Obfuscating Windows DLLs

Bert Abrath, Bart Coppens, Stijn Volckaert, and Bjorn De Sutter
Computer Systems Lab
Department of Electronics and Information Systems
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
E-mail: {bert.abrath, bart.coppens, stijn.volckaert, bjorn.desutter} @elis.ugent.be.

Abstract—We present two techniques to obfuscate the inter-
faces between application binaries and Windows system DLLs
(dynamic-link libraries). The first technique obfuscates the re-
lated symbol information in the binary to prevent static analyses
from identifying the invoked library functions. The second
technique combines static linking with code obfuscation to avoid
the external interface altogether, thus preventing dynamic attacks
as well. This is done while still maintaining compatibility with
multiple Windows versions, through run-time adaptation of the
application. As the first concrete result of this ongoing research,
we demonstrate and evaluate the techniques using a proof-of-
concept tool applied to a simple test program.

I. INTRODUCTION

To prevent attackers from easily reverse engineering the
distributed binaries, a software vendor can obfuscate the
binaries he distributes, i.e., transform them into semantically
equivalent ones that are significantly harder to understand
and reverse engineer. However, when a vendor deploys an
obfuscator tool on his software, this tool will only transform
the code available at obfuscation time. Shared libraries of
third parties over which the vendor has no control will not be
obfuscated. This leaves the external interfaces of his software
to these third-party libraries unprotected, which makes them
an ideal starting point for static reverse engineering attacks.
Furthermore, the interface between an application and the
external libraries can be used by attackers to observe and
modify the program behavior dynamically.

This large attack surface — caused by dynamically linking
a program against shared libraries — can be removed by stat-
ically linking the libraries into the program and applying the
obfuscations to the whole resulting binary. Besides obfuscating
the linked-in application code and the linked-in library code,
this also enables obfuscation of the interface between the
application and library code.

On GNU/Linux, static linking is straightforward. Statically
linked versions of the standard C libraries exist, their source
code is available for obfuscation, and the interface between
those libraries and the kernel remains stable. This suffices to
ensure that applications statically linked against old C libraries
can still interface with newer versions of the kernel. The
interface between the library and the kernel is still available to
the attacker as a starting point for static or dynamic attacks, but
at least we can ensure that static analysis can no longer easily
determine which program code interfaces with the kernel.

On Windows, however, there is no support for statically
linking complete binaries. First, the core Windows API is only

available in the form of a set of dynamic-link libraries (DLLs),
such as user32, kernel32, etc. Of these system libraries
no versions exist that are statically linkable into programs.
Secondly, the interface between these system DLLs and the
Windows kernel varies between different Windows versions.
For example, one cannot take ntdll, which is a core DLL, from
a Windows 8§ installation and use it on a Windows 8.1 system:
the system call numbers in both versions simply do not match.

In this paper, we propose two automated techniques that
mitigate DLL-based attacks on Windows binaries. The first
technique acts on the meta-information stored in the bina-
ries’ import tables. This information informs the Windows
dynamic loader about which functions are to be imported from
which libraries. We remove this meta-information from the
binary and replace it with a custom loader in the binary that
loads the required libraries and imports the required symbols.
This prevents static analyses from identifying the external
library functions invoked in the binary. However, the meta-
information is still present in some form and the libraries are
still linked dynamically, which leaves the program vulnerable
to dynamic analyses and run-time tampering with its behavior.

We therefore also propose to statically link the Windows
system DLLs into the binary and to obfuscate the resulting
binary, including the linked-in DLLs. Our experiments show
that this technique can to a large extent deal with the cur-
rently observed variations between different Windows kernel
interfaces. To support this, we extended the Diablo link-time
rewriting framework [1], which can now link application code
with code that is automatically extracted from Windows DLLs.
This code is augmented with glue code to allow the program to
adapt itself to the system call interface in use on the platform
on which the binary is executed. The resulting statically linked
program hence no longer executes any code loaded from
dynamically linked system libraries, and is ready for combined
obfuscation of the application code and the library code.

As a proof-of-concept, we succesfully applied different ob-
fuscation techniques to the Windows API functionality linked
into a simple test program that calls functionality of user32
and kernel32.

The rest of this paper is structured as follows: Section II
describes the related work, which is followed with a descrip-
tion of how Windows system DLLs function in Section III.
Section IV describes the technique for meta-information en-
cryption, and Section V describes our technique of statically
linking Windows DLLs. Section VI details some of the chal-

lenges we faced to automatically transform Windows binaries.
This is followed by a discussion of the current limitations
of our techniques in Section VII. Section VIII describes our
experimental evaluation of our technique. Finally, we present
our conclusions in Section IX.

II. RELATED WORK

Reverse engineers and hackers have many techniques to
attack and understand binaries. One set of related attack
techniques is based on the fact that most programs depend
on external library code being loaded and executed as part of
the program. Because the links between the application and
its libraries are only resolved at load time and because they
are stored in the form of easily readable symbol information,
attackers can study which external functionality the program
requires and influence the linking process to their own advan-
tage. In particular, attackers can hook a shared library, which
means that run-time invocations to shared library functionality
are redirected to code controlled by the attacker. This intercep-
tion of library calls allows attackers to observe the dynamic
behavior of a program by monitoring the library calls and
the passed data (a.k.a sniffing). It also allows them to modify
the data passed from the binary to library and back (a.k.a.
spoofing), to skip the library calls, and to check or intervene
in the program state in any other useful way.

More concretely, attackers use PE header editors such as
LordPE [2] to change imported libraries and symbols manually
and to replace functionality using the Detours framework [3]
either by forcing a dependency on additional DLLs, or by
injecting such code at run time [4]. One of the more popular
targets of such attacks are games [5].

Static attacks can benefit from the symbol information
present to improve the analysis of the program code that calls
into the libraries: knowledge of API calls in the program can
provide valuable information about the usage of local variables
and arguments without having to observe the program at run
time. For example, OllyDbg [6] and IDA [7] — two tools
often used in the reverse engineering of Windows binaries
— both recognize calls to the Windows API and annotate
these using the names and types of the arguments, improving
understanding of the program.

To defend against the aforementioned attacks, static linking
can be used. For Windows, however, such static linking is
typically limited to libraries from one vendor or from multiple
cooperating vendors. On Windows, static linking does not
include the system libraries.

On Linux, static linking can include the standard system
libraries. It has been shown, however, that merely using static
linking and then stripping all symbol information from the
binary is not sufficient to prevent the static identification of
library functions by the attacker.

In fact, multiple techniques exist to identify library functions
in binaries. IDA Pro uses a technique called FLIRT, which
uses pattern matching to detect and identify the presence
of compiler-generated patterns and certain library functions,
and can be extended with user-provided databases [8]. On

Linux, system library functions can be identified by the system
call numbers they embed to interface with the kernel, and
then one can iteratively try to identify the callers of the
already identified functions [9]. Machine learning can be used
to automatically learn patterns required to identify library
functions [10]. Finally, a more generic technique to identify
statically linked library code is implemented in BinDiff [11].
This diffing tool uses the structure of control flow graphs,
call graphs, basic blocks, etc., to identify matching functions
between two binaries [12], [13]. Such a tool can also be used
to match the functions in a separate library with those in an
application binary into which that library has (potentially) been
linked, thus identifying those functions in the binary.

Obfuscators are used to prevent reverse engineers from eas-
ily analysing binaries and from determining the functionality
of code. Obfuscators have as input (part of) a program and
transform this to thwart analyses and comprehension [14].
Obfuscating transformations can also be applied to thwart
diffing tools: by randomizing the concrete application of many
obfuscating (and optimizing) transformations on a piece of
code many different versions of an application or library can
be generated in which tools like BinDiff can no longer identify
the corresponding fragments [15], [16].

Obfuscators can act on different levels of program ab-
straction. First, they can rewrite program source code. For
example, the Tigress diversifying compiler [17] and the Cloak-
ware diversification system [18] are obfuscators that apply
source-to-source transformations on C code. At a lower level
of abstraction are obfuscators that transform the compiler
representation of code, such as obfuscator-llvm [19]. At the
lowest level are obfuscators that rewrite a program’s binary
instructions, such as is the case with the obfuscator front-end
of the Diablo link-time rewriter [20].

For the techniques presented in this paper, we can only
rewrite binary code because no source code of the Windows
system libraries is available to third-party software developers.
Several frameworks for binary rewriting other than Diablo
exist. McSema [21] has been demonstrated to to rewrite
Windows DLLs such as kernel32. Other such tools that can
rewrite or decompile native code into a functional intermediate
representation include SecondWrite [22], Dagger [23] and
Fracture [24], which translate binary code into LLVM IR.
In particular, SecondWrite has been used to rewrite statically
linked binaries without symbol information [25].

Furthermore, there exist approaches to bundle DLLs with
applications. Tool such as PEBundle [26], MoleBox [27], and
DLLPackager [28] bundle DLLs with the application, and add
code to unpack these DLLs and resolve the required symbols.
However, such applications are still being linked dynamically.

Finally, it is worth mentioning that some forms of import-
less binary Windows code are already used in practice. In
particular, shellcode that is injected into a process can usually
not rely on the program loader to load libraries and resolve
symbols. Thus, some shellcode already uses techniques similar
to ours to locate symbols in kernel32 at run time [29].
Similarly, these techniques have been extended to craft proof-

Import Descriptor IThy IAT

—|—>|:|__> GetMessage “—I
[H]

ILT pointer

Name = user32.dll
> LoadIcon -

i

IAT pointer

Fig. 1: An example of the import tables of a PE file.

of-concept importless PE binaries [30]. However, none of these
existing techniques are automated.

III. BACKGROUND: SYSTEM LIBRARIES ON WINDOWS

To describe the context in which our techniques are ap-
plied, we first describe how applications import symbols from
libraries on Windows and how these libraries are loaded at run
time. Next, we discuss how the system libraries interface with
the Windows kernel.

A. Library Loading

To understand some of the issues with statically linking
applications with Windows DLLs, we discuss in some detail
how DLLs are structured. On Windows, both DLLs and
executable binaries are stored in Portable Executable (PE)
files. Dynamic linking of such files is allowed through the
meta-information stored in the PE file headers. This meta-
information allows files to declare the symbols they require
from external sources in import tables, and to declare the
symbols they expose in export tables.

Both executables and DLLs can import and export symbols.
Since this paper aims to hide the imported symbols, we discuss
the importing of symbols in more detail. Figure 1 shows the
import tables of an application that imports the GetMessage
and Loadlcon symbols from the user32 library. There is an
Import Descriptor for each library from which symbols are
imported. This descriptor contains references to the name of
the library, to an offset in the Import Lookup Table (ILT),
and to an offset in the Import Address Table (1AT). The ILT
contains references to the names of symbols that need to be
imported. These symbols are searched for in the Export Name
Table (ENT) of the corresponding library.

When the Windows loader loads a PE file it iterates over
the import descriptors, loading the libraries the file depends
on. The loader iterates over the ILT entries, calculates the ad-
dresses at which the corresponding symbol have been loaded,
and writes these in the corresponding IAT entries.

Applications can thus refer to imported symbols indirectly
through the IAT: they refer directly to the address of the IAT
entry, which then contains the address of the actual symbol.
For example, in the binary whose import tables are shown on
Figure 1, a call to the Loadlcon function would be encoded
as call [IAT+offset1], where offset1 refers to the offset of the
IAT entry that corresponds to Loadlcon. Instructions such as
these call instructions refer to the absolute address at which
the compiler expects to find the IAT. To support libraries
being loaded at different addresses — for example to support

Address Space Layout Randomization — the loader rewrites
all instructions that refer to the IAT such that they use the
actual load address. This is achieved by means of so-called
base-relocations that are stored in a PE-file’s .reloc section.

B. Windows System Calls

When a Windows binary performs high-level API calls —
i.e., invokes system library functionality — the control flow
will almost always be redirected into the kernel at some point.
However, the high-level API functions invoked by the program
will typically not interact with the kernel itself. Instead, they
will set the stage for a call to a small, low-level function in
the core Windows DLLs, which in turn calls into one of the
kernel’s system services. These low-level functions are System
Call Wrappers (SCWs). They only set the correct arguments
for the system services, after which they perform the system
call. The Windows kernel knows how to direct the execution
to the correct system service by means of the System Call
Number (SCN) set by the SCW.

As an example, take the high-level action of creating a
new file with the CreateFileW function. On Windows 8, this
code resides in KernelBase. This DLL contains the high-level
implementation required, but ultimately calls NtCreateFile in
ntdll. This low-level function then sets the SCN value to 84,
which corresponds to the NtCreateFile system service on this
system, and performs the actual system call.

The mapping between the SCNs and the system services
differs from one Windows version to the other. Reverse
engineered tables of these mappings are available that list all
SCNs for different versions of Windows [31].

IV. REMOVING PROGRAM IMPORT INFORMATION

Our first technique attempts to hide the interface between
the protected application and its libraries by completely re-
moving the IAT from the application binary. Without the
IAT, static analysis tools can no longer determine the external
functions and libraries imported by the application and thus
provide less useful information to reverse engineers. Similarly,
since the IAT is removed from the application, IAT hooking
attacks are no longer possible either.

To keep the program functionality intact after remov-
ing the IAT, our link-time rewriter built on top of Diablo
(http://diablo.elis.ugent.be) rewrites the program such that it
emulates the Windows dynamic linking process itself. In
particular, our tool injects a custom loader into the program
and rewrites the code fragments that access the IAT in the
original program. The rewritten program operates as follows:

e The custom loader loads the DLLs into memory on
program initialization. Rather than using library names
from a program header, it uses hashed library names. The
used hash function can be diversified — i.e., customized —
in each instance of the program to prevent class attacks
on this custom loader.

« In the original program code, each instruction that indi-
rectly invokes library code or indirectly accesses library

Orig. entry point 2. call binder

1. Entry point 2. call [IAT+offset 2]

3. mov ..., [IAT+offset 3] 3. call binder

4. call binder

4. call [IAT+offset 4]

1. Library loader
Binder

(b) Rewritten program

Hashed

Import Tables IAT | Meta-information

(a) Original program

Fig. 2: The program’s static meta-information and structure, for
both the original and the protected application.

data through the IAT is transformed into a call instruction
that invokes the newly inserted binder function.

e When the binder is invoked, it performs a lookup in
an injected custom hashed table to identify the intended
target function or data and rewrites the call instruction
into an instruction that performs the same functionality
as the original instruction, but now does so directly, i.e.,
without going through the IAT.

Figure 2 shows a schematic representation of a program
before and after applying our protection. We next discuss in
more detail the custom library loader and how we transform
[AT-dependent instructions.

A. Custom Library Loader

The original program entry point (point 1 in Figure 2
(a)) is replaced with a newly inserted library loader function
(point 1 in Figure 2 (b)) that replaces the operating system’s
dynamic linker. It first loads the dynamic libraries on which
the program depends, but does not yet calculate the addresses
of the symbols imported by the program; this is defered to
when the IAT-dependent instructions are actually executed.

Our tool inserts a custom table in the program that contains
hashed library names. The loader iterates over all these library
names and matches them with the hashed names of the
libraries located on the user’s system. When a matching hashed
library name is found, the corresponding library is loaded
into the program memory and the necessary bookkeeping
operations are performed (PE Files also support ordinal-based
symbol lookup; our prototype implementation does not yet
support this).

To load dynamic libraries into program memory, we make
use of the LoadLibrary function provided by the Windows API.
This function is located in the kernel32 library which is always
loaded into the program memory by the kernel, even if a binary
does not import anything at all. Our loader uses a Windows
data structure called the Process Environment Block (PEB) to
find the load address of kernel32.

B. Transforming IAT-dependent Instructions

In the original binaries all application code that accesses
imported symbols does so through an indirection through the
IAT. See points 2, 3, and 4 in Figure 2 (a). Our tool identifies
all those references and replaces the original instructions with
calls to the binder code, as shown in Figure 2 (b). The call

instruction pushes a return address onto the stack, which the
binder can use to index a lookup table.

The elements of the lookup table contain all possible
continuation points from which the binder can be called. To
prevent simple lookup attacks, the table contains hashed (and
salted) return addresses. For each call site, the table contains:

o A reference to the custom DLL table, to inform the binder
in which of the DLLs the symbol should be resolved.

o A hashed symbol name. The binder iterates over all
symbols exported by the referenced DLL to find a match
for this hashed symbol name.

o Information on the original instruction. Because the orig-
inal instruction referencing the IAT was not necessarily
a call instruction, we also store the original instruction
opcodes in the table. For example, in Figure 2 (a), we
have instructions referencing to the imported symbols as
functions as well as instructions that refer to the imported
symbols as a variable. Furthermore, the table also stores
information on the offset in the instruction where the IAT-
symbol is referenced.

When in the example in Figure 2 (b) a call to the binder
executes, the binder thus finds the relevant table entry, and
resolves the imported symbol. Next, the binder (using Virtual-
Protect calls) remaps the memory containing the call site as
writeable, and replaces the call to binder with the appropriate
original instruction, such as call or mov in the example in
Figure 2 (a). The binder then updates this instruction with the
resolved symbol address, and remaps the code as executable.
The binder changes the return address stored on the stack
into that of the rewritten instruction and returns, so that the
original instruction is executed. The next time this instruction
is reached, it will be executed as is, i.e., without requiring
another intervention from the binder.

V. STATIC LINKING OF WINDOWS BINARIES

Even after removing the IAT, dynamic attacks are still
possible by modifying the DLLs from which symbols are
imported. To solve this, we propose to statically link all
required DLLs into the binary and then possibly obfuscate
the resulting binary.

To statically link a Windows binary we first compute the
transitive set of library dependencies. Our prototype then links
those libraries into the application, after which instructions
that indirectly refer to library symbols through the IAT are
rewritten to refer directly to the now linked-in symbols instead.

Each DLL can contain an initialization function that is
called by the program loader once it has loaded the DLL
and it has resolved all dependencies. However, in a statically
linked program, the program loader no longer performs any
actions on behalf of the code that has been statically linked into
the program. Thus, our tool inserts initialization code into the
rewritten binary that calls the appropriate initialization routines
on program startup in the correct order.

As discussed earlier, the interface offered by the Windows
kernel differs between Windows versions. The initial statically
linked binary thus cannot be run on Windows versions other

than that from which the linked-in system DLLs originate.
To make the statically linked binary compatible with multiple
Windows versions, the binary has to adapt dynamically to the
version of Windows on which it is running.

To that extent, our tool injects additional functionality into
the program to update the encoded SCNs similarly to how we
update references to IAT-dependent instructions as discussed
in Section IV. We replace all SCWs with a code fragment that
loads a hash of the name of the SCW, followed by a call to
another binder function that will set the correct SCN.

To determine the correct SCN we start with locating the
SCW, which is exported as a symbol by ntdll. Because ntdll
is loaded in any process — even those without an import table
— the binder can scan over all its exported symbols and find
a match for the hash. SCWs have a simple structure and so
we can easily extract the SCN from the corresponding SCW
in the loaded ntdll, which by definition contains the correct
SCNE.

The resulting statically linked binaries can then be trans-
formed and obfuscated further by Diablo.

VI. REWRITING PE FILES

All techniques in this paper build on the capabilities of the
Diablo link-time rewriter, which is able to re-link binaries and
to apply transformations on the code being re-linked. To dis-
assemble the code correctly and to build correct intermediate
representations of the code to be transformed, Diablo relies
extensively on symbol and relocation information available in
the re-linked object files. Some compiler tool chains (such
as ARM’s proprietary compilers) already provide all needed
information in the object files they generate. For other tools
like GCC, LLVM, and binutils, a set of patches is available
to make them produce sufficient information such as non-
relaxed relocations and so-called mapping symbols, e.g., to
differentiate between code and data in code sections.

The object files in Windows system libraries do not contain
sufficient information, however, and we can obviously not
regenerate them with a patched Visual Studio tool chain.

To enable Diablo to disassemble Windows binaries and
reconstruct their control flow accurately enough, its linear
sweep disassembler (which originally started linearly disas-
sembling all instructions at all mapping symbols indicating
the start of a code fragment) was extended into a recursive
descent disassembler. This built-in disassembler could also be
complemented with more advanced, interactive disassemblers
such as IDA Pro’s to make sure that all code in the libraries
is effectively treated correctly as code. This is similar to the
approach that is used by McSema [21]. Since there are not
many different versions of the system libraries, it suffices to
identify the code once manually using IDA Pro, and to store
the data — i.e., identified code ranges — in IDA Pro’s database
for later reuse in Diablo.

VII. LIMITATIONS

We now discuss some of the limitations of the proposed
techniques.

A. Limitations of our Prototype Implementation

First, our current implementation does not support mul-
tithreaded applications yet. In order to make the temporary
mapping of code pages as writable — rather than executable
memory — function correctly in multithreaded applications, all
binder operations need to be encapsulated in critical sections.
Doing so correctly is simple, but doing so with as little
overhead as possible requires more research.

Secondly, our current prototype implementation does not
yet initialize all statically linked system libraries completely.
A lot of engineering and reverse-engineering is needed to
complete this, for which we lack the resources. There are
no fundamental issues, however, and for people with more
documentation about the internal operation of the libraries —
such as Microsoft’s developers — this would be much easier.

B. Copyright Issues

While this paper presents techniques to link Windows DLLs
statically and obfuscate the resulting code, the Windows end-
user license agreement currently does not allow a vendor to
modify and then redistribute Microsoft code.

C. Security and Compatibility Issues

One of the advantages of dynamically linking against li-
braries (rather than statically) is that once a security issue
is addressed in some library code, only a single instance of
this code — i.e., the one installed version of the library —
needs to be patched by the user on his system. Statically
linking against a library means that each individual vendor
is required to re-link (and re-transform) the binaries and to re-
distribute these to their users, which then need to update all
binaries. While this is clearly a sub-optimal scenario, statically
linking binaries already happens in practice — for example in
the Morpheus Linux distribution (http://morpheus.2f30.org/) —
so apparently this issue does not outweigh the advantages
of static linking in all scenarios. Most importantly, in this
age of distributing software via the internet updating binaries
has become trivial, unlike in the age where software was
distributed via physical media such as CDs. Indeed, most
software is currently downloaded, and all somewhat user-
friendly web pages immediately present the correct version
of software to be downloaded, such as the latest version for
Windows, Linux, or Mac matching the user’s OS, OS version,
installed GPU, etc.

For the same reason, most issues related to compatibility
across different versions of Windows could be handled easily
these days. We briefly discuss four such issues.

First, the structure of SCWs can change between Windows
versions. This is important because our binder determines the
SCN by analysing the SCW. Our prototype currently supports
the different structures of SCWs used by both Windows 7 and
Windows 8/8.1. However, it is possible that in future versions
of Windows the SCWs have a new structure. Of course no
tool can completely foresee the changes in future versions.
However, whenever a user installs a new version of Windows,
he will likely download his applications again. So at that time,

he can download a version adapted to the new structures in
his new Windows version.

Secondly, the system services can change between Windows
versions as well, as they are considered an OS internal matter
by Microsoft. For example, the implementation of WriteFile on
Windows 7 internally redirects the control flow to either the
WriteConsole function, or to the NtWriteFile SCW, depending
on whether or not the target of the write is a console window.
However, in Windows 8, the NtWriteFile SCW is always used.
Our current implementation has special cases built in for all
such function calls we encountered in our tests. Thus, we can
guarantee backwards compatibility, but we cannot guarantee
a future-proof behavior. Again, that is not an issue, as a user
can install adapted versions of his application after he has
upgraded his OS.

Thirdly, the details of the internal state kept by ntdll dif-
fer across versions. Thus, the state initialized by the ntdll
automatically loaded by Windows can differ from how the
ntdll statically linked into the program expects it. Again,
our prototype has support for the cases we encountered by
forcibly having the rewritten program re-initialize certain data
structures on program startup.

Finally, our current implementation scans the exported
symbols in ntdll to find the SCW symbols. However, it is
not required that SCW symbols are actually exported. In
particular, this is not the case for some existing GUI-related
SCWs located in gdi32, which we thus do not support yet.
Future versions of Windows could similarly no longer export
the actual SCWs located in ntdll. To solve these issues, our
tool could inject more complex pattern matching code into
the binaries, with which all necessary code fragments can
be identified for at least the OS versions that exist at a
certain point in time. We could benefit from the Windows
library OS implementation of project Drawbridge, which is
a research project in which the interface between userspace
and kernelspace is dramatically simplified [32], which could
reduce the amount of pattern matching required by our tool.

VIII. EXPERIMENTAL EVALUATION

We evaluated our prototype implementation of the two
presented techniques on a simple test program. It contains a
couple of simple API library calls to write to files and to the
standard output. This program was compiled as a 32-bit binary
with Microsoft Visual Studio 2013 Ultimate. The resulting
transformed binaries were tested on multiple 64-bit versions
of Windows: Windows 7, Windows 8 and Windows 8.1.

First, we applied our IAT-removal technique. The trans-
formed program still executes correctly on all our tested
versions of Windows. We opened the binary in PEView
(http://wjradburn.com/software/) and verified that indeed the
IAT is no longer present in the resulting binary. Because of
the inserted binder and loader code, and because our inserted
tables have large records, there is a significant program size
increase: from 2560 bytes for the original program, to 17408
for the protected program.

static linking 2385408 original 2560
random layout 2477568 Kkernel32 1036288
obfuscated 2607104 ntdll 1467384

KernelBase 838144

(a) Rewritten programs (b) Input files

Fig. 3: File size information.

We evaluated the static linking and transforming of Win-
dows DLLs with the same binary. We transformed the binary
in three different ways:

1) Statically linked binary: We statically linked all depen-
dencies into the transformed program and removed the
code of which Diablo’s analyses concluded that it was
unreachable. The DLLs statically linked into the binary
are taken from a Windows 8.1 installation.

2) Random layout: After statically linking the dependencies
and removing unreachable code, Diablo’s code layout
engine is instructed to use a pseudo-random number
generator to determine the placement of code fragments
in the final binary.

3) Obfuscated + Random Layout: Before applying the
randomized layout scheme of the previous step, we also
obfuscate the code in Diablo’s intermediate represen-
tation. The applied obfuscation technique consists of a
simple scheme for inserting branch functions in basic
blocks [33].

All the resulting statically linked binaries worked correctly
on all our installed Windows versions, thus demonstrating the
functioning of the different binder techniques.

Figure 3 shows how the file sizes are affected by the
different transformations. As Figure 3 (a) shows, statically
linking the DLLs into the binary significantly increases the file
size. Even though Diablo removes unreachable code, in their
present form the analyses are not precise enough to remove
all unused code or data. Still, when we compare the resulting
file size against the file sizes of the input binaries shown in
Figure 3 (b), we observe that the final binary is still signifi-
cantly smaller than the sum of the input file sizes. Finally, it
is clear that the branch function obfuscation also increases the
file size, albeit not dramatically in this experiment, due to the
rather limited deployment of the technique.

We also evaluated the effectiveness of static linking against
static attacks to identify library functions. Such attacks can
currently not use techniques like FLIRT, because signature
databases do not yet contain the Windows API libraries. In
the arms race between attackers and defenders, as long as
there is no static linking of Windows API libraries, no tools
are developed to identify fragments in such statically linked
libraries. For that reason, we cannot evaluate such tools yet.

Instead we evaluated the effectiveness of an attacker that
tries to identify library functions in the statically linked binary
by diffing that binary with the original library containing those
functions. If the diffing tool finds a match, the attacker can

60%
M static linking
Hrandom layout

obfuscated +
random layout

50%

40%

30%

20%

10%

0%

ntdll

KernelBase kernel32

Fig. 4: Percentage of instructions from the different DLLs that
BinDiff matches in different statically linked versions of the binary.

extract the necessary information from the original library,
where it is present in the ENT.

Figure 4 shows the results of matching each of three DLLs
with different statically linked binaries with BinDiff [11].
BinDiff is able to match a significant fraction of the code
of ntdll when it has only been statically linked into the
binary. Applying layout randomization has little effect on the
robustness of the matching. The same holds for KernelBase,
but not for kernel32. The large decrease in matching when
applying layout randomization is most likely due to IDA Pro
incorrectly disassembling some code regions in the binary,
which then percolates through BinDiff’s iterative matching
strategies applied on the constructed control flow graphs. Fur-
thermore, we observe that in all cases applying even a single
type of obfuscation already significantly decreases the amount
of matched code. In line with our previous research results
in the domain of diversification, we expect that combining
multiple forms of obfuscations will render diffing tools almost
completely useless for attackers [15].

IX. CONCLUSIONS

In this paper we presented a proof-of-concept implemen-
tation of two techniques to automatically obfuscate the inter-
faces between Windows applications and the DLLs they link
against. The first technique removes the import tables from
the binary and has the application itself resolve its required
symbols at run time. In the second technique, we statically
link the DLLs — including Windows system libraries — into the
application and obfuscate the resulting code. We can provide
backwards compatibility with previous versions of Windows
and evaluated that the protection of static linking combined
with obfuscation can to a large extent thwart static diffing
attacks.

ACKNOWLEDGEMENT
Part of this research was funded by the Fund for Scientific
Research - Flanders (FWO) under project grant 3G013013.
REFERENCES

[1] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“DIABLO: a reliable, retargetable and extensible link-time rewriting
framework,” Proceedings of the Fifth IEEE International Symposium
on Signal Processing and Information Technology, 2005., 2005.

[2]
[3]

[4]
[5]
[6]
[7]
[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

(23]
[24]
[25]
[26]

(27]
[28]

[29]
[30]

[31]

(32]

(33]

299.

y0Oda, “Lordpe,”
php/LordPE.

G. Hunt and D. Brubacher, “Detours: Binary interception of Win32
functions,” in Third USENIX Windows NT Symposium. USENIX, July
1999, p. 8.

mcMike, “WinJect,” http://www.cheat-project.com/cheats-hacks/1382/
WinJect-1.7/.

dark_byte, “Cheat Engine,” http://www.cheatengine.org/.

O. Yuschuk, “Ollydbg,” http://www.ollydbg.de/.

Hex-Rays, “IDA Pro,” https://www.hex-rays.com/products/ida/.

——, “IDA EL.ILR.T. Technology: In-Depth,” https://hex-rays.com/
products/ida/tech/flirt/in_depth.shtml.

E. R. Jacobson, N. Rosenblum, and B. P. Miller, “Labeling library
functions in stripped binaries,” in ACM SIGPLAN-SIGSOFT workshop
on Program Analysis for Software Tools and Engineering (PASTE),
2011.

A. Thierry, “Recognition of binary patterns by morphological analysis,”
in Recon, 2012.

“BinDiff,” http://www.zynamics.com/bindiff.html, Zynamics, 2012.

T. Dullien and R. Rolles, “Graph-based comparison of executable ob-
jects,” in Proceedings of the Symposium sur la Sécurité des Technologies
de I’Information et des Communications, 2005.

H. Flake, “Structural comparison of executable objects.” in Proceedings
of the Detection of Intrusions and Malware & Vulnerability Assessment,
GI SIG SIDAR Workshop, 2004, pp. 161-173.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” The University of Auckland, New Zealand, Tech. Rep.
148, 1997.

B. Coppens, B. De Sutter, and J. Maebe, “Feedback-driven binary
code diversification,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 24:1-24:26, 2013.

B. Coppens, B. De Sutter, and K. De Bosschere, “Protecting your
software releases,” IEEE Security & Privacy, vol. 11, no. 2, pp. 47—
54, 2013.

C. Collberg, “The Tigress Diversifying C Virtualizer,” http://tigress.cs.
arizona.edu.

C. Liem, Y. X. Gu, and H. Johnson, “A compiler-based infrastructure
for software-protection,” in Proceedings of the Third ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security, ser.
PLAS ’08. New York, NY, USA: ACM, 2008, pp. 33—44.

University of Applied Sciences and Arts Western Switzerland
of Yverdon-les-Bains, “obfuscator-llvm,” https://github.com/
obfuscator-1lvm/obfuscator/wiki.

M. Madou, “Application security through program obfuscation,” Ph.D.
dissertation, Ghent University, 2007.

A. Dinaburg and A. Ruef, “Mc-semantics,” https://github.com/trailofbits/
mcsema.git.

K. Anand, M. Smithson, A. Kotha, K. Elwazeer, and R. Barua, “De-
compilation to compiler high IR in a binary rewriter,” University of
Maryland, Tech. Rep., 2010.

A. Bougacha, G. Aubey, P. Collet, T. Coudray, and A. de la Vieuville,
“Dagger,” http://dagger.repzret.org/.
Charles Stark Draper Laboratory,
draperlaboratory/fracture.

M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and R. Barua, “Static
binary rewriting without supplemental information,” in WCRE, 2013.
PEBundle, “PEBundle.” [Online]. Available: http://bitsum.com/
pebundle.asp

MoleBox, “MoleBox.” [Online]. Available: http://www.molebox.com/
ReWolf, “DLLPackager.” [Online]. Available: https://code.google.com/
p/dllpackager/

skape, “Understanding Windows shellcode,” nologin, Tech. Rep., 2003.
A. Albertini, “Corkami MakePE,” https://code.google.com/p/
corkami/source/browse/trunk/misc/MakePE/examples/imports/imports_
checksum.asm?r=179&spec=svn332.

M. Jurczyk, “Windows X86 System Call Table
(NT/2000/XP/2003/Vista/2008/7/8).” [Online]. Available: http://j00ru.
vexillium.org/ntapi/

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, , and G. Hunt,
“Rethinking the library os from the top down,” in ASPLOS, 2011.

C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
conference on Computer and Communications Security, 2003, pp. 290—

http://www.woodmann.com/collaborative/tools/index.

“Fracture,” https://github.com/

