
Noname manuscript No.
(will be inserted by the editor)

Link-time Smart Card Code Hardening

Ronald De Keulenaer · Jonas Maebe ·
Koen De Bosschere · Bjorn De Sutter

the date of receipt and acceptance should be inserted later

Keywords smart card, fault, software protection,

binary rewriting, overhead

Abstract This paper presents a feasibility study to

protect smart card software against fault-injection at-

tacks by means of link-time code rewriting. This ap-

proach avoids the drawbacks of source code hardening,

avoids the need for manual assembly writing, and is ap-

plicable in conjunction with closed third-party compil-

ers. We implemented a range of cookbook code harden-

ing recipes in a prototype link-time rewriter and evalu-

ate their coverage and associated overhead to conclude

that this approach is promising. We demonstrate that

the overhead of using an automated link-time approach

is not significantly higher than what can be obtained

with compile-time hardening or with manual harden-

ing of compiler-generated assembly code.

1 Introduction

Cryptographic keys and PIN hashes are often embed-

ded in programmable hardware such as smart cards. To

steal that data, attackers apply sophisticated attacks.

During passive attacks, attackers observe the behav-

ior of the chip executing code to reconstruct the pro-

gram structure and obtain knowledge on its internal

data values. The observable behavior includes timing,

power consumption [36], electromagnetic radiation, etc.

In active attacks, which often build on passive attacks,

attackers intervene in the execution by injecting faults

Authors addresses: R. De Keulenaer, J. Maebe, K. De Boss-
chere, B. De Sutter (corresponding author), Computer Sys-
tems Lab, Ghent University, Sint-Pietersnieuwstraat 41, 9000
Ghent, Belgium. E-mail: bjorn.desutter@elis.ugent.be. This
research is supported by the FWO project G.0198.09N. We
also thank ARM for giving access to their compilers and tools.

by means of power glitches, clock period alterations,

temperature rises, active probing of buses, or light at-

tacks [8]. Faults cause bit flips that can alter data val-

ues or program code, e.g., when an instruction being

fetched is altered by a laser flash. When this remains

undetected, security barriers risk being broken: private

keys can leak when both correct and incorrect outputs

are available [6]; private data can get exported because

array bounds checks are corrupted [8]; skipping encryp-

tion rounds can leak keys [13]; and checks to prevent the

output of invalid data can get circumvented [25].

To protect the software, hardware can provide re-

dundancy, e.g., by using error-correcting coding [23],

or redundancy can be inserted in the software to de-

tect occurring faults [46]. The latter approach typically

offers more flexibility with respect to the security poli-
cies that can be deployed in the field. To exploit the

flexibility maximally, some fully automated compiler or

code generation tool ideally can apply generic forms of

low-overhead redundancy to implement security poli-

cies specified in a convenient form, i.e., without imped-

ing the programmer’s productivity.

This implies that programmers should not have to

waste effort and time on changing their source code

to introduce the redundancy, nor should they have to

rewrite or even inspect the compiler-generated assembly

code. Instead they should have to care only about the

functional correctness of their source code.

Many redundancy schemes have been proposed to

protect against single-event upsets (i.e, soft errors) [2,

7,41–43,39], to protect against targeted attacks [44,

24], and to prevent control flow from deviating from

predetermined paths [1]. Automated support for these

schemes, that also tries to limit the performance over-

head of the introduced redundancy, is typically imple-

mented in (research) compilers.

2 Ronald De Keulenaer et al.

In practice, however, companies rely on multiple

in-house and third-party development tool chains that

may change over time. To maintain interoperability with

different tool chains and avoid vendor lock-in, tools that

automate the implementation of security policies should

therefore be separate tools that do not break existing

tool chains and do not depend on the internal opera-

tion of the used compilers. This leaves two basic options

to insert redundancy: source code rewriting and (post-)

link-time binary code rewriting.

This paper presents a feasibility study of link-time

binary code rewriting to protect against fault-injection

attacks, assessing its impact on efficiency and effective-

ness. The paper’s contribution is its argumentation as

to why link-time code rewriting is feasible with closed,

third-party compiler tool flows, as well as an evaluation

of the coverage and overhead obtained with a proto-

type link-time rewriter that implements four standard

protections. Concretely, our experiments demonstrate

that the overhead of this approach is not unaccept-

ably higher than what could be achieved with other

approaches, such as compile-time protection or manual

assembly code protection.

We evaluate four cookbook recipes for local harden-

ing of code against certain classes of single-instruction

failures, i.e., single instructions that are skipped as the

result of an injected fault [37]. With these protections,

we target the ARM Cortex-M0, the core used in ARM

smart card SecurCore SC000 processors [52].

We know of no automated fault-injection protection

tools in use today for smart card software. The result-

ing need to provide this protection manually is one of

the main reasons why assembly programming is still so

common in this domain. By providing convincing argu-

ments for automating this protection in a tool that does

not disrupt proprietary compiler tool flows and that in-

troduces only a minimal amount of additional overhead,

we hope to contribute a significant step towards more

productive smart card programming.

This paper is structured as follows. Section 2 dis-

cusses the alternative approaches of source-to-source

rewriting, link-time rewriting and post-link-time rewrit-

ing. Section 3 presents the protections we implemented

in a prototype, and discusses how to measure the over-

head resulting from the link-time implementation rather

than from the protections themselves. This overhead is

evaluated in Section 4. Section 5 gives an overview of

related work. Finally, Section 6 draws conclusions.

2 Compatibility with Third-Party Compilers

This section discusses the potential of source-to-source,

link-time and post-link-time code rewriting in the sce-

nario where security experts have to protect software

that is to be compiled with third-party compilers. More

specifically, the goal of the security experts is to trans-

form the code such that it implements sufficient protec-

tion at minimal overhead.

2.1 Source-to-source rewriting

Source-to-source rewriters, be it tools or programmers,

insert redundancy before the code is compiled. They

do so by duplicating source code statements. In our

eyes, source-to-source rewriters suffer from a number of

major drawbacks in the targeted scenario.

First, optimizing compilers risk undoing the protec-

tion by eliminating the inserted redundancy, e.g., by

means of common subexpression elimination [38]. To

avoid this, i.e., to ensure that sufficient redundancy

survives the compiler and remains present in the gener-

ated code, the source-to-source rewriter can either in-

sert code that is not analyzed and optimized by the

compiler, as is typically the case with inline assembly

code, or he can insert code that is complex enough to

withstand being identified as redundant by the com-

piler’s analyses. For ensuring sufficient redundancy, both

options work fine.

It remains a problem, however, how to ensure the

presence of only the necessary redundancy, i.e., suffi-

cient redundancy with minimal overhead. Based on our

experience with several open source and proprietary

compilers, we do not consider this feasible. Fundamen-

tally, it is very hard, and most often simply not possible,

to insert redundant code in the source that is not elim-

inated by the compiler, but that at the same time does

not limit the precision or scope of the compiler’s exist-

ing analyses and optimizations to reduce the code size

or the execution time of the remaining code. Even if a

kind of code complexity sweet spot existed where both

properties hold, this sweet spot would be very depen-

dent on the specific compiler and implemented protec-

tion. As a result, neither the protection nor the minimal

overhead introduced by the source code rewriter would

be portable. This implies that the source code rewriter,

in case it is an automated tool, would have to be re-

tuned, retrained or ported to each different combination

of compilers and target architecture used. In case the

rewriting happens manually, it means the manual effort

would have to be reinvested every time a new compiler

or target architecture is used. Moreover, it would also

require the security expert to be a compiler expert. Cer-

tainly, that is not ideal.

Fundamentally, the sketched problem is an instance

of a more generic problem of source-to-source rewrit-

ers: as security concerns many abstraction layers, incl.

Link-time Smart Card Code Hardening 3

physics, computer architecture, binary code and proto-

cols, many security policies involve lower-level aspects

that are hard to control in source code when the used

compilers are black boxes. In the above instance, the

problem is to specify which redundancy should survive

the compiler and which complexity should not.

Furthermore, as source code rewriters are language-

dependent, they need to be redeveloped for every lan-

guage. Finally, white-box and black-box security test-

ing typically takes place on the final binary code. Even

though techniques have been developed to bridge the

gap, communication between testing teams and protec-

tion tool developers is harder if the former are study-

ing assembly code generated by one or more black-box

compilers, while the latter are working on source code.

2.2 Link-time Binary Rewriting

Binary code rewriters or assembly rewriters that are

applied to compiled or manually written assembly code

do not suffer from the above problems. They do suffer,

however, from the fact that they have to operate on

code that lacks high-level, abstract semantic informa-

tion, such as symbol and type information. This lack of

information limits the precision and scope of many pro-

gram analyses and transformations, and can hence have

a negative impact on the provided level of protection as

well as the incurred overhead.

From a security perspective, we first have to con-

sider whether it is possible, with link-time rewriting

tools, to reliably obtain sufficient protection on code

generated with third-party compilers.

We conjecture that this is indeed possible. Regard-

ing the wide range of transformations that can be ap-

plied at link-time, as necessary to insert the necessary

redundancy, we point to the existing applications of

the open-source link-time binary rewriting framework

Diablo1 [48]. These applications include optimization

and compaction [19], obfuscation [4,34] and deobfusca-

tion [32], anti-tampering [51], formal verification of bi-

nary code [54], instrumentation [16], GUI binary code

editing [49], and operating system customization [12].

Diablo’s potential for reliably transforming code gen-

erated with third-party tool flows and targeting differ-

ent processor architectures is obvious given that Dia-

blo has been applied to software written in different

languages, incl. C, C++, assembly and Fortran; bi-

nary code generated with different compiler generations

covering more than a decade of proprietary as well as

open-source compilers (incl. ARM ADS, ARM RVCT,

and gcc) [19]; system libraries that contain significant

1 http://diablo.elis.ugent.be

amounts of manually-written assembly, incl. newlibc2,

glibc3, and uClibc4 [19]; a range of architectures, incl.

SH [14], PowerPC [10], MIPS [33], IA64 [5], x86 [12],

and ARM incl. Thumb [12,19]; the Linux kernel [12,

11], which features artifacts such as mixed code for

physical and virtual address spaces, privileged instruc-

tions, manually written assembly not adhering to the

conventions as specified in application binary interfaces

(ABIs), and a complicated, non-standard build process.

Despite these existing demonstrations of Diablo’s

flexibility and reliability, it is not clear a priori that a

tool like Diablo can deliver acceptable protection against

fault-injection at acceptable overhead, with an accept-

able engineering effort. The reason is that all tools de-

veloped on top of Diablo have been designed to de-

pend solely on information that is generally available in

object files, such as symbol information, relocation in-

formation, and optionally debug information [30]. This

enables them to handle code generated by open-source

compilers as well as closed compilers, but it also limits

the capabilities of link-time rewriters.

First, the link-time rewriters lack high-level seman-

tic information about the code to be rewritten. For ex-

ample, no type information is available, which makes

alias analysis much less precise [20,38]. Consequently,

link-time rewriters typically need to handle memory

as a black box. For example, after reading in a pro-

gram’s object files that are normally linked with a stan-

dard linker, Diablo disassembles the code and builds

a whole-program, interprocedural control flow graph

(CFG) [38]. The nodes in this graph are basic blocks,

i.e., single-entry single-exit sequences of instruction, in

which instructions are represented using a very low-

level, assembly-like intermediate representation (IR) [15,

38]. These instructions operate on type-less architec-

tural registers that cannot be aliased because pointers

to registers to not exist. With the exception of memory

accesses at constant addresses and direct stack accesses,

all loads and stores are handled as if they access one big

memory array at unknown locations.

This is a big contrast with compilers, which per-

form part of their analyses and optimizations on code

that operates on typed variables and objects. Only af-

ter the compiler has performed the high-level optimiza-

tions, the variables are assigned to registers or, when

not enough registers are available at some point, they

are spilled to memory. This register allocation can be

optimized globally in a compiler [38].

Link-time rewriters do not have this optimization

potential. When they rewrite and duplicate code, they

2 http://sourceware.org/newlib/
3 http://www.gnu.org/software/libc/
4 http://www.uclibc.org/

4 Ronald De Keulenaer et al.

will have to find free registers to store temporary val-

ues. In case they cannot find them, because the compiler

has used all available registers for the original code, the

link-time rewriter has to free registers by temporarily

spilling values to the stack. Applying this spilling locally

on a low-level IR with register operands potentially in-

troduces considerably more overhead than what can be

achieved in a compiler.

Secondly, at link time indirect control flow transfers,

of which binary code analysis cannot resolve the tar-

gets precisely, have to be modeled conservatively (i.e.,

over-approximated) on the basis of relocation informa-

tion [15,17]. Through additional edges in the CFG that

model that over-approximation, the CFG models a su-

perset of all possible executions of a program. This is

safe, but leads to a loss in analysis precision for inter-

procedural analyses like context-sensitive liveness anal-

ysis, conditional constant propagation, copy propaga-

tion, and reachability analysis, on the basis of which

tools like Diablo apply optimizations such as unreach-

able and dead code elimination, constant folding, inlin-

ing, etc. [38]. For a more detailed discussion, we refer

to the existing literature [15,17,19,48].

Over the last decade, several techniques and tools

have been proposed to improve the precision and scope

of automated analyses of binary code, e.g., to retrieve

targets of indirect control flow transfers [26] and to re-

cover type information [21]. Moreover, advanced tools

such as TSL (Transformer Specification Language) for

automatically generating analyses based on abstract

interpretation facilitate the engineering of new analy-

ses [31]. Still, because of (1) the wide range of transfor-

mations and optimizations that compilers apply, includ-

ing in some cases obfuscating transformations, because

of (2) the undecidability of many compiler analyses, and

because of (3) the limitations one needs to impose on

the resources and time available to analyze programs,

there will necessarily always be limitations on the pre-

cision and scope of automated analyses.

It is mainly because of these limitations that it is

necessary to evaluate the extra overhead introduced by

applying hardening transformations at link time, i.e.,

the overhead that could be avoided by instead applying

the same transformations in source code, in a compiler,

or by manually rewriting assembly code.

2.3 Post Link-time Binary Rewriting

O’Sullivan et al. recently proposed an interesting alter-

native for link-time rewriting [40]. Their SecondWrite

tool rewrites a binary executable lacking relocation in-

formation post link time. The executable is first dis-

assembled into the IR (intermediate representation) of

LLVM5 [29], then rewritten and optimized, before be-

ing scheduled and register-allocated into a new binary.

This offers many of the benefits of link-time rewriting,

and in addition end users can rewrite any untrusted

third-party software binaries, even when the binaries

lack any kind of symbol or debug information. Further-

more, working with a more abstract compiler IR allows

SecondWrite to alter stack frame layouts globally and

to apply all existing optimizations in LLVM for free. At

least in theory, SecondWrite hence supports more elab-

orate protection schemes. Furthermore, a more global

register allocation can be performed on the LLVM IR,

which potentially reduces the overhead of applied fault-

injection protections.

However, SecondWrite’s approach also comes with

some major disadvantages. Its main disadvantages re-

late to the need to maintain conservativeness in the

absence of relocation information [45]. To ensure that

operations involving computed addresses (e.g., indirect

branches, function pointers and memory accesses through

pointers) are rewritten correctly, SecondWrite does not

relocate any statically allocated data. The read-only

data embedded in the original code section (e.g., ad-

dress or constant pools) are not relocated either, and

remain located at their original addresses. Furthermore,

before indirect control flow transfers, SecondWrite in-

serts translation table lookups to translate addresses

from the original binary to addresses in the new binary

at run time, such that the transfers are redirected cor-

rectly even if their targets could not be resolved stati-

cally.6 In addition, whenever SecondWrite cannot prove

that some bytes embedded in the code section are actu-

ally data, it conservatively handles these bytes as both

code and as data. To that extent, SecondWrite leaves

a copy of the bytes in their original location to sup-

port all potential data accesses to the bytes, and adds

a rewritten copy of the bytes interpreted as code to the

program IR. So in the address space of the rewritten

binary, the statically allocated data sections remain in

place, as do the (potential) data pools from the origi-

nal code section. Some data is duplicated as code and

in addition translation tables and lookups are added.

This all results in considerable code size and file size

overhead, even before any protection is applied.

Other post link time rewriters like REINS [50] and

the tool by Zhang and Sekar [53] suffer from similar

drawbacks as SecondWrite, in that their handling of

indirect control flow and memory accesses also inflates

5 http://llvm.org/
6 Note that this feature has nothing to do with enforc-

ing control flow integrity. It only relates to ensuring that
the application behaves the same before and after rewriting,
whether that is as intended by the developer or not.

Link-time Smart Card Code Hardening 5

the executable size even before any actual code hard-

ening has been applied.

In many scenarios, that inflation is not problem-

atic. All post-link-time rewriter developers target and

evaluate desktop computers and applications [40,45,3,

53,50], where code size and file size are not really con-

cerns. Furthermore, with desktop operating systems, all

rewritten code can simply be reallocated contiguously

in a completely different range of the address space.

Smart cards, however, typically feature very small

memories and often lack virtual memory. As a result,

smart card software developers cannot rely on any of

the existing post-link-time rewriter implementations.

That does not imply, however, that post-link-time

rewriting approaches are fundamentally infeasible. By

including more advanced binary code analysis steps like

the ones referenced near the end of Section 2.2, and

by ensuring that only relatively standard, clean binary

code is generated for an application, a post-link-time

rewriter should be able to correctly relocate all data

and code, thus avoiding the overhead of the current

approach of SecondWrite and the other tools. The gen-

eration of such clean binary code, i.e., code with rec-

ognizable control flow transfer patterns, can most often

be realized by imposing coding guidelines and by con-

trolling the compiler options. In some cases however, it

might be more tricky, e.g. where it concerns system li-

braries that mix C code and inline assembly fragments.

As the same reasoning can be applied to link-time

rewriters, the post-link-time approaches are ultimately

as hampered as link-time solutions with regards to their

potentially imprecise modeling of indirect control flow.

So fundamentally, the main difference between tools

like SecondWrite on the one hand and tools like Diablo

on the other hand, is the abstraction level at which code

is represented and transformed. Regarding the harden-

ing of code against fault-injections, it is an open ques-

tion whether operating at a compiler IR level instead

of at an assembly IR level offers real benefits.

3 Implemented Sample Protection Schemes

For this study, we implemented four first-line-of-defense

cookbook protections that provide local hardening against

single-instruction failure attacks [37]. To understand

the value of these schemes and the rationale behind

some implementation choices and practical issues, it is

important to consider the attack model in which these

protections are considered.

3.1 Attack Model

By means of offline hardware and software hacking in

labs, attackers reverse-engineer the complete software

installed on a smart card, incl. its (often deterministic)

timing. This enables them to engineer fault-injection

attacks to steal secret data, e.g., using hacked termi-

nals at restaurants or ATMs, and to counterfeit credit

cards. To deploy the attacks covertly, the fault-injection

infrastructure and the data acquisition hardware need

to fit into small devices that are, with respect to out-

side appearance and observable timing behavior, not

distinguishable from standard terminals by a layman.

An important form of fault-injection attacks in such

scenarios are single-cycle faults. Knowing the software,

the attacker selects an instruction to disrupt. Knowing

the software timing, he then determines the cycle in

which to inject a fault, e.g., by temporarily lowering

the supply voltage or by flashing the instruction fetch

bus with a laser. Which exact bits will flip because of

the injected fault is typically not under control of the

attacker, however.

By causing random bit flips on a chosen branch in-

struction, an attacker has a good chance of turning it

into an operation that does not transfer control, but in-

stead falls through to the next instruction. This follows

from the fact that most instructions (i.e., most instruc-

tion encoding bit combinations) fall through. Similarly,

an injected fault can turn a memory store into a non-

store with high probability. And an instruction that sets

a condition flag can likely be converted into one that

does not set the flag. By contrast, with random bit flips

an attacker has no real hope of turning an arithmetic

logic unit (ALU) instruction into a control flow trans-

fer to a chosen address, or into a store operation at a

chosen memory location. This severely limits the likely

successful attacks he can mount.

Besides failing to perform its intended task, a faulted

instruction will of course still have some unpredictable

effect on the processor state, such as overwriting a reg-

ister value. But each possible effect has a relatively

low probability. Furthermore, there is a relatively low

chance that the effect of the faulted instruction will

completely corrupt the continuing execution of the pro-

gram. For example, if a branch instruction is faulted, it

is not unlikely that the only result will be an overwrit-

ten register whose value is no longer used in the pro-

gram. From the attacker’s perspective, a faulted con-

trol flow transfer, memory operation or condition flag

setting operation will hence quite likely behave like a

simple no-op instruction.

In summary, we envision attackers will try to iden-

tify a branch, call, return, compare, or store instruction

6 Ronald De Keulenaer et al.

that, when turned into a no-op, causes sensitive data to

be leaked or unauthorized tasks to be performed. The

first goal of the hardening protections is therefore to

rewrite the code such that replacing single instructions

by a no-op no longer causes unwanted behavior.

The existing protections for which we implemented

support in our prototype rewriter achieve this for cer-

tain classes of code fragments. We certainly do not want

to claim that we present new protection schemes, or

that our prototype can offer full protection. We only

implemented a number of basic protections to demon-

strate that the automation of these types of protections

in a link-time rewriter is feasible and comes with an ac-

ceptable overhead.

Nonetheless, we want to argue that even the applica-

tion of only the implemented protections can be useful

in certain scenarios. In particular, the implemented pro-

tections can contribute in lowering the likelihood of a

successful attack to the point where an attacker’s costs

(e.g., the hacked terminals, the offline analysis inves-

tigation, bribing people to cooperate, ...) outweigh his

likely benefits. That is the reason why rather simple

forms of redundancy are a typical first line of defense

in the first place [37].

More recently, multiple fault injection attacks have

also become viable [47]. The protections presented in

here do not necessarily protect against those.

3.2 Implemented Protections

We implemented redundancy-based protection schemes

in a tool on top of the Diablo framework. We targeted

the ARM Cortex-M0 instruction set architecture (ISA)

of the ARM SecurCore SC000 processors [52], which

are aimed at future smart card applications. In these

schemes, the protected program executes some invalid

state exception code when a fault is detected. In our

prototype, we opted for implementing that invalid state

exception code by means of simple infinite loops, which

at least prevent that any secret data is outputted follow-

ing a fault injection. Given Diablo’s existing support to

inject user-provided code into a program [16], this loop

can easily be replaced by other invalid state handling

code that is, e.g., selected not to leak information via

timing side channels, but otherwise continue the normal

execution of the program.

We again want to emphasize that the implemented

protections are not meant to demonstrate full protec-

tion or stronger protection than what can be achieved

manually today. They were instead chosen because they

(1) are being used in practice, (2) allow us to pinpoint

technical and usability issues, and (3) allow us to eval-

ldr r0,[r1]

cmp r0,#5

beq .Lsafe

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(a) Original code

ldr r0,[r1]

cmp r0,#5

beq .Lsafe

ldr r0,[r1] // duplicated

cmp r0,#5 // duplicated

bne .Lsens // duplicated

.Lfault:

<invalid state exception>

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(b) Protected code

Fig. 1 Example of conditional branch duplication

uate the feasibility and overhead of automated, link-

time hardening transformations compared to manual

or compiler-based hardening.

3.2.1 Conditional Branch Duplication

Sensitive code paths are often shielded by checks that

verify whether a correct password was entered, the cor-

rect key was used, a valid request was performed, etc.

On smart card processors like the ARM SecurCore

SC000, these checks correspond to conditional branches

in the binary code. The branches are taken or not taken

depending on flags in a flags register, which can either

be set explicitly by a comparison instruction or implic-

itly according to the result of an ALU operation. At-

tacks can focus on the input values used to perform the

operation that sets the flags, on that operation itself,

or on the conditional branch that depends on the flag.

To protect against attacks that make the checks in-

effective by skipping one of those instructions, we du-

plicate the computation of the flags and the conditional

branch. A typical scenario targeted by this transforma-

tion is depicted in Figure 1(a)7. In this case, we want

to prevent that an attacker can force the conditional

branch to fall through by either skipping the branch

itself, or by skipping one of its immediately preceding

instructions. In the original code, and in a fault-free op-

eration, the conditional branch beq falls through to the

sensitive code if and only if the value loaded from ad-

dress r1 into register r0 by the ldr instruction is not

7 A brief overview of ARM & Thumb architecture is given
in the electronic appendix to this article

Link-time Smart Card Code Hardening 7

ldr r0,[r0]

cmp r0,#5

beq .Lsafe

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(a) Original code

ldr r2,[r0]

cmp r2,#5

beq .Lsafe

ldr r0,[r0] // duplicated

cmp r0,#5 // duplicated

bne .Lsens // duplicated

.Lfault:

<invalid state exception>

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(b) Protected code when register r2 is free

push r2 // potentially avoidable spill

ldr r2,[r0]

cmp r2,#5

pop r2 // potentially avoidable spill

beq .Lsafe

ldr r0,[r0] // duplicated

cmp r0,#5 // duplicated

bne .Lsens // duplicated

.Lfault:

<invalid state exception>

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(c) Protected code when no free register is available

Fig. 2 Conditional branch duplication that needs additional
temporary registers or stack space.

equal to 5. If the load operation (ldr) is skipped by

a fault injection, however, the compare will be based

on an older value of register r0. In that case, the con-

ditional branch may fall through to the sensitive code

even when the value at address r1 in memory was 5,

thus potentially leaking sensitive data. In case the com-

pare operation cmp is skipped by a fault injection, the

conditional branch will fall through or jump based on

the condition flags already set before the ldr instruc-

tion. So again, the branch might fall through even when

the value at address r1 in memory was 5.

The code is therefore transformed into the code of

Figure 1(b). In this code, skipping a single instruction

will never allow the attacker to reach the sensitive code

when the value at location r1 in memory is equal to

5: If any of the first three instructions are skipped,

the duplicated load and compare instructions will effec-

lsl r0,r1

cmp r0,#5

beq .Lsafe

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(a) Original code

mov r2,r0 // unavoidable data copying

lsl r0,r1

cmp r0,#5

beq .Lsafe

lsl r2,r1 // duplicated

cmp r2,#5 // duplicated

bne .Lsens // duplicated

.Lfault:

<invalid state exception>

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(b) Protected code when register r2 is free

push r0 // unavoidable data copying (stack)

lsl r0,r1

cmp r0,#5

pop r0 // potentially avoidable spill

beq .Lsafe

lsl r0,r1 // duplicated

cmp r0,#5 // duplicated

bne .Lsens // duplicated

.Lfault:

<invalid state exception>

.Lsens:

<sensitive code>

.Lsafe:

<safe code>

(c) Protected code when no free register is available,
but where r0 is dead on entry to the safe code.

Fig. 3 Another conditional branch duplication that needs
additional temporary registers or stack space

tively make the branch-if-not-equal instruction bne fall

through into the invalid state exception code. By skip-

ping one of the duplicated instructions, the only thing

the attacker can achieve is that the conditional branch

falls through instead of being taken. So again, the at-

tacker cannot force the sensitive code to be reached.

More complex variations of the code in Figure 1(a)

can occur. First, there can be multiple definitions of the

input value(s) of the comparison in different predeces-

sors of the comparison’s basic block. The duplication

of the definitions can then be skipped, which weakens

the protection because of reduced redundancy. Alterna-

tively, the multiple definitions can be duplicated, pos-

sibly by means of tail duplication [38], even before the

actual redundancy is being inserted. So far, our proto-

type only supports the former.

8 Ronald De Keulenaer et al.

Secondly, it does not always suffice to merely dupli-

cate instructions. Consider the case when an instruc-

tion’s destination operand register is also one of its

source operands, as in the ldr r0, [r0] instruction in

Figure 2(a). The problem is that the instruction over-

writes the value of its own source operand, which is

hence no longer available for the duplicated instruc-

tion. In such cases, we need to find one or more free

(i.e., dead) registers to rename registers before perform-

ing the duplication, or to store copies of the original

source operand values temporarily. Our prototype finds

such free registers by means of a state-of-the-art bidirec-

tional context-sensitive interprocedural liveness analy-

sis [18]. When free registers are found, we can simply

use them, as shown in Figure 2(b). When no free reg-

isters are found, they are created by either renaming

registers locally, or by inserting the necessary spill code

instructions that temporarily save values on the stack,

as with the push and pop instructions in Figure 2(c).

Please note that in this example, register r2 can be

used directly because in the Thumb ISA, ldr’s desti-

nation operand is not also an implicit source operand.

For other instructions, however, including most ALU

operations, the destination operand is also an implicit

source operand. This is because Thumb’s instruction

width of 16 bits is too narrow to encode three differ-

ent register operands in all instructions. When such in-

structions with an implicit source operand need to be

duplicated, an additional copy operation needs to be

inserted to duplicate the operand’s original value be-

fore it is overwritten. Figure 3(b) shows an example

of such an additional mov instruction, which cannot be

avoided. Sometimes, depending on the liveness of the

involved registers, this copy operation can be fused into

the spilling code. An example is shown in Figure 3(c),

where the value in r0 is copied to the stack by the push

instruction.

Apart from spilling registers to free them, it can also

be necessary to spill the flag register when the flags are

consumed by instructions computing the flag for the

conditional branch. Spilling the flag register itself by

means of msr and mrs instructions adds additional over-

head, as might the freeing of normal registers to spill the

flag register to. This is illustrated in Figure 4. This code

example also illustrates that setting condition flags in

Thumb is not limited to simple compare instructions.

Instead, almost all Thumb instructions (sometimes op-

tionally) set the flags. This further complicates finding

the transformation with the lowest overhead.

On the ARM Cortex-M0’s with its Thumb ISA,

sometimes a form of “light” spilling can be used to

avoid the power-consuming memory operations of tra-

ditional spilling. In this ISA, only the lower registers

sbcs r3,r0 ; subtract with carry,

set Z flag if result is zero

beq .Lsuccess

<failure handling code>

.Lsuccess:

<sensitive code>

(a) Original code

push r3,r4 ; free r3 and r4

mrs r4,cpsr ; temporarily save carry flag in r4

sbcs r3,r0

beq .Ldup1

add sp, #8 ; abandon saved r3 and r4

<failure handling code>

.Ldup1:

msr cpsr, r4 ; restore saved carry flag

pop r4,r3 ; restores r3 and r4

sbcs r3,r0

beq .Lsuccess

<invalid state exception>

.Lsuccess:

<sensitive code>

(b) Protected code

Fig. 4 Conditional branch duplication with additional over-
head for duplicating condition flags

r0–r7 are generally accessible as source and destination

operands in all instructions. Registers r8–r12 are acces-

sible through fewer instructions, incl. moves and com-

pare instructions without immediate operands. When

the registers r8–r12 or r14 (which holds the return ad-

dress) are dead at some program point, they can serve

as spill locations for lower registers that need to be freed

to duplicate operations.

While the above examples are by themselves pretty

straightforward, they illustrate that finding the code

with the least overhead involves many conditions to be

checked. It is hence clear that manual application of

the protections, e.g., on assembly code is cumbersome

and time consuming, even if only local spilling options

are considered. So on the one hand, automation, e.g.,

through binary code rewriting, is highly welcome. On

the other hand, it is also clear that when the auto-

matically computed liveness information lacks precision

to find the needed free registers, significant additional

overhead might be introduced.

In Section 4, we will estimate that additional over-

head. For that estimation, we will count the following

instructions as unavoidable overhead of the hardening

of conditional branches:

– the duplicated instructions that implement the hard-

ening;

– mov instructions inserted as in Figure 3(b) to copy

source values that are unavoidably overwritten by

an operation to be duplicated because that opera-

Link-time Smart Card Code Hardening 9

tion’s destination operand is also an implicit source

operand;

– push instructions that are fused with such mov in-

structions, and that hence implement not only spill-

ing, but also the necessary copying;

– msr and mrs operations needed to duplicate condi-

tion flags because an instruction that both consumes

and overwrites them is to be duplicated as part of

the hardening.

These encompass all instructions that are unavoidable

given the limitations of the Thumb ISA and the re-

quested code duplication to implement the hardening.

By contrast, we will count all other inserted spill

operations and all other move operations as potentially

avoidable overhead. The reasoning is that some of these

spills and moves might have been avoided with more

accurate liveness information or through more global

register reallocation or more advanced transformations

than are currently supported by our tool. In other words,

these spills and moves might have been avoided during

manual hardening of assembly code or when the hard-

ening was done by a compiler in the yet-to-be-allocated

compiler IR of the code.

Our estimate of the potentially avoidable overhead

will certainly overestimate the truly avoidable overhead.8

As such, our bookkeeping allows us to put an upper

bound on the extra overhead potentially caused by the

link-time rewriter’s immaturity or by its lack of analy-

sis precision and global register allocation. In Section 4,

this will ultimately allow us to demonstrate the feasi-

bility of link-time smart card code hardening.

Our tool, being just a prototype, only targets the

most easily attacked types of code fragments, i.e., the

low-hanging fruit of attackers. Most importantly, our

implementation currently assumes that the fall-through

path following a conditional branch is the sensitive one.

This follows from the insight that it is much simpler for

an attacker to skip a branch that had to be taken under

fault-free conditions, than it is to force taking a branch

that would not be taken under fault-free conditions. If

sensitive code lies on the branch-taken path, the branch

has to be inverted first, or an additional inverted check

has to be inserted on the fall-through path as well. Our

current prototype does not yet support this. In Sec-

tion 3.3, we discuss how a programmer can inform a

link-time tool about the exact program points to be

considered sensitive and on the policies that should be

applied at each of them.

8 The truly avoidable overhead can only be determined
precisely by developing a hardening compiler or by apply-
ing all protections manually, for which we lack the time and
resources.

Furthermore, our prototype branch duplication skips

conditional branches at loop exit points [38], because

loops are often better protected with other transforma-

tions such as the one discussed in Section 3.2.4.

In addition, our duplication of instructions is cur-

rently limited to the following two instruction patterns,

for which we duplicate 3 and 2 instruction respectively:

pattern 1: 1) any instruction producing rX

2) cmp/tst rX, #immediate

3) conditional branch

pattern 2: 1) any instruction setting the flags

with operands rX, rY or

rX, #immediate

2) conditional branch

We opted for these patterns because they make up over

95% of all conditional branches in our tested bench-

marks and because they cover both simple and complex

scenarios as discussed above. Implementing support for

more patterns and for duplicating more instructions

would involve a significant effort without significantly

changing the outcome of our experiments in Section 4.

3.2.2 Call Graph Integrity

Security analyses performed on a program’s call graph

are only as trustworthy as the guarantee that only mod-

eled calls or returns can occur. By injecting bogus call

or return addresses into the execution of a program,

it is possible to invalidate any call graph constructed

statically.

The call graph integrity transformation we imple-

mented works at a local level: at each individual call

and return site a value is set that can be checked at

the intended destination. At the start of every function

and at every return site, it is then possible to verify that

control indeed came from one of the allowed source lo-

cations. This in effect prevents calls and returns from

being skipped. This is less strong than existing protec-

tions that verify entire call chains, but on the plus side

it can be easily applied to call graphs that contain hard

to analyze constructs such as recursion.

Since our transformation is applied at link time,

supporting indirect function calls through function point-

ers or polymorphic method invocations requires extra

care. Lacking type information, link-time rewriters typ-

ically cannot determine the exact targets of an indirect

call. This is solved by clustering all functions that can

be called indirectly according to the symbol and relo-

cation information in the object files and treating them

as a single function as far as this transformation is con-

10 Ronald De Keulenaer et al.

Caller:

...

mov r4,#eb

blx CalledFunction

...

Callee:

cmp r4,#eb

beq .Lsuccess

<invalid state exception>

...

.Lsuccess:

<sensitive code>

Fig. 5 Passing and checking an ID

str r0,[r1]

ldr r2,[r1]

cmp r0, r2

beq .Lok

<invalid state exception>

.Lok:

...

strb r0,[r1]

ldrb r2,[r1]

eors r2,r0

lsls r2,#24 // sets or resets flag

beq .Lok

<invalid state exception>

.Lok:

...

Fig. 6 Two examples of a store followed by its verification

cerned. While this makes the protection less tight, it al-

lows us to deal statically with uncertainties introduced

by dynamic program behavior.

Figure 5 shows how each check consists of two parts.

Before every call a register or global variable is set to a

unique call identifier of the callee or cluster of callees.

In the example, the identifier has the value 0xeb. Next,

instructions inserted in each function’s prologue verify

whether the set value matches its identifier. Similarly,

before every return instruction a register or global vari-

able is set to a different return identifier. This value is

checked at the return points in the callers.

The hardening process starts by partitioning the

program’s functions into clusters whose members can

call each other indirectly, that can be called from the

same indirect call site, or that are linked through inter-

procedural gotos [15,17].

Next, the registers free on entry and exit in all func-

tions in a cluster are collected. If some register is always

free on entry, it will be used to pass the value from the

caller to the callee; otherwise the value is passed via a

global variable. A similar decision is made for the exit,

independently of what was decided at the entry. The

registers used to pass identifiers can obviously differ

across clusters.

Diablo also records whether the condition flags are

free on entry/exit of a cluster’s functions. Their avail-

ability is important because the checks involve compar-

ison instructions that overwrite them. While no ARM

ABI guarantees that the flags maintain their value across

function boundaries, functions written in assembly do

not always adhere to conventions. So whenever they are

not provably dead at some call or return point, they are

temporarily stored in a free register, which is created

through register spilling when necessary. In a large set

of programs we examined, only the ABI-defined func-

tions for emulating floating-point comparisons on sys-

tems lacking floating-point hardware return their result

via the condition flags.

For evaluating the efficiency with which this harden-

ing technique can be applied automatically at link time,

we consider all mov instructions that set the identifier

values as well as all compare and conditional branch

instructions that check that value and jump to infinite

loops, as unavoidable. All other inserted instructions,

such as spills and msr and mrs instruction, are counted

as potentially avoidable overhead.

3.2.3 Memory Store Verification

The failure of a store operation at run time generally

means that program state is lost. This can be addressed

by checking that the correct value was written to mem-

ory. Such a check also introduces some resiliency to

memory errors.9 The proper execution of a store can

be verified by loading the stored value back from mem-

ory and by comparing it to the value that should have

been stored, as depicted in Figure 6. This transforma-

tion requires an extra free register (r2 in the example)

to reload the stored value. Spilling might be needed to

create such a register. When a 16-bit halfword or a byte

are being stored as in the example at the bottom of Fig-

ure 6, some additional instructions are needed because

the reloaded halfword or byte cannot be compared di-

rectly against the 32-bit word out of which the halfword

or byte was stored.

Additionally, we have to ensure that the inserted

comparison does not overwrite any condition flags live

after the store to be protected. To keep all live flags’

values, we can simply save all of them temporarily, as

was done for the conditional branch duplication in Fig-

ure 4. Alternatively, we can often insert an instruction

that recomputes the live flags after the store instruc-

tion, thus freeing the flag at the point of the store. Fig-

9 The presented verification technique aims to ensure that
write operations take place as intended. For protecting the
values once they are stored in memory, complementary tech-
niques such as error-correction codes can be used [23].

Link-time Smart Card Code Hardening 11

sub r0, #1 // sets the condition flag

str r0, [r1]

beq .Llabel // based on subtraction result

(a) Original code

sub r0,#1 // sets the condition flag

str r0, [r1]

ldr r2, [r1]

cmp r0, r2

beq .Lcorrect

<invalid state exception>

.Lcorrect

cmp r0, #0 // recomputes the Zero flag

beq .Llabel

(b) Protected code

Fig. 7 Example of memory store verification with flag recom-
putation

ure 7 depicts an example, in which the combination of

msr and mrs (and the potentially necessary spilling to

find a register for them to use) are avoided by inserting

a simple compare operation that recomputes the Zero

flag. Furthermore, it can also be useful to reschedule

the existing code, such that more free registers become

available right after the store to be protected.

For evaluating the avoidable overhead of this hard-

ening technique applied automatically at link time, we

count the load, the comparison (or alternatively the

exclusive or and the shift), and the conditional branch

as unavoidable. All other operations are considered po-

tentially avoidable, including spills and msr and mrs in-

structions or their alternative comparison to recompute

flags. We count msr, mrs or their replacement as po-

tentially avoidable because the store instructions to be
protected can often be moved to points in the schedule

where no condition flags are live, and hence where no

flag saving and restoring instructions are needed at all.

So if our prototype tool does insert those instructions, it

might be doing so unnecessarily, because it lacks more

aggressive code motion support or because it lacks pre-

cise enough liveness information.

For hardening instructions that store to the stack

outside of function prologues and epilogues, we will

count the inserted spill instructions as potentially, but

unlikely avoidable. The reason is that most stores to

the stack in the original program result from register

pressure. So for most of the stores to the stack, the

presence of the store itself indicates that even in the

original, unhardened code, the compiler could not find

enough free registers. So for most of such stores to the

stack, spill code inserted to free a register will in fact

be unavoidable. A tiny fraction of the stores to the

stack are present, however, independently of register

pressure, i.e, because their stored values escape their

stack frame or because it concerns accesses to structs.

As we have no method to differentiate 100% accurately

between the two cases, we cannot accurately count the

number of unavoidable spills inserted to protect stores

to the stack. But we can estimate them, and hence we

report them as potentially, but unlikely avoidable.

3.2.4 Loop Iteration Counter Duplication

Many applications are sensitive to the number of itera-

tions executed in their loops. For example, running too

many iterations of a loop exporting a buffer might result

in sensitive data stored after the buffer being exported,

and running too few rounds of an encryption algorithm

might leak information about a secret key. Therefore we

need to protect loops such that they execute precisely

the foreseen number of iterations. We implemented a

loop iteration counter duplication to achieve this. Its

protection on the simple loop of Figure 8(a) is depicted

in Figure 8(b).

For this protection, the initial loop counter value

(r1 in Figure 8) is duplicated (into r5) in the loop’s

preheader. In the loop body, the loop counter operation

(sub) needs to be duplicated. Moreover, both directions

following the conditional branch at the exit of the loop

need to be protected to ensure that not too few and

not too many iterations are executed. That is why two

checks have been inserted in the code of Figure 8(b).

In our current prototype implementation, we pro-

tect natural loops of which the fault-free number of it-

erations can be determined before the loop is entered.

This requires that the loop contains a counter that is

updated exactly once per iteration and that the loop
exit is controlled by comparing the loop counter to a

loop invariant value. This excludes, e.g., loops that it-

erate over dynamic data structures such as linked lists.

For such loops, more generic loop control protection

can be implemented by means of the already presented

protections. Furthermore, our prototype does not yet

support function calls in loop bodies.

For this loop hardening technique, it is more com-

plex to estimate which of the inserted instructions are

unavoidable, and which ones might constitute avoidable

overhead because they stem from a lack of precise live-

ness analysis information and from our tool’s inability

to perform global register allocation. The reason is that

in this case, the liveness ranges corresponding to the

duplicated instructions span whole loop bodies, which

are much larger code regions than those involved in the

other hardening techniques.

For this protection we hence first estimate whether

or not a loop’s original code already suffers from register

pressure. The idea is that when the original loop body

12 Ronald De Keulenaer et al.

.Lpreheader:

mov r2, r0

.Lbody:

lsl r2, #1

sub r1, #1

cmp r1, #0

bg .Lbody

.Lafter:

...

(a) Original loop code

.Lpreheader:

mov r2, r0

mov r5, r1

.Lbody:

lsl r2, #1

sub r1, #1

sub r5, #1

cmp r1, #0

bg .Lcheck2

.Lcheck1:

cmp r5, #0

ble .Lafter

<invalid state exception>

.Lcheck2:

cmp r5, #0

bg .Lbody

<invalid state exception>

.Lafter:

...

(b) Protected loop code

Fig. 8 Example of loop iteration counter duplication

indicates that the original compiler or the assembly pro-

grammer were not able to allocate all used values to

the best suited registers, we can assume that a security

researcher protecting code manually will not be able

to allocate the duplicated counter to the best suited

registers either. In that case, it is impossible to avoid

operations that store and load the duplicated counter

to and from the stack before and after the duplicated

update and compare instructions. Hence we should not

consider such spilling operations a potential result of

our tool’s limitations.

For the original loop counter, which needs to be up-

dated in the loop body, the best suited registers are r0–

r7. In case the loop invariant value to which the loop

counter is compared for exiting the loop, is not an im-

mediate operand, the best suited registers to hold that

invariant value are r0–r12 and r14, because all of them

can be accessed by compare instructions. When we de-

tect that any loop invariant value of the loop or the

original loop counter itself are not allocated to those

best suited registers, we consider the original loop as

being generated under register pressure. Any spill or

“light” spill operations of the duplicated counter are

then unavoidable. In case an original loop body does

not show an unambiguous sign of register pressure, we

consider all spill operations and “light” spills as poten-

tially avoidable overhead.

This accounting method over-conservatively

estimates that for any original loop without the above

signs of register pressure, the rewritten loop (operating

on the same values plus a duplicated counter) would

not experience register pressure either. This is of course

not always the case. This method therefore incorrectly

counts some unavoidable spills as potentially avoidable.

In other words, like the accounting method of the other

transformations, this accounting method also overesti-

mates the real overhead resulting from our tool’s limi-

tations.

3.3 Specifying Where to Apply Protections

Just as source-to-source tools suffer from the difficulty

to specify security policies in terms of lower-level code

properties, the previous sections might have given the

impression that binary rewriting tools suffer from a sim-

ilar problem in terms of higher-level source code con-

structs and statements. It is therefore important to note

that the policy specification does not need to be limited

to the binary code or assembly code abstraction levels.

With a more complete tool than our prototype, pro-

grammers would be able to annotate their source code

to specify program points at which certain policies have

to be applied. They would then be able, e.g., to specify

which paths following conditional branches are sensi-

tive (see Section 3.2.1). This can easily be supported

by means of source code annotations in the form of

pragmas and attributes similar to the ones already sup-

ported by many compilers today. Consider the func-

tion f() in Figure 9 that is annotated with the exist-

ing noinline attribute to tell the GCC compiler not

to inline that function [38], and in which the condi-

tional branch is annotated with the unlikely built-in

macro that informs the GCC compiler to optimize the

code under the assumption that the branch is likely not

taken [38]. Very similar annotations like protect taken

or protect call graph integrity could be inserted

to inform a link-time rewriting tool about the code frag-

ments and paths to be protected. Such annotations pro-

vide a relatively convenient way for the programmer to

specify his security policy, without him having to insert

any protection manually.

To make this work, a precompiler tool will extract

and omit the annotations from the source code and

store them for later use in terms of source line numbers.

The existing compiler can compile the source code into

binary code that is annotated with standard debug in-

formation that maps addresses in the binary code to

Link-time Smart Card Code Hardening 13

__attribute__((noinline)) void f(int x) {

if (unlikely(x==0)) clean_buffer();

else output_buffer();

}

Fig. 9 GCC source annotations

source code line numbers. On the basis of that infor-

mation, the link-time rewriter would then apply the

specified and extracted policies. At the time of writing,

we have completed support for specifying policies for

full functions or files, and for selecting types of frag-

ments or paths to which to apply a policy. For exam-

ple, the conditional branches preceding loop exit edges

can be excluded from the conditional branch duplica-

tion of Section 3.2.1, because loops are typically better

protected with specific optimizations such as the loop

iteration counter protection of Section 3.2.4.

4 Experimental Evaluation

Because of confidentiality, real smart card software is

not publicly available. So instead we evaluated the cov-

erage and overhead of our protections on C benchmarks

from the embedded MiBench suite [22]. We compiled

and protected ten MiBench benchmarks (see Table 1)

for a semi-hosted simulation environment (QEMU 1.0 [9]).

We used them to verify correctness and to collect execu-

tion profiles in order to measure the dynamic protection

overhead, i.e., the overhead in terms of number of exe-

cuted instructions. In the results, we will refer to these

benchmark versions as s1–s10.

Whereas the crypto benchmarks s6–s8 in our bench-

mark suite implement functionality typical for smart

card software, the other benchmarks were chosen (ar-

bitrarily) to increase the sample set size of our experi-

ments. Some of those benchmarks rely heavily on pro-

cedure pointers and floating-point emulation, and some

benchmarks are IO-intensive. With respect to those as-

pects, they are not representative of typical smart card

software. We still include them in our experiments be-

cause they increase the sample set size for evaluating

the protections that are orthogonal to these aspects.

We used the ARM RVCT 4.1 compiler for ARM

Cortex-M0 platforms at optimization level -O2. This

compiler is a centerpiece of Keil10, a development tool

box that includes support for industrial smart card soft-

ware development. We manually checked the generated

code for the presence of the protections.

All binaries are linked statically, such that they in-

clude all needed RVCT 4.1 C library code. Via that

library, our benchmarks contain considerable a-mounts

10 http://www.keil.com/smartcards

Table 1 Benchmarks

short- code size
benchmark domain hand (bytes) # ins
basicmath small floating-point s1 19580 8266
bitcnts integer bitcounting s2 8204 3461
qsort large 3D point sorting s3 14824 6489
qsort small string sorting s4 8012 3506
susan image processing s5 32172 14569
aes crypto s6 37092 12724
sha crypto s7 7296 3105
bf crypto s8 7792 2469
cjpeg JPEG encoding s9 54564 23088
djpeg JPEG decoding s10 61304 26673

90%$
91%$
92%$
93%$
94%$
95%$
96%$
97%$
98%$
99%$
100%$

s1
$(6

35
)$

s2
$(2

89
)$

s3
$(5

77
)$

s4
$(3

02
)$

s5
$(1

05
6)
$

s6
$(2

71
)$

s7
$(2

62
)$

s8
$(1

95
)$

s9
$(1

31
5)
$

s1
0$
(1
51

1)
$

to
ta
l$(
69
29
)$

(a) fraction of conditional branches duplicated

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

s1
#(1

25
)#

s2
#(1

04
)#

s3
#(1

21
)#

s4
#(1

00
)#

s5
#(1

99
)#

s6
#(9

5)
#

s7
#(9

3)
#

s8
#(8

6)
#

s9
#(3

37
)#

s1
0#
(3
41

)#

procedures#clustered#through#gotos#
procedures#in#procedure#pointer#cluster#
procedures#not#clustered#

(b) clustering of procedures for call graph integrity

Fig. 10 Coverage results for conditional branch duplication
and call graph integrity checking.

of hand-written assembly code, which is not atypical

for real smart card applications.

Whereas developers of real smart card applications

would apply protections to only their sensitive parts,

there is no notion of sensitivity in our benchmarks.

They only serve the purpose of estimating the over-

head of protections applied at link time, and of validat-

ing their correct application. Our tool hence applied the

protections to the whole programs.

4.1 Coverage

4.1.1 Conditional Branch Duplication

Figure 10(a) shows the fraction of all conditional branch-

es (excl. loop exits) that were duplicated with the trans-

14 Ronald De Keulenaer et al.

formation described in Section 3.2.1. The absolute num-

bers of duplicated conditional branches are given on the

X-axis. All coverage results are based on static counts.

From all conditional branches excl. loop control, a large

fraction of 96% is duplicated. Per benchmark, this varies

between 90% and 99%. As for the small fraction of

branches not duplicated, this was mainly the result of

not finding the flag-setting instruction in the branch’s

basic block, as required by the instruction patterns tar-

geted by our prototype.

From this we can conclude that even with our rel-

atively immature prototype, the vast majority of the

conditional branches can already be protected. More-

over, as we protected close to 7000 conditional branches

in our experiments, our sample set is large enough to

draw conclusions on expected overhead in Section 4.2.1.

4.1.2 Call Graph Integrity

For this protection, our prototype adds checks at all

procedure entry points, and at all return points fol-

lowing call sites. So the coverage is 100%. In all cases,

the cluster identifier is passed through a register. This

is possible because in ARM Thumb, register r8 is not

generally accessible and not callee-saved, and hence it

was not live at any procedure entry or exit point.

Figure 10(b) shows to what extent procedures are

clustered as discussed in Section 3.2.2. The total num-

ber of procedures per benchmark is given on the X-axis.

The vast majority of them (i.e., more than 80% for most

benchmarks) are not clustered. Those procedures get

unique identifiers, which provides strong protection.

In all benchmarks, we observed one non-singleton
cluster containing all procedures that can potentially

be called indirectly through procedure pointers11. Typ-

ically, this cluster contains 5–10 standard library pro-

cedures. In cjpeg (s9) and djpeg (s10), however, it con-

tains more than 30% of all procedures, which more-

over are not library code, but application code. For

each image format supported by the benchmark pro-

grams, a structure is initialized with procedure point-

ers to routines that handle the supported image for-

mats. This structure is then dereferenced throughout

the (de)coding process, in what basically constitutes C-

style polymorphic procedure calls. The resulting clus-

tering significantly reduces the provided level of protec-

tion, as all of these functions now share the same two

identifiers: one for their entries and one for their exits.

11 In our link-time rewriter, the set of functions that can be
invoked through function calls is conservatively approximated
by computing the set of functions whose absolute address is
stored or can be computed somewhere in the program, as
indicated by the available relocation information.

Several observations have to be made here. First,

we consider this result not problematic for our case, as

we deem such heavy use of polymorphic procedure calls

not representative for real smart card applications. Sec-

ondly, and more importantly, even if this form of call

graph integrity would be applied and optimized manu-

ally, clusters would have to be formed when polymor-

phic procedure calls are present, albeit smaller clusters

than the ones now considered by Diablo. So some loss

in protection would be incurred anyway. In our future

work, we plan to study to what extent Diablo’s cur-

rent overly conservative clustering can be refined by

building on more advanced control flow analysis, e.g.,

through the use of a TSL [31].

For all benchmarks, we also observed several smaller

clusters of 2–8 manually-written system library proce-

dures that get clustered because of interprocedural go-

tos between them, e.g., where tail-call optimization was

used. This clustering also reduces the effectiveness of

the protection, but it can obviously be avoided by skip-

ping this type of code optimization.

4.1.3 Memory Store Verification

Our prototype tool was able to protect all of the 17222

individual store instructions in our ten benchmark pro-

grams. So again, the sample size is big enough to draw

conclusions on the protection’s overhead in Section 4.2.3.

4.1.4 Loop Iteration Counter Duplication

Our benchmarks contain a total of 224 natural loops

of which the iteration count can be determined be-

fore the loop is executed, and that contain no function

calls. 100% of those are protected. 115 are inner loops

in which no register pressure was detected (see Sec-

tion 3.2.4); 56 are inner loops with register pressure; 11

are non-inner loops without register pressure; 15 loops

are non-inner loops with register pressure. Here, “non-

inner” denotes a loop has at least one nested loop.

These numbers are obviously lower than the number

of branches or stores protected before, but they are still

sufficient to draw more general conclusions.

4.2 Overhead of the automation at link time

This section presents the measured overhead of apply-

ing the implemented hardening techniques at link time.

The overhead we are interested in is not the overhead

of the hardening techniques themselves, but the addi-

tional overhead of applying them in a link-time tool

that, compared to manual code hardening specialists

Link-time Smart Card Code Hardening 15

or hardening compilers, may lack the necessary capa-

bilities and analysis precision to apply the hardening

techniques optimally with regard to code size or per-

formance overhead. In other words, we are interested

in the potentially avoidable overhead that our proto-

type has introduced.

As discussed in Section 3.2.1, computing the exact

additional overhead introduced by our tool compared

to an optimally applied protection is impossible with-

out implementing such an optimal protection, for which

we lack the time and resources. So instead we have

measured an upper bound on the overhead by care-

fully considering, for each hardening technique, which

inserted instructions form the unavoidable, inherent im-

plementation of the hardening protection, and which in-

serted instructions might have been avoided in case of a

manual or compiler-based application of the hardening,

or that might have been avoided with a more mature

tool than our prototype. How we distinguish the cat-

egories of inserted instructions was discussed in detail

in Section 3 for each of the hardening techniques. As

the processors used in smart cards are simple in-order

processors, counting dynamic instruction counts (with

QEMU) is an acceptable approximation of the real ex-

ecution time overhead.

Figures 11, 12, 14, and 15 present the results of these

measurements by means of profiling. For each harden-

ing technique, the charts present the total overhead of

its application at all program points where it could be

applied. Furthermore, the charts show how much of the

overhead is potentially avoidable.

Overall, the visualized overheads are pretty large,

but we should remind the reader that we blindly ap-

plied the protections to the whole benchmarks. In real-

ity, smart card developers will likely limit their appli-

cation to the sensitive parts of their applications.

4.2.1 Conditional Branch Duplication

From Figure 11, it is clear that most of the branches are

protected without any overhead beyond the protection

itself. Potentially avoidable overhead is at worst 0.48%

for performance, and 0.60% for code size inflation.

4.2.2 Call Graph Integrity

For call graph integrity checking, we observe in Fig-

ure 12 that the potentially avoidable overhead is much

higher in terms of performance overhead and in terms

of code size. The reasons for this overhead differ from

benchmark to benchmark.

For basicmath small (s1), the reason is the bench-

mark’s floating-point (FP) nature. All FP operations

0%#
2%#
4%#
6%#
8%#
10%#
12%#
14%#
16%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable#

unavoidable#

(a) dynamic overhead

0%#
5%#
10%#
15%#
20%#
25%#
30%#
35%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable# unavoidable#

(b) static overhead

Fig. 11 Relative instruction count increases for conditional
branch duplication.

0%#

5%#

10%#

15%#

20%#

25%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable# unavoidable#

(a) dynamic overhead

0%#
5%#
10%#
15%#
20%#
25%#
30%#
35%#
40%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable# unavoidable#

(b) static overhead

Fig. 12 Relative instruction count increases for call graph
integrity checking.

in the source code are compiled to invocations of hand-

written FP emulation procedures. Each of them hence

has a large number of calling contexts, as a result of

which no free registers are found on entry/exit of these

functions. So a spilling overhead needs to be paid at

all their call-sites, which is unrealistically counted as

avoidable. This explains why a large fraction of the

static overhead is reported as avoidable. As these func-

tions are executed very frequently, this also explains the

large dynamic overhead that is, unrealistically, counted

as avoidable. Obviously, in real smart card code, such

FP-emulation can be expected to be quite rare. Fur-

thermore, this result in fact demonstrates that when

protecting complex, optimized hand-written assembly

16 Ronald De Keulenaer et al.

code, large overheads are generally unavoidable in prac-

tice regardless of the technique used.

For bitcnts (s2), qsort large (s3), qsort small (s4),

bf (s8), cjpeg (s9), and djpeg (s10), a large part of the

total dynamic overhead is also counted as avoidable. In

all cases, the overhead is due to the use of procedure

pointers. We group all procedures that are potentially

invoked through a procedure pointer into one cluster

of which it is conservatively assumed that all argument

registers (r0–r3), callee-saved registers (r4–r7), and all

return value registers (r0–r3) are live on entry and/or

exit. Hence, there are no free, generally accessible regis-

ters to store the cluster identifiers for these procedures.

Consequently, the entry and exit identifiers passed into

and out of those procedures are passed via r8, which

cannot be accessed directly in most Thumb instruc-

tions. The resulting overhead is incurred every time an

indirect call is executed, but also whenever a direct call

to a procedure in this cluster is performed. We refer to

the latter as a “mixed” call.

Figure 13 shows that several benchmarks feature a

very high frequency of indirect and mixed calls, which

explains almost all of the potentially available dynamic

overhead. In bitcnts (s2), the indirect calls originate

from the benchmark’s main loop that invokes five dif-

ferent bitcounting implementations through a pointer.

These comprise almost 50% of all calls, with the other

50% consisting almost entirely of recursive calls within

those implementations. Those recursive calls are direct,

but mixed calls, so also they come with overhead. For

qsort large (s3) and qsort small (s4), two benchmarks

centered around the qsort procedure, the comparator

procedure is passed to qsort as a procedure pointer,

and then invoked for pairwise comparisons between el-

ements to be sorted. For bf (s8), the large number of

mixed calls in Figure 13 comes from invoking the fputc

procedure more than 300k times. This procedure ap-

pears in a procedure pointer list in the standard library,

so even though it is invoked directly in this benchmark,

a price has to be paid because it is clustered with other

procedures. Finally, for cjpeg (c9) and djpeg (c10), rel-

atively few procedure calls are executed, hence the low

total dynamic overhead of this protection. But of those

calls executed, a significant number are indirect, as ex-

plained in Section 4.1.2.

In real smart card applications, that mainly perform

cryptographic procedures like in the benchmarks s6–s7,

the prevalence of procedure pointers, indirect procedure

calls, and inner-loop invocations of putc will typically

be much lower. As can be seen for these benchmarks in

Figure 12, the potentially avoidable dynamic overhead

is then also much smaller.

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

direct#

mixed#

indirect#

Fig. 13 Fraction of all executed procedure calls that are in-
direct (i.e., through procedure pointers), direct, and mixed
(i.e., a direct call to a procedure that can potentially also be
invoked indirectly).

0%#

10%#

20%#

30%#

40%#

50%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable#
poten3ally,#but#unlikely#avoidable#
unavoidable#

(a) dynamic overhead

0%#

10%#

20%#

30%#

40%#

50%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable#
poten3ally,#but#unlikely#avoidable#
unavoidable#

(b) static overhead

Fig. 14 Relative instruction count increases for memory store
duplication.

4.2.3 Memory Store Verification

For the hardening of stores to memory, Figure 14 also

depicts the fraction of the overhead that is potentially,

but unlikely avoidable, as explained in Section 3.2.3.

We clearly observe that almost all overhead is inher-

ent to the protection: For 8 out of 10 benchmarks, the

potentially avoidable overhead is less than 0.15%.

Only for the qsort small (s4) and djpeg (s10) bench-

marks, our accounting method of Section 3.2.3 consid-

ers a relatively large fraction of the overhead as po-

tentially avoidable. But even in these cases, the poten-

tially avoidable dynamic overhead is limited to at most

2.07%. We manually investigated these cases and ob-

served that in qsort small, the overhead is introduced

in the qsort procedure itself, where it is indeed avoid-

able. However, because of the indirect call to the com-

pare method and our tool’s (overly) conservative han-

dling of indirect calls as potentially reentrant, our tool

could not avoid the overhead.

Link-time Smart Card Code Hardening 17

In djpeg, the overhead relates to the protection of

two stores in the single inner loop of the procedure

h2v2 fancy upsample(). This loop has 6 variables that

are live over the whole loop and are allocated to 6 reg-

isters. Furthermore, the value to be stored by each of

the two store instructions also needs to occupy one reg-

ister. So in this loop, at most one register from r0 to

r7 can be available to reload the stored value into and

to compare the reloaded value to the stored value. In

this loop, however, the compiler has applied common

subexpression elimination (CSE) to avoid having to re-

compute a value in between the two stores. The value of

this common subexpression is stored in that one avail-

able register. As a result, our prototype does not find

a free register anymore. Instead it frees one by insert-

ing a push and a pop instruction, which are counted

as potentially avoidable. The only way in which a com-

piler implementing the hardening could have avoided

the need for such spilling, was by not applying the CSE.

But then the compiler would have to insert instructions

to recompute the value, which in this case also would

require two instructions. So in summary, the one free

register that is not strictly needed to implement the

original loop without spilling, can be used either for

optimizing the loop with CSE, or for implementing the

hardening without additional spilling overhead. Since

both options exclude each other, two extra instructions

are needed in the loop anyway. As such, the overhead

our accounting method considered as potentially avoid-

able for this benchmark, is in fact not avoidable at all.

We can therefore conclude that applying the mem-

ory store verification by means of a link-time rewriter

typically introduces very little avoidable overhead.

4.2.4 Loop Iteration Counter Duplication

Figure 15 first of all shows that our limited application

of loop counter duplication (excluding loops with proce-

dure calls) did not cover the hottest loops in all bench-

marks. In several benchmarks, however, the hottest, in-

ner loops were actually protected.

For only one, qsort small (s4), we observe a signifi-

cant, potentially avoidable performance overhead. But

even in that benchmark, the potentially avoidable over-

head is limited to 2.07%. In fact, this is the exact same

avoidable overhead as observed for qsort small for mem-

ory store verification, because it concerns the same in-

ner loop in the qsort procedure around which a register

needs to be freed for both types of protections.12

12 In qsort large, this loop (which swaps a pair of elements
in the array to be sorted) is also present, as it is linked from
the standard C library. But in qsort large, that loop is not hot

0%#

5%#

10%#

15%#

20%#

25%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable# unavoidable#

(a) dynamic overhead

0%#

1%#

2%#

3%#

4%#

5%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#

poten3ally#avoidable#
unavoidable#

(b) static overhead

Fig. 15 Relative instruction count increase for the loop iter-
ation counter duplication.

Because this protection is only applied to a lim-

ited number of loops, unlike the protection of very fre-

quently occurring conditional branches or store opera-

tions, the static avoidable overhead is also very small,

at most 0.38%. So again, we can conclude that overall,

applying the protection at link time does not introduce

significant avoidable overhead.

4.2.5 Combined transformations

To some extent, all of the implemented protections fight

for the same free registers. This is particularly the case

in loops, where the live ranges of the duplicated itera-

tors can overlap with the live ranges of temporary reg-

isters needed to implement the other protections. On

the other hand, a freed register can potentially be used

for multiple of those other protections.

The light bars in Figure 16 show the summed over-

head of all the protections applied in isolation, i.e., the

accumulated overheads of figures 11, 12, 14, and 15. The

dark bars on top show the additional overhead when

applying all protections together, in the following or-

der: iteration counter duplication, conditional branch

duplication, memory store verification, and call graph

integrity checking. On average, the dynamic overhead

of the combined protections is 0.76% higher than the

sums of the individual overheads. The maximal differ-

ence is 2.24%. For the static overhead, the average dif-

ference is 2.29%, and the maximal difference is 3.74%.

These low numbers demonstrate that developers can

experiment with our tool’s individual protections first,

e.g., to find the appropriate trade-off between level of

because the elements to be swapped are very small, whereas
in qsort small the elements are quite long strings.

18 Ronald De Keulenaer et al.

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#
addi1onal#overhead#combined#protec1ons#
sum#overheads#individual#protec1ons#

(a) dynamic overhead

0%#
20%#
40%#
60%#
80%#

100%#
120%#

s1# s2# s3# s4# s5# s6# s7# s8# s9# s10#
addi1onal#overhead#combined#protec1ons#
sum#overheads#individual#protec1ons#

(b) static overhead

Fig. 16 Additional overhead from combining all protections.

protection and overhead. They can then combine them

afterwards, without having to fear that combining them

will lead to significantly different trade-offs.

4.3 Assistance for semi-automated protection

In the preceding evaluation we have demonstrated that

the vast majority of our automated link-time applica-

tions of protection policies introduces no or very little

avoidable overhead. But we have also observed that in

a limited number of cases, there is a significant amount

of avoidable overhead. Even in those cases, a tool like

ours can still be very useful to aid the developer with

manually protecting the code. For example, for the pro-

tected inner loop of the h2v2 fancy upsample() proce-

dure discussed in Section 4.2.3, our tool and the open-

source tool dot

(http://www.graphviz.org/) can produce the annotated

CFG depicted in Figure 17. It shows the inserted code,

indicating which parts are potentially avoidable and

which parts are not, as well as the computed liveness in-

formation and the execution counts determined through

profiling. Such pictures are the perfect starting point for

a developer to study whether the potentially avoidable

overhead can indeed be avoided, and if so, how.

5 Related Work

As cited in the introduction, many protection schemes

have been proposed to mitigate fault injection attacks.

In this paper, we focused on an automated approach

bbl in h2v2_fancy_upsample, #exec 64512
LIVE-IN: R0-R5, R10-R12, SP, RA, PC
 LDRB r6,[r4,#0]
 ADD r4,#1
 LSL r7,r6,#1
 ADD r6,r7
 LDRB r7,[r3,#0]
 ADD r3,#1
 ADD r6,r7
 LSL r7,r1,#1
 ADD r7,r1,r7
 ADD r5,r7,r5
 ADD r5,#8
 ASR r5,r5,#4
 PUSH {r3} potentially avoidable
 STRB r5,[r0,#0]
 LDRB r3,[r0,#0] unavoidable
 EOR r3,r5 unavoidable
 LSL r3,r3,#24 unavoidable
 BEQ 0xffffff98 unavoidable
LIVE-OUT: R0-R2, R4, R6-R7, R10-R12, SP, RA, PC

bbl in h2v2_fancy_upsample, #exec 64512
LIVE-IN: R0-R2R2, R4, R6-R7, R10-R12, SP, RA, PC
 ADD r5,r7,r6
 ADD r5,#7
 ADD r0,#1
 ASR r5,r5,#4
 STRB r5,[r0,#0]
 LDRB r3,[r0,#0] unavoidable
 EOR r3,r5 unavoidable
 LSL r3,r3,#24 unavoidable
 BEQ 0xffffffd0 unavoidable
LIVE-OUT: R0-R2, R4, R6, R10-R12, SP, RA, PC

������

invalid state exception bbl
 B 0xfffffffc unavoidable

bbl in h2v2_fancy_upsample, #exec 64512
LIVE-IN: R0-R2, R4, R6, R10-R12, SP, RA, PC
 ADD r0,#1
 MOV r5,r1
 MOV r1,r6
 SUB r2,#1
 POP {r3} potentially avoidable
 BNE 0xffffffd0
LIVE-OUT: R0-R5, R10-R12, SP, RA, PC

������

bbl at 0xf048

����

������

bbl in h2v2_fancy_upsample, #exec 512
LIVE-IN: R0-R1, R3-R5, R10-R12, SP, RA, PC
 LDR r2,[r13,#0x1c]
 ADD r0,#1
 LDR r2,[r2,#0x28]
 SUB r2,#2
 BEQ 0x2c
LIVE-OUT: R0-R5, R10-R12, SP, RA, PC

����

����

bbl at 0xf002

����

Fig. 17 Fragment of a CFG produced by our tool, annotated
with execution counts and liveness information. The original
instructions of the program are shown on a light gray back-
ground. The instructions highlighted in yellow and marked
as “unavoidable” constitute the inherent implementation of
memory store protection. The instructions highlighted in red
and marked as “potentially unavoidable” constitute the ad-
ditional overhead of the protection, which might have been
avoidable if, e.g., the protections would be implemented by a
compiler instead of a link-time rewriter.

to deploy existing protections on native code. By de-

ploying the techniques in a link-time rewriter, we avoid

the need to interfere with the operation of existing com-

pilers or with an application’s source code development.

While the deployment of simple protections at link time,

by duplicating code like we do here, was already pre-

sented in an earlier publication [35], this paper is the

Link-time Smart Card Code Hardening 19

first to evaluate the additional (i.e., potentially avoid-

able) overhead caused by their link-time deployment,

and to include more global protections such as the loop

iteration counter protection.

As discussed in Section 2, other existing static rewrit-

ing techniques cause too much overhead when applied

to smart card code. However, run-time rather than static

approaches have also been proposed to achieve similar

advantages in the context of bytecode execution on Java

smart cards. Lackner et al. proposed to adapt the vir-

tual machine (VM) that interprets the bytecode to in-

ject the necessary redundancy in the executed code [27,

28]. By duplicating code at run time, they achieve the

same goal of providing protection without interfering

with the software development cycle. Additionally, they

proposed hardware extensions that the VM can exploit

to reduce the overhead of the protections to near zero.

6 Conclusions and Future Work

On the basis of demonstrated capabilities of the Di-

ablo link-time rewriting framework, we argued for its

capabilities in development scenarios centered around

black-box, third-party compiler tool flows.

Using Diablo, we implemented a prototype tool that

automates protection against single fault injection at-

tacks. On code generated with industrial-strength, pro-

prietary compilers, we measured an upper bound of the

additional overhead that such an automated tool intro-

duces on top of the inherent overhead of the protections.

We observed that the overhead potentially caused by

the nature of our approach and tool, both in terms of

code size and of execution time, is very limited. There-

fore we are convinced that a link-time rewriter can ap-

ply the protections (almost) as well as a manual as-

sembler rewriter can, or as a compiler can. We can

therefore conclude that automated, link-time, single-

fault-injection protection is a realistic, promising direc-

tion, which can provide a significant step forward to-

wards more productive smart card programming and

code hardening.

Future R&D includes better mechanisms to select

where to apply the transformations, including possibili-

ties for steering the protection process through an inter-

active, GUI-based binary code hardening tool. In addi-

tion, we plan to research how to specify transformations

without having to hard-code them in a tool, but by in-

stead using convenient APIs like those of existing code

instrumentation tools [16]. Finally, it would be useful

to study whether our approach would incur more over-

head when applying protection schemes against multi-

ple fault injection attacks. In case those schemes need

more free registers, the overhead of applying them at

link-time might well be higher than what was demon-

strated with our current single fault protection. Fur-

thermore, we expect that it will be more difficult to

distinguish between inherent overhead of those schemes,

and additional overhead following from our approach.

References

1. M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-flow integrity principles, implementations, and
applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40,
November 2009.

2. P.E. Ammann and J.C. Knight. Data diversity: An ap-
proach to software fault tolerance. IEEE Trans. Comp.,
37(4):418–425, 1988.

3. K. Anand, M. Smithson, K. Elwazeer, A. Kotha,
J. Gruen, N. Giles, and R. Barua. A compiler-level inter-
mediate representation based binary analysis and rewrit-
ing system. In Proc. 8th ACM European Conf. on Computer

Systems, pages 295–308, 2013.
4. B. Anckaert, M. Madou, B. De Sutter, B. De Bus,

K. De Bosschere, and B. Preneel. Program obfuscation: a
quantitative approach. In ACM QoP, pages 15–20, 2007.

5. B. Anckaert, F. Vandeputte, B. De Bus, B. De Sutter,
and K. De Bosschere. Link-time optimization of IA64
binaries. In Proc. Euro-Par, pages 284–291, 9 2004.

6. C. Aumüller, P. Bier, W. Fischer, P., and J.-P. Seifert.
Fault attacks on RSA with CRT: Concrete results and
practical countermeasures. In Proc. CHES, pages 260–
275, 2002.

7. A. Avizienis. The n-version approach to fault-tolerant
software. IEEE Trans. Softw. Eng., 11(12):1491–1501,
1985.

8. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan. The sorcerer’s apprentice guide to fault
attacks. Cryptology ePrint Archive, Report 2004/100,
2004.

9. F. Bellard. QEMU, a fast and portable dynamic transla-
tor. In Proc USENIX, pages 41–46, 2005.

10. R. Bertran, M. Gil, J. Cabezas, V. Jimenez, L. Vilanova,
E. Morancho, and N. Navarro. Building a global sys-
tem view for optimization purposes. In Proc. Workshop

Interaction between Operating Systems and Computer Ar-

chitecture, 2006.
11. D. Chanet. Memory Footprint Reduction for Operating Sys-

tem Kernels. PhD thesis, Ghent University, 2007.
12. D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and

K. De Bosschere. Automated reduction of the memory
footprint of the Linux kernel. ACM Trans. Emb. Comp.
Syst., 6(4):23::1–23::48, 2007.

13. H. Choukri and M. Tunstall. Round reduction using
faults. In Proc. FDTC, pages 13–24, 2005.

14. L. Claes. Colos: een optimaliserende linker voor de su-
perH. Master’s thesis, Ghent University, 2003.

15. B. De Bus. Reliable, retargetable and extensible link-time

program rewriting. PhD thesis, Ghent University, 2005.
16. B. De Bus, D. Chanet, B. De Sutter, L. Van Put, and

K. De Bosschere. The design and implementation of FIT:
a flexible instrumentation toolkit. In Proc. ACM PASTE,
pages 29–34, 2004.

17. B. De Sutter, B. De Bus, and K. De Bosschere. Link-time
binary rewriting techniques for program compaction.
ACM Trans. Prog. Lang. and Syst., 27(5):882–945, 2005.

20 Ronald De Keulenaer et al.

18. B. De Sutter, B. De Bus, and K. De Bosschere. Bidi-
rectional liveness analysis, or how less than half of the
Alpha’s registers are used. Journal of Systems Architec-

ture, 52(10):535–548, 2006.
19. B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and

K. De Bosschere. Link-time compaction and optimiza-
tion of ARM executables. ACM Trans. Emb. Comp. Syst.,
6(1):5::1–5::43, 2007.

20. S. Debray, R. Muth, and M. Weippert. Alias analysis of
executable code. In Proc. ACM POPL, pages 12–24, 1998.

21. E. N. Dolgova and A. V. Chernov. Automatic reconstruc-
tion of data types in the decompilation problem. Program.

Comput. Softw., 35(2):105–119, March 2009.
22. M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,

T. Mudge, and R.B. Brown. Mibench: A free, commer-
cially representative embedded benchmark suite. In Proc.
IEEE WWC-4, pages 3–14, 2001.

23. W.C. Huffman and V. Pless. Fundamentals of error-

correcting codes. Cambridge university press, 2003.
24. M. Karpovsky, K.J. Kulikowski, and A. Taubin. Robust

protection against fault-injection attacks on smart cards
implementing the advanced encryption standard. In Proc.
Int’l Conf. on Dependable Systems and Networks, pages 93–
101, June 2004.

25. C.H. Kim and J.-J. Quisquater. Fault attacks for CRT
based RSA: new attacks, new results and new counter-
measures. In Proc. WISTP, pages 215–228, 2007.

26. J. Kinder, F. Zuleger, and H. Veith. An abstract
interpretation-based framework for control flow recon-
struction from binaries. In Proc. 10th Int’l Conf. on Verifi-

cation, Model Checking, and Abstract Interpretation, pages
214–228, 2009.

27. M. Lackner, R. Berlach, M. Hraschan, R. Weiss, and
C. Steger. A defensive java card virtual machine to
thwart fault attacks by microarchitectural support. In
Proc. Int’l Conf on Risks and Security of Internet and Sys-

tems (CRiSIS), pages 1–8, Oct 2013.
28. M. Lackner, R. Berlach, W. Raschke, R. Weiss, and

C. Steger. A defensive virtual machine layer to coun-
teract fault attacks on java cards. In Information Security

Theory and Practice. Security of Mobile and Cyber-Physical

Systems, volume 7886 of Lecture Notes in Computer Sci-
ence, pages 82–97. 2013.

29. C. Lattner and V. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In
Proc. 2004 Int’l Symposium on Code Generation and Opti-

mization (CGO’04), Palo Alto, California, Mar 2004.
30. J.R. Levine. Linkers and Loaders. Morgan Kaufmann

Publishers Inc., 1999.
31. J. Lim and T. Reps. TSL: A system for generating ab-

stract interpreters and its application to machine-code
analysis. ACM Trans. Program. Lang. Syst., 35(1):4:1–
4:59, April 2013.

32. M. Madou, B. Anckaert, B. De Sutter, and K. De Boss-
chere. Hybrid static-dynamic attacks against software
protection mechanisms. In ACM DRM, pages 75–82,
2005.

33. M. Madou, B. De Sutter, B. De Bus, L. Van Put, and
K. De Bosschere. Link-time optimization of MIPS pro-
grams. In Proc. ESA, pages 70–75, 2004.

34. M. Madou, L. Van Put, and K. De Bosschere. Loco: an
interactive code (de)obfuscation tool. In Proc. PEPM ’06,
pages 140–144, 2006.

35. J. Maebe, R. De Keulenaer, B. De Sutter, and K. De
Bosschere. Mitigating smart card fault injection with
link-time code rewriting: a feasibility study. In Proc. 17th

Int’l Conf. on Financial Cryptography and Data Security,
2013.

36. S. Mangard, E. Oswald, and T. Popp. Power Analysis

Attacks: Revealing the Secrets of Smart Cards (Advances in
Information Security). Springer-Verlag, 2007.

37. C. Markantonakis, K. Mayes, M. Tunstall, D. Sauveron,
and F. Piper. Smart card security. In Computational

Intelligence in Information Assurance and Security, pages
201–233. Springer, 2007.

38. S.S. Muchnick. Advanced Compiler Design and Implemen-

tation. Morgan Kaufmann, 1997.
39. N. Oh, S. Mitra, and E.J. McCluskey. ED4I: Error detec-

tion by diverse data and duplicated instructions. IEEE

Trans. Comput., 51(2):180–199, February 2002.
40. P. O’Sullivan, K. Anand, A. Kotha, M. Smithson,

R. Barua, and A.D. Keromytis. Retrofitting security in
COTS software with binary rewriting. In Proc. 26th IFIP

TC 11 Int’l Information Security Conf., pages 154–172,
2011.

41. B. Randell. System structure for software fault tolerance.
In Proc. of the international conference on Reliable software,
pages 437–449, 1975.

42. M. Rebaudengo, M.S. Reorda, M. Violante, and
M. Torchiano. A source-to-source compiler for generating
dependable software. In Proc. IEEE SCAM, pages 33–42,
2001.

43. G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D.I. August. SWIFT: Software implemented fault toler-
ance. In Proc. ACM CGO, pages 243–254, 2005.

44. A.A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet. Auto-
matic detection of fault attack and countermeasures. In
Proc. of the 4th Workshop on Embedded Systems Security,
pages 7:1–7:7, 2009.

45. M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles,
and R. Barua. Binary rewriting without relocation infor-
mation. Technical report, University of Maryland, nov
2010.

46. W. Torres-Pomales. Software fault tolerance-tutorial,
2000. NASA/TM-2000-210616.

47. E. Trichina and R. Korkikyan. Multi fault laser attacks
on protected crt-rsa. In Fault Diagnosis and Tolerance in

Cryptography (FDTC), 2010 Workshop on, pages 75–86,
Aug 2010.

48. L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and
K. De Bosschere. DIABLO: a reliable, retargetable and
extensible link-time rewriting framework. In Proc. IS-

SPIT, pages 7–12, 2005.
49. L. Van Put, B. De Sutter, M. Madou, B. De Bus,

D. Chanet, K. Smits, and K. De Bosschere. LANCET:
a nifty code editing tool. In ACM PASTE, pages 75–81,
2005.

50. R. Wartell, V. Mohan, K.W. Hamlen, and Z. Lin. Secur-
ing untrusted code via compiler-agnostic binary rewrit-
ing. In Proc. 28th Annual Computer Security Applications
Conf., pages 299–308, 2012.

51. D. Williams, W. Hu, J.W. Davidson, J.D. Hiser, J.C.
Knight, and A. Nguyen-Tuong. Security through diver-
sity: leveraging virtual machine technology. IEEE Security

& Privacy, 7(1):26–33, 2009.
52. J. Yiu. The Definitive Guide to the ARM Cortex-M0.

Newnes, 2011.
53. M. Zhang and R. Sekar. Control flow integrity for cots

binaries. In Proc. Usenix Security, 2013.
54. L. Zhao, G. Li, B. De Sutter, and J. Regehr. ARMor:

Fully verified software fault isolation. In Proc. EMSOFT,
pages 289–298, 2011.

