
9

Refactoring Using Type Constraints

FRANK TIP and ROBERT M. FUHRER, IBM T. J. Watson Research Center
ADAM KIEŻUN, Brigham and Women’s Hospital/Harvard Medical School
MICHAEL D. ERNST, University of Washington
ITTAI BALABAN, World Evolved Services
BJORN DE SUTTER, Ghent University and Vrije Universiteit Brussel

Type constraints express subtype relationships between the types of program expressions, for example,
those relationships that are required for type correctness. Type constraints were originally proposed as a
convenient framework for solving type checking and type inference problems. This paper shows how type
constraints can be used as the basis for practical refactoring tools. In our approach, a set of type constraints is
derived from a type-correct program P. The main insight behind our work is the fact that P constitutes just
one solution to this constraint system, and that alternative solutions may exist that correspond to refactored
versions of P. We show how a number of refactorings for manipulating types and class hierarchies can be
expressed naturally using type constraints. Several refactorings in the standard distribution of Eclipse are
based on our work.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Techniques—Object-
oriented programming, program editors; D.2.6 [Software Engineering]: Programming Environments—
Interactive environments; D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement—
Restructuring, reverse engineering, and reengineering; F.3.2 [Logics and Meanings of Programs]: Seman-
tics of Programming Languages—Program analysis

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Refactoring, type constraints, program transformation

ACM Reference Format:
Tip, F., Fuhrer, R. M., Kieżun, A., Ernst, M. D., Balaban, I., and De Sutter, B. 2011. Refactoring using type
constraints. ACM Trans. Program. lang. syst. ACM Trans. Program. Lang. Syst. 33, 3, Article 9 (April 2011),
47 pages.
DOI = 10.1145/1961204.1961205 http://doi.acm.org/10.1145/1961204.1961205

1. INTRODUCTION

Refactoring is the process of applying behavior-preserving transformations (called
“refactorings”) to a program’s source code with the objective of improving the program’s
design. Common reasons for refactoring include eliminating duplicated code, making

This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA) under
contract No. NBCH30390004 and by the Fund for Scientific Research—Flanders (Belgium).
Authors’ addresses: F. Tip and R. M. Fuhrer, IBM T. J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598; email: ftip@us.ibm.com;rfuhrer@us.ibm.com; A. Kieżun, Brigham and
Women’s Hospital/Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115; email:
akiezun@rics.bwh.harvard.edu; M. D. Ernst, University of Washington, Department of Computer Science
and Engineering, Box 352350, Seattle WA 98195-2350; email: mernst@cs.washington.edu; I. Balaban, World
Evolved Services, 130 Madison Avenue, New York, NY 10016; email: ibalaban@worldevolved.com. B. De
Sutter, Electronics and Information Systems Department, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium;
email: brdsutte@elis.ugent.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0164-0925/2011/04-ART9 $10.00

DOI 10.1145/1961204.1961205 http://doi.acm.org/10.1145/1961204.1961205

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:2 F. Tip et al.

existing program components reusable in new contexts, and breaking up monolithic
systems into components. Refactoring was pioneered in the early 1990s by Opdyke
et al. [Opdyke 1992; Opdyke and Johnson 1993] and by Griswold et al. [Griswold 1991;
Griswold and Notkin 1993]. The profile of refactoring received a major boost with
the emergence of code-centric design methodologies such as extreme programming
[Beck 2000] that advocate continuous improvement of code quality. Fowler [1999] and
Kerievsky [2004] authored popular books that classify many widely used refactorings,
and Mens and Tourwé [2004] surveyed the field.

Refactoring is usually presented as an interactive process where the programmer
first chooses a point in the program where a specific transformation should be applied.
Then, the programmer must verify whether a number of specified preconditions hold,
and, if so, apply a number of prescribed editing steps. Checking the preconditions
may involve nontrivial analysis, and the number of editing steps may be significant.
Therefore automated tool support for refactoring is highly desirable and has become a
standard feature of modern development environments such as Eclipse1 and IntelliJ
IDEA.2

The main observation of this paper is that, for an important category of refactorings
related to the manipulation of class hierarchies and types, the checking of precondi-
tions and computation of required source code modifications can be expressed by a
system of type constraints. Type constraints [Palsberg and Schwartzbach 1993] are a
formalism for expressing subtype relationships between the types of program elements
that must be satisfied in order for a program construct to be type-correct. They were
originally proposed as a means for expressing type checking and type inference prob-
lems. In our work, we derive a set of type constraints from a program P and observe
that, while the types and class hierarchy of P constitute one solution to the constraint
system, alternative solutions may exist that correspond to refactored versions of P.
This paper shows how several refactorings for manipulating class hierarchies and
types can be expressed in terms of type constraints. This includes refactorings that:
(i) introduce interfaces and supertypes, move members up and down in the class hierar-
chy, and change the declared type of variables, (ii) introduce generics, and (iii) replace
deprecated classes with ones that are functionally equivalent.

In each case, a system of type constraints is constructed over the original program,
with the types of certain entities left fixed, while others are allowed to vary. The solution
to the constraint system, if one exists, asserts the safety of the proposed transformation,
and indicates (in many cases) any additional changes that must be made in order to
preserve behavior. The fixed-type entities include, among others, those that the user
explicitly indicated should be changed by the refactoring, which represent the state of
the source program after the refactoring is applied.

The type constraints considered in this paper do not express the complete set of
correctness constraints for arbitrary transformations of Java code (say, those involving
code motion, such as EXTRACT LOCAL VARIABLE). Rather, the type constraints described
in the following have been carefully constructed to protect aspects of program behavior
that the type-related refactorings described herein could possibly affect. As a partic-
ular example, type constraints cannot prevent a change in program behavior due to
replacing an integer literal value 3 by 17; however, none of the type-related refactorings
described below perform such changes.

1www.eclipse.org
2www.jetbrains.com/idea

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:3

1.1. Scope and Assumptions

The project reported on in this article was initiated in 2002 when one of the authors
(A. Kieżun) was a member of the Eclipse development team. At this time, there was
a desire to implement the EXTRACT INTERFACE refactoring in Eclipse. After devising
a practical solution based on type constraints [Tip et al. 2003], we quickly realized
that this type constraint model could be extended to serve as the basis for several other
refactorings. From the outset, our goal has been to handle the entire Java programming
language and to create realistic implementations that could be contributed to the
Eclipse platform. Currently, several refactorings3 in the Eclipse distribution are based
on the research presented in this article.4

Our work makes a number of assumptions that are customary for refactoring tools.
We assume that all the source code that needs to be refactored is available for analysis.
The formalization in this paper omits several Java constructs including exceptions,
auto-boxing, overloading, and annotations. Handling each of these language features
requires minor extensions to the type constraint system. For example, in the presence
of method overloading, refactorings such as EXTRACT INTERFACE that change the types
of method parameters must take care not to change overload resolution, and this can
be achieved by generating additional type constraints that force the signatures of
overloaded methods to remain unchanged. Exceptions raise multiple issues, including
the fact that changes to the class hierarchy may change the stack traces associated with
exceptions that are thrown at runtime; in our opinion, programmers are unlikely to care
about the precise content of stack traces. A somewhat more serious issue associated
with exceptions is that care must be taken when attempting to generalize the type
in catch clauses, in order to avoid situations where applying a refactoring results in
associating a different handler with a given exception type. This problem, too, can be
avoided by generating additional type constraints. A specific thorny issue that we do
not address in this article is reasoning about how the correctness of refactorings may
require, or be affected by, changes to access control modifiers (see the discussion of
recent work by Steimann et al. in Section 7).

While the present paper does not exhaustively enumerate the type constraint gener-
ation rules required for all language constructs in Java, in principle, our techniques are
capable of handling the full Java programming language. Furthermore, we expect that
they could be adapted to handle other statically typed object-oriented languages such
as C++, Eiffel, C#, and Scala with varying degrees of effort. Our implementations were
successfully applied to large Java applications (see Section 6), and in our experiments,
we determined that program behavior was preserved by compiling and running the
refactored programs where possible to ensure that program behavior was preserved.

That said, our implementations have some known shortcomings and limitations.
As with all refactoring tools, we cannot guarantee that behavior is preserved if
applications use reflection, native code, or dynamic loading. Moreover, we assume that
implementations of clone() are well behaved in the sense that the returned object
has the same type as the receiver expression. Finally, the REPLACE CLASS refactoring
presented in Section 5 relies on a static points-to and escape analysis. While any static
points-to or escape analysis can be used, the precision of the particular analysis affects
the effectiveness of the refactoring.

3These include the EXTRACT INTERFACE, GENERALIZE DECLARED TYPE, PULL UP MEMBERS, and INFER GENERIC TYPE

ARGUMENTS refactorings presented in this article, and others.
4The implementations of these refactorings as they currently occur in the Eclipse distribution differ sub-
stantially from the ones that were evaluated in Section 6. In particular, the current Eclipse implementation
uses a more efficient representation of type constraints, and relies on a different constraint solver.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:4 F. Tip et al.

Fig. 1. Syntax of type constraints.

Our previous papers [Tip et al. 2003; De Sutter et al. 2004; Fuhrer et al. 2005;
Balaban et al. 2005; Kieżun et al. 2007; Tip 2007] presented a range of different
refactorings in detail, along with extensive experimental evaluations. The purpose of
this paper is to present a comprehensive overview of our research and to show how
these different refactorings can all be handled using variations on a common type
constraint framework, using variations on a single running example.

1.2. Organization of this Article

The remainder of this article is organized as follows. Section 2 presents the basic type
constraint formalism that will be used as the basis for the refactorings presented in
this paper. Section 3 shows how several refactorings related to generalization can be
expressed using the basic type constraint model. Section 4 extends the basic type con-
straint model to accommodate the inference of generics, and presents two refactorings
for introducing generics into Java programs. In Section 5, we present a refactoring
for replacing deprecated classes with functionally equivalent ones, based on some fur-
ther extensions to the type constraint model. Section 6 summarizes experiments that
measure the effectiveness of the refactorings presented in Sections 4 and 5. Finally,
Section 7 discusses related work, and Section 8 presents conclusions and directions for
future work.

2. TYPE CONSTRAINTS

Type constraints [Palsberg and Schwartzbach 1993] are a formalism for expressing
subtype relationships between the types of declarations and expressions. Figure 1
shows the syntax for type constraints used in this article, which relies on the following
two concepts.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:5

Fig. 2. Type constraints for a set of core Java language features.

—A constraint variable represents the type of a program construct. For example, a
constraint variable [E] represents “the type of expression E.”

—A type constraint constrains the relationship between two or more constraint vari-
ables. For example, a type constraint α ≤ α′ states that the type represented by
constraint variable α must be the same as, or a subtype of, the type represented by
constraint variable α′.

Type constraints are generated from a program’s abstract syntax tree in a syntax-
directed manner, and encode relationships between the types of declarations and ex-
pressions that must be satisfied in order to preserve type correctness or program
behavior. Figure 2 shows rules that generate constraints from a representative set of
program constructs. In Section 3, we will use these rules as the basis for refactorings
for generalization. Section 4 and 5 will discuss how these rules need to be changed and
generalized in order to support refactorings that introduce generics and refactorings
for replacing functionally equivalent classes, respectively.

Most of the programs used in the experiments discussed in Section 6 use reflec-
tion, but we have checked that the type constraints that we generate are sufficient to
preserve behavior.

In order to simplify the presentation of the refactorings in this article, we will assume
that (i) programs do not use overloading, meaning that there are no methods with the
same name but different formal parameter types, and (ii) that if two classes C1 and C2
declare a method with the same signature, then C1 is a subtype of C2 or C2 is a subtype
of C1. Any program that does not meet these requirements can be transformed into an
equivalent program that does via one or more renamings. These assumptions help us
avoid a number of problems, such as the accidental creation or deletion of overriding
relationships.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:6 F. Tip et al.

We will now discuss the rules of Figure 2. Rule (1) states that, for an assignment E1 =
E2, a constraint [E2] ≤ [E1] is generated. Intuitively, this captures the requirement
that the type of the right-hand side E2 be a subtype of the type of the left-hand side E1
because the assignment would not be type-correct otherwise.

Rules (2) and (3) state the type constraints induced by field access operations. For
a field access E0. f that refers to a field F, Rule (2) states that the type of the entire
expression E0. f is defined to be the same as the declared type of field F. Rule (3) states
that the type of expression E0 must be a subtype of the type in which field F is declared.

We say that a call E0.m(E1, · · · , Ek) is to a method M if, at runtime, the call will be
dispatched to M or to some method that overrides M. Statically-dispatched, or direct,
calls are handled by similar rules not shown here. Rule (4) defines the type of the
call expression to be the same as M’s return type.5 Furthermore, the type [Ei] of each
actual parameter Ei must be the same as, or a subtype of, the type [Param(M, i)] of the
corresponding formal parameter Param(M, i) (Rule (5)), and a method with the same
signature as M must be declared in [E0] or one of its supertypes (Rule (6)). Note that
Rule (6) relies on Definition 2.1 and the auxiliary notion RootDefs that is defined in
Figure 2 to determine a set of methods M1, . . . , Mk overridden by M, and requires [E0]
to be a subtype of one or more of Dcl(M1), · · · , Dcl(Mk).

Definition 2.1 (Overriding). A method declared in type C overrides itself and other
methods defined in supertypes of C with the same name and the same sequence of
parameter types.

The “overrides itself” part of Definition 2.1 ensures that RootDefs is not empty.

Example 2.2. Let us assume that we have a class hierarchy in which C is a subclass
of B, where C also implements an interface I, and where a method f() is declared in I
and B, but not in C. Then, we have that RootDefs(C.f()) = {B.f(), I.f()}.

Rules (7)–(8) are concerned with calls to constructor methods, and are analogous to
the previously presented Rules (4)–(5).

Changing a formal parameter’s type may affect method overriding and thereby vir-
tual dispatch (and program) behavior, even if it does not affect type correctness. Hence,
we require that the overriding relationships remain the same as they were in the origi-
nal program: corresponding parameters of overriding methods were identical according
to Definition 2.1 and must remain so (Rule (9)). For Java 5.0 and later, Rule (10) allows
return types in overriding methods to be covariant. Rule (11) disallows solutions to the
system of type constraints where two methods with the same signature end up in the
same class by moving them up or down the type hierarchy. Similarly, Rule (12) creates
type constraints that are needed in order to avoid changes to hiding (shadowing) rela-
tionships between fields with the same name.6 In Java, a field F in a class C is said
to hide a field F ′ in a superclass of C if F and F ′ have the same name. The purpose of
Rule (12) has to do with the fact that refactorings such as PULL UP MEMBERS may move
a field from the class where it is currently declared into the superclass of that class.
Rule (12) serves to prevent refactorings from moving a field F into a class that already
declares another field hidden by F.

5Rules (2), (4), (7), and (19) define the type of certain kinds of expressions. While not very interesting by
themselves, these rules are essential for defining the relationships between the types of expressions and
declared entities.
6This rule is sufficient to preserve hiding behavior for the refactorings under consideration in this article.
However, additional constraint rules are needed if refactorings are considered that push members down
from supertypes into subtypes.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:7

Rule (13) states that for a statement return E that occurs within the body of a
method M, the type of expression E must be a subtype of method M’s declared return
type, [M].

Rules (14)–(16) generate type constraints that have the effect of preserving the
behavior of cast expressions.7 We define the type of a cast expression (T)E to be type
T (Rule (14)). Then, there are two cases: Rule (15) applies to downcasts in the original
program and Rule (16) applies to upcasts. A cast is (T)E is a downcast if T is a subtype
of the type of E in the original program. Otherwise, if T is equal to, or a supertype of
the type of E, it is an upcast. In each case, we generate a constraint that preserves the
“direction” of the cast, ensuring that downcasts remain downcasts (or become no-ops),
and upcasts remain upcasts.8

In general, each refactoring must preserve the exceptional behavior of casts, that
is, the situations in which executing a cast results in a ClassCastException. For the
refactorings presented in Section 3 and 4, this does not require additional rules because
these refactorings do not affect the runtime type of objects created by the program.
However, the refactoring of Section 5 may change the type of allocated objects and
therefore requires additional rules for preserving cast behavior.

Rules (15) and (16) use “[(T)E]” instead of just “T ” to accommodate different
definitions of [(T)E] than that in Rule (14) later on. For example, rules (R14a) and (R14b)
in Figure 26(a) provide an alternative definition of [(T)E] that enables the migration
of legacy types.

Rules (17) and (18) state that Object is a supertype of any type T , and that the type
of the null expression is a subtype of any type T , respectively. Rule (19) defines the
type of a this expression to be the class that declares the associated method.

Thus far, we have shown how type constraints are generated from a variety of
program constructs. These constraints will be used in subsequent sections for checking
preconditions of refactorings, and for computing source code modifications that are to
be applied by refactorings. In general, each constraint may play both of these roles.
For example, we shall see how constraint Rule (6) will be used to compute source code
modifications for the EXTRACT INTERFACE refactoring in Section 3.1, and for checking the
preconditions for the PULL UP MEMBERS refactoring in Section 3.3.

3. REFACTORINGS FOR GENERALIZATION

Figure 3 shows a Java program that was designed to illustrate the issues posed by
several different refactorings. The program declares a class Stack representing a stack,
with methods push(), pop(), isEmpty(), and contains() with the expected behaviors,
methods moveFrom() and moveTo() for moving an element from one stack to another,
and a static method print() for printing a stack’s contents. Also shown is a class Client
that creates a stack, pushes the integers 1, 2 and 3 onto it, and then creates another
stack onto which it pushes the floating point value 4.4. Two elements of the first stack
are then moved to the second, the contents of the second stack are printed, and the
elements of the first stack are transferred into a Vector whose contents are displayed
in a tree. Hence, executing the program creates a graphical representation of a tree
with a single node containing the value 1.

7The constraints for casts as shown in the figure are slightly more strict than what is necessary. In the
presence of interface inheritance, casting between types that are neither subtypes nor supertypes of each
other is allowed. Our implementation correctly handles this case.
8These rules are slightly more strict than what is necessary for preserving behavior for most refactorings we
consider in this paper, but having this distinction between downcasts and upcasts makes the presentation
of the type constraint systems used for different refactorings more uniform.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:8 F. Tip et al.

Fig. 3. Example program P1. The allocation sites for the two Vectors created by this program have been
labeled A1 and A2 to ease the discussion of the REPLACE CLASS refactoring in Section 5.

3.1. EXTRACT INTERFACE

One possible criticism of the code in Figure 3 is that class Client explicitly refers
to class Stack. Such explicit dependences on concrete data structures are generally
frowned upon because they make code less flexible. The EXTRACT INTERFACE refactoring
addresses this issue by (i) introducing an interface that declares a subset of the instance
methods in a class and (ii) updating references in client code to refer to the interface
instead of the class wherever possible. This change would enable the programmer to
vary the implementation of the stack without having to change any reference that uses
the interface type.

As an example, let us assume that the programmer has decided that it would be
desirable to create an interface IStack that declares all of Stack’s instance methods,9
and to update references to Stack to refer to IStack instead. In the resulting code
in Figure 4, the code fragments changed by the application of EXTRACT INTERFACE are
underlined. Observe that s1, s3, and s4 are the only variables for which the type has
been changed to IStack. Changing the type of s2 or s5 to IStack would result in type
errors. In particular, changing s5’s type to IStack results in an error because field v2,
which is not declared in IStack, is accessed from s5 on line 49.

Using type constraints, it is straightforward to compute the declarations that can
be updated to refer to IStack instead of Stack. In this case of the EXTRACT INTERFACE

refactoring, we are looking for a way of assigning types to constraint variables that
would maximize the use of the extracted interface while preserving type correctness.
Furthermore, EXTRACT INTERFACE should not change the location of fields and methods
in the class hierarchy. The latter requirement is enforced by the rules of Figure 6,
which express that all constraint variables of the forms Dcl(F) and Dcl(M) should be
bound to the type that originally declared the member under consideration.

9We assume that the programmer wants the static method print() to remain in class Stack.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:9

Fig. 4. The example program of Figure 3 after applying EXTRACT INTERFACE to class Stack (code fragments
affected by this step are underlined), and applying GENERALIZE DECLARED TYPE to variable tree (the affected
code fragment is shown boxed).

Fig. 5. Screenshots of the EXTRACT INTERFACE refactoring in Eclipse.

Figure 5 shows some screenshots of the user-interface for the EXTRACT INTERFACE

refactoring in Eclipse. The window shown on the left appears when a programmer
selects a class, and then activates the Refactor->Extract Interface... menu entry.
In this window, the programmer has to select the methods that should be declared in
the extracted interface. After pressing the Preview button, the tool computes the set
of variables that can be given type IStack using the previously described algorithm,
and displays the corresponding source code modifications in a separate window. The
programmer can then confirm the proposed changes by pressing the OK button. All

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:10 F. Tip et al.

Fig. 6. Additional constraint generation rules for EXTRACT INTERFACE.

Fig. 7. Type constraints generated for the application of the EXTRACT INTERFACE refactoring to the program of
Figure 3 after creating an interface IStack that is implemented by class Stack, which declares all of Stack’s
instance methods (only nontrivial constraints related to variables s1–s5 are shown).

methods except print() were selected in the left window of Figure 5, which resulted
in the suggested code modifications as shown in the right window in Figure 5.

We will now explain how the refactoring tool of Figure 5 automatically determines
how the source code should be transformed. Consider Figure 7, which shows the rel-
evant type constraints generated for declarations and expressions of type Stack in
the program of Figure 3, according to the rules of Figures 2 and 6. Note that these
constraints were generated after adding interface IStack to the class hierarchy.

Now, from the constraints of Figure 7, it is easy to see that:

Stack ≤ [s2] ≤ [s5] ≤ Dcl(Stack.v2) = Stack,

and hence that the types of s2 and s5 have to remain Stack. However, the types of s1
and s3 are less constrained:

[s1] ≤ Dcl(IStack.push()) = IStack
[s1] ≤ Dcl(IStack.moveTo()) = IStack
[s1] ≤ Dcl(IStack.isEmpty()) = IStack

[s1] ≤ Dcl(IStack.pop()) = IStack
[s1] ≤ [s3] ≤ Dcl(IStack.pop()) = IStack,

implying that type IStack may be used for these variables. Note that, in general, the
types of variables cannot be changed independently. For example, changing s1’s type
to IStack but leaving s3’s type unchanged results in a type-incorrect program; this fact
is captured by Rule (5).

Our algorithm for computing the set of declarations that can be updated is based on
the above observations. In presenting the algorithm, the term declared entity will be
used to refer to local variables, parameters in static, instance, and constructor meth-
ods, fields, method return types, and to type references in cast expressions. Moreover,
All(P, C) denotes the set of all declared entities of type C in program P.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:11

Example 3.1. For the program P1 of Figure 3, we have:

All(P1, Stack) = {s1, s2, s3, s4, s5}.
Definition 3.2 (TCEI(P)). Let P be a program, containing an interface I that has

been extracted from a class C such that I declares a subset of C ’s instance methods.
Then TCEI(P) denotes the set of type constraints inferred for program P according to
Rules (1)–(19) of Figure 2 and Rules (EI20)–(EI21) of Figure 6.

Example 3.3. Let P ′
1 be the program of Figure 3 after adding an interface IStack,

implemented by class Stack, that declares all of Stack’s instance methods. Figure 7
shows the constraints in TCEI(P ′

1) that pertain to expressions of type Stack.

Definition 3.4 defines the set of declarations of type C whose type cannot be updated to
refer to an interface I. This is accomplished by first identifying those declared entities in
program P for which changing the type to the new interface would violate a constraint
in TCEI(P). Then, additional declared entities are identified as non-updatable because
they are involved in constraints with declared entities that were previously identified as
non-updatable. Note that the solution of the constraint system here is strictly symbolic.
In particular, no constraints need be evaluated (or constraint variables be assigned
values) to arrive at a solution.

Definition 3.4. (Non-Updatable Declared Entities). Let P be a program, let C be a
class in P, and let I be an interface in P such that C is the only class that implements
I and I does not have any supertypes other than Object. Define:

NonUpdatable(P, C, I) = { E | E ∈ All(P, C), and
((“[E] ≤ T1 or · · · or [E] ≤ Tk” ∈ TCEI(P), I �≤ T1, · · · , I �≤ Tk, k ≥ 1) (a)

or
“[E] = C” ∈ TCEI(P) (b)
or
(“[E] ≤ [E′]” ∈ TCEI(P), E′ �∈ All(P, C), I �≤ [E′]) (c)
or
(“[E] = [E′]” ∈ TCEI(P) or (d)
“[E] ≤ [E′]” ∈ TCEI(P) or
“[E] < [E′]” ∈ TCEI(P), E′ ∈ NonUpdatable(P, C, I)))}.

Part (a) of Definition 3.4 is concerned with constraints that are due to a method call
E.m(· · ·), and reflects situations where E cannot be given type I because a declaration
of m(· · ·) does not occur in (a supertype of) I. Part (b) reflects situations where the type
of a declared entity is constrained to be exactly C. Such constraints may be generated
due to several program constructs, including object allocation, and also due to the rules
presented in Figure 6. Part (c) of Definition 3.4 deals with constraints [E] ≤ [E′] due
to assignments and parameter passing, and states that E cannot be given type I if the
declared type of E′ is not C, and I is not equal to or a subtype of E′’s type. The latter
condition is needed for situations where a declared entity of type C is assigned to a
declared entity of type Object. Part (d) handles the propagation of non-updatability
due to overriding, assignments, and parameter passing.

Example 3.5. For example program P1 of Figure 3, we find that:

NonUpdatable(P1Stack, IStack) = {s2, s5}
This implies that the type of variables s1, s3, and s4 can be updated to IStack. The
corresponding changes to the source code were shown earlier in Figure 4.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:12 F. Tip et al.

Fig. 8. Type constraints used for the application of GENERALIZE DECLARED TYPE (only constraints related to
variables tree, v1, and v2 are shown). Line numbers refer to Figure 3, and rule numbers to rules of Figures 2
and 6.

3.2. GENERALIZE DECLARED TYPE

Another possible criticism of the program of Figure 3 is the fact that the declared
types of some variables are overly specific. This is considered undesirable because it
reduces flexibility. The GENERALIZE DECLARED TYPE refactoring in Eclipse lets a program-
mer select a declaration, and determines whether its type can be generalized without
introducing type errors or behavioral changes. If so, the programmer may choose from
the alternative permissible types. Using this refactoring, the type of variable tree
can be updated to refer to java.awt.Component instead of javax.swing.JTree without
affecting type correctness or program behavior, as is indicated by a box in Figure 4.
This, in turn, would enable one to vary the implementation to use, say, a JList instead
of a JTree in Client.main().

However, in some situations, the type of a variable cannot be generalized. For
example, changing the type of v2 to Collection or to any other supertype of Vector
would result in a type error because line 31 invokes the method addElement(), which is
not declared in any supertype of Vector. Furthermore, the type of v1 cannot be general-
ized because line 20 passes v1 as an argument to the constructor JTree(Vector). JTree
is part of the standard Java libraries for which we cannot change the source code, and
the fact that its constructor expects a Vector implies that a more general type cannot
be used.

Figure 8 shows the constraints generated from the constraint rules of Figures 2
and 6 and the example program of Figure 3 for variables tree, v1, and v2. Note that,
for parameters of methods in external classes such as the constructor of JTree, we must
include constraints that constrain these parameters to have their originally declared
type, because the source code in class libraries cannot be changed. Therefore, we have
that:

JTree ≤ [tree] ≤ java.awt.Component
Vector ≤ [v1] ≤ Vector
Vector ≤ [v2] ≤ Vector.

In other words, the types of v1 and v2 must be exactly Vector, but for tree
we may choose any supertype of JTree that is a subtype of java.awt.Component:
javax.swing.JComponent, java.awt.Container, or java.awt.Component. Note that,
unlike in the case of EXTRACT INTERFACE where we computed the solution using a

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:13

Fig. 9. Screenshot of the GENERALIZE DECLARED TYPE refactoring in Eclipse.

Fig. 10. Example program P2.

symbolic analysis of the constraints, computing the set of permissible types requires
solving the constraints.

The user-interface of GENERALIZE DECLARED TYPE in Eclipse includes a tree view of
the class hierarchy, in which the names of permissible types are shown in black, and
where nonpermissible types are “grayed out”, as is shown in Figure 9. Figure 4 shows
the refactored code after selecting java.awt.Component, which is the most general of
the three permissible types.

3.3. PULL UP MEMBERS

PULL UP MEMBERS is a refactoring for moving fields and methods from a class to its
immediate superclass. Unlike the previously discussed refactorings, PULL UP MEMBERS

does not affect the declared types of variables, method parameters, and fields, nor does
it affect method return types. We will illustrate this refactoring using the example
program of Figure 10, which is a variation on the example program of Figure 3. In par-
ticular, we now have a class BasicStack that declares the methods push(), pop(), and
isEmpty(), and a subclass FullStack of BasicStack that declares methods moveFrom()
and print(). Note that moveFrom() has been changed to return this in order to enable
the chaining of method calls, and print() has been changed to an instance method.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:14 F. Tip et al.

Fig. 11. Additional constraint generation rules for PULL UP MEMBERS.

Fig. 12. Type constraints used for applications of PULL UP MEMBERS to the example program P2 of Figure 10
(only constraints related to method declarations are shown). Line numbers refer to Figure 10, and rule
numbers to rules of Figures 2 and 11.

Now suppose that the programmer has decided that it would be desirable to migrate
the moveFrom() method from FullStack to BasicStack. Does moving this method from
FullStack to BasicStack preserve type correctness? In general, moving members from
a type to its supertype may result in type errors because the type of the special variable
this is defined as the class in which the surrounding method is declared. Moving a
method from a type to its supertype changes the type of this, which may result in
type errors if the type of this is otherwise constrained (e.g., when this is used in the
method body as the receiver of a method call, as the target of a field access, or as a
return value).

To answer the specific question of whether the moveFrom() method can be pulled up
into class BasicStack without introducing type errors, we need a slightly different set of
type constraints than we used previously. This is because we need to permit changing
the locations of members in the class hierarchy while leaving the declared types of
members unchanged. To accomplish this, we add type constraint rules that require
the types of declarations and fields, and method return types to remain the same as
in the original program (see Figure 11). As mentioned in Section 2, these constraints
embody the refactoring’s preconditions. If the constraint system possesses a solution,
the refactoring preserves the type-correctness of the original program. Definition 3.6
below defines TCPM(P) to be the set of all type constraints generated for a program P,
according to the rules of Figures 2 and 11.

Definition 3.6 (TCPM(P)). Let P be a program. Then TCPM(P) denotes the set of
type constraints inferred for program P according to Rules (1)–(19) of Figure 2 and
Rules (PM22)–(PM23) of Figure 11.

Figure 12 shows the set of type constraints TCPM(P2) that was generated for the
example program P2 of Figure 10. From these constraints, it can be seen that:

Dcl(FullStack.moveFrom()) = [this] ≤ [FullStack.moveFrom()] = FullStack.

In other words, the method moveFrom()must remain declared in FullStack or a subtype
of FullStack, of which there are none in this example. Any attempt to move moveFrom()
into class BasicStack would render the return statement return this on line 22 type-
incorrect, and applying the PULL UP MEMBERS refactoring to moveFrom() produces an
error message indicating that the refactoring cannot be performed safely.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:15

From the constraints in Figure 12, it can also be seen that:

Dcl(FullStack.print()) = [this] ≤ Dcl(FullStack.printElement()),

indicating that printElement() must be declared in a supertype of the type in which
print() is declared. In other words, applying PULL UP MEMBERS to method print()
by itself results in a type-incorrect program, and is therefore not allowed. However,
applying PULL UP MEMBERS to the methods print() and printElement() simultaneously
is permitted.

So far, we have only discussed how to ensure that PULL UP MEMBERS preserves type-
correctness. However, in some cases, moving a method from a given class to its super-
class may affect method dispatch behavior. For example, the program P3 below:

class A {
public String toString(){ return "A"; }

}
class B extends A {

// no definition of toString() in class B
}
class C extends B {

public String toString(){ return "C"; }
}
public class Example {

public static void main(String[] args){
System.out.println((new B()).toString());

}
}

prints “A”. While pulling up method C.toString() into class B does not affect type-
correctness, it results in the program printing “C” instead. In order to avoid such
changes in program behavior, we impose the following additional precondition on PULL

UP MEMBERS.

∀ C ≤ super(DeclP(M)) : staticLookup(P, C, Sig(M)) <P super(DeclP(M)).

Here, DeclP(M) denotes the class in which M is declared in the original program P,
super () is a function that maps a class to its superclass, and staticLookup(P, C, S) is a
function that, for a given program P and class C, determines the nearest superclass of
C that declares a method with signature S.

The precondition prevents changes in dispatch behavior by ensuring that, if a method
with signature Sig(M) is called on a subtype of super(DeclP(M)) then the call should
resolve to a proper subtype of super(DeclP(M)). The application of PULL UP MEMBERS to
method C.toString() in program P3 does not satisfy the precondition because for type
B we have that:

A = staticLookup(P3, B, toString()) �<P3 super(DeclP3 (C.toString())) = B.

3.4. Other Refactorings for Generalization

It is clear that moveFrom() can be pulled up in Figure 10 if its return type and
the type of its parameter are changed to BasicStack, and this can be deduced from
the constraints. In practice, this refactoring can be decomposed into an application
of the GENERALIZE DECLARED TYPE refactoring, followed by an application of PULL UP

MEMBERS. For the simple code of Figure 10 it therefore seems straightforward to com-
bine both into one automated refactoring. However, such a combined refactoring can
become quite complex when overridden methods or interface inheritance are present.
Implementing refactorings correctly for a language as large as Java is already quite
challenging, and it is therefore our preference to keep individual refactorings as simple
as possible, and to express complex refactorings as sequences of more simple ones.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:16 F. Tip et al.

Two more simple refactorings related to generalization have also been implemented.
The EXTRACT SUPERCLASS refactoring for extracting a superclass from a class is similar
to EXTRACT INTERFACE in the sense that updatable declarations must be computed. The
USE SUPERTYPE WHERE POSSIBLE refactoring enables programmers to replace references
to a type with references to a supertype of that type. The EXTRACT SUPERCLASS and
USE SUPERTYPE WHERE POSSIBLE refactorings both rewrite multiple declarations to use
a single new type and require the same analysis as the one we presented for EXTRACT

INTERFACE. By contrast, GENERALIZE DECLARED TYPE rewrites one declaration in isolation,
but considers all possible types that can be given to that declaration, so for those reasons
it requires a different analysis.

4. REFACTORINGS THAT INTRODUCE GENERICS

Generics were introduced in Java 5.0 to enable the creation of reusable class libraries
with compiler-enforced type-safe usage. For example, an application that instantiates
Vector<E> with, say, String, obtaining Vector<String>, can only add and retrieve
Strings. In the previous, nongeneric version of this class, Vector.get() is declared to
return Object and therefore downcasts to String are needed to recover the type of
retrieved elements. When a programmer makes a mistake, such downcasts fail at run
time, with ClassCastExceptions.

Java’s generics have been designed with backward compatibility in mind. To this
end, programmers are allowed to refer to a parameterized class without explicitly
specifying the type arguments that are bound to the formal type parameters of that
class. This feature, commonly referred to as “raw types,” essentially amounts to having
the compiler instantiate each formal type parameter with its bound. For example, if
a class Cell〈T extends Number〉 is referred to as simply Cell, the reference is treated
as though an explicit type argument Number were supplied. This technique enables
existing applications to work without modification, even after library classes upon
which they depend have become parameterized.

Donovan et al. [2004] identified two refactoring problems related to the introduction
of generics. The parameterization problem consists of adding type parameters to an
existing class definition so that it can be used in different contexts without the loss
of type information. For instance, parameterization converts the declaration of Vector
into Vector<E>. Once a class has been parameterized, the instantiation problem is
the task of determining the type arguments that should be given to instances of the
generic class in client code. For instance, instantiation may convert a use of Vector
into Vector<String>. The former problem subsumes the latter, because the introduc-
tion of type parameters often requires the instantiation of generic classes. Section 4.2
presents the INFER GENERIC TYPE ARGUMENTS refactoring that solves the instantiation
problem [Fuhrer et al. 2005]. Section 4.3 presents the INTRODUCE TYPE PARAMETER refac-
toring that solves the parameterization problem [Kieżun et al. 2007], given the pro-
grammer’s selection of a declaration whose type is to be replaced with a new formal
type parameter. As we shall see shortly, this may involve nontrivial changes to other
declarations (e.g., by introducing wildcard types [Torgersen et al. 2004]).

4.1. Motivating Example

Figure 13 shows the class Stack of Figure 3 after applying both INTRODUCE TYPE

PARAMETER and INFER GENERIC TYPE ARGUMENTS. Applying INTRODUCE TYPE PARAMETER

to the formal parameter of method Stack.push() causes the changes in the right col-
umn. For the purposes of this example, it is assumed that class Stack is analyzed
in isolation. As can be seen in the figure, a new type parameter T1 was added to

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:17

Fig. 13. The example program of Figure 3 after refactorings to introduce generics. Underlining and
strikethroughs indicate changes. Application of INTRODUCE TYPE PARAMETER to the formal parameter of
Stack.push() caused the changes in the right-hand column. Then, application of INFER GENERIC TYPE

ARGUMENTS to the entire program caused the changes in the left-hand column.

class Stack10, and T1 is used as the type for field v2, the parameter of Stack.push(),
and the return type of Stack.pop(). A more interesting change can be seen in
the moveFrom(), moveTo(), and print() methods: their parameters now have wild-
card types Stack<? extends T1>, Stack<? super T1>, and Stack<?>, respectively. To
understand what this means, consider, for example, a call to moveFrom(). Its signature
Stack<T1>.moveFrom(Stack<? extends T1>) implies that the type of the elements of
the stack that is passed as an argument in the call must be a subtype of the type of
the elements of the stack that is the receiver in that call. As we shall see in the next
paragraph, this allows for greater flexibility when refactoring class Client because it
enables the transfer of elements between the two stacks without the loss of precision
in the declared types of the stacks. Note also that the type of parameter o2 of method
Stack.contains() has remained Object. This is generally considered good Java style
and is followed in the standard class libraries available with the Java Development Kit
(JDK). It allows clients to call contains() with an argument of any type. The solution
in which the type of o2 is T1, while perhaps more intuitive, is actually overly restrictive.
To see this, consider for example a call s1.contains(o) where the type of variable o is
Object; This call would make it impossible to instantiate s1 as Stack<Number>.

The left column of Figure 13 shows the result of applying INFER GENERIC

TYPE ARGUMENTS to the example program after the parameterization of Stack. The types
of s1 and s2 are now Stack<Integer> and Stack<Number>, respectively. The downcast
on line 14 that was present originally has been removed, which was enabled by the
introduction of wildcard types in Stack.moveFrom() and Stack.moveTo(). If the formal
parameters of these methods had been changed to Stack<T1> instead, Java’s typing

10Our current implementation chooses names T1, T2, · · · for newly introduced type parameters.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:18 F. Tip et al.

Fig. 14. Typeparam constraint variable used for solving the instantiation problem, in addition to the
variables of Figure 1.

Fig. 15. Updated type constraint rules for method calls and for method overriding. Changes from Figure 2 are
shaded. Rules prefixed by a letter replace the previous versions. Subscripted rules are partial replacements;
in this case, Figure 18 defines Rules (I4b) and (I5b). Omitted rules, such as Rule (6), are retained without
change.

rules would have required Stack<Number> for the types of both s1 and s2, thus making
it impossible to remove the downcast.

4.2. INFER GENERIC TYPE ARGUMENTS

The INFER GENERIC TYPE ARGUMENTS refactoring requires extensions and changes to
the type constraint formalism of Section 2. Most significantly, we need a new kind of
constraint variable in order to reason about type parameters, as is shown in Figure 14.
These typeparam constraint variables are of the form TParam(T , x), representing the
type that is bound to formal type parameter T in the type of x. For example, if we
have a parameterized class Vector<E> and a variable v of type Vector<String>, then
TParam(E, v) = String.

Furthermore, the generation of type constraints for method calls now depends on
whether or not the invoked method is declared in a parameterized class. This requires
two changes. First, the rules of Figure 2 that govern method calls are restricted to meth-
ods declared in nonparameterized classes, using a predicate IsParameterizedType(C),
which returns true if and only if class C is a parameterized class. Figure 15 shows the
updated rules for method calls and for overriding. The rules for constructor calls are
updated similarly. Second, we introduce a new set of rules for generating constraints
for calls to methods in parameterized classes. Section 4.2.1 presents some motivating
examples, and Section 4.2.2 presents the definition of these rules.

4.2.1. Examples. We now give a few examples to illustrate what constraints are needed
in the presence of calls to parameterized classes. In giving these examples, we assume
that class Stack has already been parameterized as in the right column of Figure 13.
This can be done either manually, or automatically using the INTRODUCE TYPE PARAMETER

refactoring that will be presented in Section 4.3.

Example 1. Consider the method call s1.push(new Integer(1)) on line 4 in Fig-
ure 3. This call refers to the method void Stack<T1>.push(T1 o1). If s1 is of a parame-
terized type, say, Stack<C>, then this call can only be type-correct if Integer ≤ C. This
requirement is expressed by Rule (GEN-I25) in Figure 16.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:19

Fig. 16. Additional constraint generation rules needed for the INFER GENERIC TYPE ARGUMENTS refactoring.
Only constraints for methods used in the example program are shown. The constraint generation rules
(GEN-I25)–(GEN-I29) are not built into the refactoring as with all other constraint generaton rules in this
paper. Rather, they are specific to the program of Figure 3 and were automatically derived from method
signatures using the rules of Figure 18.

Fig. 17. Type constraints generated for the example program using the rules of (a). Only nontrivial con-
straints relevant to the inference of type parameters in uses of Stack and Vector are shown. Line numbers
refer to Figure 3, and rule numbers refer to Figures 16 and 2.

Example 2. Similarly, the call s1.pop() on line 14 refers to method T1
Stack<T1>.pop(). If s1 is of some parametric type, say Stack<C>, then [s1.pop()] = C.
This requirement is expressed by Rule (GEN-I26).

Example 3. Consider the call s2.moveFrom(s1) on line 9. If we assume that s1 and
s2 are of parameterized types Stack<C1> and Stack<C2>, respectively, for some C1,
C2, then the call is type-correct if C1 ≤ C2. This requirement is expressed by Rule
(GEN-I27).

Figure 17 shows the constraints generated for the example of Figure 3 accord-
ing to the rules of Figure 16. From these constraints, it follows that Integer ≤
TParam(T1, s1), Float ≤ TParam(T1, s2), and TParam(T1, s1) ≤ TParam(T1, s2), and
hence that Integer ≤ TParam(T1, s2). Since Number is a supertype of both Integer and
Float, a possible solution to this constraint system is:

TParam(T1, s1) ← Integer, TParam(T1, s2) ← Number.

Generating the refactored source code that was shown in the left column of Figure 13
is now straightforward. The type of variable s1 in the example program, for which we
inferred TParam(T1, s1) = Integer, is rewritten to Stack<Integer>. Similarly, the type
of s2 is rewritten to Stack<Number>, and that of v1 is rewritten to Vector<Integer>.
Furthermore, all downcasts are removed for which the type of the expression being
cast is a subtype of the target type. For example, for the downcast (Integer)s1.pop()
on line 14, we inferred [s1.pop()] = Integer enabling us to remove the cast.

4.2.2. Constraint Generation. As can be seen from Figure 16, the rules for generating con-
straints have a regular structure, in which occurrences of type parameters in method

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:20 F. Tip et al.

Fig. 18. Extensions to the type constraint formalism of Figure 2 required by the INFER GENERIC TYPE

ARGUMENTS refactoring, together with Figure 15. Part (a) shows how rules (4) and (5) of Figure 2 for method
calls are adapted to handle calls to generic methods. These rules make use of an auxiliary function CGen
that is shown in Part (b). Part (c) shows closure rules that impose constraints on actual type parameters due
to language constructs such as assignments. In the rules of part (c), α, α1, and α2 denote constraint variables
that are not type constants.

signatures give rise to different forms of constraints, depending on where these refer-
ences occur in the method signature and on whether or not wildcards are used. While
such rules can be written by the programmer, this is tedious and error-prone. As before,
our approach will be to generate type constraints directly from language constructs in
the subject program. To this end, we generalize the constraint generation rules of
Figure 2, as discussed below. Conceptually, these generalized rules embody the same
case analysis on where type parameters occur in method signatures as the one that
was used to construct the rules needed for INFER GENERIC TYPE ARGUMENTS in Figure 16.
However, we skip the intermediate step of generating these rules but instead generate
the constraints directly.

Figure 18(a) shows how the previously shown Rules (4) and (5) of Figure 2 are adapted
to handle calls to methods in generic classes.11 For a given call, Rule (I4b) creates
constraints that define the type of the method call expression, and Rule (I5b) creates
constraints that require the type of actual parameters to be equal to or a subtype of the
corresponding formal parameters. A recursive helper function CGen(act, op, fml, rcvr),
shown in Figure 18(b), generates the appropriate constraints. CGen takes 4 parameters:
act, representing the method call’s actual argument (or return) type; op, identifying a
type constraint operator; fml, representing the declared type of the call target’s formal
argument (or return value); and rcvr, representing the method call’s receiver.

CGen is defined by case analysis on the structure of its third argument, fml. fml
can take one of 5 possible forms: a simple nongeneric type, for example, String, a type

11In fact, these augmented constraint generation rules could be used with the refactorings of Section 3 to
permit the generalization of type arguments.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:21

parameter of rcvr’s type, an upper- or lower-bounded wildcard type, or a generic type.
The cases in CGen handle each form in turn. Case (c1) applies when fml is a nongeneric
class. Case (c2) applies when fml is a type parameter. In these cases, CGen generates
a single type constraint using the given constraint operator. The remaining 3 cases
involve formal types with substructure; accordingly, CGen operates recursively. Cases
(c3) and (c4) apply when fml is an upper or lower-bounded wildcard type, respectively.
In these two cases, act is constrained by the ≤ or ≥ operator, respectively, according to
whether the wildcard type is bound from above or below. Finally, case (c5) applies when
fml is a generic type. In this last case, the recursive call to CGen specifies the = operator
in constraining the type arguments, in accordance with Java 5’s invariant-subtyping
rule for type arguments. (See also the discussion of Rule (I30) in Section 4.2.3.) CGen’s
correctness can be established straightforwardly from the completeness of its case
analysis, along with its adherence to the Java 5 typing rules relevant to each case.

We will now give a few examples that show how the rules of Figure 18 are used to
generate type constraints such as those shown in Figure 17.

Example 1. Let us again consider the call s1.push(new Integer(1)) on line 4 in
Figure 3. Applying Rule (I4b) of Figure 18 yields CGen([s1.push(new Integer(1))],
=, void, s1), and applying case (c1) of the definition of CGen produces {[s1.push(new
Integer(1))] = void}. Likewise, applying Rule (I5b) yields CGen([new Integer(1)], ≤,
T1, s1), and applying case (c2) and Rule (7) produces {Integer ≤ TParam(T1, s1)}. This
result is shown on the first line of Figure 17.

Example 2. Consider the call s2.moveFrom(s1) to method void
Stack<T1>.moveFrom(Stack<? extends T1>) on line 9. Applying Rule (I4b) of Figure 18
yields CGen([s2.moveFrom(s1)], =, void, s2), and applying case (c1) of the definition of
CGen produces {[s2.moveFrom(s1)] = void}. Furthermore, applying Rule (I5b) produces
CGen([s1], ≤, Stack<? extends T1>, s2), and an application of case (c5) produces {[s1] ≤
Stack} ∪ CGen(TParam(T1, s1), =, ? extends T1, s2). The second part of this term eval-
uates to CGen(TParam(T1, s1), ≤, T1, s2) using an application of case (c3), and then to
{TParam(T1, s1) ≤ TParam(T1, s2)} using case (c2). This result is shown in Figure 17.
In summary, for the call to moveFrom() on line 9, the following set of constraints is gen-
erated: {[s2.moveFrom(s1)] = void, [s1] ≤ Stack, TParam(T1, s1) ≤ TParam(T1, s2)}.

4.2.3. Closure Rules. Thus far, we introduced additional typeparam constraint vari-
ables such as TParam(T , E) to represent the actual type parameter bound to T in E’s
type, and we described how calls to methods in generic libraries give rise to constraints
on typeparam variables. However, we have not yet discussed how types inferred for ac-
tual type parameters are constrained by language constructs such as assignments and
parameter passing. For example, consider an assignment a = b, where a and b are both
declared of type Vector<E>. The invariant subtyping on Java generics12 implies that
TParam(E, a) = TParam(E, b). The situation becomes more complicated in the presence
of inheritance relations between generic classes. Consider a situation involving class
declarations13 such as:

interface List<El> { ... }
class Vector<Ev> implements List<Ev> { ... }

12 In the presence of wildcard types, Java uses the more relaxed “containment” subtyping [Gosling et al. 2005]:
? extends Number is contained in ? extends Object and therefore Set<? extends Number> is a subtype of
Set<? extends Object>). In this paper and in our implementation, we conservatively assume invariant
subtyping even with wildcard types.
13In the Java collections library, the type formal parameters of both Vector and List have the same name,
E. In this section, for disambiguation, we subscript them with v and l, respectively.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:22 F. Tip et al.

and two variables, c of type List and d of type Vector, and an assignment c = d.
This assignment can only be type-correct if the same type is used to instantiate
El in the type of c and Ev in the type of d. In other words, we need a constraint
TParam(El, c) = TParam(Ev, d). The situation becomes yet more complicated if generic

library classes are assigned to variables of non-generic supertypes such as Object.
Consider the program fragment:

Vector v1 = new Vector();
v1.add("abc");
Object o = v1;
Vector v2 = (Vector)o;

Here, we would like to infer TParam(Ev, v1) = TParam(Ev, v2) = String, which would
require tracking the flow of actual type parameters through variable o.14

The required constraints are generated by the closure rules of Figure 18(c). These
rules infer, from an existing system of constraints, a set of additional constraints that
unify the actual type parameters as outlined in the examples above. Rule (I30) states
that, if a subtype constraint α1 ≤ α2 exists, and another constraint implies that the
type of α1 or α2 has formal type parameter T1, then the types of α1 and α2 must have
the same actual type parameter T1.15 This rule thus expresses the invariant subtyping
among generic types. Observe that this has the effect of associating type parameters
with variables of nongeneric types, in order to ensure that the appropriate unification
occurs in the presence of assignments to variables of nongeneric types. For the example
code fragment, a constraint variable TParam(Ev, o) is created by applying Rule (I30).
Values computed for variables that denote type arguments of nongeneric classes (such
as Object in this example) are discarded at the end of constraint solution.

Rule (I31) is concerned with subtype relationships among generic library classes
such as the one discussed above between classes Vector and List. The rule states that
if a variable TParam(T1, α) exists, then constraints are created to relate TParam(T1, α)
to the types of actual type parameters of its superclasses. For example, if we have
two variables, c of type List and d of type Vector, and an initial system of constraints
[d] ≤ [c] and String ≤ TParam(Ev, d), then using the rules of Figure 18(c), we obtain the
additional constraints TParam(Ev, d) = TParam(Ev, c), TParam(El, d) = TParam(Ev, d),
TParam(El, c) = TParam(El, d), and TParam(El, c) = TParam(Ev, d).

Note that we require that the constraint variables α, α1, and α2 in Rules (I30)
and (I31) are not type constants. This requirement is necessary to ensure that differ-
ent occurrences of a parameterized type can be instantiated differently. Type constants
may arise due to several program constructs such as casts, method calls, and field
accesses.

4.2.4. Pragmatic Issues. Several pragmatic issues needed to be addressed in our imple-
mentation of INFER GENERIC TYPE ARGUMENTS.

The constraint system is typically underconstrained, and there is usually more than
one legal type associated with each constraint variable. For instance, the constraints
shown in Figure 17 also allow the following uninteresting solution:

TParam(T1, s1) ← Object, TParam(T1, s2) ← Object.

14In general, a cast to a parameterized type cannot be performed in a dynamically safe manner because type
arguments are erased at run time. In this case, however, our analysis is capable of determining that the
resulting cast to Vector<String> would always succeed.
15That is, unless wildcard types are inferred, which we do not consider in this section.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:23

When faced with a choice, our solver relies on heuristics to guide it towards preferred
solutions. The two most significant of these heuristics are preferring more specific types
over less specific ones, and avoiding marker interfaces such as Serializable.

In some cases, the actual type parameter inferred by our algorithm is equal to the
bound of the corresponding formal type parameter, which typically is Object. Since
this does not provide any benefits over the existing situation (no additional casts can
be removed), our algorithm leaves raw any declarations and allocation sites for which
this result is inferred. The opposite situation, where the actual type parameter of an
expression is completely unconstrained, may also happen, in particular for incomplete
programs. In principle, any type can be used to instantiate the actual type parameter,
but since each choice is arbitrary, our algorithm leaves such types raw as well.

There are several cases where raw types must be retained to ensure that program
behavior is preserved. When an application passes an object o of a generic library
class to an external library,16 nothing prevents that library from writing values into
o’s fields (either directly, or by calling methods on o). In such cases, we cannot be
sure what actual type parameter should be inferred for o, and therefore generate an
additional constraint that equates the actual type parameter of o to be the bound of
the corresponding formal type parameter, which has the effect of leaving o’s type raw.
Finally, Java does not allow creation of arrays of generic types [Bracha et al. 2004]. For
example, new Vector<String>[10] is not allowed. Our algorithm generates constraints
that equate the actual type parameter to the bound of the corresponding formal type
parameter, which has the effect of preserving rawness. Section 6 presents a summary
of results obtained with our implementation of INFER GENERIC TYPE ARGUMENTS on a
suite of Java programs.

A final minor matter is the introduction of an additional constraint generation rule in
order to handle Java 5’s “enhanced for” loops to constrain the type of the loop induction
variable:

for-loop for(T v : E) S
E extends Iterable〈T ′〉

[v] ≤ TParam(T ′, E)

A similar rule handles the case where the expression E is of an array type, rather
than Iterable.

4.3. INTRODUCE TYPE PARAMETER

The INTRODUCE TYPE PARAMETER refactoring requires a further adaptation of the type
constraint formalism of Section 4.2. This adaptation includes replacing the typeparam
constraint variables of Section 4.2 with the more general notion of a context constraint
variable, the introduction of a new form of constraint variable called wildcard variables,
changes to the constraint generation rules, and a specialized constraint solver. This
section discusses these extensions and illustrates them on the class Stack of Figure 3.
The preferred parameterization of this class was previously shown in the right column
of Figure 13.

4.3.1. Extensions to the Type Constraints Model. Figure 19 shows how the formalism of
Figure 1 is extended with two new kinds of constraint variables, context variables and
wildcard variables, in order to accommodate the INTRODUCE TYPE PARAMETER refactoring.
Note that we use the typeparam variables that were introduced in Section 4.2 in this

16The situation where an application receives an object of a generic library type from an external library is
analogous.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:24 F. Tip et al.

Fig. 19. Constraint variables used for the INTRODUCE TYPE PARAMETER refactoring.

section only for references to already parameterized classes (see Section 4.3.5 for an
example).

A context variable is of the form Iα′(α) and represents the interpretation of a constraint
variable α in a context given by another constraint variable, α′. We give the intuition
behind this new form of constraint variables by examples.

Example 4.1. Consider the JDK class List<E>. References to its type parameter
E make sense only within the definition of List. In the context of an instance of
List<String>, the interpretation of E is String, while in the context of an instance of
List<Number>, the interpretation of E is Number.

Example 4.2. Consider the type Stack<T1> declared in Figure 13. For a variable x
of type Stack<Number>, the interpretation of T1 in the context of the type of x is Number.
We will denote this fact by I[x](T1) = Number. Here, I[x] is an interpretation function.
An interpretation function is subscripted by a constraint variable that corresponds to a
program entity of a parameterized type, and maps each of the formal type parameters
of that parameterized type to the types with which they are instantiated. For the
example being considered, I[x] maps the formal type parameter17 T1 of Stack to the
type, Number, with which it is instantiated in type [x].

Example 4.3. Consider the method call s1.push(new Integer(1)) on line 4 of
Figure 3. For this call to be type-correct, the type Integer of actual parameter new
Integer(1) must be a subtype of the formal parameter o1 of Stack.push() in the con-
text of the type of s1. This is expressed by the constraint Integer ≤ I[s1]([o1]). It would
be incorrect to simply require that Integer ≤ [o1] because when Stack becomes a pa-
rameterized class Stack<T1>, and the type of o1 becomes T1, then T1 is out of scope at
the call site. In addition, Integer is not a subtype of T1.

In some cases, a context αctxt is irrelevant. For example, Iαctxt (String) always resolves
to String, regardless of the context αctxt in which it is interpreted.

Context variables can be viewed as a generalization of the typeparam variables
that were introduced in Section 4.2. Recall that, in Section 4.2, a typeparam variable
TParam(E, x) was used for expressions x whose type was an instantiation of a param-
eterized class such as Vector<E>, where it denoted the type with which the formal
type parameter E was instantiated. For example, if x is declared as Vector<String>,
then TParam(E, x) = String. Context variables take this idea one step further and
are concerned with situations where we are trying to infer a new type parameter for
class Vector. The interpretation function I[x] is a variable in our constraint system

17For parameterized types with multiple type parameters such as HashMap, the interpretation function
provides a binding for each of them [Kieżun et al. 2007].

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:25

for which our solver will attempt to find a suitable value: a mapping from formal type
parameters to the types with which they are instantiated. When such a mapping can
be found, generating a name for such a new type parameter is trivial.

A wildcard variable has the form ? extends α or ? super α (where α is an-
other constraint variable), and is used in cases where Java’s typing rules require
the use of wildcard types. Consider the following class that extends the library class
java.util.Vector<E>.

class SubVector extends Vector {
@Override
public boolean addAll(Collection c){ · · · }

}

In this example, SubVector.addAll() overrides java.util.Vector.addAll(). If
SubVector becomes a generic class with formal type parameter T, then preserving
this overriding relationship requires the formal parameter c of SubVector.addAll()
to have the same type as that of Vector.addAll(), which is declared in the Java
standard libraries as Vector.addAll(Collection<? extends E>). Three parts of our
algorithm work together to accomplish this: (i) the type of c is represented, using
a context variable, as Collection<I[c](E)>, (ii) type constraint generation produces
I[c](E) = ? extends ISubVector(E), which uses a wildcard variable, and (iii) constraint
solution resolves ISubVector(E) to T.

In addition to the above cases, where wildcard types are required by Java’s typing
rules, our algorithm heuristically introduces wildcard types in one other case: when
doing so yields a more flexible typing for a given entity. Further details appear in the
example of Section 4.3.5, and in Section 4.3.7, which describes the heuristics used by
our algorithm to select the most useful solution, when a choice exists.

4.3.2. Type Constraint Generation. Figure 20 shows the changes to the constraint genera-
tion rules necessary for the INTRODUCE TYPE PARAMETER refactoring. Rules (P4) and (P5)
in part (a) of the figure generate the appropriate constraints for method calls, and are
adaptations of the corresponding rules in Figures 15 and 18. Rule (P4) states that the
type of the method call expression is the same as the return type of the method (in
the context of the receiver). Rule (P5) relates the actual and formal type parameters
of the call. The TargetClasses set is a user-supplied input to the parameterization al-
gorithm that indicates which classes should be refactored by adding type parameters.
For example, in Figure 3, class Stack is in TargetClasses. The auxiliary function CGen,
defined in Figure 20(b), actually generates constraints.

Java’s type rules impose certain restrictions on parametric types. Closure rules such
as (P30) and (P31) in Figure 20(c) enforce those restrictions. Rule (P30) enforces invari-
ant subtyping of parametric types: C〈τ 〉 is a subtype of C〈τ ′〉 iff τ = τ ′ (see discussion
in footnote 12). Rule (P31) requires that, given two formal type parameters18 T1 and
T2 such that T1 ≤ T2 and any context α in which either actual type parameter Iα(T1)
or Iα(T2) exists, the subtyping relationship Iα(T1) ≤ Iα(T2) must also hold. To illus-
trate this rule, consider a class C<T1, T2 extends T1> and any instantiation C<C1,
C2>. Then, C2 ≤ C1 must hold, implying that, for instance, C<Number, Integer> is legal
but that C<Integer, Number> is not.

The type bound on any newly introduced type parameter is defined by our algorithm
to be the corresponding type in the original program, in order to preserve the program’s
type erasure. By doing so, we ensure that the refactoring can be safely applied to library

18These can also be constraint variables that could become formal type parameters.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:26 F. Tip et al.

Fig. 20. Extensions to the type constraint formalism required by the INTRODUCE TYPE PARAMETER refactoring.
Part (a) shows (P4) and (P5) that generalize the corresponding rules (I4a), (I4b), (I5a), and (I5b) of Figures 15
and 18(a). Here, TargetClasses is a set of classes that should be parameterized by adding type parameters.
Part (b) shows a generalized version of the function CGen of Figure 18(b), which has been extended to handle
context variables, and by taking an additional parameter inScope. Here, αP denotes the type of the program
construct corresponding to α in the original program P. Part (c) presents closure rules (P30) and (P31) that
generalize the corresponding rules of Figure 18(c).

classes without making a “closed-world” assumption, which would require access to all
clients of the classes being parameterized.

4.3.3. Algorithm. A solution to the system of type constraints is computed using the
iterative worklist algorithm of Figure 21. During solving, each variable α has an asso-
ciated type estimate Est(α). An estimate is a set of types. Each estimate is initialized to
the set of all possible nonparametric types and shrinks monotonically as the algorithm
progresses. When the algorithm terminates, each estimate consists of exactly one type.
Because type estimates do not contain parametric types, they are finite sets, and al-
gebraic operations such as intersection can be performed directly. As an optimization,
our implementation uses a symbolic representation for type estimates.

The algorithm begins by initializing the type estimate for each constraint variable,
at lines 2 and 15–22 in Figure 21. A workset P is used to contain those constraint
variables that it has decided shall become type parameters, but for which that decision
has yet to be executed. The set P is initially seeded with the constraint variable that
corresponds to the declaration that is selected either by a heuristic or by the user on
line 3. The inner loop of parameterize() on lines 5–11 repeatedly removes an element
from P and sets its estimate to a singleton type parameter. For new type parameters,
the upper bound is the declared type in the original (unparameterized) program.

Whenever a type estimate changes, those changes must be propagated through the
type constraints, possibly reducing the type estimates of other variables as well. The
propagate() subroutine performs this operation, ensuring that the estimates on both
sides of a type constraint contain only types that are consistent with the relation.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:27

Fig. 21. Pseudocode for the constraint solving algorithm.

Whenever a context variable Iα′(α) gets resolved to a type parameter, α must also get
resolved to a type parameter on line 30. To see why, suppose that α gets resolved to a
nontype parameter type, C. In that case, the context is irrelevant, and thus Iα′(α) also
must get resolved to C (i.e., not a type parameter). This is a contradiction. Section 4.3.6
discusses an example that illustrates this situation.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:28 F. Tip et al.

Fig. 22. (a) Type constraints generated for class Stack of Figure 3 when applying INTRODUCE TYPE PARAMETER.
(b) Solution to the constraints computed by our algorithm.

4.3.4. Correctness. An informal justification of the solver’s correctness follows from
several key observations. First, the set of constraint variables is fixed and finite, as is
the size of the initial estimates (established in initialize(), lines 18 and 20). Second,
the estimate set of each constraint variable monotonically decreases in size as the
algorithm progresses (see propagate(), lines 26 and 27). Moreover, propagate() removes
types from a constraint variable’s estimate set only if that type cannot possibly satisfy a
constraint in which the given variable is involved. In other words, the algorithm never
removes a viable type from an estimate set. Third, the algorithm terminates either
when some estimate collapses to empty (indicating that no solution to the constraint
system is possible), or when all estimate sets are singletons, in which case a concrete
solution has been found. Finally, propagate() binds an entity’s type to a new type
parameter (at line 32) only when there is no other possible choice. That is, making α a
type parameter is necessary because a generic type (e.g., T) cannot be obtained from
a source that is not able to store them. Nevertheless, such a decision can never violate
a constraint that would otherwise be satisfiable. In short, the algorithm’s correctness
rests on the correctness of the generated constraints. An argument similar to that in
Section 4.2.2 establishes the validity of the constraints generated by the modified CGen
function.

4.3.5. Example: Application of Algorithm to Class Stack. Figure 22(a) shows the relevant set
of constraints that our algorithm generates for class Stack of Figure 3. Figure 22(b)
shows the result that the algorithm computes for the constraints in Figure 22(a). Our
tool lets the user select a type reference to parameterize; Figure 22(b) assumes that the
user selected the type of o1 on line 30 of Figure 3. The solver works as follows. The solver
creates a new type parameter T1 for o1 because the user selected the declaration of o1.
Constraints (i) and (ii) in Figure 22 imply that TParam(E, v2) and [Stack.pop()] must
each be a supertype of T1, and constraint (iii) implies that I[s3]([Stack.pop()]) must be
a subtype of T1. The only possible choices for [Stack.pop()] are T1 and Object because
wildcard types are not permitted on the return type of a method, and the algorithm
selects T1 because choosing Object would lead to a violation of constraint (iii).

Taking into account constraint (ii), it follows that TParam(E, v2) = T1. Now, for
I[s3]([Stack.pop()]), the algorithm may choose any subtype of T1, and it heuristi-
cally chooses ? extends T1.19 Likewise, the algorithm selects the type ? super T1 for
I[s4]([o1]).

The type of variable o2 is constrained only by Object according to constraint (v), and
the solver therefore leaves the type unchanged. This is the required solution for the
parameter of the contains() method, as argued in Section 4.1.

The type estimates created during the constraint solution algorithm are all non-
parametric, even for constraint variables that represent program entities whose type

19Other possible choices include T1, or a new type parameter that is a subtype of T1. Kieżun et al. [2007]
present more details on the use of heuristics.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:29

was parametric, such as v2 in Figure 3, or will be parametric after refactoring, such
as s3 in Figure 3. Assembling these results into parametric types is straightforward.
Figure 22(b) indicates that the type of o1 and the return type of Stack.pop() be-
come T1. Moreover, from TParam(E, v2) = T1, it follows that the type of v2 becomes
Vector<T1>. The type of s3 is rewritten to Stack<? extends T1> because the return
type of Stack.pop() is T1 and the type of I[s3]([Stack.pop()]) is ? extends T1. By a
similar argument, the type of s4 is rewritten to Stack<? super T1>. The right column
of Figure 13 shows the result.

A technical report [Kieżun et al. 2006] walks through a more detailed example of the
solving algorithm.

4.3.6. Example: Application of Algorithm to Interdependent Classes. Often, parameterizing
one class requires parameterizing other classes as well. For example, consider the
code in Figure 13. Throughout Section 4.3 we assumed that the class Vector had
been parameterized before (as part of the standard Java collections). However, had the
class not been parameterized before, then to parameterize Stack, it would have been
necessary to parameterize Vector as well.

The parameterization algorithm can parameterize multiple classes simultaneously.
Lines 30–32 of the algorithm in Figure 21 handle propagating type parameters to inter-
dependent classes. That part of the algorithm can be understood as follows. Whenever
an estimate of a context variable is narrowed to a single type, that is, the solver finds
a solution for the context variable on line 30, the variable to which the context refers
must also be assigned a type parameter on line 32.

For example, consider the scenario in which Vector is not parameterized at the
time when we run the algorithm for Stack. Here we discuss the crucial part of the
algorithm that enables parameterizing both classes. To generate a constraint for line 34
in Figure 3, our algorithm uses the constraint generation Rule (c1”) from Figure 20 and
generates I[Vector.remove(int)]([v2]) ≤ [Stack.pop()]. This constraint corresponds
to constraint (ii) from Figure 22 that gets generated when class Vector had been already
parameterized. During solving, the type estimate of [Stack.pop()] narrows down to T1,
as shown in Figure 22. At that time, the addition on step 32 in the solving algorithm
marks [Vector.remove(int)] as a variable to which a new type parameter will be
assigned. Thus, parameterizing class Stack results in parameterizing class Vector,
as is necessary. A more detailed example that illustrates the issues associated with
parameterizing interdependent classes can be found in Kieżun et al. [2006].

4.3.7. Use of Heuristics in the Algorithm. The algorithm of Figure 21 makes an undercon-
strained choice on lines 3, 6, 12, and 13. (On line 8, there is only one possibility.) Any
choice yields a correct (behavior-preserving and type-safe) result, but some results are
more useful to clients, for example by permitting the elimination of more casts. Our
implementation makes an arbitrary choice at lines 6 and 12, but uses heuristics at
lines 3 and 13 to guide the algorithm to a useful result.

On line 3, our tool lets a user select a type to parameterize. Alternatively, the tool
can apply the following heuristic.

(1) If a generic supertype exists, use the supertype’s signatures in the subtype. This is
especially useful for customized container classes.

(2) Parameterize the return value of a “retrieval” method. A retrieval method’s result is
downcasted by clients, or it has a name matching such strings as get and elementAt.
Even classes that are not collections often have such retrieval methods [Donovan
et al. 2004].

(3) Parameterize the formal parameter to an insertion method. An insertion method
has a name matching such strings as add or put.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:30 F. Tip et al.

The heuristic further forbids selecting these uses of types.

(1) Type uses that are not in the public interface of the class.
(2) Parameters of overridden methods (such as equals()), unless their type in the

overridden class is a type parameter. To preserve method overriding, types of such
parameters must remain unchanged, and cannot be parameterized.

(3) Type uses in interfaces or abstract classes. Their uses tend to be underconstrained
and can lead to suboptimal results.

On line 13, the algorithm uses a heuristic that minimizes the use of casts in client
code, while preserving flexibility in cases where this does not affect type safety. It
prefers (in this order):

(1) types that preserve type erasure over those that do not,
(2) wildcard types over nonwildcard types, and
(3) type parameters over other types, but only if such a choice enables inference of type

parameters for return types of methods.

To justify the latter restriction, observe that assigning a type parameter or a para-
metric type to a method return type is beneficial, because doing so reduces the need for
casts in clients of the class. Otherwise, introducing type parameters simply increases
the apparent complexity of the class for clients.

4.3.8. Miscellaneous Issues. Some classes are not parameterizable by any tool [Kieżun
et al. 2006]. If the presented algorithm is applied to such a class (e.g., String), then the
algorithm either signals that parameterization is impossible (on line 28 in Figure 21) or
else produces a result in which the type parameter is used in only one or two places. An
implementation could issue a warning in this case. For example, consider the following
class:

class C {
public String getText() { return "hello"; }

}

If the return type of getText is selected for parameterization, the type parameter
would have to have a concrete lower bound: T super String. Such type parameters
are disallowed in Java. Line 28 in Figure 21 detects cases in which no solution can be
found.

As noted before, lines 30–32 of Figure 21 handle inter-class dependencies. Interfaces
and abstract classes are handled by the same mechanism, that is, our algorithm creates
type constraints to preserve method overriding and treats implements and extends
relationships as other interclass dependencies.

Our algorithm and implementation fully support parameterization in the presence
of generic methods, for instance, those in java.util.Collections, but we have not yet
implemented adding type parameters to methods.20

Native methods pose no special problems to our analysis, which can conservatively
approximate the flow of objects between argument expressions and the return value,
based on the native method’s signature.

20Von Dincklage and Diwan [2004] used heuristics to handle generic methods; such heuristics may also be
applicable to our work. In previous work, we used a context-sensitive version of the generic instantiation
algorithm to parameterize methods [Fuhrer et al. 2005].

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:31

5. A REFACTORING FOR REPLACING CLASSES

As applications evolve, classes are occasionally deprecated in favor of others with
roughly the same functionality. In Java’s standard libraries, for example, class
Hashtable has been superseded by HashMap, and Iterator is now preferred over
Enumeration. In such cases it is often desirable to migrate client applications to make
use of the new idioms, but manually making the required changes can be labor-intensive
and error-prone. Another occasion at which people might want to replace source classes
with target classes is when their focus in the development process of an application
shifts from functional correctness to performance optimization. At that point they
might, for example, want to replace the generic HashMap implementation by a MyHashMap
tailored to the specific use of hash maps in their application. Several examples of such
optimizations have been presented by De Sutter et al. [2004].

In what follows, we will use the term migration to refer to the process of replacing
references to a source class with references to a target class. In the program of Figure 3,
the type Vector is used for the declaration of variable v1 on line 12, and for that of
field v2 on line 26. Class ArrayList was introduced in the standard libraries to replace
Vector, and is considered preferable because its interface is minimal and matches
the functionality of the List interface. ArrayList also provides unsynchronized access
to a list’s elements whereas all of Vector’s public methods are synchronized, which
results in unnecessary overhead when Vectors are used by only one thread. The ex-
ample program illustrates several factors that complicate the migration from Vector
to ArrayList, which will be discussed next.

Example 5.1. Some methods in Vector are not supported by ArrayList. For exam-
ple, the program of Figure 3 calls Vector.addElement() on line 31, a method not de-
clared in ArrayList. In this case, the call can be replaced with a call to ArrayList.add()
(see Figure 23), but other cases require the introduction of more complex expressions,
or preclude migration altogether.

Example 5.2. Opportunities for migration may be limited when applications inter-
act with class libraries and frameworks for which the source code is not under the
programmer’s control. For example, variable v1 declared on line 12 serves as the actual
parameter in a call to a constructor JTree(Vector) on line 20. Changing the type of v1
to any supertype of Vector would render this call type-incorrect. Hence, the allocation
site on line 12, labeled A1, cannot be migrated to ArrayList.

Example 5.3. Migration of one class may require the migration of another. Con-
sider the call on line 49 to Vector.elements(), which returns an Enumeration.
ArrayList does not declare this method, but its method iterator() returns an
Iterator, an interface with similar functionality.21 In this case, we can replace the
call to elements() with a call to iterator(), provided that we replace the calls to
Enumeration.hasMoreElements() and Enumeration.nextElement() on lines 50 and 51
with calls to Iterator.hasNext() and Iterator.next(), respectively.

If a Vector is accessed concurrently by multiple threads, then preservation of syn-
chronization behavior is important. This is accomplished by introducing synchroniza-
tion wrappers. This issue does not arise in the program of Figure 3 because it is
single-threaded; Balaban et al. [2005] present an example.

We have developed a REPLACE CLASS refactoring that addresses all of these migration
issues.

21The methods hasNext() and next() in Iterator correspond to hasMoreElements() and nextElement() in
Enumeration, respectively. Iterator declares an additional method remove() for the safe removal of elements
from the collection being iterated over.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:32 F. Tip et al.

Fig. 23. Specification used for migrating the example program of Figure 3.

5.1. Migration Specifications

The REPLACE CLASS refactoring takes as input a program to be refactored, and a migra-
tion specification. The migration specification defines rules for rewriting all possible
method calls, constructor calls, and field accesses of each source class, with equivalent
constructs on a target class. In order to ensure termination of the refactoring algo-
rithm, we restrict migration specifications such that for any rewrite rule of a migration
specification, applying the rule to a method call, constructor call, or field access of a
source class must result in an expression such that no rewrite rule is applicable to
it nor to its subexpressions. In addition, in order to simplify the presentation, in the
rest of this section we shall consider only programs in which migratable expressions
are not nested within one another. This means that in a field access, method call, or
constructor call of a source type, the constituent subexpressions are not candidates for
rewriting. This imposes no practical restriction on the input program, since any nested
expression can be refactored into an equivalent sequence of non-nested expressions by
introducing local variables.

Figure 23 shows the fragments of the specification for performing the migration
from Vector to ArrayList and from Enumeration to Iterator needed for the example
program of Figure 3, plus some other rewriting rules. Balaban et al. [2005] provide a
complete specification. Migration specifications have to be written only once for each
pair of (source, target) classes.

For example, Rule (S3) states that migrating calls to method Vector.add() requires
no modification, since ArrayList defines a syntactically and semantically identi-
cal method. If methods in the source class are not supported by the target class,
rewriting method calls becomes more involved. For example, Vector supports a
method firstElement() not defined in ArrayList. Rule (S5) states that a call
receiver.firstElement(), where receiver is an expression of type Vector, should
be transformed into receiver.get(0). In cases where it is not possible to express the
effect of a method call on the source class in terms of calls to methods on the target class,
calls may be mapped to methods in user-defined classes. For example, Vector has a
method copyInto() that copies the contents of a Vector into an array. Since ArrayList
does not provide this functionality, Rule (S10) transforms receiver.copyInto(array)
into a call to the static method copyInto(receiver, array) in the Util class shown
in Figure 24. This strategy can also be used to migrate between methods that throw
different types of exceptions. Specifically, a user-defined adapter method can be used
to wrap a method in a target class in order translate between exception types. Finally,
when an operation in a source class that is not supported by a target class cannot be
modeled using an auxiliary class, migration may become impossible.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:33

Fig. 24. Auxiliary class that contains a method used for migrating Vector.copyInto().

Fig. 25. Additional forms of type constraints required by the REPLACE CLASS refactoring.

Rules (S1) and (S2) in Figure 23 are both concerned with rewriting allocation sites
of the form new Vector(). The former applies in cases where thread-safety need not be
preserved, and transforms the allocation site into an expression new ArrayList(). The
latter applies in situations where thread-safety must be preserved, and transforms the
allocation site into Collections.synchronizedList(new ArrayList()) using a stan-
dard synchronization wrapper in the class java.util.Collections. Our tools rely on
an escape analysis [Choi et al. 1999] to determine which of the two rules should be
applied, and prefers (S1) over (S2) whenever possible. Section 5.3 explains how the
escape analysis algorithm is integrated into the refactoring process.

The specification of Figure 23 describes how program fragments can be transformed,
but it does not state when the transformation is allowed.

5.2. Extensions to the Type Constraints Formalism

To analyze when transformations can be applied, another adaptation of the type con-
straint formalism of Figure 2 is needed. However, the adaptation needed here differs
significantly from the ones that were used for the refactorings for generalization, and
for introducing generics. The refactorings for generalization in Section 3 have the
effect of making types of declarations more general, and the refactorings for introduc-
ing generics in Section 4 can be seen as making declarations more specific (by replacing
occurrences of type Object with type parameters). More formally, the refactorings from
the previous sections move type declarations between partially ordered types S and
T for which either S ≤ T or T ≤ S. For the REPLACE CLASS refactoring, this is no
longer the case. As a result, conjunctions of ≤-constraints cannot be used to constrain
a declaration to the set of unordered types {S, T }.

To handle such situations, we will use constraints of the form α1 ∈ {α2, ..., αn} indi-
cating that α1 must be equal to one of α2, · · · , αn, as shown in Figure 25. Two other
additional forms of constraints are shown in the figure. Constraints of the form α1 �≤ α2
indicate that the type α1 is not a subtype of the type α2. In addition, we introduce
implication constraints of the form (α1 = T) ⇒ α2 op α3, where op is one of the opera-
tors “=,” “≤,” or “ �≤.” Intuitively, this means that the unconditional constraint α2 op α3
must hold if α1 is bound to the type T .

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:34 F. Tip et al.

Fig. 26. Constraint generation rules for REPLACE CLASS. Part (a) of the figure shows how some of the rules
of Figure 2 are adapted to apply only to nonmigration types. Part (b) shows additional rules that are needed
to ensure that program behavior is preserved. Part (c) shows additional rules that generate implication
constraints. Changes from Figure 2 are shaded. For a given rule E →E E′ in a migration specification,
cons(E) denotes the set of constraints computed by the rules of parts (a) and (b) for the expression E and its
subexpressions if no types are migration types, and cons(E′) denotes the set of constraints computed by the
rules of parts (a) and (b) for the expression E′ and its subexpressions if no types are migration types.

Figure 26 shows how the constraint generation rules of Figure 2 are adapted and
extended to accommodate the REPLACE CLASS refactoring. These rules fall into three
categories: (a) adaptations of the basic type constraint generation rules of Figure 2 to
take the migration of classes into account, (b) rules that generate additional constraints
needed to preserve program behavior in the presence of migrations, and (c) additional
rules that generate implication constraints for constructor calls and method calls that
may be subject to migration. Below, we will discuss a representative sample of the
rules in each of these categories. In these rules, the set MigrationTypes contains the
source classes of migrations, and ExternalTypes is the set of external library classes.
Furthermore, we will use the notation C →C C ′ to denote the fact that class C is mapped

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:35

to class C ′ in the migration specification, and E →E E′ indicates that an expression E
is rewritten to an expression E′ according to the migration specification.

5.2.1. Adapting Existing Type Constraint Rules. Figure 26(a) shows how some of the rules
of Figure 2 are adapted to take class migrations into account.22 The key idea is that
different constraints are generated for migration types than for types that will not
migrate. For migration types, part (c) of the Figure generates conditional constraints
that account for two possibilities: either a given type is migrated or it is not.

Regarding the rules shown in Figure 26(a), assignments are modeled the same way
as before so we simply reuse Rule (1) from Figure 2. For method calls, Rules (R4), (R5a),
and (R6) restrict the corresponding Rules (4)–(6) of Figure 2 to classes that are not in
the set MigrationTypes.

For constructor calls E ≡ new C(E1, · · · , En), Rule (7) of Figure 2 is replaced by two
Rules (R7a) and (R7b). Rule (R7a) restricts the original Rule (7) of Figure 2 to classes
that are not being migrated. For calls to constructors of migration classes, Rule (R7b)
constrains the type of the entire constructor call expression to be either the source class
or the target class of the migration. The constraint solver will try to find a valid solution
for all generated constraints in which the type of the constructor call expression is the
target class of the migration. If it finds such a solution, the migration will be applied
for the constructor call. Otherwise, the migration will not be applied, at least not for
that constructor call. Rule (R8) restricts the original Rule (8) of Figure 2 to classes that
are not in the set MigrationTypes.

Rules (R14a) and (Rb) adapt the original Rule (14) of Figure 2 for casts of the form
(T)E, restricting the original rule to classes that are not the source of a migration, and
permitting the migration of casts to types that are subject to migration by constraining
their type to either the source class or the target class of the migration.

5.2.2. Additional Rules for Preserving Program Behavior. Figure 26(b) shows rules that gen-
erate additional constraints that are needed for preserving program behavior. Here,
[E]P denotes the type of expression E in the original program P, and ExternalTypes is
the set of external library classes.

As we discussed earlier, opportunities for migration may be limited when an appli-
cation calls a method in an external class library. This is encoded by Rule (R5b), which
states that the type of an expression Ei that is used as an actual parameter in a call to
a method in an external library must remain the same as in the original program.23

Rules (R32) and (R33) in Figure 26 are needed to preserve the runtime behavior
of casts when classes are migrated. Consider, for example, an original program that
contains a cast operation in an expression ((C)x).get(y) in which x is declared as
type Object. This cast is then a downcast from type Object to type C. Now assume
that at some point during program execution, x is bound to an object of type D. If D
is a subtype of C, then the cast will succeed in the original program. For a migration
C →C C’ to respect program behavior, the corresponding execution of the downcast in
the rewritten program should also succeed. However, when C’ is not a subtype of C,
this is not guaranteed by the existing constraint generation rules.

The additional Rule (R32) enforces such a successful casting where needed. Here,
the notation PointsTo(P, E) refers to the set of objects (identified by their allocation
expressions) that an expression E in program P can point to whenever the expression

22Figure 26(a) shows only the adapted counterparts for some of the rules of Figure 2. The remaining rules
of that figure are adapted similarly.
23This rule is overly conservative in the sense that it prevents the type of Ei from being migrated to a subtype
of its current type. It is possible to extend the rules to allow such migrations, but we have not yet experienced
the need for migrations from a source class to one of its subtypes.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:36 F. Tip et al.

Fig. 27. Example program that requires solver to backtrack. Part (a) contains the program, as well as the
definition of an external dependency class class named External. Part (b) shows some of the constraints
generated for the program.

is being evaluated during any possible execution of the program. This set is called the
points-to set of E. Rule (R32) ensures that for each E′ in the points-to set of E for
which the cast succeeds in the original program, the cast will still succeed in P ′. Any
of several existing static, conservative algorithms [Hind and Pioli 2001; Ryder 2003]
can be used to compute points-to sets. The term conservative in this context means
that the computed points-to set of an expression includes at least all possible types
to which the expression can point when it is being evaluated during any execution of
the program. So for at least all successful casts executed during any execution of the
original program, there will be a corresponding constraint generated by Rule (R32),
enforcing a successful cast in the rewritten program. The computed points-to set for an
expression can be overly conservative, in the sense that it also contains types to which
the expression cannot ever point in practice. When this occurs for some expression, it
results in additional constraints being generated. This can prohibit a valid migration
from being applied, but it will never cause an invalid migration to be allowed. Rule (R33)
generates similar constraints for failing casts. Together, these rules ensure that the
behavior of casts is preserved after migration.

5.2.3. Rules for Generating Implication Constraints. Figure 26(c) shows rules that generate
implication constraints for calls to methods and constructors of types that may be
subject to migration. These rules are needed for calls to constructors or methods of
source classes for which the corresponding constructor or method of the target class
has different parameter types (or, in the case of method calls, a different return type).
For such calls, the constraints to be placed on the types of the arguments depend on
whether or not the migration is actually performed.

Consider the example code fragment in Figure 27(a). The method main() in class
Example declares a local variable v of type Vector. The Enumeration resulting from a
call to its elements() method is passed to the method print() of an external class
External that cannot be rewritten. If the allocation site A1 is migrated from Vector to
ArrayList according to the migration specification of Figure 23, the type returned by
the call to elements() would become Iterator. This is not valid, however, because the
parameter type Enumeration of the external method print() cannot be changed. To

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:37

prevent such problems, we need to generate constraints that make the migration of a
call expression contingent on whether or not the receiver expression can be migrated.

To express this formally, we generate implication constraints of which the an-
tecedents express whether a migration of a constructor or method call will take place,
and of which the consequents constrain the parameter types and return types ac-
cordingly. Rules (R34) and (R35) are concerned with constructor calls of the form
E ≡ new C(E1, · · · , En), where C →C C ′ and E →E E′. As explained on the example,
there are two cases for which constraints need to be generated.

(1) The migration will not take place, which will happen when other constraints con-
strain the type of E such that [E] = C. To generate constraints for this case, we first
compute the constraints c that would be computed by the rules of Figure 26 parts
(a) and (b) for the expression E and its subexpressions if C were not a migration
type. For each such constraint, an implication constraint ([E] = C) ⇒ c is produced.

(2) The migration will take place, which will happen when [E] = C ′ is a solution to the
constraint system. For this case, we first compute the constraints c′ that would be
computed by the rules of Figure 26 parts (a) and (b) for the expression E′ and its
subexpressions. For each such constraint, an implication constraint ([E] = C ′) ⇒ c′
is produced.

Constraints for both cases always have to be produced, because the decision of whether
or not to migrate is taken after all constraints have been generated,

The generation of implication constraints for method calls by Rules R36 and R37 is
analogous. For the code in Figure 27(a), constraints (iii) and (iv) of Figure 27(b) are
generated.

5.2.4. Constraint Solving. In order to solve the non-implication constraints presented in
this section, we employ a straightforward iterative algorithm similar to that shown
in Figure 21. The algorithm in Figure 21 does not handle �≤ constraints, which we
do support here (see Balaban et al. [2005] for details). Furthermore, the algorithm in
Figure 21 does not handle ∈-constraints. A practical solution to this problem is the
insertion of two artificial types C� and C⊥ in the type hierarchy for each migration
C →C C ′. C� is inserted as an immediate supertype of C and C ′, and C⊥ as an immediate
subtype. Each constraint of the form [E] ∈ {C, C ′} can then be replaced with the two
constraints [E] < C� and C⊥ < [E].

Since the algorithm assigns a concrete type to a constraint variable on every iteration,
it has a worst-case running time that is polynomial in the size of the program.

In order to deal with implication constraints, we extend the algorithm with back-
tracking as follows. When the solver heuristically assigns a concrete type to a variable
as in line 13 in Figure 21, it checkpoints its progress thus far, and proceeds. Further-
more, whenever the antecedent of an implication constraint is detected as satisfied, the
consequent is added to the constraint system. The newly introduced consequent con-
straint potentially makes the system unsatisfiable given the heuristic selections made
by the solver up to that point. In such cases, the solver backtracks to the last heuristic
variable assigment, and selects a different concrete type. For example, this occurs while
solving the constraints of Figure 27(b) once the solver optimistically assigns the type
ArrayList to [v]. Since the antecedent of implication constraint (iv) is now satisfied,
the consequent [v.elements()] = Iterator is added to the constraint system. However,
from constraints (v) and (vi) we have that [v.elements()] ≤ [e] = Enumeration. Thus
the constraint system is unsatisfiable, and the solver backtracks and reassigns the
type Vector to [v]. The backtracking algorithm is supported by our implementation, as
presented in detail by Balaban et al. [2005].

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:38 F. Tip et al.

Fig. 28. Some of the type constraints generated for the application of the REPLACE CLASS refactoring to the
program of Figure 3.

Due to backtracking, the worst-case running time of the solving algorithm is ex-
ponential in the program size. However, our solver applies a number of straightfor-
ward simplifications that either eliminate implication constraints or replace them with
equivalent non-implication constraints. One example is replacing a pair of constraints,
c1 ⇒ c2 and ¬c1 ⇒ c2, by simply c2. Another example is removing an implication
constraint if an equivalent unconditional constraint exists. Our subject programs have
shown that as a result, the worst-case running time is rarely encountered in practice.

5.2.5. Example. Figure 28 shows some of the type constraints generated as a result of
the application of REPLACE CLASS to the program of Figure 3.

Constraint (i) establishes the required subtype relationship between the type of
variable v1 and the allocation site labeled A1, using Rule (1). Constraint (ii) in Figure 28
is generated for the allocation site labeled A1 on line 12 in Figure 3 by Rule (R7b).
Constraint (iii) is generated for the call to the constructor of the external class JTree
in line 20, by Rule (R5b). The generation of constraints (iv) and (v) is analogous to that
of constraints (i) and (ii).

As a more interesting example, consider the call s5.v2.elements() on line 49 of
Figure 3, which can be rewritten to an expression s5.v2.iterator() according to the
migration specification of Figure 23. For this method call, we have that

[s5.v2.elements()] = Enumeration ∈ cons(s5.v2.elements())
[s5.v2.iterator()] = Iterator ∈ cons(s5.v2.iterator())

and therefore the implication constraints

[s5.v2]=Vector ⇒ [s5.v2.elements()]=Enumeration
[s5.v2]=ArrayList ⇒ [s5.v2.elements()]=Iterator

are generated. These constraints, shown as constraints (x) and (xi) in Figure 28, state
that the type of the call expression s5.v2.elements() is Enumeration if the type of v2 re-
mains Vector, but becomes Iterator if the expression is rewritten to s5.v2.iterator().

Similarly, consider the call v2.isEmpty() on line 43 in Figure 3. Rules (R36) and
(R37) generate the constraints (viii) and (ix), both of which are conditional depending
on whether the type of v2 is migrated from Vector to ArrayList.

As an example of a simplification that reduces the need for backtracking, consider
the call v2.addElement(o1) on line 31. If the type of v2 remains Vector, o1 must be
a subtype of the formal parameter of Vector.addElement(), which is expressed by
constraint (vi) in Figure 28:

[v2]=Vector ⇒ [o1]≤Object.

Similarly, constraint (vii) in Figure 28 reflects the case in which the type of v2 becomes
ArrayList:

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:39

Fig. 29. The example program of Figure 3 after the application of REPLACE CLASS refactoring. The allocation
site labeled A1 cannot be migrated.

[v2]=ArrayList ⇒ [o1]≤Object.

These constraints can be combined into a single unconditional constraint [o1] ≤ Object.
From constraints (i) and (iii) in Figure 28, it follows that [A1]≤[v1]=Vector, implying

that the type of A1 must remain Vector. However, the typing [A2] ← ArrayList, [v2]
← ArrayList satisfies the constraint system, indicating that allocation site A2 can be
migrated to ArrayList.

5.3. Rewriting the Program

Once a solution to the constraints is obtained, the program is rewritten by inspecting
each constraint variable and the type that has been assigned to it by the solver, and
rewriting associated program elements as needed. If a constraint variable has been
assigned a target type (and was originally a source type), then the corresponding
program element (either a method call, a field access, or a constructor call) needs to be
rewritten. This is done by selecting and applying a rule from the migration specification
with a matching left side. For example, consider the method call e.hasMoreElements()
in line 50 of the program of Figure 3. Since the variable e is being migrated from type
Enumeration to type Iterator, we must rewrite e.hasMoreElements() to a method call
of Iterator. To do this, we apply Rule (S12) of the migration specification (Figure 23),
resulting in the expression e.hasNext(). The complete refactored source code for the
example program is shown in Figure 29.

If the program element to be rewritten is a method call or a field access expression,
the choice of rewrite rule is unambiguous, as we allow at most one rule for each method
and field of a source class. However, if the program element is a constructor call, a
migration specification may specify two rules, depending on whether thread safety
needs to be explicitly preserved in the rewritten program. It is in this case that we
rely on an escape analysis to determine whether objects allocated by the constructor

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:40 F. Tip et al.

call may escape their thread. If objects are potentially escaping, then a rule is chosen
that introduces explicit synchronization such as (S2) in Figure 23. Otherwise, the
program element is rewritten using a rule that does not introduce synchronization,
such as (S1). In principle, our approach can be integrated with any escape analysis. In
our experimental evaluation, we use a simple escape analysis that was described by
Balaban et al. [2005].

6. EXPERIMENTAL RESULTS

We previously presented detailed evaluations of the effectiveness of the INFER GENERIC

TYPE ARGUMENTS [Fuhrer et al. 2005], INTRODUCE TYPE PARAMETER [Kieżun et al. 2007],
and REPLACE CLASS [Balaban et al. 2005] refactorings. This section presents a summary
of the experiments conducted and results obtained. For further detail, the reader is
referred to our previous papers.

For all experiments discussed in this section, we ensured that no type errors were
introduced by our implementations by checking that the program compiled properly
after applying each refactoring. Furthermore, we determined that each program’s run-
time behavior was unchanged by running the applications and their test suites before
and after performing each refactoring and comparing their behaviors.

The implementation of INTRODUCE GENERIC TYPE ARGUMENTS and INTRODUCE TYPE

PARAMETER are quite efficient, and require seconds to a small number of minutes to
process medium-sized applications. Concretely, in Fuhrer et al. [2005], we reported
that applying INTRODUCE GENERIC TYPE ARGUMENTS to a 90KLOC application required
113.9 seconds, and in Kieżun et al. [2007] we reported a processing time of 301 seconds
to apply INTRODUCE TYPE PARAMETER to a 9.9KLOC program. Our implementation of the
REPLACE CLASS REFACTORING is currently much less efficient because it relies on a previ-
ous implementation of the type constraints model, and we reported a processing time
of approximately 2 hours for a 50KLOC subject program. We expect that this latter
result could be improved dramatically by adopting the newer, more space-efficient rep-
resentation for type constraints that is currently used in Eclipse. For a more detailed
discussion of these performance results, the reader is referred to our previous papers
[Fuhrer et al. 2005; Kieżun et al. 2007; Balaban et al. 2005].

6.1. Evaluation of INTRODUCE GENERIC TYPE ARGUMENTS

One of the main benefits of INTRODUCE GENERIC TYPE ARGUMENTS is that it removes down-
casts that have become unnecessary. To evaluate the effectiveness of the refactoring,
we used INTRODUCE GENERIC TYPE ARGUMENTS to infer actual type parameters for dec-
larations and allocation sites that refer to the unparameterized standard collections
in a suite of moderate-sized Java programs named in column 1 of Table I.24 We then
measured the percentage of downcasts that could be removed, and the percentage of
“unchecked warnings” that were eliminated.

Table I shows that an average of 49% of all casts could be removed from each program,
and an average of 91% of all unchecked warnings were eliminated. When considering
casts, the reader should note that the number of casts given in column (iv) of Table I
includes casts that are not related to the use of generic types. However, a manual
inspection of the results revealed that our tool removes the vast majority of generics-
related casts, from roughly 75% to 100%. For example, we estimate that only one-fifth
of ANTLR’s total number of casts relates to the use of collections, which is close to our
tool’s 19% removal rate.

24For more details, see: www.junit.org, www.cs.princeton.edu/~appel/modern/java/JLex/, www.cs.princeton.edu/
~appel/modern/java/CUP/, www.spec.org/osg/jvm98/, vpoker.sourceforge.net, telnetd.sourceforge.net, www.antlr.
org, jbidwatcher.sourceforge.net, pmd.sourceforge.net, htmlparser.sourceforge.net, and www.ovmj.org/xtc/.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:41

Table I.
.Experimental results for INFER GENERIC TYPE ARGUMENTS. Column (i) is the name of the

program. The size of the application is measured in (ii) number of types, (iii) thousands of
source lines, and (iv) number of casts. The generics-related metrics count the number of (v)

allocation sites of generic types, (vi) generic-typed declarations, (vii) subtypes of generic types,
and (viii) “unchecked warnings” issued by the compiler. Lastly, columns (ix) and (x) show the

percentage of casts removed and unchecked warnings eliminated as a result of applying INFER

GENERIC TYPE ARGUMENTS

Size Generics-Related Metrics Removed
Program Types KLOC Casts Allocs dcls Subt. Warn. Casts Warn.
JUnit 59 5.3 54 24 48 0 27 44% 93%
V poker 35 6.4 40 12 27 1 47 80% 100%
JLex 22 7.8 71 17 33 1 40 68% 85%
Db 32 8.6 78 14 36 1 652 51% 100%
JavaCup 36 11.1 595 19 62 0 55 82% 96%
TelnetD 52 11.2 46 16 28 0 22 83% 100%
Jess 184 18.2 156 47 64 1 692 53% 99%
JBidWatcher 264 38.6 383 76 184 1 195 54% 97%
ANTLR 207 47.7 443 46 106 3 84 19% 94%
PMD 395 38.2 774 75 286 1 183 20% 89%
HTMLParser 232 50.8 793 72 136 2 205 22% 97%
Jax 272 53.9 821 119 261 3 583 19% 48%
xtc 1,556 90.6 1,114 330 668 1 583 36% 88%

average: 48.6% 91.2%

Table II.
.Experimental results for INTRODUCE TYPE PARAMETER. From left to right, the columns of the table

show: (i) the name of the library, (ii) the number of analyzed classes, including their nested
classes, (iii) the number of lines of code, and (iv) the number of occurrences of a reference

(non-primitive) type in the library; the latter is the maximal number of locations where a type
parameter could be used instead. The “comparison to manual” columns (v)-(vii) indicate how

our tool’s output compares to the manual parameterization; the numbers count type uses, as in
column (iv). These columns are empty for the last two libraries, which have not been manually

parameterized by their authors.

Parameterizable Classes Comparison to Manual
Library Classes LOC Type Uses Same Better Worse
concurrent 14 2715 415 353 37 25
apache 74 9904 1183 1011 116 56
jutil 9 305 80 65 15 0
jpaul 17 827 178 148 22 8
amadeus 8 604 129 125 1 3
dsa 9 791 162 158 4 0
antlr 10 601 140 n/a n/a n/a
eclipse 7 582 100 n/a n/a n/a
Total 148 16329 2387 1860 195 92

6.2. Evaluation of INTRODUCE TYPE PARAMETER

In order to evaluate the INTRODUCE TYPE PARAMETER refactoring, we inferred type param-
eters in a set of nonparameterized libraries. Our evaluation uses a combination of 6
libraries that have already been parameterized by their authors, and 2 libraries that
have not yet been made generic. For already parameterized libraries, we first applied
a tool that erased the formal and actual type parameters and added necessary type
casts, and then compared the results produced by our implementation of INTRODUCE

TYPE PARAMETER against the existing parameterization. In the case of the libraries for
which no generic version was available, we asked the developers to examine every
change proposed by our implementation and to give their opinion of the result.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:42 F. Tip et al.

The leftmost column of Table II lists the class libraries used in this experiment.25 Not
all classes in these libraries are amenable to parameterization; we selected a subset of
the library classes that we considered likely to be parameterizable. The experiments
processed the classes of the library in the following order: we first built a dependence
graph of the classes, and then applied our tool to each strongly connected component,
starting with those classes that depended on no other classes still to be parameterized.
This is the same order a programmer faced with the problem would choose.

Given an existing manual parameterization and one computed by our refactoring
tool, we used two criteria to decide which was more precise. The first, and more im-
portant, is which one allows more casts to be removed—in clients or in the library
itself. The secondary criterion is which one more closely follows the style used in the
JDK collections; they were developed and refined over many years by a large group
of experts and can be reasonably considered models of style.26 The two criteria are in
close agreement.

Our results for the already parameterized libraries can be summarized as follows. For
87% of all type annotations, the output of our tool is identical to or equally good as the
existing parameterization. For 4% of annotations, the output of our tool is worse than
that created by the human. For 9% of annotations, the tool output is better than that
created by the human. For the eclipse and antlr libraries, no existing parameterization
was available. A developer of Eclipse concluded that the changes were “good and useful
for code migration to Java 5.0.” Out of 100 uses of types in the Eclipse classes we
parameterized, he mentioned only 1 instance where the inferred result, while correct,
could be improved. A developer of ANTLR stated that the changes made by our tool
are “absolutely correct.” Out of 140 uses of types in the parameterized classes, he
mentioned 1 instance where the inferred result, while correct, could be improved.

From these results, it is clear that the parameterizations computed by our tool
resemble the manually computed solutions very closely. Here are a few examples where
the output of our tool was worse.

(1) In concurrent, our tool does not instantiate the field next in member type
LinkedBlockingQueue.Node as Node<E>, but leaves it raw. Such a choice is safe,
but it is less desirable than the manual parameterization.

(2) Our tool does not infer type parameters for methods; an example is apache’s
PredicatedCollection.decorate().

(3) Our tool inferred two separate type parameters for interface Buffer in the apache
library. In this case, the manual parameterization had only one.

Here are a few examples where the output of our tool was better. In each case, the
developers of the package agreed the inferred solution was better than their manual
parameterization.

(1) Our tool adds a formal type parameter to member class SynchronousQueue.Node in
concurrent. The parameter allows elimination of several casts inside Synchronous-
Queue.

25Here, concurrent is the java.util.concurrent package from Sun JDK 1.5, apache is the Apache collec-
tions library (larvalabs.com/collections/), jutil is a Java Utility Library (cscott.net/Projects/JUtil/),
jpaul is the Java Program Analysis Utility Library (jpaul.sourceforge.net), amadeus is a data structure
library (people.csail.mit.edu/adonovan/), dsa is a collection of generic data structures(www.cs.fiu.edu/
~weiss/#dsaajava2), antlr is a parser generator (www.antlr.org), and eclipse is a universal tooling platform
(www.eclipse.org).
26When multiple styles appear in the JDK, we did not count differences in either the “better” or “worse”
category.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:43

Table III.
.Experimental Results for REPLACE CLASS. From left to right, the columns of the table show: (i) the name of

the program, (ii) the number of classes in the program, (iii) the number of lines of source code (in
thousands), (iv) the migration source classes used in this program, where V denotes Vector, HT denotes
Hashtable, and E denotes Enumeration. The last columns of the table show the experimental results: (v)

the number of source declarations of legacy types that could be migrated and that had to be left unchanged,
(vi) the number of allocation sites of legacy types that could be migrated and without synchronization

wrappers, that could be migrated but needed synchronization wrappers, and that could not be migrated,
and (vii) the number of legacy call sites that could be migrated and that could not be migrated.

Alloc. Sites
Declarations (migr. desync/ Call Sites

Migration (migr./ migr. wrap/ (migr./
Program Types KLOC Classes unchanged) unchanged) unchanged)
Hanoi 41 4.0 V 3 0 3 0 0 26 0
JUnit 100 5.3 V, HT, E 55 7 23 1 0 111 7
JLex 26 7.9 V, HT, E 29 10 12 0 4 167 18
JavaCup 36 10.6 HT, E 56 0 14 0 0 153 0
Cassowary 68 12.2 V, HT, E 121 18 44 0 2 692 36
Azureus 160 13.9 V 13 0 6 6 0 51 0
HTML Parser 115 17.1 V, HT 141 3 21 0 2 461 6
JBidWatcher 154 22.9 V, HT 67 4 32 1 3 291 3
SpecJBB 110 31.3 V, HT, E 22 6 13 0 2 78 10
Jax 309 53.1 V, HT, E 208 43 81 0 12 706 0

(2) In method VerboseWorkSet.containsAll() in jpaul, our tool inferred an upper-
bounded type parameter wildcard for the Collection parameter. This permits more
flexible use and fewer casts by clients, and also adheres to the standard collections
style from the JDK.

(3) Our tool inferred Object as the type of the parameter of method
Canonical.getIndex() in amadeus. This is more flexible than the developers’ solu-
tion, with fewer casts, and follows the JDK style. A similar case occurred in jpaul
in which our tool inferred Object for the parameter of WorkSet.contains().

6.3. Evaluation of REPLACE CLASS

We evaluated our implementation of REPLACE CLASS on a number of Java applications of
up to 53 KLOC that we migrated from Vector to ArrayList, from Hashtable to HashMap,
and from Enumeration to Iterator. Table III states the essential characteristics for each
program.

The results are shown in last three columns of the table. For example, for the Cas-
sowary program we found that:

(1) 121 of the original 139 source class declarations were migrated, but 18 could not
be migrated,

(2) 44 of the 46 source allocation sites could be migrated without inserting synchroniza-
tion wrappers, and the remaining 2 source allocation sites could not be migrated
at all, and

(3) 692 of the 728 source call sites could be migrated, and the remaining 36 call sites
could not be migrated.

On average, 90% of source declarations and 97% of source call sites were migrated
successfully. Furthermore, an average of 92% of all allocation sites can be migrated:
83% without the insertion of synchronization wrappers and 9% with the insertion of
synchronization wrappers.

We now discuss a few cases out of the experiments that illustrate some interesting
aspects of migration.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:44 F. Tip et al.

Nontrivial rewriting. JBidWatcher, JUnit, and SpecJBB contain calls to the previ-
ously discussed method Vector.copyInto() which requires nontrivial rewriting and
introduction of an auxiliary class. In JBidWatcher, JUnit, SpecJBB, and Jax, the per-
centages of migrated call sites for which the method’s name or signature was changed
are 30%, 75%, 73%, and 47%, respectively. Clearly, manual migration of these applica-
tions would involve a significant amount of error-prone editing work.

Interaction with external libraries. In JUnit, one of the Vectors is passed to the
constructor of the external Swing library class JList, whose formal parameter is of
type Vector. This flow of objects is not immediately evident from the code, as the
allocated Vector is assigned to a variable that is elsewhere passed to the constructor.
Similar cases occur in SpecJBB where various Vectors are not migrated because they
are stored in other Vectors. With more insight into the implementation of Vector, it is
evident that concrete types of its elements are irrelevant, which could be utilized by a
more precise analysis.27

Synchronization preservation. The migration of JUnit includes a synchronization-
wrapped allocation site. It is detected as escaping since it is assigned to a field whose
declaring class declares a Runnable that references the field. The Runnable object is
passed to Swing, which would cause any escape analysis without access to the Swing
code to declare it as escaping. In Azureus, escape analysis reports that synchroniza-
tion wrappers need to be introduced for certain ArrayLists, but the program already
performs explicit synchronizations. In principle, a more precise escape analysis could
enable migration without synchronization wrappers in this case.

7. RELATED WORK

Opdyke [1992, page 27–28] identified some of the invariants that refactorings must
preserve. One of these, Compatible Signatures in Member Function Redefinition, states
that overriding methods must have corresponding argument types and return types,
corresponding to our Rules (9) and (10). Opdyke writes the following about the Type-
Safe Assignments invariant: “The type of each expression assigned to a variable must
be an instance of the variable’s defined type, or an instance of one of its subtypes. This
applies both to assignment statements and function calls.” This corresponds to our
Rules (1), (5), and (8).

Fowler [1999] presents a comprehensive classification of a large number of refactor-
ings, which includes step-by-step directions on how to perform each of these manually.
Many of the thorny issues discussed in this article are not addressed by Fowler. For
example, in the case of EXTRACT INTERFACE, Fowler only instructs one to “Adjust client
type declarations to use the interface,” ignoring the fact that not all declarations can
be updated.

Tokuda and Batory [2001] discuss refactorings for manipulating design patterns
including one called SUBSTITUTE that “generalizes a relationship by replacing a subclass
reference to that of its superclass”. Tokuda and Batory point out that “This refactoring
must be highly constrained because it does not always work.” Our model can be used
to add the proper precondition checking.

Halloran and Scherlis [2002] present an informal algorithm for detecting over-specific
variable declarations. This algorithm is similar in spirit to our GENERALIZE DECLARED

TYPE refactoring by taking into account the members accessed from a variable, as well
as the variables to which it is assigned.

The INFER TYPE refactoring by Steimann et al. [2006] lets a programmer select a given
variable and determines or creates a minimal interface that can be used as the type

27Such information could be provided in the form of stub implementations that approximate the behavior of
selected library methods.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:45

for that variable. Steimann et al. present their type inference algorithm informally,
but their constraints appear similar to those presented in Section 2. In more recent
work, Steimann and Mayer [2007] observe that the repeated use of INFER TYPE may
produce suboptimal results (e.g., the creation of many similar types). Their Type Access
Analyzer performs a global analysis to create a lattice that can be used as the basis
for extracting supertypes, changing the types of declarations, merging structurally
identical supertypes, and similar transformations.

The KABA tool [Streckenbach and Snelting 2004; Snelting and Tip 2000] generates
refactoring proposals for Java applications (e.g., indications that a class can be split,
or that a member can be moved). In this work, type constraints record relationships
between variables and members that must be preserved. From these type constraints,
a binary relation between classes and members is constructed that encodes precisely
the members that must be visible in each object. Concept analysis is used to generated
a concept lattice from this relation, from which refactoring proposals are generated.

Duggan’s approach for parameterizing classes [Duggan 1999] predates Java generics,
and his PolyJava language is incompatible with Java in several respects (e.g., the treat-
ment of raw types and arrays, no support for wildcards). Unlike our approach, Duggan’s
takes a class as its input and relies on usage information to generate constraints that
relate the types of otherwise unrelated declarations. If usage information is incomplete
or unavailable, too many type parameters may be inferred. To our knowledge, Duggan’s
work was never implemented.

Donovan and Ernst [2003] present solutions to both the parameterization and the
instantiation problems. For parameterization, a dataflow analysis is applied to each
class to infer as many type parameters as are needed to ensure type correctness. Then,
type constraints are generated to infer how to instantiate occurrences of parameterized
classes. Donovan and Ernst report that “often the class is over-generalized,” that is,
too many type parameters are inferred. Donovan and Ernst’s work infers arrays of
parameterized types, which are not allowed in Java but were permitted by the then-
current proposal. Their work was only partially implemented before they turned to the
work that follows.

Donovan et al. [2004] present a solution to the instantiation problem based on a
context-sensitive pointer analysis. Their approach uses “guarded” constraints that are
conditional on the rawness of a particular declaration, and that require a (limited) form
of backtracking, similar to the implication constraints used in Section 5. Our solution
is more scalable than Donovan’s because it requires neither context-sensitive analysis
nor backtracking, and more general because it is capable of inferring precise generic
supertypes for subtypes of generic classes. Moreover, as Donovan’s work predates Java
1.5, their refactoring tool does not consider wildcard types and supports arrays of
generic types (now disallowed).

Von Dincklage and Diwan [2004] present a solution to both the parameterization
problem and the instantiation problem based on type constraints. Their Ilwith tool
initially creates one type parameter per declaration, and then uses heuristics to merge
type parameters. While the successful parameterization of several classes from the Java
standard collections is reported, some of the inferred method signatures differ from
those in the Java 1.5 libraries. It also appears that program behavior may be changed
because constraints for overriding relationships between methods are missing. As a
practical matter, Ilwith does not actually rewrite source code, but merely prints method
signatures without providing details on how method bodies should be transformed.

In recent work, Steimann and Thies [2009] investigate the correctness of several
existing refactorings in the presence of access modifiers such as public and private.
They identify situations where the application of existing refactorings such as MOVE

CLASS causes unexpected changes to program behavior unless care is taken to adapt

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

9:46 F. Tip et al.

access modifiers. These behavioral changes occur when a refactoring causes references
to methods or fields to be bound differently, resulting in changed virtual dispatch
behavior (by changing method overriding), or by changing the resolution of overloaded
methods. Steimann and Thies present a constraint-based solution to this problem
where the constraints reflect relationships between the declared accessibility of an
entity and the access modifier required to reference another entity from the first entity’s
location. These constraints are similar in spirit to the ones used in our work, but range
over a different domain (access modifiers vs. types).

8. CONCLUSIONS

An important category of refactorings is concerned with manipulating types and class
hierarchies. For these refactorings, type constraints are an excellent basis for checking
preconditions and computing source code modifications. We have demonstrated how
refactorings for generalization, for the introduction of generics, and for performing
migrations between similar classes can be modeled using variations on a common type
constraint formalism. All of our refactorings have been implemented in Eclipse, and
several refactorings in the standard Eclipse distribution are based on our research. We
demonstrated the practicality of the approach by applying several of the refactorings
under consideration to a number of Java applications, and presented a summary of the
experiments conducted and results obtained.

ACKNOWLEDGMENTS

Dirk Bäumer, Julian Dolby, and Markus Keller made significant contributions to the refactorings described
in this paper. Jan Vitek and the anonymous reviewers provided invaluable comments on drafts of this article.

REFERENCES

BALABAN, I., TIP, F., AND FUHRER, R. 2005. Refactoring support for class library migration. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Application (OOPSLA). 265–279.

BECK, K. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley.
BRACHA, G., COHEN, N., KEMPER, C., ODERSKY, M., STOUTAMIRE, D., THORUP, K., AND WADLER, P. 2004. Adding

generics to the Java programming language, final release. Tech. rep., Java Community Process JSR-
000014.

CHOI, J.-D., GUPTA, M., SERRANO, M., SREEDHAR, V. C., AND MIDKIFF, S. 1999. Escape analysis for Java. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Application
(OOPSLA). ACM Press, 1–19.

DE SUTTER, B., TIP, F., AND DOLBY, J. 2004. Customization of Java library classes using type constraints
and profile information. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP). 585–610.

DONOVAN, A. AND ERNST, M. 2003. Inference of generic types in Java. Tech. rep. MIT/LCS/TR-889, MIT.
DONOVAN, A., KIEŻUN, A., TSCHANTZ, M., AND ERNST, M. 2004. Converting Java programs to use generic libraries.

In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Application
(OOPSLA). 15–34.

DUGGAN, D. 1999. Modular type-based reverse engineering of parameterized types in Java code. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages, and Application (OOPSLA). 97–
113.

FOWLER, M. 1999. Refactoring. Improving the Design of Existing Code. Addison-Wesley.
FUHRER, R., TIP, F., KIEŻUN, A., DOLBY, J., AND KELLER, M. 2005. Efficiently refactoring Java applications to use

generic libraries. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP).
71–96.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2005. The Java Language Specification 3rd Ed. Addison Wesley,
Boston, MA.

GRISWOLD, W. G. 1991. Program restructuring as an aid to software maintenance. Ph.D. thesis, University of
Washington. Tech. rep. 91-08-04.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

Refactoring Using Type Constraints 9:47

GRISWOLD, W. G. AND NOTKIN, D. 1993. Automated assistance for program restructuring. ACM Trans. Softw.
Engin. Methodol. 2, 3, 228–269.

HALLORAN, T. J. AND SCHERLIS, W. L. 2002. Models of Thumb: Assuring best practice source code in large Java
software systems. Tech. rep. Fluid Project, School of Computer Science/ISRI, Carnegie Mellon University.

HIND, M. AND PIOLI, A. 2001. Evaluating the effectiveness of pointer alias analyses. Sci. of Comput. Pro-
gram. 39, 1, 31–55.

KERIEVSKY, J. 2004. Refactoring to Patterns. Addison-Wesley.
KIEŻUN, A., ERNST, M., TIP, F., AND FUHRER, R. 2007. Refactoring for parameterizing Java classes. In Proceedings

of the International Conference on Software Engineering (ICSE). 437–446.
KIEŻUN, A., ERNST, M. D., TIP, F., AND FUHRER, R. M. 2006. Refactoring for parameterizing Java classes. Tech.

rep., MIT.
MENS, T. AND TOURWÉ, T. 2004. A survey of software refactoring. IEEE Trans. Softw. 30, 2, 126–139.
OPDYKE, W. F. 1992. Refactoring object-oriented frameworks. Ph.D. thesis, University Of Illinois at Urbana-

Champaign.
OPDYKE, W. F. AND JOHNSON, R. E. 1993. Creating abstract superclasses by refactoring. In Proceedings of the

ACM Computer Science Conference (CSC’93). 66–73.
PALSBERG, J. AND SCHWARTZBACH, M. 1993. Object-Oriented Type Systems. John Wiley & Sons.
RYDER, B. G. 2003. Dimensions of precision in reference analysis of object-oriented programming languages.

In Proceedings of the International Conference on Compiler Construction (CC). 126–137.
SNELTING, G. AND TIP, F. 2000. Understanding class hierarchies using concept analysis. ACM Trans. Program.

Lang. Syst. 22, 3, 540–582.
STEIMANN, F. AND MAYER, P. 2007. Type access analysis: Towards informed interface design. In Proceedings of

the TOOLS Europe.
STEIMANN, F., MAYER, P., AND MEISSNER, A. 2006. Decoupling classes with inferred interfaces. In Proceedings of

the ACM Symposium on Applied Computing (SAC). 1404–1408.
STEIMANN, F. AND THIES, A. 2009. From public to private to absent: Refactoring Java programs under con-

strained accessibility. In Proceedings of the 23rd European Conference on Object-Oriented Programming
(ECOOP). 419–443.

STRECKENBACH, M. AND SNELTING, G. 2004. Refactoring class hierarchies with KABA. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Application (OOPSLA). 315–330.

TIP, F. 2007. Refactoring using type constraints. In Proceedings of the 14th International Static Analysis
Symposium (SAS). 1–17.

TIP, F., KIEŻUN, A., AND BÄUMER, D. 2003. Refactoring for generalization using type constraints. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages, and Application (OOPSLA).
13–26.

TOKUDA, L. AND BATORY, D. 2001. Evolving object-oriented designs with refactorings. Kluwer J. Automat. Softw.
Eng. 8, 1, 89–120.

TORGERSEN, M., PLESNER HANSEN, C., ERNST, E., VON DER AHÉ, P., BRACHA, G., AND GAFTER, N. 2004. Adding wild-
cards to the Java programming language. In Proceedings of the ACM Symposium on Applied Computing.
1289–1296.

VON DINCKLAGE, D. AND DIWAN, A. 2004. Converting Java classes to use generics. In Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages, and Application (OOPSLA). 1–14.

Received June 2009; revised December 2009, May 2010; accepted July 2010

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 3, Article 9, Publication date: April 2011.

