question.

Wide VLIW architectures offer more
flexibility because each (parallel) data oper-
ation is programmed separately. The
VLIW-like architectures Sandblaster' and
HiveFlex” come with full compiler support.
Their flexibility potentially also makes them
better targets for future standards. However,
these architectures inherently consume
more energy than wide-SIMD architectures.
HiveFlex tries to limit the overhead by
combining a narrow nonloop VLIW mode
with a wide loop VLIW mode. Still, the
loop mode does not exploit kernels’ data-
flow-like character very well—unlike wide
SIMD data paths. It is therefore unclear to
what levels of performance the HiveFlex or
Sandbridge can scale, and what energy
efficiency they can obtain at higher clock
speeds.

Coarse-grained reconfigurable array (CGA)
architectures exploit the dataflow domi-
nance.”®’ Although this class of processors
offers more parallel resources, these processors
are typically only programmable at the
assembly level. Furthermore, because the
CGA accelerator is usually loosely coupled
to the main CPU (as is, for example,
MorphoSys’), its programming is complicat-
ed by the need for an explicit data-passing
interface at design time. Also, this interface
can involve a significant data-passing over-
head at runtime.

Our accelerator, an instance of the Adres
(architecture for dynamically reconfigurable
embedded systems) architecture template,'
aims to combine the advantages of all the
aforementioned approaches while trading
off their drawbacks. We achieve high
performance using a CGA-like ILP archi-
tecture that is coupled very tightly to a main
CPU. Leveraging the DRESC (dynamically
reconfigurable embedded system compiler)
ANSI C compiler framework,® we keep the
ease of programming fundamentally at the
that of the Sandblaster
framework. Meanwhile, the limited but
effective SIMD support helps maintain the
energy-efficiency in the same range as the
EVP and SODA implementations. Further-

more, we are confident that our architec-

same level as

ture’s flexibility scales well to future stan-
dards such as LTE, thus delaying the need
for complicated many-core programming.

Accelerator architecture

Figure 1 depicts the top-level architecture
of the proposed accelerator. It consists of 16
interconnected 64-bit functional units (FUs)
connected to many small, distributed register
files, and to a larger register that the accelerator
shares with a closely coupled main CPU.

Operation mode

The (single physical) shared register file
consists of 64 64-bit registers that can pass
data from the main CPU, which executes
nonaccelerated code, to the CGA and back.
Because the main CPU and the accelerator
also share a level-1 scratchpad memory and
its interface, invoking the accelerator does
not require high data-passing overhead: The
darta is already in place in ecither the shared

Figure 1. Accelerator architecture: 16 functional units (FUs) are connected to one shared and 12 local register files (RFs)

Shared register file
I | | i
FUO FU 1 FU2 FUS3
_-___j t ||‘ t] t 1] - !
R S] ENEESEEET
] FU 4 [FU5 [FU6 [FU7
T 1 7 1 17 7 1
Local Local Local Local
RF I RF 1 RF T RF
Configuration
| 4 0
il e memmes -
Bank 1
] FU 8 [FU9 [FU 10 [FU 11
T 7 1 1 7 71
Local Local Local Local
RF 1 RF] RF T RF
|| N—— i i i . t 1 . [
] S e L O A 1 LS S 2 o o o
] FU 12] FU 13 [FU 14 [FU 15
13 t 11 | t o4
Local Local Local Local
RF RF RF RF
| I — T f —_ _ |
B _ | N __]

Configuration
memory

Bank 2

through a heterogeneous, dynamically reconfigurable interconnect, for which the configurations are fetched from the
configuration memory banks, together with the code to be executed.

memory or in the shared register file. On
our SDR platform, the entire switch
requires only two clock cycles. Moreover,
because the accelerator executes as a real
coprocessor—that is, not overlapping in
the main VLIW CPU—the
programming model is the simple sequen-
tial-code model. Our ANSI C compiler
fully automatically generates statically
scheduled code for the main CPU and for
the accelerator, and inserts the necessary
code for invoking the accelerator.

Figure 2a outlines a sequential C code

time with

fragment containing one application kernel

in the form of a for loop. The compiler

partitions the code into five parts. Preloop
code and postloop code are compiled into
binary code for the main CPU. This code
will be stored in the main CPU’s instruction
memory, and will be fetched through an
instruction cache as shown in Figure 2b. To
invoke the CGA, the compiler also inserts
loop invocation code between the pre- and
postloop code. Furthermore, the compiler
generates software-pipelined code' for the
loop by partitioning its loop body into
pipeline stages—in this case, three stages
that take two each to execute. All three
stages are allocated in the accelerator’s
configuration memory, as Figure 2b shows.

JuLy—Aucust 2008

ACCELERATOR ARCHITECTURES

// Non-kernel C-code

Pre-loop code |

For (i=0;i<4;1++ {
//Kernel C code

// Non-kernel C-code

Pre-loop code

i Main CPU mode

Loop invocation

Main CPU

instruction cache
Pre-loop code | -------eo . » |
Loop invocation | -==-----..._, > |
Loop invocation| “=--=--ae » |
Post-loop code 1l
p AN
41

CGA configuration
memory

Stage Stage

| 000 Post-loop code |

y

Cycles

Loop invocation

CGA accelerator mode

o | [Post-loop code] /

age dage
age age
age age
age age
i=0
age age
=l
age age
=2

: =3
i Main CPU mode

Figure 2. Accelerator operating mode: source code, code layout in memories, and execution trace.

EEE MICRO

Figure 2c illustrates the execution of the
example code fragment. First, the main
CPU executes the preloop code, after which
it invokes the accelerator, which then takes
over control.

Using the configuration memory address-
es it got from the main CPU through the
invocation code, the accelerator iteratively
fetches configurations—that is, statically
scheduled code—from the CGA configura-
tion memory and executes them on the
array. The dotted arrows in Figure 2 depict
the fetching of these configurations. When
the loop exit condition is triggered, the
accelerator returns control to the main CPU.

As the trace in Figure 2 makes clear, four
full iterations of the original loop have been
executed (for 7 = 0, 1, 2, and 3). The
original loop schedule, which required 3 X
2 cycles for the three stages of each loop
iteration, would have required 24 cycles
(3 X 2 X 4) to execute the whole loop. By
contrast, the CGA code starts a new
iteration of the software-pipelined loop

after every two cycles. As a result, the full
execution of the loop takes only 12 cycles
on the accelerator. Moreover, this accelera-
tion is achieved with a very simple config-
uration code-fetching mechanism, which is
similar to LO loop buffering.? This mech-
anism ensures that the configuration fetch-
ing consumes relatively little energy, even
with configuration words several hundred
bits wide. This is possible because the loop
bodies compiled for the accelerator feature
no control flow. For loops that contain a
control flow, such as conditional state-
ments, the compiler inserts predication to
convert the control flow into dataflow.!?

Core

The 16 64-bit core FUs perform the loop
body computations. These predicated FUs
can perform all regular arithmetic and logic
operations, as well as instructions to
generate the predicates. They can also
perform several special instructions that

implement four-way 16-bit SIMD opera-

tions, such as parallel shifting and parallel
subtraction and addition. All of these basic
operations have a latency of one cycle. In
addition, all FUs can also execute 16-bit
integer signed and unsigned multiplications,
as well as two-way SIMD multiplications of
2 X 16-bit complex fixed-point numbers.
All multiplications have three-cycle latency.
Additionally, one FU can execute a 24-bit
division with a latency of eight cycles. All
multicycle operations are fully pipelined.

Three of the 16 FUs are connected to the
shared register file through two read ports
and one write port each. These ports are
shared with the issue slots of the main CPU.
The other FUs each have a local 64-bit
register file that features two read ports, one
write port, and four rotating registers to
support software pipelining. In the shared
register file, only the top 32 of the 64
registers are rotating registers. Because of
their smaller size and reduced number of
ports, the local registers are far less power-
hungry than the shared register file.

The register files and FUs in the CGA are
connected via a dense 64-bit-wide intercon-
nect network, as Figure 1 shows. Basically,
the FUs are connected to their local register
files and to neighboring FUs. This lets data
flow through the accelerator efficiendy. A
multiplexer sits in front of each source
operand port of each FU and in front of
each read port of a register file that has more
than one incoming connection. Each mul-
tiplexer is programmed explicitly every cycle
by selection bits that are fetched from
configuration memories. Besides the multi-
plexer selection bits, the configurations also
include opcodes to be executed on the FUs,
and addresses to be set at the register file ports.

The compiler generates all configura-
tions.® This compiler relies on intrinsics
(function calls to built-in functions that
encapsulate complex instructions) in the
ANSI C code to program the SIMD
operations. Apart from this way of being
programmed at the source-code level, the
SIMD operations execute just like any other
operation, on exactly the same data path.
This lets them be scheduled as, and in
between, the other regular operations,
greatly facilitating the generation of mixed
regular code and SIMD code. On proces-

sors that have a separate SIMD data path—
which has the advantage of allowing a wider
SIMD datapath—code generation is typi-
cally much more difficult, and hence often
not as automated as in our flow.

Memory interface

To access the streaming data handled by
the accelerated kernels, the accelerator core
shares a level-1 scratchpad memory with the
main CPU. This shared memory must offer
sufficient bandwidth to feed the computa-
tions being performed on the 16 FUs. In
addition,
must be minimized. In our implementation,

memory power consumption
we meet the throughput requirement by
equipping four of the 16 FUs with load-
and store-capable units. These four load-
store units connect to four single-ported,
32-bit, interleaved memory banks through a
crossbar. We chose four units and four
banks because the required peak memory
bandwidth for many important kernels is
between 3 and 4 accesses per cycle (sus-
tained throughout the steady-state phase of
software-pipelined loops), and because
making the number of memory banks a
power of two facilitates the interleaving.
Obviously, having multiple single-ported
banks in bank conflicts if
different load-store units want to access
the same bank at the same time. On
architectures with blocking loads, such as
our accelerator, the simplest method to

can result

resolve such conflicts consists of stalling the
processor until all requests to a bank have
been handled. However, with four concur-
rent load-store units, the chance of having
conflicting accesses is high, so this approach
could result in serious performance degra-
dation. For important kernels such as fast
Fourier transforms (FFTs), we measured
slowdowns of up to 50 percent. To avoid
such a slowdown, we have designed an
alternative conflict resolution scheme that
relies on longer load instruction latencies.
Longer load instruction latencies are
most often not detrimental to performance
in static software-pipelined schedules. Con-
sider the trace in Figure 2 again. Even if the
schedule length of one iteration in the
original loop would become 33 percent
longer because load operations are given a

JuLy—AucusT 2008 45

ACCELERATOR ARCHITECTURES

L1 scratch pad
— B oty AHB2
Memory access interface interface
arbitration
Debug
e —
Debug interface
Rst
—T ext_stall,
Configuration memory resume
Special !
registers Exception
Instruction Instruction
cache memory
interface

Figure 3. Processor top-level architecture.

EEE MICRO

higher latency—meaning we would need
four pipeline stages instead of three—the
length of the software-pipelined loop trace
of 12 cycles would increase to only 14 cycles
(for the additional stage of the last itera-
tion), an increase of only 17 percent.

We have designed a memory interface in
which load operations have a latency of
seven cycles instead of the lowest obtainable
latency of four cycles in our CGA design.
The three additional cycles serve to buffer
issued memory accesses untl they can
actually be performed—that is, when their
respective banks become available—and to
store already-loaded values before they are
fed back to the CGA load-store units. As
such, up to three accesses to the same bank
can be issued in the same cycle (or be
outstanding) without requiring the proces-
sor to stall. This reduces the bank-conflict
stall overhead for the aforementioned FFT
benchmarks to below 10 percent, while still
enabling the use of single-ported memory
banks to decrease the power consumption.

In the main CPU mode, when the code is
not software pipelined and the chance of
access conflict is lower (only three load-store
units are present on the main CPU), the

buffers are disabled. This enables the main

CPU to execute memory accesses with the
shorter latency of five cycles.

Implementation

To prove the viability of our tightly
coupled SDR accelerator concept, we have
developed a processor prototype consisting
of a simple VLIW CPU coupled with the
proposed accelerator. We designed this
processor to serve as a slave in multicore

SDR platforms. !4

Accelerator integration

Figure 3 depicts the top-level block
diagram of the prototype processor. The
main CPU in this processor is a three-issue
VLIW. The processor has an asynchronous
reset, a single external system clock, and a
half-speed (AMBA) bus clock. Instruction
flow and dataflow are separated (Harvard
architecture). A direct-mapped instruction
cache is implemented for the VLIW CPU
with a dedicated 128-bit-wide instruction
memory interface. The level-1 data memory
is as we described earlier, with four 32-bit-
wide banks that can each store 16 Kbytes of
data. These banks can also be accessed
externally through an AMBA2-compatible
slave bus interface (which connects to the
memory interface just like an additional
load-store unit in the processor). The CGA
configuration memories (128 configura-
tions) and special registers are also mapped
to the AMBA bus interface via a 32-bit
internal bus. This way, the CGA configu-
ration memories and the level-1 scratchpad
data memories can be accessed via direct-
memory-access (DMA) transfers.

In addition, the processor has a level-
sensitive control interface with configurable
external endianness and AMBA high-per-
bus (AHB) priority settings
(which means there is configurable priority
between core and bus interface to access the

formance

memory), exception signaling, and external
stall and resume input signals. Because of the
large state, the accelerator is noninterrup-
tible. However, the external sta// and resume
signals provide an interface to work as a
slave in a multiprocessor platform. The szall
signal stops the processor while maintaining
its state (for example, to implement flow
control at the SoC level). Internally, a

special stop instruction can be issued to set
the processor in an internal sleep state, from
which it can recover by asserting the resume
signal. The data scratchpad and special
register bank remain accessible through the
AHB interface in sleep mode.

Process and library selection

The architecture we have described is
implemented to reach a 400-MHz clock
rate in worst-case conditions when imple-
mented in 90-nm technology. Hence, with
16 units X four-way SIMD X 400 MHz, it
delivers up to 25.6 giga-ops (16-bit ops),
sufficient to implement 2 X 2 20-MHz
multiple-input multiple-output, orthogo-
nal-frequency division multiplex (MIMO-
OFDM) at 100 Mbps or more.® To
achieve such a clock frequency at maximum
energy efficiency, we have selected a general-
purpose process. Although it is leakier, the
general-purpose process has a better power-
delay product than the low-power process
usually considered for embedded applica-
tions. Our implementation tackles leakage
in operation mode with different threshold
voltages for critical and noncritical paths
(using what is known as a multi-V'T design)
and, in standby, with third-party, substrate-
biased standard-cell library and memory
macros.

Power-aware design

We wrote the register-transfer-level
(RTL) descriptions of the FUs and muld-
ported register files to enable automated
fine-grained clock gating during synthesis.
It turned out that 95 percent of the flip-
flops were clock-gated with the appropriate
activation signal. Furthermore, we manually
implemented operand isolation in the FUs
to avoid bit toggling in unused operators.
Finally, we inserted scan test support and
memory BIST logic.

We used the resulting netlist as input for
physical design with Cadence SOC En-
counter. Macros are placed at the periphery,
as Figure 4 shows. Standard-cell placement
was then optimized, followed by clock tree
synthesis and final place and route. After
parasitic extraction from the resulting

Figure 4. Processor layout and main building blocks.

layout, we checked timing with Synopsys
PrimeTime and estimated power with
Synopsys PrimePower.

Design results

The final layout achieves a timing of less
than 2.5 ns in worst-case conditions, which
enables the operation of the processor at
400 MHz. The critical path is located in the
execution stage of the FUs implementing

Data memory
24%

2.27 (mm)

FU logic and
register files
33%

Configuration
memory
8%

Figure 5. Prototype processor area breakdown.

JuLy—Aucust 2008

ACCELERATOR ARCHITECTURES

Table 1. Benchmark descriptions.

Shorthand Description Throughput

11 n 64QAM Tx IEEE 802.11 n transmitter with two-antenna space-division multiplexing, 108 Mbps
64-QAM-OFDM in 20 MHz

11 n 64QAM Rx IEEE 802.11 n receiver with two-antenna space-division multiplexing, 64- 108 Mbps
QAM-OFDM in 20 MHz

11 g 64QAM Tx IEEE 802.11 g single-antenna transmitter, 64-QAM-OFDM in 20 MHz 54 Mbps

11 g 64QAM Rx IEEE 802.11 g single-antenna receiver, 64-QAM-OFDM in 20 MHz 54 Mbps

3GPP-LTE single-antenna transmitter, 16-QAM in 5 MHz Up to 18 Mbps

QAM: quadrature amplitude modulation

the pipelined multiplier. The prototype die
area is 5.79 mm?, including level-1 data,
instruction, and configuration memories.
Figure 5 gives a more detailed area break-
down. The accelerator occupies 41 percent
of the area (2.37 mm?); FU logic and
register files take 33 percent.

Performance evaluation

We dimensioned the processor to enable
the execution of next-generation broadband
cellular communication and wireless LAN
standards. To evaluate its performance and
power consumption, we selected a set of
benchmarks corresponding to transmitter
and receiver baseband processing in the
IEEE 802.11 n and 3GPP-LTE standards.
Table 1 presents some details of these

Table 2. Accelerator performance.
Benchmark Time in accelerator mode (%) IPC
11 n 64QAM Tx 64 10.75
11 n 64QAM Rx 56 9.99
11 g 64QAM Tx 53 11.05
11 g 64QAM Rx 56 10.37
LTE Tx 99 8.76
Table 3. Processor power consumption.
Active power, Leakage Leakage power,

typical power, typical T=65°C
Component (mW) (mW) (mW)
CPU + data memory 75 12.5 25
Accelerator + data 310 1285 25)

memory

4H EEE MICRO

benchmarks, which we implemented to
meet the real-time latency constraints of
the respective protocols.

For each benchmark, Table 2 presents
the portion of the execution time spent in
accelerated mode as well as the instructions
per cycle (IPC) ratio obtained in that mode.
The average IPC over the different bench-
10.18. This number includes
regular and SIMD operations, each counted
as one operation. On average, about 45

marks is

percent of the operations are SIMD oper-
ations. The resulting utilization of the
10.18/16 = 63.65
percent. This figure is particularly high

accelerator’s FUs is

considering that it is obtained with com-
piled ANSI C code.

Furthermore, the prototype power con-
sumption was estimated on the basis of a
gate-level simulation. The netlist resulting
from the physical design, back-annotated
with capacitance and parasitics information
extracted from the final layout, was simu-
lated with Mentor Graphics ModelSim.
From such simulation, we generated accu-
rate gate-level activity profiles. We used
Synopsys PrimePower to evaluate the CPU
and accelerator power consumption based
on the activity profile and the layout
information. Table 3 lists the results. Peak
CPU and accelerator powers are for the
typical design corner (V = 1V, nominal
process, T = 25 °C). Leakage is extrapo-
lated to typical leakage corner (V = 1V,
nominal process, 7= 65 °C). In each case,
we added the data memory hierarchy power
consumption. Table 4 presents the average
estimated power consumption for executing
the different benchmarks in real time.

Figure 6 further breaks down the accel-
erator active power. A major fraction, 38
percent, goes to the interconnect subsystem,
which includes buffers, multiplexers, and
pipeline registers between the FUs. The FUs
themselves, the configuration memories
(CMEMs), and the data memories (DMEMs)
consume 29 percent, 14 percent, and 11
percent. The shared and distributed register
files consume 6 and 2 percent.

Early experiments on prototype SoC
samples taped out in March 2008 confirm
that, in practice, the estimated frequency and
power consumption numbers are reached.

his article presented the design of a

hybrid CGA-SIMD accelerator dedi-
cated to software-defined radio baseband
processing. The performance and power-
efficiency obtained with our prototype—
comprising the accelerator coupled to a
basic VLIW CPU and a multibanked data
memory hierarchy—demonstrates that our
compiler-supported CGA-SIMD approach
is practically viable for current and future
wireless standards. We know of no other
architectures that CGA-
SIMD’s level of performance, power-effi-
ciency, and C programmability. As both the
presented design and the supporting com-

combine our

piler are early research prototypes, many
enhancements can still be made, both to the
hardware and to the software support. A
very interesting direction for ongoing and
future research is the exploitation of thread-
level parallelism (TLP) in CGA-SIMD
architectures, in addition to the already
available support for ILP and DLP. RO

References

1. J. Glossner et al., ““The Sandbridge SB3011
Platform,”" Eurasip J. Embedded Systems,
vol. 2007, article ID 56467; http://www.
hindawi.com/getarticle.aspx?doi=10.1155/
2007/56467.

2. K. van Berkel et al., ""Vector Processing as
an Enabler for Software-Defined Radio in
Handheld Devices,"”
Signal Processing, vol. 2005, no. 16, Sept.
2005, pp. 2613-2625.

3. Y. Lin et al, "SODA: A Low-Power
Architecture for Software Radio,” Proc.

Eurasip J. Applied

Table 4. Average power consumption per benchmark.

Benchmark

Average power consumption (mW)

11 n 64QAM Tx
11 n 64QAM Rx
11 g 64QAM Tx
11 g 64QAM Rx
LTE Tx

250
232
225
232
333

33rd Ann. Int’l Symp. Computer Architec-
ture, IEEE CS Press, 2006, pp. 89-101.

4. U. Ramacher, ''Software-Defined Radio

Multistandard ~ Mobile

Phones,”” Computer, vol. 40, no. 10, Oct.
2007, pp. 62-69.

5. D. Arditti llitzky et al., "'Architecture for the
Scalable Communications Core's Network
on Chip,” [EEE Micro, vol. 27,
Sept./Oct. 2007, pp. 62-74.

6. B. Mei et al., "Exploiting Loop-Level Paral-
lelism on Coarse-Grained Reconfigurable

Prospects for

no. 5,

Architectures Using Modulo Scheduling,”
Proc. IEE Computers and Digital Tech-
niques, vol. 150, no. 5, 22 Sept. 2003,
pp. 255-261.

7. HiveFlex CSP 2000 Series, Programmable
OFDM Communication Signal Processor,
SiliconHive; http://www.siliconhive.com.

8. A. Lodi et al.,, “XiSystem: A XiRisc-Based
SoC with Reconfigurable 10 Module,"" IEEE
J. Solid-State Circuits, vol. 41, no. 1, Jan.
2006, pp. 85-96.

) 29%
Interconnection

38%

Data
memory
11%

Configuration
memory
14%

Shared register file
6%

Local register files
2%

Figure 6. Power consumption breakdown in acceleration mode.

JuLy—AucusT 2008 4.[]

ACCELERATOR ARCHITECTURES

5” EEE MICRO

9. H. Singh et al., "MorphoSys: An Integrated
Reconfigurable System for Data-Parallel
and Computation-Intensive Applications,”’
|EEE Trans. Computers, vol. 49, no. 5, May
2000, pp. 465-481.

10. B. Mei et al., "Architecture Exploration for
a Reconfigurable Architecture Template,"”
|IEEE Design & Test, vol. 22, no. 2, Mar.-
Apr. 2005, pp. 90-101.

11. B. Ramakrishna Rau,
Scheduling: An Algorithm for Software
Pipelining Loops,” Proc. 27th Ann. Int’l
Symp. Microarchitecture (MICRO 94),
ACM Press, 1994, pp. 63-74.

12. E. Gibert, J. Sanchez, and A. Gonzélez,
"Flexible Compiler-Managed L0 Buffers for
Clustered VLIW Processors,” Proc. 36th
Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture, IEEE CS Press, 2003, pp. 315-325.

13. S.A. Mahlke et al., "Effective Compiler
Support for Predicated Execution Using the
Hyperblock,"" Proc. 25th Ann. Int’l Symp.
Microarchitecture (MICRO 92), IEEE CS
Press, 1992, pp. 45-54.

14. L. Van der Perre et al., ""Architectures and

"Iterative Modulo

Circuits for Software Defined Radios: Scaling
and Scalability for Low Cost and Low
Energy,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC 07), IEEE Press, 2007, pp. 568-589.
15. B. Bougard et al., “Energy Efficient Soft-
ware Defined Radio Solutions for MIMO-
Based Broadband Communication,”" Proc.
European Signal Processing Conf., Europe-
an Assoc. for Signal Processing, 2007,
http://www.eurasip.org/Proceedings/Eusipco/
Eusipco2007/Papers/c1l-a03.pdf.

Bruno Bougard is a senior researcher at
IMEC, Belgium’s Interuniversicy Micro-
Electronic Centre, which performs research
and development, ahead of industrial needs
by three to 10 years, in microelectronics,
nanotechnology, enabling design methods,
and technologies for information and
communications technology systems. His
research interests focus on energy-efficient
circuits and systems for broadband wireless
communication, specifically energy-aware
software-defined and cognitive radio. He
has an MSc in electrical engineering from
the Polytechnic University of Mons, Bel-
gium, and a PhD in electrical engineering

from Katholieke Universiteit Leuven, Bel-
gium.

Bjorn De Sutter led the architecture and
compilation team at IMEC untl early
2008, where he completed the work
described in this article. He now holds
a research position at Ghent University. His
compiler research has focused on whole-
program optimization, program compac-
tion, binary rewriting, and code generation
techniques for reconfigurable architectures.
He has an MSc and a PhD in computer
science from Ghent University, Belgium.

Diederik Verkest is a member of IMEC’s
VLSI Design Methodology Group and is
currently in charge of IMEC’s research on
design technology for nomadic embedded
systems. He is also a professor at Vrije
Universiteit Brussel and at Katholieke
Universiteit Leuven. He has an MSc degree
and a PhD in applied sciences from
Katholieke Universiteit Leuven.

Liesbet Van der Perre is the scientific
director of the IMEC Wireless Research
Group, comprising teams of researchers in
the fields of digital baseband solutions, RF
front ends, cross-layer optimization, mixed-
signal design technologies, and ultralow-
power radios. She has an MSc and a PhD in
electrical engineering from Katholieke Uni-
versiteit Leuven.

Rudy Lauwereins is vice president of
IMEC, where he leads the Nomadic
Embedded Systems Division. He is also
a professor at Katholieke Universiteit Leu-
ven. His current research interests include
many system-level aspects of digital design
technology. These range from multicore
software mapping, over the exploitation of
3D stacking technology, to system-level
solutions to process variability. He has an
MEng and a PhD in electrical engineering
from Katholieke Universiteit Leuven.

Direct questions and comments about
this article to Liesbet Van der Perre, IMEC,
Kapeldreef 75, B-3001 Leuven, Belgium;
Liesbet.VanderPerre@imec.be.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

