
SCM: Secure Code Memory Architecture

Ruan de Clercq†, Ronald De Keulenaer?, Pieter Maene†,
Bart Preneel†, Bjorn De Sutter?, Ingrid Verbauwhede†,

†KU Leuven, Belgium - ESAT/COSIC and iMinds
?Ghent University, Belgium - Computer Systems Lab

ABSTRACT
An increasing number of applications implemented on a SoC
(System-on-chip) require security features. This work ad-
dresses the issue of protecting the integrity of code and
read-only data that is stored in memory. To this end, we
propose a new architecture called SCM, which works as a
standalone IP core in a SoC. To the best of our knowledge,
there exists no architectural elements similar to SCM that
offer the same strict security guarantees while, at the same
time, not requiring any modifications to other IP cores in its
SoC design. In addition, SCM has the flexibility to select
the parts of the software to be protected, which eases the
integration of our solution with existing software. The evalu-
ation of SCM was done on the Zynq platform which features
an ARM processor and an FPGA. The design was evaluated
by executing a number of different benchmarks from memory
protected by SCM, and we found that it introduces minimal
overhead to the system.

Keywords
Software Integrity; SoC; Security; Hardware

1. INTRODUCTION
Systems-on-Chip (SoC) vendors typically integrate a num-

ber of third-party Intellectual Property (IP) cores and a
number of custom IP cores into their SoCs. Usually a SoC’s
IP cores communicate via standard interfaces. This is criti-
cal, as it allows for much shorter design cycles, faster time-
to-market, reduced vendor lock-in, reduced non-recurrent
engineering costs, flexibility towards the creation of product
ranges by interchanging individual IP cores, etc.

For long-term software and data storage, modern SoCs of-
ten use external memories such as Dynamic Random-Access
Memory (DRAM), FLASH, or Read-Only Memory (ROM).

Meeting the security requirement of code integrity is chal-
lenging in scenarios where attackers can control the external
SoC interfaces and components, or can tamper with software
before it is installed on a device. Attackers can try to alter

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 4–6, 2017, Abu Dhabi, United Arab Emirates.
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00.

DOI: http://dx.doi.org/10.1145/3052973.3053044

software when it is transferred from vendors to users, or
when it has already reached the users, or when it is trans-
ferred and stored to, from, and in the external memories.
It is in particular challenging to provide strong security
guarantees without abandoning the aforementioned benefits
of using interchangeable IP cores via standard interfaces.

Our proposed solution, called SCM, is an IP core that
verifies the integrity of code as it is fetched from external
memory into the caches of the SoC’s processor. This IP core
can be added to existing SoC designs without requiring any
changes to the used IP cores, memories, or interfaces; and
without requiring any changes to existing SoC design flows.
In other words, none of the already used components needs
to feature any security support to provide code integrity.
Moreover, our design requires only minor adaptations to the
software build process and offers flexibility in supporting a
range of reaction mechanisms. This includes the guarantee
that not a single tampered instruction can be executed.
Furthermore, our solution fits into many schemes to sign
and distribute software. Finally, as we will demonstrate,
the performance overhead of SCM is limited.

Many existing works [8, 17, 19, 20, 5, 9, 21, 10] provide
code integrity guarantees. However, it appears that all these
works require modification to the processor, memory hierar-
chy, or existing IP cores. Modifying existing IP is difficult,
as it requires modification by the IP vendor (which could
be expensive), or requires the IP vendor to release it’s HDL
to the client (which could be even more expensive). SCM
provides integrity guarantees without making any modifi-
cation to the existing IP on a SoC. The only requirement
is that our IP core needs to be connected to the bus of
a SoC, which is a relatively simple task. In this regard,
SCM has some similarities to SecBus [4]. However SCM is
more lightweight, and SCM’s overhead was evaluated with
a prototype hardware implementation. No such evaluation
has been published for SecBus.

Our contributions. We present a lightweight IP com-
ponent to ensure code integrity for SoC designs. It easily
composes with existing IP cores using existing SoC design
flows. We present a prototype implementation, security
analysis, and performance evaluation of the component.

2. PROBLEM STATEMENT

2.1 Threat Model
The goal of the attacker is to execute tampered code

on the system. We focus on static, native code, and ex-
clude just-in-time compiled code or self-modifying code. On

771

many instruction set architectures, instructions alone do
not express the semantics of a program efficiently. Instead,
instructions are complemented by read-only data. In the
remainder of the paper, we use the term “code” as shorthand
for instructions and read-only data.

We consider attackers with three powerful capabilities.
First, they can tamper with code after it has been built
and before it is installed on a device. Second, they are in
control of all addressable off-chip memory. Third, they can
perform fault attacks on off-chip memory. This includes
physical fault attacks, and software-based fault attacks, such
as Rowhammer [15, 18].

We use the Dolev-Yao [7] model, which assumes attackers
can not break crypto primitives, but can perform protocol-
level attacks. We furthermore assume the attacker controls
the SoC’s digital inputs, such as the General-Purpose In-
put/Output (GPIO), DDR , and networking signals. While
we assume the attacker can perform physical attacks, such as
fault attacks and side-channel analysis, on off-chip memory,
we assume he cannot perform physical attacks on the SoC
itself.

2.2 System Goal
The goal of SCM is to verify the integrity of code stored

in off-chip memory. One might argue that mutable data
needs to be protected as well, seeing as the initial values of
global, statically allocated and initialized arrays also part of
the program semantics. Protecting mutable memory is out
of the scope. However, it is simple to let compilers generate
code such that all static initialization values are stored in
read-only data sections, not in mutable data sections.

To enable fluent integration into a SoC, SCM is imple-
mented as a standalone IP core that connects to the bus.
By doing so, SCM provides the SoC with security guarantees
without requiring modification of other IP cores in the SoC.
Furthermore, we aim for minimal disruption of the tradi-
tional SoC design cycle, by only building on pre-existing
interfaces and composition schemes. This is important, as it
enables rapid integration of SCM into SoCs, and improves
prototyping, development, and production costs.

SCM should provide protection from the following types
of attacks (1) spoofing : bits are illegitimately modified, (2)
splicing : bits are illegitimately relocated, and (3) replay :
fresh bits (e.g., from an updated program version) are par-
tially substituted with stale bits (e.g., from an outdated
program version or another user’s program version). SCM
works on the principle of verifying the integrity of bits that
have been fetched from memory, and more specifically from
the code sections and the read-only data sections of binaries
as they have been allocated in memory.

In the remainder of this paper we will use the term mem-
ory to refer to any off-chip memory.

3. SCM DESIGN

3.1 Conceptual Overview
Modern processors issue memory requests to the memory

hierarchy to fetch code to be executed. To achieve the
system goal, SCM verifies the integrity of code bytes that
have been read from an external memory before they are
processed by the processor.

The flow of instructions through the system is shown in
Fig. 1. Using SCM, memory can be requested from either the

SCM

CacheProcessor
Memory

Controller
Untrusted
Memory

Protected access

Unprotected access

Figure 1: Flow of code and data through system.

SoC

Bus

Processor SCM Memory
Controller

Untrusted
Memory

interrupt

Figure 2: Architectural overview of the system

protected SCM memory region, or from untrusted memory.
Unprotected code is requested directly from untrusted mem-
ory, where it will be stored in caches before being used by
the processor. The unprotected parts include the mutable
memory regions, but can also include parts of a program
that do not require protection. The flexibility to select parts
of the software to be protected eases the integration of our
solution with existing software.

To access and execute a protected program, a group of
instructions and integrity information are first fetched from
the untrusted memory by the memory controller. Next,
those bytes are sent to SCM, which verifies their integrity.
If the integrity verification succeeds, the group of bytes is
passed on to the caches and the processor. If an integrity
check fails, SCM will not forward the tampered instructions
to the processor. In addition, the processor is notified by
means of an interrupt that a security exception has occurred.
The processor can then take appropriate action, depending
on the specific use-case for the hardware containing SCM.

3.2 Architecture
The architecture shown in Fig. 2 consists of a SoC and

untrusted off-chip memory. The SoC consists of a number
of different IP cores, including SCM, a memory controller,
and a processor that includes a number of caches. Each of
these IP cores are able to communicate via the SoC’s main
bus. The memory controller acts as an interface between the
SoC and the untrusted off-chip memory. SCM is responsible
for delivering integrity checked code to the processor.

3.2.1 SCM Memory
SCM has a read-only memory region associated with it,

which we call SCM memory. Each address in the SCM
memory region maps to a physical memory address, as de-
scribed in more detail below. The physical address can be
assigned to any untrusted memory, including ROM, DRAM
or flash memory. A bus transaction is the sequence of bus
actions that are needed to perform a read or write. When-
ever a bus transaction requests a read from the SCM mem-
ory region, SCM needs to respond by delivering integrity-
verified bytes. This non-trivial procedure requires the fol-
lowing steps. First, upon receiving the read request from the
processor, SCM needs to fetch the bytes from the matching
physical memory address by placing a read request on the

772

bus. Second, after the requested bytes have been received
from the bus, an integrity verification is performed. Third,
if the integrity check succeeds, the requested bytes are de-
livered to the bus. If the integrity verification fails, dummy
values are delivered to the bus instead.

Since integrity computations can introduce a large over-
head, the integrity checking algorithm and security param-
eters need to be chosen carefully to ensure a low overhead.

With the addition of the SCM memory region, we effec-
tively split the address range of a program’s main memory
into a secured and an unsecured region.

3.2.2 Two port interface
SCM needs to perform two simultaneous bus transactions.

One transaction is needed for the processor’s request to SCM
memory, while the second is needed to fetch the code frag-
ment and integrity information from unprotected physical
memory. We propose to solve this by using two ports to in-
terface with the bus. Components connected to a bus follow
the master/slave communication model. Therefore, we use a
slave port to receive read transactions in the SCM memory
region, and a master port to perform read transactions from
physical memory.

3.2.3 Integrity verification
We propose to use a Message Authentication Code (MAC)

algorithm to verify the integrity and authenticity of code.
An m-word MAC is precomputed on each group of n code
words. The MACs are stored interleaved with code in un-
trusted memory. We use the term memory block to refer to
the group of n code words and m precomputed MAC words.
At run time, each memory block’s integrity is verified before
delivering its code words to the bus.

The MAC algorithm uses a secret key that is deeply em-
bedded in the hardware and is only accessible by the MAC
algorithm. In addition, the key is only known by the soft-
ware provider. Since the MAC key is not known to the
attacker, he cannot forge a MAC without being detected.

The system needs to protect against spoofing, splicing,
and replay attacks (see Section 2.2). Computing a MAC
over the code words (MAC(inst1 ‖ · · · ‖ instn)), leaves the
system vulnerable to a splicing attack, as relocated memory
blocks would not be detected. This issue can be exploited by
an attacker by rearranging existing memory blocks in order
to craft malicious code that cannot be detected by SCM. To
prevent this attack, we could use MAC(addr ‖ inst1 ‖ · · · ‖
instn), where addr is the physical address of the memory
block. This allows the system to detect any changes to the
location of a memory block. However, a replay attack is
still possible. Consider the scenario where multiple different
programs were transformed under the same key. An attacker
can then copy a memory block from one program at addr1 to
another program at addr1 without detection. To solve this,
we propose to use MAC(addr ‖ ω ‖ inst1 ‖ · · · ‖ instn),
where a nonce ω is unique across different programs and
different program versions.

3.2.4 Memory map
Each group of n words in the SCM memory region maps to

n+m words in physical memory, as shown in Fig. 3. When
a group of instructions is fetched from SCM, the m MAC
words are stripped out and only the requested instructions
are sent to the processor. This has the advantage that the

SCM memory Untrusted memory

1 inst1
· · · · · ·
n instn

n + 1 inst1
· · · · · ·
2n instn

m + 1 inst1
· · · · · ·

m + n instn

m MACm

· · · · · ·
1 MAC1

2m + n + 1 inst1
· · · · · ·

2m + 2n instn

2m + n MACm

· · · · · ·
m + n + 1 MAC1

Figure 3: Memory mapping between the SCM
memory range and untrusted memory.

processor works with a continuous address range that does
not contain MAC words.

As shown in Fig. 1, code typically reaches the processor
via caches. To exploit this, parameter n is chosen to match
the cache line size. This ensures that each cache line read
from SCM memory can be handled by verifying and fetching
exactly one memory block.

3.2.5 Software support
The software transformation process is done as follows.

First, a customized linker script forces immutable sections
in protected segments (in the SCM memory region), while
mutable sections are placed in unprotected segments (in
unprotected memory). This ensures that the program can
execute from the SCM memory region.

Afterwards, the MAC precomputation is done. First, the
protected segments of the compiled binary is disassembled.
Next, a script calculates a MAC on each group of n opcodes.
The MAC is stored interleaved with the opcodes. Finally,
the transformed segments as well as the unprotected seg-
ments are compiled with a linker script that places both
segments in unprotected memory.

Finally, the binary is copied to untrusted memory, and is
executed from the SCM memory region.

3.2.6 Integrity failures
If an integrity check fails, SCM needs to initiate an ap-

propriate response to recover from the exception. What is
appropriate depends on the use case, and hence will differ for
each piece of software. While the development of a recovery
mechanism for a specific use case is out of scope for this
work, several recovery options are supported by SCM.

One approach is to reset the processor upon detection
of an integrity exception. However, this cannot be toler-
ated by some systems, including safety-critical and real-time
systems. Another approach is to reload and restart the
program. A more complex option is to increment a counter
every time a program is restarted due to an integrity failure,
and then rebooting when a threshold value is reached. Some
forms of graceful degradation might be useful, or sending
notification to online monitoring services.

To provide the necessary flexibility, i.e., to support many
forms of reactions in a programmable manner, we designed a
generic hardware/software mechanism for SCM to invoke re-

773

Off-chip PS PL

DDR DDR
Controller

A
X

I
B

u
s

Processor

SCM

Figure 4: System overview.

X

SCM

MAC
Verification

T
ra

n
sa

ct
o
r

P
S

interrupt

Slave (GP0)

Master (HP0)

32-bit data

64-bit data

Figure 5: The implemented architecture of SCM.

covery functionality. This mechanism relies on non-maskable
interrupts that SCM generates upon integrity failures. When
the interrupt occurs, the processor stops executing the cur-
rent instruction, and transfers control to an interrupt han-
dler. In this handler, any reaction can be programmed,
including reloading a program from flash memory to restart
a task from a consistent state, or rebooting the processor.

The flexibility of interrupt-based integrity failure handling
introduces a potential security problem, as an attacker could
also alter the interrupt handler software before an integrity
failure occurs. This would prevent the processor from cor-
rectly responding to the integrity failure. To address this
problem the interrupt handler code can be stored on a small
amount of secure memory (e.g., on-chip ROM). Alterna-
tively, a more flexible approach could be to store the in-
terrupt handler in a small SRAM controlled exclusively by
SCM. It is then critical that some restrictions be enforced on
programming this memory, such as only allowing the mem-
ory to be programmed once during boot while the processor
is in supervisor mode.

4. PROTOTYPE IMPLEMENTATION

4.1 Target Platform
Zynq SoCs are used to prototype IP cores before fabrica-

tion in silicon. Each Zynq SoC contains an FPGA, known
as the Programmable Logic (PL), and a non-programmable
Processing System (PS), as shown in Fig. 4. The PS features
a dual-core ARM Cortex-A9 processor, a memory controller,
and ports to communicate with the PL. The AXI4 [2] bus is
used for communicating between IP cores located on either
the PS or the PL.

AXI4 supports three interface types. The AXI-Stream
protocol allows two components to communicate without the
bus. The AXI-Full protocol is used to transfer large amounts
of data via the bus, and supports burst mode transfers. The
AXI-Lite protocol is used for low speed communication, e.g.,
memory mapped registers, and implements only a subset of
the features of the AXI-Full interface.

The PS and PL interface with each other via two different
types of AXI-based ports. First, the PS can access PL slave
devices via general-purpose (GP) ports. Second, PL master

devices can access the PS, which includes off-chip memory,
via AXI high-performance (HP) ports. The GP and HP
ports both support burst transactions, with data widths of
32-bit and 64-bit, respectively.

As shown in Fig. 5, SCM consists of two subcomponents.
The Transactor coordinates memory accesses to the PS,
while the MAC verification component verifies the integrity
of memory blocks.

4.2 Transactor
The Transactor handles receives requests from the PS,

reads memory blocks from the PS, transfers memory blocks
to the MAC verification component, and delivers integrity
checked code to the PS.

4.2.1 Interfaces
An AXI-Full slave port allows the PS to read protected

code from the SCM memory range. It is configured to allow
for 128 MB of SCM memory, which the PS accesses via the
32-bit GP0 port. The 128 MB of SCM memory maps to
160 MB of DRAM, located in the PS.

The Transactor needs a mechanism to fetch a memory
block from physical memory after receiving an SCM memory
read request. For this mechanism, we evaluated two options.
First, using the Xilinx DMA IP core, we measured it takes
60 cycles to receive the first data of a burst read operation
from the physical memory. Second, a 64-bit AXI-Full master
port connected to the HP0 port requires only 20 cycles to
receive the first data of a burst read from the PS. Therefore,
the AXI-Full approach was used in our prototype.

After receiving the memory block from the PS, the Trans-
actor passes it to the MAC verification component, which
performs the verification before delivering the code to the PS
via the slave port. In order to avoid causing a data-abort
exception or freezing the PS, it is essential that the slave
port responds to read requests with the requested number of
memory elements. So upon a verification failure, instead of
sending the potentially tampered code bytes, the Transactor
simply sends the required number of zero values.

4.2.2 Fetching memory blocks
Each group of n words in SCM memory space maps to

a memory block of n + m elements in physical memory
(see Section 3.2.4). Since the cache line size of the ARM
processor is eight 32-bit processor words, we select n = 8.
To provide 64-bit security, we use a 64-bit MAC, for which
we select m = 2. So to serve a read request of 8 words from
SCM memory, we need to fetch 10 physical memory words.

With the AXI protocol, the number of words fetched in
a burst operation must be a power of 2. We opted to
use one 16-word burst of which 6 words are dropped over
using an 8-word burst followed by a 2 word burst because
every burst involves a 20 cycle delay before the first word
arrives, regardless of the burst size. After that initial delay,
one word is received every cycle. Furthermore, the extra
power consumption of unnecessarily reading six more words
is partially compensated by initiating one fewer transaction.

4.2.3 Overlapping read transactions
To allow instructions and read-only data to co-exist inside

the SCM memory range, the Transactor’s AXI-Full slave
port needs to support overlapping read transactions. Such
transactions occur when a new read transaction is issued

774

while the slave is busy processing another transaction. This
can happen when a program executing from the SCM mem-
ory range executes a load instruction that fetches data from
the SCM memory range. This presumably happens when
the instruction prefetcher is busy with a speculative fetch
from SCM memory, while at the same time a load occurs,
causing the memory controller to issue another read request
from the SCM memory range.

To support overlapping reads, the Transactor waits for
the current read transaction to finish before processing the
next. Therefore, registers should be used to store address
read channel information, as this could be overwritten when
a new transaction arrives.

4.3 MAC Verification
The MAC verification component performs integrity ver-

ification of memory blocks. A 64-bit AXI-Stream slave in-
terface is used to receive memory blocks, addresses, and
nonces. While data is received from the Transactor, the
runtime MAC is calculated. For each memory block, tam-
pering is detected by comparing the runtime MAC to the
precomputed MAC. Only untampered code is forwarded to
the PS, and detection of tampering fires an interrupt.

For the MAC cryptographic primitive we selected COPA’s
PMAC1 construction [1]. COPA is an Authenticated En-
cryption mode of operation for block ciphers, which means
it can be used with any symmetric encryption algorithm.
However, since we only require authentication, we only use
PMAC1, and not the full implementation of COPA.

Although AES is used in COPA’s original design, our im-
plementation uses PRINCE [3], which is highly efficient [16].
We placed two pipeline registers inside our PRINCE im-
plementation to allow the MAC verification component to
meet the timing constraint of 100 MHz (see Section 5.2). A
three cycle implementation of AES will likely have a huge
overhead in terms of area and delay, as observed by [16] in
a comparison of single cycle implementations. PRINCE’s
64-bit block size allows for more effective use of the Zynq’s
64-bit HP0 port, since memory blocks received from HP0
can immediately be processed by our MAC primitive.

The nonce is updated by writing to a special SCM register,
thereby facilitating context-switches between programs with
different nonces.

4.4 Integrity Violations
To handle integrity failures, we configured the PS to allow

for fabric interrupts via an IRQ line, and installed a software
interrupt handler on the interrupt line. For our prototype,
we implemented an interrupt handler that displays a mes-
sage when such an interrupt occurs.

5. EVALUATION

5.1 Security Evaluation
In SCM, memory tampering and MAC forgery are infea-

sible, since forged blocks can only be verified online. For an
n-bit MAC, an adversary has to perform an average of 2n−1

random online MAC verifications before this strategy will
succeed [13]. Therefore, a successful forgery of a memory
block will require 70,193 years (on average) to succeed on a
100 MHz SCM core.

5.2 Hardware evaluation

Table 1: Software benchmarks for SCM

Benchmark DRAM SCM Reads Overhead
(cycles) (cycles)

qsort v1 40.35M 40.93M 40.03k 1.43%
qsort v2 36.21M 36.20M 18 -0.02%
sjeng 22.13G 22.13G 899.59k -0.02%
jpeg 97.08M 97.11M 1462 -0.02%

We evaluated our design on a ZedBoard, which consists
of a Xilinx XC7Z020-CLG484-1 FPGA SoC package. It
features a dual-core 667 MHz ARM Cortex A9, 512 MB
DDR3, 32 KB L1 cache for each core, and a 512 KB L2
cache. The processor supports prefetching of code and data
before they are needed by the processor. The FPGA is
comprised of 53,200 LUTs and 106,400 flip flops.

The Xilinx Vivado 2015.2 design suite was used for syn-
thesizing our hardware implementation. It uses an area of
6295 LUTs, and 5880 flip flops. The PS and the FPGA-
based PL use a clock frequency of 100 MHz.

5.3 Performance Evaluation
The tool support described in Section 3.2.5 was used to

transform the benchmarks. To avoid integrity violations
due to the processor’s prefetcher issuing reads outside the
protected segments, the SCM memory region is expanded
by inserting padding data plus correct MACs.

We used the following baremetal benchmarks. First, qsort
v1 [12] performs a Quicksort on 10,000 strings stored in read-
only data. Second, qsort v2 [12] performs a Quicksort on
10,000 strings stored in mutable data. Third, sjeng [14]
plays a game of chess, and jpeg [12] performs jpeg encoding.

Each benchmark was executed from DRAM memory as
well as from SCM memory. For the latter, both code (.text)
and read-only data (.rodata) were mapped to SCM memory,
and measurements were performed in unprotected code. The
average overhead is shown in Table 1. The ”Reads” column
indicate the number of eight word burst reads that was
performed by each benchmark. For qsort v2, jpeg, and
sjeng we measured an overhead of -0.02%, which is below
the noise margin of the performance counters that we used to
perform the measurements, as determined by the standard
deviations. For qsort v1 we measured a significantly larger
overhead of 1.43%, which is larger than the noise margin
of the performance counters. These results show that SCM
introduces only a small runtime overhead.

6. RELATED WORK
A large body of work exists on protecting memory or soft-

ware integrity [19, 20, 5, 9, 21, 10]. However, it appears that
most works require modification to the processor, caches,
memory, or other IP cores. In contrast, SCM doesn’t require
modification to existing IP, other than connecting our IP
core to the bus. In addition, most works halt the processor
after an integrity failure. In contrast, SCM has mechanisms
to handle recovery from integrity failures that do not freeze
the processor, thereby enabling a wide range of applications,
such as real-time systems and systems that cannot handle
rebooting the processor. Furthermore, many works were
only evaluated in simulation. In contrast, SCM’s evaluation
was done on an FPGA. This allowed us to provide a detailed

775

evaluation of the software and hardware overhead in terms
of area, and clock frequency.

Domingo et al. [8] detects memory tampering using large
encoded trace sequences stored in memory. Elbaz et al. [10]
protects memory by encrypting a block of data together
with it’s address. Intel SGX’s [17] Memory Encryption
Engine (MEE) [11] uses integrity trees to protect memory.
MEE uses expensive components, such as cache, an integrity
tree (which requires storage and memory accesses for each
transaction), and a TRNG to generate a unique key af-
ter each reboot. All of these require extra area, which is
not appropriate for small embedded platforms. In contrast,
SCM is a light-weight approach that does not make use
of such expensive components. SOFIA [6] provides soft-
ware integrity, software integrity, control flow integrity, tam-
pered code protection, and software copyright protection
at runtime. SecBus [4] protects integrity with a compo-
nent inserted between the memory controller and the bus,
which requires modification to the existing architecture. In
addition, SecBus can only provide protection to off-chip
memory, while SCM can protect any addressable memory
region, including on-chip memory.

7. CONCLUSION
In this work we introduced a new hardware-based secu-

rity architecture called SCM that protects the integrity of
code stored in memory. SCM performs MAC-based integrity
verifications at runtime and is designed as a standalone IP
core that connects to the bus of a System on Chip. We
demonstrated the feasibility of using such an architecture
by evaluating the design on an FPGA. Our results show a
minimal area and performance overhead.

Acknowledgements
We would like to thank Bart Coppens, Koen de Bosschere,
and Atul Luykx for their valuable contributions. This work
was supported in part by the Research Council KU Leuven:
C16/15/058. It is also supported in part by the Flemish
Government, FWO G.00130.13N and FWO G.0876.14N, by
the Hercules Foundation AKUL/11/19, and by the Euro-
pean Commission through the Horizon 2020 research and
innovation programme under contract No H2020-ICT-2014-
644371 WITDOM, H2020-ICT-2014-644209 HEAT and Cathe-
dral ERC Advanced Grant 695305. Pieter Maene is sup-
ported by a doctoral grant of the Research Foundation -
Flanders (FWO).

8. REFERENCES
[1] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink,

E. Tischhauser, and K. Yasuda. AES-COPA v.2.
CAESAR submission, 2015.

[2] ARM. ARM AMBA AXI and ACE Protocol
Specification - AXI3, AXI4, and AXI4-Lite, ACE and
ACE-Lite. Technical report, 2011.

[3] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun,
M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov,
C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen,
and T. Yalcin. Prince: A low-latency block cipher for
pervasive computing applications. In ASIACRYPT’12,
pages 208–225, 2012.

[4] J. Brunel, R. Pacalet, S. Ouaarab, and G. Duc.
SecBus, a SW/HW Architecture for Securing External
Memories. In IEEE Mobile Cloud 2014, pages 277–282.

[5] D. Champagne and R. Lee. Scalable architectural
support for trusted software. In HPCA’10, pages 1–12.

[6] R. de Clercq, R. De Keulenaer, B. Coppens, B. Yang,
P. Maene, K. de Bosschere, B. Preneel, B. De Sutter,
and I. Verbauwhede. SOFIA: Software and control flow
integrity architecture. In DATE’16, pages 1172–1177.

[7] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Trans. on Information Theory,
29(2):198–208, 1983.

[8] J. Domingo-Ferrer. Software run-time protection: A
cryptographic issue. In EUROCRYPT’90, pages
474–480.

[9] R. Elbaz, D. Champagne, C. Gebotys, R. Lee,
N. Potlapally, and L. Torres. Hw mechanisms for
memory authentication: A survey of existing
techniques and engines. In Trans. on Computational
Science IV, pages 1–22. Springer, 2009.

[10] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin,
M. Bardouillet, and A. Martinez. A parallelized way
to provide data encryption and integrity checking on a
processor-memory bus. In DAC’06, pages 506–509.

[11] S. Gueron. A memory encryption engine suitable for
general purpose processors. Cryptology ePrint
Archive, Report 2016/204, 2016.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. WWC ’01, pages 3–14, 2001.

[13] H. Handschuh and B. Preneel. Minding your MAC
algorithms. Information Security Bulletin,
9(6):213–221, 2004.

[14] J. Henning. SPEC CPU2006 benchmark descriptions.

[15] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits in
memory w/o accessing them: An experimental study
of DRAM disturbance errors. In ACM SIGARCH,
volume 42, pages 361–372, 2014.

[16] P. Maene and I. Verbauwhede. Single-Cycle
Implementations of Block Ciphers. In LightSec’15.

[17] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas,
H. Shafi, V. Shanbhogue, and U. Savagaonkar.
Innovative Instructions and Software Model for
Isolated Execution. In HASP’13, 2013.

[18] R. Qiao and M. Seaborn. A New Approach for
Rowhammer Attacks. In HOST’16, 2016.

[19] G. Suh, D. Clarke, B. Gassend, M. Van Dijk, and
S. Devadas. AEGIS: architecture for tamper-evident
and tamper-resistant processing. In ACM ICS’03,
pages 160–171, 2003.

[20] P. Williams and R. Boivie. CPU support for secure
executables. In TRUST’11, pages 172–187, 2011.

[21] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and
Y. Solihin. Improving cost, performance, and security
of memory encryption and authentication. In ACM
SIGARCH, volume 34, pages 179–190, 2006.

776

