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1. INTRODUCTION

Many processors execute cryptographic software on a regular basis. When implemented
properly, the input-output behavior of that software provides strong guarantees against
attacks on privacy, authentication, and other applications of cryptography.

In practice, however, the implemented input-output relation is not the only observ-
able property. Depending on the physical or network access to devices, attackers can
observe properties such as electromagnetic radiation, power consumption, resource
consumption and execution times. These properties are called side channels when they
feature a correlation with protected data such as secret keys. Side-channel attacks
exploit this correlation to attack cryptographic software.

1.1. Side-Channel Attacks and Defenses

Depending on the granularity with which side-channel information can be observed
by an attacker, different types of attacks can be mounted. Trace-driven attacks have
been described in which side channels leak enough information to reconstruct the
whole execution trace of the attacked algorithm [Kocher et al. 1999; Lauradoux 2005;
Aciicmez and C. Ko¢ 2006; Aciicmez et al. 2007a, 2007b; Aciigmez 2007]. Access-driven
attacks have also been discussed in which enough side channel information is available
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Fig. 1. Conditional execution time distributions of a cryptographic algorithm given two possible secret keys.

to reconstruct the access patterns to architectural components such as caches, branch
predictions tables, and execution units [Neve and Seifert 2007; Aciicmez et al. 2010;
Gullasch et al. 2010; Brumley and Hakala 2009; Osvik et al. 2006; Ristenpart et al.
2009; Wang and Lee 2006; Uhsadel et al. 2008]. Time-based attacks have been proposed
that are based solely on the observed execution time [Bernstein 2005; Bonneau and
Mironov 2006; Brumley and Boneh 2005; Brumley and Tuveri 2011; Kocher 1996;
Aciigmez et al. 2007; Dhem et al. 1998]. It has been shown that for many attacks, the
dependence between secret key properties and side-channel information need not be
known to the attacker beforehand. Instead, it suffices to discover the existence of a
dependence during the attack. One well-known method to measure this dependence is
based on so-called mutual information [Gierlichs et al. 2008].

Many mitigation strategies and countermeasures against side-channel attacks have
been described in literature. They range from the hardware level [Wang and Lee 2006;
2007; Gueron 2008; Bernstein 2005], over software [Molnar et al. 2005; Bernstein 2005;
Hedin and Sands 2005; Brickell et al. 2006; Coppens et al. 2009; Kopf and Dirmuth
2009], to the algorithmic level of abstraction [Kocher 1996; Joye and Yen 2003; Guajardo
and Mennink 2010], and combinations thereof [Bayrak et al. 2011].

This paper explores the trade-off between security, performance, and portability of
compiler-based defenses against time-based side-channel attacks on x86 processors. We
consider attacks based on direct measurements of the execution time of a cryptographic
process, as well as indirect attacks that measure the influence of a cryptographic
process on the execution time of another process controlled by the attacker.

1.2. Leaked Information and Security Guarantees

Some of the aforementioned attacks derive bits of the secret key directly from the
reconstructed traces and patterns or from the observed timing [Gullasch et al. 2010;
Aciigmez et al. 2007a], while others collect statistical information with which the search
space of a brute-force attack can be pruned [Kopf and Basin 2007]. In the latter case,
the pruning will be more effective when more useful information is leaked. Regarding
this leaked information, most countermeasures aim at limiting the amount of infor-
mation leaked [Bayrak et al. 2011; Kopf and Diirmuth 2009]. Other countermeasures
try to add noise to the information [Kocher 1996]. To illustrate the difference between
limiting information leakage and adding noise, imagine a decryption algorithm with
two possible keys. The two conditional statistical distributions of the algorithm’s
execution time (one for each key) are depicted in Figure 1(a). Very few measurements of
the execution time suffice to extract the key reliably. When the algorithm is rewritten
such that both conditional distributions become identical, as depicted in Figure 1(b),
no information leaks at all. When the distributions are not identical but overlapping,
as in Figures 1(c) and 1(d), less information is available to an attacker. The amount
of useful information depends on the whole conditional distributions, not only on their
expected values. So depending on the attack context, more or less difference in expected
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execution times can be tolerated. When little noise is present because an attacker has
full control over all tasks running on a local machine, an acceptable level of security
can only be reached by making the execution times obtained with different keys nearly
identical, as in Figure 1(c). But when a lot of noise is present due to variable network
delay over the Internet and due to the unknown load of a cloud processor, a larger dif-
ference in expected execution times as depicted in Figure 1(d) can still provide the same
level of security. The effect of such noise has been quantified in literature [Ristenpart
et al. 2009; Crosby et al. 2009]. As can be expected, the signal-to-noise ratio has a
major influence on the amount of useful information an attacker can extract, and on
the effort he has to invest to mount an attack. Smaller signal-to-noise ratios require
the attacker to perform more measurements, up to the point where it can become
infeasible to mount an attack, e.g., because encryption keys are refreshed frequently.

This paper studies compiler transformations for sensitive code fragments that reduce
the signal-to-noise ratio by minimizing (potentially even eliminating) the dependence
of execution time behavior on secret key values. We study the overhead of a number of
code transformations in terms of average performance losses, as well as their resulting
security in terms of indistinguishability between different keys’ execution times. We
also study the portability of those properties over different processor architecture ver-
sions and their sensitivity to features of the transformed code fragments. Furthermore,
we pinpoint issues with the predictability and testability of the delivered security. To-
gether, these aspects enable us to assess the feasibility of mitigation techniques in
static compilers and in dynamic compilers. The latter are found in virtual machines
(VMs) that use JIT compilers and in dynamic binary translation engines. Static and
dynamic compilers differ with regard to side-channel mitigation because on the one
hand static compilers are allowed to spend more compilation time for providing secu-
rity guarantees, while dynamic compilers on the other hand do not need to worry about
the portability of the security guarantees.

1.3. Contributions of This Paper

Key-dependent control flow transfers are the most obvious cause of correlation between
secret keys and execution time. This correlation can be avoided by eliminating condi-
tional branches and by fixing loop bounds. Our previous work discussed how a compiler
backend can exploit the conditional move instruction on the x86 to eliminate branches
by means of if-conversion [Coppens et al. 2009]. The elimination of conditional control
flow transfers also eliminates, in a portable manner, the influence of secret keys on
execution time through the microarchitectural side channels of branch prediction, in-
struction caching, and branch target buffers [Aciigmez et al. 2007a, 2007b; Aciigmez
2007]. Others have proposed satisfying solutions for closing the microarchitectural side
channel of data caches [Wang and Lee 2006, 2007].

This paper therefore focuses on operations with variable latency irrespective of cache
and branching behavior. The issues caused by such instructions relate to data flow and
to features of modern processor pipelines. The presence of these causes was discussed
in our previous work [Coppens et al. 2009], but no solutions were studied. This paper
presents and evaluates such solutions. Our main contributions are the following.

—The study of several mitigation techniques against timing variations caused by data
flow behavior on modern x86 processor pipelines.

—A demonstration of the fact that compilers can provide strong protection only at a
high performance overhead, and without forward compatibility.

—A demonstration of the fact that weaker protection, without portable security guar-
antees, can be provided at lower levels of overhead.
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1.4. Structure of the Paper

The remainder of this paper is structured as follows. Section 2 discusses causes of tim-
ing variations related to data flow and modern x86 pipelines. Section 3 discusses some
potential mitigations, which are evaluated in Section 4. Section 5 draws conclusions.

2. EXECUTION TIME ON MODERN PROCESSORS

This section discusses the variations on execution time on modern x86 processors
caused by data flow properties. As for execution time variations relating to control flow
and caches, we will neglect those causes in the remainder of this paper unless explicitly
stated otherwise, and we refer the reader to the existing literature as mentioned in the
introduction. This section also discusses the relevant differences with regard to data
flow between different recent x86 processors.

For this paper, we performed experiments on a dual core Intel Core 2 Duo E8400 that
lacks hyperthreading (HT), on a dual CPU 2x4 core Intel(R) Xeon E5620 with HT, and
on a single core Intel Atom N280 with HT. On any of these processors, the execution time
of a program depends heavily on the data dependencies between successive instructions
in a program. As the (true) data dependencies on the critical path in a data dependency
graph (DDG) of the executed code put a fundamental limit on the Instruction-Level
Parallelism (ILP) that can be exploited by a processor, having fewer dependencies
implies that more Instructions get executed Per Cycle (IPC).

By and large, the data dependencies in a program are fixed statically, as they are
determined by the registers occurring in the instruction encodings. The one exception
to the observations is formed by memory operations. Whether a store and a consecu-
tive load depend on each other depends on the addresses used in the operations. The
influence of this dependence on execution time is discussed in detail in Section 2.3.

Furthermore, the length of the critical path in a DDG is determined by the individual
execution latencies of the operations on it. Most non-memory operations have fixed
latencies. There are some exceptions, however, for arithmetic instructions that are
so complex that they are implemented by means of microcode instruction sequences.
Some typical such sequences allow an early exit (a.k.a. early termination), of which the
influence on execution time is discussed in Section 2.2.

First we briefly discuss how conditions occurring in conditional move instructions
do not influence execution time, as we will rely on this property in the mitigating
transformations presented later in the paper.

2.1. Conditional Moves
Consider the three following x86 loop bodies.

body 1: mov ecx, edi body 2: mov eax, edi body 3: test edx,edx
add eax, ebx add eax, ebx cmoveq eax, edi
add eax, ebx

In all loop bodies, the last instruction adds the value in ebx to that in eax. When the
first loop body is executed in a loop, eax serves as an accumulator to which the value
in ebx is added repeatedly. So all additions in subsequent iterations depend on each
other. In the second loop, each iteration starts with a fresh value being copied into eax.
The register renaming pipeline stages in out-of-order processors detect this, and the
second loop gets executed up to 40% faster as a result.

In the third loop body, test sets condition flags depending on the loop-invariant value
in edx. If that value is zero, the cmoveq instruction is executed, copying the value of
edi into eax. In that case, the third body performs the same computation as the second
body. If the value of edx is not zero, the third body performs the same computation as
the first body. Despite these two different behaviors, we observed identical execution
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times when executing this third loop body in an unrolled loop with edx either fixed to
zero or to some nonzero value.

This experiment demonstrates that the values of the guard conditions of conditional
moves do not influence execution timing. As discussed extensively in our previous
work [Coppens et al. 2009], this property fundamentally results from the fact that
register renaming is implemented in the in-order stages of pipeline frontends. As we
do not expect that aspect of pipeline design to change in the near future, we can
safely rely on this fixed execution time of conditional moves. We relied on it to apply
if-conversion in our existing work [Coppens et al. 2009], and will rely on it again in
Section 3.2.

2.2, Variable Latency Arithmetic Instructions

Variable-latency arithmetic instructions such as multiplication are known to be a side
channel [Groszschaedl et al. 2009]. For that reason, some architectures offer the option
to disable the variable latency through control registers [ARM Limited 2004].

Studying several x86 documents [Coke et al. 2008; Fog 2011], we found one class of
commonly used arithmetic instructions with variable instruction latency: the signed
and unsigned, 32-bit and 64-bit variations of the integer division. These instructions
are also used to compute remainders of divisions, and hence play a role when modulo
arithmetic is needed, as in many cryptographic algorithms.!

Intel documents state that the execution time of an integer division instruction on its
recent out-of-order processors depends on arguments being zero and on the number of
quotient bits that need to be generated. This number equals the distance in bit positions
between the most significant bits of the divisor and the dividend. Public documentation
also mentions the minimum and maximum latency of the division instructions on
different generations of Intel core [Fog 2011; Granlund 2011], but further details on
the relation between operands and latency are missing.

In order to understand that relation and the potential consequences for side-channel
attacks, we measured the execution time of a program consisting of division instructions
executed in a loop on loop-invariant structured and randomly selected arguments
covering the whole 32-bit unsigned integer range. We measured execution times with
operands which are exact powers of two and compared this to the execution times using
random numbers of the same magnitude. We found the latencies indistinguishable.

As we can only measure the execution time and cycle count of that whole program,
we cannot give exact latencies for individual divisions. We can, however, distinguish
different latencies by comparing the total execution times. Figure 2 shows the results
of this experiment for the Core 2 and Xeon for 32-bit unsigned divisions. Each shade
corresponds to a latency, with darker shades corresponding to higher latencies.

Several observations can be made about these results. First of all, the Intel documen-
tation is correct. Secondly, there are a limited number of distinct latencies: six for the
Core 2 processor, and seven for the Xeon Nehalem core. Third, due to the regularity of
the results and the existence of the bsr bit-scan-reverse instructions that computes the
location of the most-significant bit set, it is rather easy for a given processor to write
code that computes the latency class given the divisor and dividend values. Fourth, the
exact latencies and their patterns differ from one architecture generation to the other.

IWhile no side-channel attacks exploiting variable-latency divisions are currently known, it is better to be
cautious. Moreover, variable-latency divisions are conceptually not different from variable-latency multipli-
cations. The conclusions drawn here can hence also be used on other architectures that feature variable-
latency multiplications [ARM Limited 2004], and in the event Intel would decide to implement variable-
latency multiplications in the future.
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0 most significant true bit in dividend 31 0 most significant true bit in dividend 31

most significant true bit in divisor
most significant true bit in divisor

31 31

(a) Core 2 latency classes (b) Xeon latency classes

Fig. 2. Table showing the different latency classes of the 32-bit unsigned integer division instruction de-
pending on the most significant true bits in dividend and divisor.

The results for other division instructions are similar, the main difference being that
for 64-bit divisions, about twice as many different latency classes are observed. So
the four above observations still hold. In Section 3, we will consider some mitigation
strategies based on these observations.

2.3. Interaction between Memory Operations
Consider the following program fragment.

loop body: mov dword [ebx], 2 // store
add eax, [ecx] // load

When this fragment is executed in a loop, it will repeatedly store the value 2 at the
memory location to which register ebx points, and it will repeatedly add to eax the
value at the memory location to which ecx points. Since only two memory locations
are touched in this loop, the cache will not influence the timing significantly when the
loop has enough iterations. A number of other micro-architectural features do influence
the execution time of such a loop, however. Some of these features only relate to the
static properties such as the instruction mix and instruction ordering in the assembly
code. Their influence on the execution time of a program will hence be constant over
all possible program executions. Consequently we can safely ignore these with regard
to the time-based side channels.

Other features do depend on the actual memory locations accessed and will cause a
different program execution time for different program inputs, causing potential infor-
mation leakage. The most important such features present on some but not all Intel
processors are optimistic and pessimistic load bypassing, store forwarding, 4K alias-
ing, memory disambiguation (i.e., conflict speculation), alignment, partial aliasing, and
bank conflicts. While code optimization manuals document these features [Intel Cor-
poration 2011; Doweck 2006; Intel Corporation 2010; Shen and Lipasti 2005], no spec-
ification of their exact implementation, interaction and timing behavior is available.
Moreover, their implementation and their behavior differ significantly from one archi-
tecture generation to the other. In addition, the influence on execution time depends to
a large extent on the arithmetic code that surrounds the memory accesses. Assuming
no cache misses or branch mispredictions, the execution progress is mainly limited
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Fig. 3. Execution time differences on a Core 2 Duo and Atom processor of a microbenchmark loop with
aligned 32-bit and 8-bit resp. load and store instructions executed for varying displacements between the
accessed locations and for varying alignments of the addresses.

by saturating buffers in the instruction pipeline that cause pipeline bubbles or stalls.
Which buffers cause stalls first, and hence which specific slow down is experienced,
depends on the instruction mix as well as on buffer sizes.

In summary, it is very difficult if not impossible to predict the execution speed of
memory access streams. In fact, it is even difficult if not impossible to pinpoint the
exact reasons for slowdowns in observed executions.

For example, we measured the execution time of the above loop body storing aligned
4-byte values on an Intel Core 2 Duo for different loop-invariant base addresses in
ebx and ecx. Two different execution times were observed, depending on the offset
between the load and store addresses, and on their alignment. Figure 3(a) depicts the
precise relation we observed. Even for this simple loop, we cannot explain this relation
completely. Most of the light area (i.e., faster execution) and the first, dark column can
be explained by means of load bypassing. When the load and store addresses differ,
load bypassing speeds up the program. When they are the same, there is a dependency
that slows down the program. The fact that the same behavior is observed for all
offsets modulo 64, i.e., the fact that the behavior is periodic with period 64, indicates
that the load bypassing is pessimistic and that only bits 3 to 5 of the addresses are
used to determine if load bypassing is allowed. However, for the slowdowns observed
in the columns 4, 52, 56, and 60, we have no satisfactory explanation. We suspect
that they are caused by pipeline features that optimize the handling of (unaligned and
partially overlapping) 64-bit and 128-bit (SSE) memory accesses, but cannot confirm
this. We studied several Intel manuals, collected many program traces including all
possible performance counters (including ones that count store buffer saturation, the
stall cycles resulting from it, the number of overlapping loads and stores, the numbers
of loads and stores accessing multiple cache lines, etc.) and contacted Intel engineers,
but none of these information sources provided satisfying explanations.

At this point, it is important to repeat that it is not necessary to understand the
causal relation between secret data and observable side channel behavior to mount a
successful side channel attack. Techniques have been developed that detect any exist-
ing correlation automatically and that exploit them to retrieve additional information
about the secret data [Gierlichs et al. 2008; Batina et al. 2011].

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 23, Publication date: January 2012.



23:8 J. Van Cleemput et al.

Data dependencies through memory do not only occur on complex out-of-order ar-
chitectures. Even on the less complex Atom architecture we observe timing variations
due to data dependencies through memory. Consider the following program fragment.

loop body: mov byte [ebx], 2 // store
add al, [ecx] // load

Instead of 4-byte words, this fragment accesses individual bytes. As this is an in-
order architecture, load bypassing cannot be the cause of difference in execution time
depending on addresses. However, on this processor we also observe different timings,
as visualized in Figure 3(b). In this case, the difference in timing seems to be caused
by different ways of overlapping of forwarded data. Intel documentation only states
that different latencies can occur when accessing multiple bytes within a 4-byte word.
Clearly, the differences for this code and processor occur along very different patterns.

We conclude this section with pointing out that each of the two visualized patterns
only occur on one processor architecture. The first pattern of Figure 3 as observed on
the Core 2 Duo processor is completely absent when running the same 4-byte memory
access microbenchmark on the Xeon Nehalem (which has larger buffers and a different
memory hierarchy architecture) or on the Atom processor (which is in-order). Vice
versa, the second pattern of Figure 3 as observed on an Atom processor is completely
absent on the two out-of-order cores.

3. MITIGATION STRATEGIES

This section discusses several potential mitigation strategies for variable-latency arith-
metic instructions and for interacting memory operations.

The most obvious mitigation strategy is to avoid the variable-latency instructions
altogether. For the division instruction, e.g., it is easy to write a library function that
performs the division in constant time, without division instructions. Replacing each
division by a call to such a function solves the problem, albeit at a significant overhead
as we demonstrated in our previous work [Coppens et al. 2009]. Moreover, for other
instructions such as memory accesses, it is simply impossible to avoid them.

In this paper, we study alternative solutions that do include the execution of variable
latency instructions, but in such a way that they do not influence the total execution
time. Two different code rewriting strategies are studied to achieve this. The first
strategy is to rewrite the code such that the total execution time no longer depends on
the variable latency of individual instructions. The second strategy is to rewrite the
code such that all instructions that have variable latency in general, now get executed
in a context that forces a constant latency on them.

3.1. Strategy One: Variable-Latency Compensation Code

With this strategy, we try to add compensation code to program fragments such that
the execution of the original variable-latency code and the compensation code combined
always results in the same total execution time.

When we neglect all instruction caches, instruction branch target and translation
look-aside buffers, as we can after conditional branches have been eliminated, the total
execution time of a sensitive code fragment on a processor is determined by (1) the
state of the processor upon entry of the code fragment, (2) the data consumed by the
fragment, and (3) the DDG of the code fragment itself.

Forcing the entry state to some predetermined state upon entry of a sensitive
variable-latency code fragment is impossible without huge performance overhead. As
a result, it is impossible to make the execution time of any sensitive code fragment
truly constant with low overhead. However, we don’t need that time to be constant.
We only need it to be independent of the secret data. That implies that variations in
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(a) variable-latency (b) same with sequential (c) same with parallel
instruction compensation code compensation code

fixed time
=4
fixed time

Fig. 4. A simple DDG in which visual height models instruction latency and execution time.

the entry state that do not depend on secret data can be tolerated. As such, we can
reason along the lines of mathematical induction: when the entry state of a fragment is
independent of secret data and when the fragment’s own execution time and processor
state transition is independent of secret data (because it does not consume secret data
or because we apply a mitigation technique), the exit state is also independent. As
such, the entry state of the next fragment is independent of secret data. Clearly, it is
possible to make the entry state of the program independent of secret data. So we don’t
need to consider the entry state to a sensitive program fragment as long as we can take
care of the fragment itself.

Changing the data consumed by a sensitive code fragment is generally not feasible for
a compiler when that data concerns the secret key and input data or some derivatives
thereof. Only the algorithm designer or programmer can do that. So the only remaining
option is to transform the DDG of the code fragment such that irrespective of the data
operated on, the fragment’s execution time is independent of the secret data on which
it operates. We study two potential DDG transformations to achieve this.

First, we can try to make the total latency of the path in the DDG containing the
variable-latency instruction constant by adding sequential compensation code such that
the sum of the latencies on the resulting path always equals a constant. Consider the
original variable-latency instruction as depicted in Figure 4(a). The two alternative
executions of the DDG in the figure model the fact that whenever the instruction is ex-
ecuted, it will execute with one of two latencies. In Figure 4(b) sequential compensation
code has been added. This compensation code is visualized in the figure as one dark
blue operation node for the sake of clarity. In practice, however, the compensation code
cannot simply be one instruction, as it needs to compute what should be compensated
and before it can actually perform the necessary compensation.

Secondly, we can try to ensure that the variable-latency instruction is not on the crit-
ical path of the DDG by inserting parallel compensation code that needs more cycles
to execute than the maximum of the variable latencies. This concept is visualized in
Figure 4(c). For a combination of reasons, this parallel compensation code will typically
also have to consist of more than one instruction, as depicted in the figure. In order to
hide the variable latency completely, the parallel compensation code obviously needs to
be executed in parallel with the variable-latency code. So it must consist of instructions
that do not execute on the same pipeline components. Hence the parallel compensation
code cannot contain the variable-latency instruction itself, or variations thereof. Fur-
thermore, the very reason for instructions being implemented with variable latency
is a high maximum latency, up to 116 cycles for the integer division on some Intel
x86 processors. This implies that the parallel compensation code has to be built from
multiple, shorter, fixed-latency instructions.
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Considering the pipelines of modern x86 instructions, several instructions are avail-
able for the parallel compensation of variable-latency divisions, including sequences of
multiplication. Section 4 reports on the results obtained with such sequences.

We should note that for indirect attacks, the parallel compensation method cannot
provide any solution. Such attacks do not measure the execution time of the process
under attack but instead measure that process’ effect on another process caused by
resource contention. This effect can even be observable through many software layers.
For example, we verified that on an x86 processor with simultaneous multithreading
(SMT), one Java program executing divisions in one Java VM running on top of an
operating system virtualized with Xen and pinned to a specific SMT core, can approx-
imately measure the occupation of the divider by another Java program running in
another Java VM, in another Xen VM, but pinned onto the same SMT core.

With parallel compensation code, the occupation of the execution units used by
variable-latency operations remains variable, so parallel compensation code cannot
close this indirect time side-channel.

3.2. Strategy 2: Forcing Invariable Latencies

An alternative strategy is to manipulate the operands of variable-latency instructions
or the way in which memory accesses interact to force a constant latency on them.

In the case of division, for example, one could imagine shifting the operands before
the division, and then shifting back after the division to force maximum latency. Or by
trying to replace a division A/ Bby 2(A + 2B)/2B—2 which would never cause early exit.
However, given that most division instructions in cryptographic software are executed
to compute remainders, we have not found any such sequence which does not suffer
from either rounding errors or from overflow in parts of the operand range. So this is
not a generic solution. In some cases, however, this type of mitigation is feasible, such as
when the divisor is public knowledge. This is often the case in public key cryptography
where the modulus of the encryption and decryption is part of the the public key, and
where it is most of the time a fixed value throughout the computation [Menezes et al.
2001]. The execution time is then only dependent on the most significant bit in the
dividend. To eliminate execution time variation, it suffices to shift the dividend to the
left such that the most significant bit is always set to true. The divisor does not need
to be shifted, and hence overflow and rounding errors are not a problem.

An alternative, generic solution consists of building a DDG in which multiple copies
of the variable-latency instruction are executed, with exactly one copy per possible
latency, and by forcing the operands of those copies to be such that all of them have the
desired constant latency. In addition, forcing the operands to appropriate values has to
happen in such a way that at least one copy executes the proper, original division. Then
after all divisions have been computed, code needs to select the correct result among
all computed results by means of conditional moves.

This solution is visualized in Figure 5. Whereas Figure 4 depicts alternative exe-
cutions of a DDG, this figure depicts only one DDG. The inserted nodes at the top
model the code that computes suitable operands from the original operands such that
all copies of the original instruction will have a different, but constant execution time.
The node inserted at the end models the selection of the correct result among all com-
puted ones. Clearly, this solution will also involve some overhead. Using the already
mentioned bsr instruction, the overhead stays limited. We evaluate it in Section 4.

This solution also provides excellent protection against indirect attacks: as the re-
source use is now constant, its influence on other processes becomes constant as well.

For memory operations that have variable latency because their interaction depends
on concrete addresses on which they operate, the above solutions are not applicable.
We can, however, force them to have an invariable execution time by excluding the
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Fig. 5. An extended DDG that includes all latency variations of a variable-latency instruction.

unwanted interaction altogether. For example, in the case of interacting stores and
loads, all of the pipeline optimizations discussed in Section 2.3 only matter when the
store and load are in flight in the processor pipeline simultaneously. So whenever
such a pair of instructions occurs in a program fragment of which the compiler cannot
determine that the addresses operated upon will lead to fixed timing or that they are
independent of any secret data, it suffices to pull the instructions apart.

This can be done by simply inserting no-ops. While it may come as a surprise that
simple no-op insertion can work, processor designers do not expect compilers or pro-
grammers to insert no-ops in sequential code. While no-ops are inserted to optimize
code alignment, the inserted no-ops are then merely padding that almost never gets
executed. So the processor designers do not implement any pipeline optimization to
get rid of no-ops in instruction streams [Intel Corporation 2011]. Consequently, the in-
serted no-ops result in pipeline bubbles, which can effectively force loads and stores to
be executed separately, without any interaction and hence without variable execution
times as a result. This strategy is also evaluated in Section 4.

With respect to indirect time attacks, this method of inserting no-ops provides as
many guarantees as for direct time attacks. When the interaction between loads and
stores is avoided (and still neglecting caches for which other solutions exist), their oc-
cupation of buffers and other resources in the pipeline also becomes data-independent.
So resource contention with other processor cannot leak any information.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed mitigation techniques. This evaluation in-
cludes the mitigation success, the performance overhead, and the feasibility of im-
plementing the proposed mitigations in a compiler backend. All results for variable-
latency arithmetic are based on compiled and handwritten assembly implementations
of modular exponentiation, of which a basic C implementation looks as follows.

result = 1;
do {

result = (result*result) % n;

if ((exponent>>i) & 1)

result = (result*a) % n;

i--;
} while (i >= 0);
To eliminate the conditional control flow, we relied on the support implemented in

LLVM and discussed in our previous work [Coppens et al. 2009]. The generated code

forms the basis for the experiments described here. In this code, the division instruction
is used to perform the modulo n computation.
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To evaluate the effectiveness of the proposed mitigation techniques, we ran the
modular exponentiation code on inputs consisting of (1) randomly varying modulo
values, (2) randomly varying base values, and (3) four different types of exponents.

In the Zero input set, the exponent in binary format consists of all zeroes except for
the two most-significant bits set that are set to one. This ensures that the variable
result does not remain constant throughout the whole loop. Having all other bits set
to zero ensures that the conditional code in the original loop will only be executed twice
per loop. This pattern results in very accurate branch prediction. In the One input set,
all bits in the exponent are set to one. This ensures that the conditional code in the
loop is executed in every iteration in the original, unprotected code. So in total, the
conditional code is then executed 32/64/256 times per loop for 32/64/256-bit numbers.
This pattern also results in very accurate branch prediction. So when this input is fed
to a benchmark, much more code is executed than with all-zero input, but the branch
predictor performs similarly. In the Regular input set, half of the bits are set to one
in a regular pattern. This implies that the conditional code is executed in half of the
iterations in the original unprotected code, and that the pattern is predicted very well
by the branch predictor. In the Random input set, half of the bits are set to one as
well, but now the pattern of zeroes and ones is generated by a pseudo-random number
generator. Consequently, this input will result in the same amount of code executed as
for the regular input set, but branch prediction will be much less accurate, resulting in
more branch misses and higher execution times in the original, unprotected code.

Please note that the number of times each loop was invoked per experiment differs
from one experiment to the other. For each benchmark, the number of invocations was
chosen to be a good balance between fast experiments and accurate measurements.

4.1. Strategy One: Variable-Latency Compensation Code

To test the mitigation strength of compensation code as discussed in Section 3.1, we
developed an LLVM [Lattner and Adve 2003] plugin to insert parallel compensation
code. This plugin operates on the LLVM high intermediate representation. The gener-
ated compensation code for this example takes the dividend as input and invariantly
computes the value 1 using a number of shifts and mostly multiplications, as illus-
trated in the equivalent C code in Figure 7. That resulting 1 is then multiplied with
the remainder result of the division instruction. That final multiplication serves as the
bottom node of Figure 4(b). It take the division instruction off the critical path.

Several versions of this loop were generated, with increasing numbers of multipli-
cations to discover the minimal required number to omit the variable-latency division
from the critical path. Figure 6(a) demonstrates that the average execution times for
the four inputs converge after 6 multiplications. So surely this mitigation technique
helps in reducing the amount of useful information leaked via the time side chan-
nel. The performance overhead is also limited in this case. For 6 multiplications, the
overhead is about 7%.

To test whether all useful information is eliminated, more rigorous statistical testing
is needed. To that extent we performed t-tests on the sets of 100 timings we obtained
for each of the four inputs. Figure 6(b) shows the p-values of those tests obtained from
comparing the One input set to the Zero input set and from comparing the Regular
input set to the Random input set. This figure shows that only the versions with 15 and
39 multiplications survive the t-tests. So according to these tests, only those versions
are likely free of leakage.

To understand why precisely these two versions provide more security, we studied
the execution of the mitigated code versions using a wide range of performance coun-
ters. We discovered that even when the compensation code is executed on different
functional units to enable its execution in parallel with the division instruction, there
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Fig. 6. (a) Average execution times (number of cycles on a Core 2 Duo) of a 100 executions on a Core 2
Duo processor of a loop performing modular exponentiations, for four different inputs. Processor time stamp
counters are used to measure the execution times. (b) p-values of t-tests to test distinguishability between
different inputs on the Core 2 Duo. (¢) p-values for same program on a Xeon processor. (d) p-values for a
minimally changed program on the same Core 2 Duo.

tmpl = (dividend >> 31) | 1; // tmp 1 is always 1 or -1
quotient = dividend / divisor;// original division intended to be executed in parallel with multiplications

tmp2 = tmpl * tmpl; // tmp2 and beyond are always 1
tmp = tmpn * tmpn; // n multiplications in total
quotient = quotient * tmp; // final multiplication to take division off critical path

Fig. 7. C code equivalent of variable-latency division in parallel with fixed-latency multiplications.

are various other pipeline components such as buffers and ports for which there is
contention between the compensation code and the division. Through this contention,
the variable latency of the division instruction can still influences the execution of the
compensation code, thus influencing the total execution time. For this precise combi-
nation of processor architecture and code fragment, 15 and 39 proved to be the right
numbers of multiplications to eliminate the time dependence completely.

We have no knowledge of publicly available hardware models that would allow a
compiler to predict this. Furthermore, when we make small changes to the original
code before inserting the parallel compensation code or when we run the code on other
out-of-order processors with variable-latency division instructions, similar results are
obtained, that peaks in the t-test results occur for different numbers of multiplications.
Figure 6(c) shows the t-test result for the same code fragment on our Xeon processor,
while Figure 6(d) shows the t-test result for the same Core 2 Duo processor and for a
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software version in which we removed 4 padding bytes before the function containing
the sensitive code fragment.

Similar experiments in which we used long-latency load operations (through forced
cache misses) as parallel compensation code, gave results along similar lines.

From these experiments, we draw the following conclusions.

—In at least the presented case, parallel compensation code is able to limit the amount
of useful information leakage significantly.

—The performance overhead is relatively low when no strict security guarantees are
needed, as in the case where close but non-identical averages suffice.

—In at least the presented case, parallel compensation code is able to eliminate all
leakage.

—However, this stricter security guarantee can only be achieved at a much higher
overhead.

—A specific instance of the mitigation, such as a specific number of multiplications,
provides no portable security guarantees for different processor versions.

—1It is unpredictable which specific instance of the mitigation is most effective.

—The effectiveness of a precise instance of the mitigation is highly sensitive to the
precise form and even location of the code fragment to be protected.

With respect to the sequential compensation code strategy, we simply did not succeed
in write concrete, effective mitigation code. And even if sequential compensation code
can be crafted that satisfies the needed security guarantees for a specific software-
hardware combination, all of the mentioned predictability, portability and sensitivity
issues will still apply.

4.2. Strategy 2: Forcing Invariable Latencies

Next, we manually rewrote the 32-bit version of the modular exponentiation code to
implement the strategy depicted in Figure 5. The resulting average execution times
and p-values are presented in Figure 9. Results are again presented for four inputs
and two t-tests. Four software versions have been measured in this experiment:

(1) original: the original version as compiled with LLVM without any mitigation;

(2) if-conversion: the version generated by a modified LLVM that eliminates the con-
ditional branches [Coppens et al. 2009];

(3) if-conversion + nodiv function: an if-converted version in which LLVM replaced the
division instruction by a call to a fixed-time library function that emulates division
without executing a single division instruction.

(4) if-conversion + 6 div function: an if-converted version in which LLVM replaced the
32-bit division instruction by a call to a manually written assembly function in
which 6 divisions with forced invariable latencies are executed, corresponding to
the 6 latency classes of the 32-bit division instruction on the Core 2 architecture.
Figure 8 shows the main body of this function in equivalent C code.

These results indicate that the proposed solution is capable of completely closing
the time side-channel leak due to the variable latency division instruction. Equally
important, additional experiments demonstrated that this solution does not depend on
the exact form of the code fragment to be protected. Whatever the surrounding code of
the division looks like, the proposed solution works.

The overhead of this solution is more than a factor 4, however, which is considerably
higher than the overhead resulting from parallel compensation code as measured in
the previous section. Still, compared to using a library function, this novel mitigation
technique is about 3.5 times more efficient.
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class = divisor < 2 7 1 : divisor < 0x20 ? 2 : divisor < 0x200 ? 3 : divisor < 0x2000 7 4 : ...;
leading_zeroes = 31 - bsrl(dividend); // using fixed-latency bit-scan-reverse instruction
dividend <<= leading_zeroes;

resultl = shifted_dividend / ( class == 1 ? divisor : 0x2); // fixed latency!
result2 = shifted_dividend / ( class == 2 ? divisor : 0x20); // fixed latency!
result3 = shifted_dividend / ( class == 3 ? divisor : 0x200); // fixed latency!
result4 = shifted_dividend / ( class == 4 ? divisor : 0x2000); // fixed latency!
results = shifted_dividend / ( class == 5 7 divisor : 0x20000); // fixed latency!
result6 = shifted_dividend / ( class == 6 7 divisor : 0x200000); // fixed latency!
quotient = class == 1 ? resultl : class == 2 ? result2 ; class == 3 ? result 4 ? ...;

quotient >>= leading_zeroes;
remainder dividend - (quotient * divisor);

Fig. 8. C code equivalent of unsigned division computation using only invariable-latency divisions. All
selection statements a?b:c are implemented with fixed-latency conditional moves. The (re)computation of
the remainder is necessary because the remainders computing using shifted dividends are not correct.
Similar code can be used for signed division, but then the sign needs to be corrected afterwards.

original if-converted if-converted + nodiv function if-converted + 6 div function
all zero | all one | regular [random| all zero| all one [ regular[random| all zero| all one [ regular|random| all zero| all one | regular [ random
0611 1,127] 0,845] 0978 1,242] 1,255] 1,251 1,045] 20,800] 20,800] 20,800] 20,800] 5,774] 5,774] 5774] 5774
(a) average execution times (in seconds)
original if-converted if-converted + nodiv function if-converted + 6 div function

all zero ] all one ] regu/arlrandom

all zerol all one ] regularlrandom

all zerol all one ] regularlrandom

all zerol all one ] regu/arlrandam

0,007] 0,000 0,000/ 0,000 0,000 0,000 0,000] 0,000] 0,000 0,000 0,000 0,000/ 0,001 0,001] 0,001] 0,001
(b) standard deviation of execution times
original if-converted if-converted + nodiv function if-converted + 6 div function
all zero - all one | regular-random | all zero - all one| regular-random | all zero - all one| regular-random | all zero - all one] regular-random
0,0000 [ 0,0000 0,0000 [ 0,0000 0,2882 [ 0,1350 0,4816 [ 0,2146

(c) p-value of the t-test applied to the execution times

Fig.9. Execution times and statistical information on the successful mitigation of variable-latency divisions
in modular exponentiation.

At this point, it is useful to keep in mind that only the sensitive code in an application
needs to be protected. So in most applications, the aforementioned overhead will only
be observed on small fractions of the execution time, and might hence very well be
negligible in the total execution time.

With respect to portability, this solution can be extended to provide security portabil-
ity over all existing processor versions. For each different processor version, a specific
secured code version can be provided in the software. When the software is executed,
the cpuid instruction is used to query the processor for its version in order to invoke the
appropriate code version. Obviously this will introduce some additional performance
overhead as well as significant code size overhead. With respect to future processors,
an application could refuse to continue when executed on a processor version for which
it has no secured code. This may be not very user-friendly, but at least the security
guarantee is not broken. We can conclude that:

—predictable and strict security guarantees insensitive to code fragment properties
can be provided using this mitigating transformations;

—the overhead is very high, however;

—true portability can only be provided for existing but not for future processors, and
comes with an additional overhead, in particular in the form of increased code size.

4.3. No-Ops for Avoiding Variable Interaction between Memory Operations

As a final experiment, we report on the mitigation based on no-ops against variable
execution times caused by the variable interaction between consecutive store and load
operations. For this experiment, we let our LLVM plugin insert no-ops in between the
store and load operations in the example code at the beginning of Section 2.3.

The resulting execution times for different offsets between store and load addresses
are depicted in Figure 10. These execution times are measured for a store address
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Fig. 10. Execution time (number of cycles on a Core 2 Duo processor) of a loop consisting of a pair of
store/load instructions, in function of the offset between the accessed loop-invariant memory locations, for
an increasing number of no-ops (0 to 7) inserted in between them.

that is aligned on a 64-byte boundary, corresponding to the top row of Figure 3. The
different lines correspond to different numbers of no-ops inserted, from zero to seven,
from bottom to top.

From five no-ops on, the t-tests showed that the curve for this experiment became
indistinguishably flat, and thus that the timing behavior did not leak any information
about the addresses accessed by the memory locations. For other similar code frag-
ments, similarly looking results were obtained, indicating that with enough no-ops
inserted where needed, this time side channel can be closed.

As with the previous solution, the performance overhead can be quite big. In this
experiment, it is about a factor 1.85. Again, however, this overhead is limited to the
code fragments to be protected.

This type of mitigation proves to be very predictable, portable, and insensitive to
specific code fragment properties. So we can conclude that

—the technique is portable, predictable and insensitive to code fragment features when
the overhead is not minimized, i.e., when a number of no-ops is inserted that is
guaranteed high enough;

—the technique does come with a significant overhead.

4.4. Feasibility of Compiler-Based Mitigation

We studied compiler support for mitigating side channel attacks because compared to
the manual mitigation of algorithms or source code, automated mitigation in a compiler
offers the potential advantage of increasing the developer’s productivity. Compared to
x86 hardware support to mitigate side channels, which is currently only available for
very specific cryptographic computations such as AES table look-ups [Gueron 2008],
generic compilers offer the potential advantage of being able to protect any code that
handles sensitive data.

However, our experiments have demonstrated that static compilers cannot always
provide the highest level of security at low performance overhead. When both are
needed, the developers remain responsible for ensuring that their implementations do
not leak information. Our experiments have shown that this is not a simple task, and
that the developers need to be aware of many computer architecture artifacts. Occa-
sional security programmers are therefore not recommended to try to develop ad hoc
solutions, but to reuse existing libraries into which the security community has grown
confidence instead. Alternatively, hardware designers might be persuaded to provide
hardware support in the future. Support for fixed-latency arithmetic is available on
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Fig. 11. Phased execution time behavior of execution time over 2 days. On the X-axis, the order of measure-
ments is indicated, on the Y-axis the execution time in number of cycles.

the ARM architecture [ARM Limited 2004] but as of today, not on x86 processors. For
other potential side-channels such as load/store forwarding, we know of no existing
hardware support. Given the complexity of memory data paths on modern out-of-order
processors, we believe further research is needed to assess the cost of such support.

Lacking hardware support in existing processors, our experiments have demon-
strated that when a very high level of overhead is acceptable, static compilers are
in fact able to provide leakage free solutions that are portable over existing processors.
When a low level of security is needed and a limited amount of overhead is acceptable,
such as when the average execution times need to be similar but not identical, static
compilers can also provide portable solutions.

Anywhere in between, performance-wise as well as overhead-wise, static compilers
can only provide non-portable solutions. Moreover, they can only do so when the in-
frastructure and development time is available to iteratively generate and test many
specific instances of the mitigations: iterative code generation and testing is the only
option to get high confidence in the provided level of security.

Reliable testing is a problem on its own, however. To validate the absence of any mea-
surable correlations between secret data and execution times, extremely accurate and
precise test measurements must be done. It is known from the literature that extreme
care needs to be taken to measure supposed performance improvements [Mytkowicz
et al. 2009] and that rigorous statistical analysis is needed [Georges et al. 2007]. In
order to conduct our experiments and get trustworthy timing results, we took the fol-
lowing precautions: reduce the number of interrupts, for example by disconnecting the
network cable and other peripherals like keyboard, and by disabling the USB ports;
disable a number of operating systems features such as clock frequency scaling, turbo
boost mode, address space layout randomization, and dynamic linking; stop a number
of services such as deamons and cron jobs; pin software to one specific core on the
multicore processors and disable hyperthreading where available; make sure the soft-
ware measurement environment is invariable, including the length of all variables in
scripts, paths, inputs, environment variables, etc.

Even when all these precautions had been taken, the resulting time measurements
were sometimes not usable. For example, the graph in Figure 11 depicts over 30.000
consecutive time measurements of a single program executed over 30.000 times on the
same input in an experiment running for two days. Despite of all the precautions taken,
there is a clear phase behavior that manifests itself after one day and that we cannot
explain. Furthermore, even within a single phase (e.g., day one of the measurements)
there are a number of outliers that clearly demonstrate that the execution times are
not distributed according to a Gaussian distribution. In another experiment, we used
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a bootloader developed in house to run our microbenchmarks on bare metal, i.e., with-
out installing any operating system. For both the bare metal and the OS-supported
measurements, we measured bimodal distributions. Surprisingly, however, we noticed
that the standard deviation on the measured timings (measured by means of processor
time stamp counters) was two orders of magnitude bigger for the version running on
the bare metal than for the version running on top of the operating system.

Compared to execution times considered relevant in performance-oriented compiler
research, the relative changes in behavior observed in Figure 11 are extremely small, as
are all standard deviations we observed in our experiments. Such changes would prob-
ably go unnoticed in typical compiler research. To provide strict security guarantees,
however, such small differences are relevant.

Even if such testing is considered an option for static compilers, it certainly is no
option for dynamic compilers. So we have to conclude that the range of mitigations and
requirements for which static compilation is not feasible because of portability issues,
also poses fundamental problems for dynamic compilers. In the latter case, the problem
relates to a lack of predictability and testability of the provided security.

In the cases where static compilers can provide some portable, guaranteed higher
levels of security, dynamic compilers can do so as well. Dynamic compilers will be able
to do so at a lower code size overhead and at a lower performance overhead, for example
because they know exactly how many division latency classes the used processor has
and because they know the precise number of no-ops that needs to be inserted for
that processor (rather than the maximum number of no-ops needed for all possible
processors). However, the performance overhead will still be considerable.

5. CONCLUSION AND FUTURE WORK

In this paper, we discussed several ways in which variable-latency instructions on
modern x86 processors can leak timing information that is useful for time-based side
channel attacks on cryptographic software. We discussed several potential code trans-
formations to mitigate these side channels. Some of those transformations provide
strong protection, albeit that they introduce significant overhead, in particular when
they have to protect the software on a range of microarchitectures. And in any case
forward portability remains a problem.

Other transformations can provide weak or in some cases stronger but non-portable
protection. The effectiveness of a concrete transformation is unpredictable and highly
sensitive to the precise shape of the code to be protected and to the microarchitectural
details of the processor architecture. Combined with the difficulty to test the effec-
tiveness, we most conclude that compiler-based mitigation is not practical in many
contexts, and in particular not in those contexts with strict security requirements.

For that reason, future work should look into the potential of hardware support, as it
already exists on ARM architectures, and on the automatic exploitation of that support
in compiler backends.

Complementary, we will also research the potential of integrating dynamic resource
allocation with dynamic code generation. Side-channel-aware code generators will limit
the amount of information that code leaks into side channels where necessary, while
side-channel-aware resource allocators will close and block side channels by adapting
the resource allocation and scheduling of potentially attacking processes. By integrat-
ing the code generation and resource allocation, we hope to achieve a more efficient
and more effective co-optimization of performance and security.
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