
Taming Parallelism in a Multi-Variant Execution Environment

Stijn Volckaert
University of California, Irvine

stijnv@uci.edu

Bart Coppens
Ghent University

bart.coppens@ugent.be

Bjorn De Sutter
Ghent University

bjorn.desutter@ugent.be

Koen De Bosschere
Ghent University

koen.debosschere@ugent.be

Per Larsen
University of California, Irvine

perl@uci.edu

Michael Franz
University of California, Irvine

franz@uci.edu

Abstract
Exploit mitigations, by themselves, do not stop deter-

mined and well-resourced adversaries from compromising
vulnerable software through memory corruption. Multi-
variant execution environments (MVEEs) add additional as-
surance by executing multiple, diversified copies (variants)
of the same program in lockstep while monitoring their be-
havior for signs of attacks (divergence). While executing
multiple copies of the same program requires additional
computational resources, modern MVEEs run many work-
loads at near-native speed and can detect adversaries before
they leak secrets or achieve persistence on the host system.

Multi-threaded programs are challenging to execute in
lockstep by an MVEE. If the threads in a set of variants are
not scheduled in the exact same order, the variants will di-
verge from each other in terms of the system calls they make.
While benign, such divergence undermines the MVEEs abil-
ity detect divergence caused by malicious program inputs.
To address this problem, we developed an MVEE-specific
synchronization scheme that lets us execute a set of multi-
threaded variants in lockstep without causing benign diver-
gence. Our fully-fledged MVEE runs the PARSEC 2.1 and
SPLASH-2x parallel benchmarks (with four worker threads
per variant) with a slowdown of less than 15% relative to un-
protected execution. Addressing this longstanding compati-
bility issue makes MVEEs a viable defense for a far greater
range of realistic workloads.

1. Introduction
Modern compilers and operating systems employ a range

of countermeasures that make it far harder to turn a mem-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17 April 23–26, 2017, Belgrade, Serbia

c© 2017 ACM. ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064178

ory corruption vulnerability into an exploit. Data execution
prevention [33], for instance, has all but obsoleted the clas-
sic code injection techniques. However, other exploitation
techniques such as code reuse, and non-control-data and in-
formation leakage attacks remain viable.

Much effort has been spent searching for new and im-
proved mitigations. While proposals for stronger mitigations
do increase resilience, they are narrowly tailored to target
certain classes of attacks—typically variants of code reuse.
Control-flow integrity [1], for example, increase resilience
against code reuse over the current address space layout ran-
domization techniques but is by no means impervious to so-
phisticated code reuse attacks that avoid any “illegitimate”
control flows, and offers no protection of non-control data.

Multi-Variant Execution Environments (MVEEs) have
become a hot research topic due to their potential to break
the seemingly endless cycle of new mitigations being by-
passed by new exploits which are then addressed by yet
more mitigations [13, 19, 21, 30, 37, 44, 45]. The funda-
mental idea is to execute two or more functionally equivalent
programs (variants) in lockstep and monitor their behavior at
the level of system calls. MVEEs terminate execution upon
detection of divergence. Because each diversified variant re-
ceives the same program input but responds differently to
memory corruption, it becomes exceedingly hard to simul-
taneously and reliably exploit N program variants without
causing them to diverge.

A major obstacle to broader adoption of MVEE tech-
niques is multithreading. The order of system calls made
by a variant depends on the order in which its threads are
scheduled. In other words, if the thread schedules between
two variants diverge, so will their externally visible behav-
ior. This is a problem because MVEEs rely on divergence
to detect malicious or unintended behavior. Moreover, by al-
lowing “benign” divergence, the MVEE implicitly allows its
variants to receive inconsistent inputs (i.e., one variant might
receive inputs that the other variants have not). These inputs
can propagate through the program execution, leading to yet

variant 1 variant 2monitor

kernelbrk

write

brk

write

t t

Figure 1. Monitoring and replication between two variants.

more divergent behavior, until a point where the MVEE can
no longer tell benign divergence apart from “true” diver-
gence caused by an attack. In summary, once two variants
have diverged, they are unlikely to converge again.

This paper identifies the types of thread interactions that
must be ordered to avoid benign divergence. We then present
an MVEE-specific way to efficiently order the thread sched-
ules within each variant to match those of the other vari-
ants. To the best of our knowledge, our work is the first
in-depth exploration of techniques supporting execution of
multi-threaded programs under MVEEs. In summary, we
make the following contributions:
• We evaluate multiple strategies to capture the order of

inter-thread interactions in one variant and replay them
in the others. We use our findings to develop a better-
performing synchronization agent. Our “wall-of-clocks”
agent addresses thread scheduling and resource con-
tention issues we identified in simpler synchronization
strategies; this leads to substantially lower overheads.

• We extend ReMon and GHUMVEE, our own security-
oriented MVEEs, to transparently inject the synchroniza-
tion agent into the variants’ address spaces. To the best of
our knowledge, this extension makes our MVEEs the first
to support multithreaded variants in which the threads
interact explicitly, although limited developer assistance
may be necessary to prepare the variants.

• We perform a careful and detailed evaluation showing
that our wall-of-clocks synchronization agent is highly
efficient and practical.

2. Background
All MVEEs run two or more variants side by side on the

same machine and use a monitor to compare the variants’
behavior at the level of system calls. The monitor must syn-
chronize the variants and present them as a single application
to the end-user. To do so, the monitor duplicates program
inputs once for each variant; variant outputs are similarly
compared and deduplicated such that each output operation
is performed only once. MVEEs monitor variants by inter-
posing on the system calls made by each variant. In other
words, the monitor gains control over a variant each time it
makes a system call. As shown for the handling of two sys-
tem calls (brk and write) in Figure 1, this lets the monitor

decide whether or not to forward the system call to the ker-
nel, and if and when variant execution is resumed.

The variant synchronization model is a key differentia-
tor among MVEEs. MVEEs that are used for the reliability
purposes1 use a relaxed synchronization model in which a
designated leader variant may run ahead of the follower vari-
ants. Under this model, the results of the system calls made
by the leader are stored in a shared ring buffer such that they
can subsequently be copied to the followers. This reliability-
oriented model can tolerate minor differences in the variants’
behavior resulting from nondeterminism2. Security-oriented
MVEEs use a strict synchronization model where variants
execute each system call in lockstep; no variant is allowed
to proceed past (certain) system calls until all variants have
made an equivalent system call. Such MVEEs cannot toler-
ate behavioral differences that affect the ordering of system
calls or the arguments of such calls.

We also distinguish MVEEs based on the monitor exe-
cution context. Early MVEEs executed a single, centralized
monitor in a separate process or in the kernel. In both cases,
the monitor executed in a different context than the vari-
ants [12, 13, 18, 30, 37, 43]. More recent work has explored
decentralized monitors that run in the same execution con-
text as the variants to some degree [19, 21, 45]. In the decen-
tralized designs, the monitor can intercept system calls di-
rectly, whereas the external monitor designs require context
switching to invoke the monitor. The downside of decentral-
ized approaches is that coordination of multiple monitors in-
side the variants adds additional implementation complexity.

2.1 Handling Parallelism
Single-threaded variants produce the same output when

given the same inputs3. This property does not extend to
multithreaded variants in which the threads communicate;
in this case, the output also depends on the thread inter-
leaving at run time. To run multithreaded programs with
strict variant synchronization (lockstepping), the MVEE
must therefore constrain thread interleavings such that each
variant thread makes system calls in the same order and with
the same arguments as the equivalent threads in other vari-
ants. Failure to do this leads to “benign” divergent behavior,
which, if the MVEE tolerates it, can lead to the variants
receiving inconsistent program inputs. These inconsistent
inputs can then propagate through the program’s execution,
where they can trigger even more divergence, until a point
is potentially reached where the MVEE can no longer dis-
tinguish “benign” divergence from “true” divergence caused
by attacks. To guarantee that this does not occur, the MVEE
can simply not tolerate “benign” divergent behavior at all.

1 For example: to run an older and newer release of the same program side
by side to ensure that a patch preserves program functionality [19].
2 Programs are nondeterministic if their behavior can change from run to
run, even when receiving the same program inputs.
3 Some exceptions apply. We refer interested readers to the literature for an
in-depth discussion [37, 43].

We can address this challenge in one of two ways. First,
we can use deterministic multithreading (DMT) to force
variants to repeat the same thread interleaving (schedule)
when given the same inputs [6, 9, 11, 14, 15, 28, 29, 31, 32,
34, 46]. Dividing the program execution into serial and par-
allel phases is a common way to establish this schedule. In
a serial phase, all threads run concurrently but they may not
modify the shared program state. In a parallel phase, threads
may commit to the shared state, but only one thread may run
at any given time. Threads may stay in a parallel phase until
their allotted quantum ends. This quantum cannot be based
on time, as background activity on the system may affect
how quickly a thread progresses. Instead, DMT systems allo-
cate quanta based on logical thread progress. Logical thread
progression can be measured efficiently using hardware per-
formance counters. More recent DMT systems use different
scheduling algorithms but also rely on performance counters
to measure logical thread progress.

Using performance counters to quantify progress is not
ideal in context of MVEEs because the software diversity
techniques applied to variants are likely to affect the number
of instructions and other measures of progress [23]. Apply-
ing DMT to diversified program variants could lead to each
of them having a fixed, but different schedule which does not
eliminate the possibility of “benign divergence”.

The second alternative is to accept nondeterminism and
merely require that all variants execute in the same nonde-
terministic order. Online Record/Replay (R+R) systems can
provide this guarantee by logging the execution in one vari-
ant and replaying it in the other variants [7, 8, 25]. R+R sys-
tems do not rely on measuring thread progress and are there-
fore less sensitive to variations in the program execution in-
troduced by software diversification. Some challenges must
be overcome to deploy an R+R in a security-oriented MVEE,
however. We explain how we addressed these in Section 3.
3. Design

Our goal is to constrain the execution of variants such that
they all use the same, possibly nondeterministic, thread in-
terleaving. Our work targets data race-free programs. This is
consistent with related work on weakly-deterministic DMT
systems [14, 32], and Record+Replay [7, 35, 36]. Remov-
ing unintended data races is an important, but orthogonal
problem. Two types of interactions can affect the variants’
behavior: (i) system calls operating on shared resources, and
(ii) inter-thread communication via shared memory.
3.1 System Calls

The threads in a multithreaded variant can influence each
other’s system call results even if these threads do not com-
municate directly. A trivial example of such cases is when
multiple threads within the same process open files. The ker-
nel assigns the first available file descriptor (FD) to each
newly opened file. The order in which threads open files
can therefore affect which FDs are returned to which thread.
Consider for example a program in which two threads simul-
taneously open files and print out the FD values assigned to

these files. If an MVEE runs two variants of this program in
parallel, and the MVEE does not enforce an ordering on the
sys open calls used to open these files, then different FD
values might be returned to the equivalent sets of threads in
these variants. The MVEE will then detect divergence when
the FD values are printed out, or when the FD values are
used in subsequent file operations. This particular problem,
as well as similar problems that can occur for other system
calls, can be circumvented by forcing the MVEE to replicate
the master variant’s system call results to the slave variants.
This would add additional complexity to the MVEE, how-
ever. If the results of one system call (e.g., sys open) are
used as the arguments of a later system call (e.g., sys mmap),
the MVEE would need to silently overwrite the arguments
of the later call with the intended values. Thus, we generally
opt for the simpler solution of forcing related system calls to
execute in the same order in all variants.
3.2 Inter-Thread Communication

Ordering system calls suffices to eliminate divergence
in loosely-coupled multithreaded variants (i.e., variants in
which the threads do not communicate directly). Virtually
every multithreaded program contains at least some de-
gree of direct inter-thread communication, however. Forc-
ing all communicating instructions (i.e., instructions that
access memory shared between threads) to execute in the
same order in all variants would trivially eliminate diver-
gence, but is also prohibitively expensive [15]. Instead, we
propose to force the variants to access synchronization vari-
ables (e.g., locks, condition variables, ...) in the same order.
The underlying idea is that communicating instructions are,
by definition, protected using synchronization primitives in
data-race-free programs. Controlling access to synchroniza-
tion variables is therefore equivalent to ordering individual
instructions in such programs, but comes at a much smaller
performance cost [14, 32].

Our design records the order in which the master (or
“leader”) variant accesses synchronization variables and im-
poses that same order in the slave variants. This is done
by instrumenting synchronization operations or sync ops—
we use these terms interchangeably. Related work typically
considers functions (e.g., pthread mutex lock) that ac-
cess synchronization variables to be sync ops. In this paper,
however, we use the term sync op to refer to individual in-
structions accessing synchronization variables. The instru-
mentation code we add contains calls to a synchronization
agent. This agent is implemented as a shared library that our
MVEE injects into the address space of each variant.

The master variant’s synchronization agent captures the
order in which the master executes its sync ops, and records
this order in the synchronization buffer or sync buffer, as
shown in Figure 2. This buffer is a memory segment shared
between all variants. The slave variants’ synchronization
agents ensure that sync ops execute in an order that is equiv-
alent to the order logged in the sync buffer. To enforce this
ordering, we temporarily suspend the execution of any slave

master slave

m1

sync buffers

m2
s1 s2

b1 b2

Figure 2. Synchronization through the shared sync buffer.

variant thread whenever it is about to execute a sync op that
would violate the intended order. The execution of the thread
is resumed when all of the sync ops that must precede the
suspended sync op have completed.
3.3 Requirements and Challenges

Astute readers may notice that our system shares its goals
with online R+R systems. The key difference is that it ad-
dresses challenges that are unique to MVEEs. Online R+R
system enforce identical input/output behavior in a set of
identical programs. MVEEs must enforce identical system
call behavior in a set of diverse program variants.

I/O operations are only a subset of the system calls that
must typically be executed in lockstep in an MVEE. Thus,
online R+R systems must order only the sync ops that af-
fect explicit I/O behavior. Such sync ops are often easy to
identify as they implement known and well-understood syn-
chronization primitives such as pthread mutexes, and are
often contained within dedicated threading libraries (e.g.,
libpthread or libgomp). An MVEE must also order sync
ops that affect non-I/O system calls. This can be significantly
harder to do. The memory allocator in GNU’s libc, for in-
stance, protects its internal data structures using low-level
synchronization primitives (e.g., assembly-based spinlocks).
The sync ops that implement such primitives are often in-
lined and scattered throughout the program binaries. Failure
to order these low-level sync ops may affect the program’s
behavior with respect to memory-related system calls such
as sys mprotect.

The fact that variants are diversified creates additional
challenges. Code and data addresses will differ randomly
among the program variants. Thus, the same logical syn-
chronization variable (e.g., a mutex) might be located at a
different address in each variant. MVEEs must maintain a
mapping between such addresses in order to enforce equiva-
lent synchronization operation orders.

Finally, the synchronization agent must ensure that it does
not introduce any observable divergence. This is not trivial,
as the agent performs different functions in the master vari-
ant (recording the order of sync ops) and the slave variant
(replaying the order of sync ops). One consequence of this
requirement is that our synchronization agents cannot dy-

namically allocate memory in the master variant, unless the
slave variants perform the same memory allocations in the
exact same order. This prevents us from using techniques
like queue projection, as was done by Basile et al. [7].

4. Implementation
We implemented our design in two security-oriented

MVEEs: GHUMVEE [43] and ReMon [45]4. Our design
is very general and can be ported to other MVEEs with mi-
nor effort. We will focus our discussion on ReMon, as it is
an extended and more efficient version of GHUMVEE.

ReMon is a multithreaded monitor that targets x86 vari-
ants running on the GNU/Linux platform. Each of ReMon’s
threads monitors one set of equivalent variant threads. To
initialize the MVEE, ReMon uses a bootstrap process to set
up the variants, their respective monitors, and the shared
ring buffers used by the monitors to communicate with each
other. The bootstrap process hands over control to the mon-
itors once the monitors and variants are fully initialized. Af-
ter bootstrapping, the monitors operate exactly as described
in Section 2. The monitors use two types of shared buffers.
Specifically, they use ring buffers to (i) compare system call
arguments, replicate system call results, and to coordinate
the operation of the MVEE as a whole, and (ii) to capture
and replay sync ops. To avoid confusion in the remainder of
the paper, we will refer to the ring buffers used to monitor
and replicate system calls as syscall buffers, and those used
to capture and replay sync ops as sync buffers.
4.1 Ordering System Calls

ReMon enforces an equivalent system call ordering in all
variants using Lamport’s logical clocks [22]. Each moni-
tor maintains a private copy of a logical clock, which we
call the syscall ordering clock. This clock is used to assign
timestamps to system calls that must be ordered. Whenever
the master (leader) variant executes such a call, the moni-
tor enters a critical section and records the current time on
the syscall ordering clock into the syscall buffer. The criti-
cal section is not exited until the system call returns and the
results and the timestamp have been written into the syscall
buffer. Whenever a slave (follower) variant begins executing
the same system call, its associated monitor will wait in a
tight loop until the recorded timestamp matches the current
time in the slave monitor’s private copy of the syscall order-
ing clock. As soon as the timestamp matches the time of the
clock, the monitor enters a critical section and resumes the
variant to complete the system call. When the system call
returns, the slave monitor increments the time of the syscall
ordering clock and leaves the critical section.

Limitations. Our system call ordering mechanism wraps
system calls in critical sections. As a result, we cannot order
blocking system calls, because, on the one hand, the moni-
tor does not exit the critical section until the blocking system

4 The source code for ReMon, GHUMVEE, the synchronization agents, and
the covert channels PoCs we present in this paper can be found online at
https://github.com/stijn-volckaert/ReMon

https://github.com/stijn-volckaert/ReMon

call returns, and, on the other hand, it cannot guarantee that a
blocking system call will return at all. Luckily, most block-
ing system calls that are subject to ordering in ReMon are
those that perform I/O operations5. I/O operations are only
executed by the master variant, and our monitor replicates
the results of these operations to the slaves, thus guarantee-
ing that all variants receive consistent system call results.
This eliminates the need to order these calls.
4.2 Ordering Sync Ops

Direct inter-thread communication is the main cause of
nondeterminism in multithreaded variants. We eliminate this
nondeterminism by enforcing an equivalent ordering of com-
municating instructions among all variants. As we limit our
scope to data-race-free programs, it suffices to order syn-
chronization operations, rather than each individual commu-
nicating instruction. To enable this ordering, we first identify
and instrument the relevant sync ops at compile time. At run
time, the instrumented program will call the synchronization
agent before and after it executes each sync op to capture the
sync op order in the master variant and to replay that same
order in the slave variants.
4.3 Identifying Sync Ops

We developed a simple and efficient strategy for identi-
fying sync ops in x86 programs. Our strategy is motivated
by the fact that accesses to synchronization variables are,
by definition, atomic. In x86 binary code, atomic accesses
can only be expressed using one of the following types of
instructions: (i) instructions with a LOCK prefix, (ii) XCHG in-
structions, (iii) aligned load/store instructions. Considering
each instruction of any of these types to be sync ops, and
instrumenting them as such, would be overly conservative.
Typically, the vast majority of instructions of the latter type
do not access synchronization variables at all, and impos-
ing an order on such instructions would be a waste of CPU
cycles.

Instead, we run a two-stage analysis on the program. In
the first stage, we mark all instructions of types (i) and (ii) as
sync ops. In the second stage, we run a points-to analysis and
mark instructions of type (iii) as sync ops if and only if they
may alias with variables pointed to by instructions of type (i)
and (ii). We currently run the first stage of the analysis on the
assembly code level using a Ruby script. The script marks
all instructions of type (i) and (ii) and uses the debugging
info in the program binary to map the instructions to their
corresponding source lines. We performed the second stage
of the analysis manually for the programs we evaluate in
Section 5. However, we also built a tool that reduces the
manual effort considerably as discussed in Section 4.3.1.

To see how this simple strategy works in practice, con-
sider the code example in Listing 1. This listing shows
a simplistic, yet valid implementation of a spinlock. The
compare and swap function at line 4 is a compiler intrinsic

5 The only exception is sys futex, which we treat as an I/O operation, so
the following reasoning still applies.

1 int spinlock;

2

3 void spinlock_lock(int* ptr) {

4 while(! compare_and_swap(ptr , 0, 1))

5 sched_yield ();

6 }

7

8 void spinlock_unlock(int* ptr) {

9 *ptr = 0;

10 }

11

12 spinlock_lock (& spinlock);

13 // critical section

14 spinlock_unlock (& spinlock);

Listing 1. Ad-hoc implementation of a spinlock.

that emits a LOCK CMPXCHG instruction. This instruction is
of type (i) and would therefore be considered a sync op in
the first stage of the analysis. The subsequent points-to anal-
ysis would find that the store instruction at line 9 can point
to a variable that is also pointed to by the sync op at line 4.
It would therefore consider the instruction at line 9 to be a
sync op as well.

Our strategy is sound, but not complete as there may be
synchronization variables that are not pointed to by sync ops
of type (i) or (ii). Yet, through extensive experimentation and
evaluation, we found that the strategy suffices to support a
large number of programs.

Limitations. Our approach to identifying sync ops has one
major limitation: it does not work for synchronization primi-
tives that rely solely on aligned load/store instructions. Con-
sider for example the code in Listing 2. This example shows
a naive implementation of a condition variable. Neither the
load at line 9, nor the store at line 4 would have a LOCK prefix
when compiled to assembly code. Our analysis would there-
fore fail to recognize either of these instructions as sync ops
in the first analysis phase. Consequently, they would not be
recognized by the second analysis phase either.

Fortunately, synchronization variables that are accessed
only by aligned load/store instructions must be marked
volatile for the code to be compiled correctly by an
optimizing compiler. The volatile qualifier prevents the
compiler from eliminating (e.g., with register allocation) or
reordering accesses to the associated variable. An obvious
extension of our analysis would therefore be to mark volatile
variables as synchronization variables too, prior to running
the points-to analysis. This extension would likely lead to an
over-approximation of the number of synchronization vari-
ables. We expect this over-approximation to be minor, as
volatile variables are rarely used for any purpose other than
inter-thread synchronization in user-space programs. Note,
however, that an analysis that identifies all uses of volatile
variables cannot fully replace the analysis we described be-
fore, as non-volatile variables can still be used as synchro-
nization variables, provided that they are only accessed from
(inline) assembly code.

1 volatile int flag = 0;

2

3 void signal_thread () {

4 flag = 1;

5 }

6

7 void wait_until_signaled () {

8 while(!flag)

9 sleep (1);

10 }

Listing 2. Unsupported synchronization primitive.

4.3.1 Automation Opportunities
Although we have manually performed the second phase

of the analysis on the programs we tested, it is possible
to automate the analysis to a large extent when the source
code is available. We considered the following two ways to
automate the identification process.

Whole-program alias analysis. Based on the feedback
from our analysis’ first stage, which is already fully auto-
mated, an inter-procedural alias analysis could, in theory,
pinpoint the exact locations synchronization variables are
accessed in the program. We have prototyped two tools in
the LLVM compiler-framework to perform the identification
of sync ops at the LLVM Intermediate Representation (IR)
level. The first implementation leverages the DSA analysis
framework in LLVM’s poolalloc module [24]. The second
implementation is based on the more recent SVF analysis
framework [40]. Neither of these implementations currently
yield satisfactory results when analyzing large code bases. In
both cases, the majority of type (iii) instructions that target
heap-allocated variables are classified as potential aliases of
type (i) and (ii) instruction operands.

Our first implementation is based on data structure analy-
sis which is a Steensgaard-style, unification-based points-to
analysis [39]. Although DSA is field-sensitive, we found that
the field sensitivity is often lost because heap objects of in-
compatible types get unified. The SVF analysis that we use
in our second implementation is an Andersen-style, subset-
based points-to analysis [2]. Although SVF does a better job
at maintaining field sensitivity, we found no way to query
its field sensitive results for heap objects. Furthermore, SVF
is overly conservative when analyzing programs containing
pointer arithmetic. We leave an in-depth exploration of these
program analysis issues to future work as they are orthogo-
nal to the challenges addressed herein.

Explicit type qualification. The second approach we have
explored is based on the observation that clang, the front-
end for C-related languages in the LLVM framework, trans-
lates all uses of variables that are explicitly marked with the
Atomic [17] type-qualifier into LLVM IR instructions that

are explictly marked with an atomic flag. As the LLVM IR
instruction set is agnostic to the atomicity guarantees of the
target machine instruction set, this atomic flag is also applied
to regular load and store instructions. Consequently, there

yes

original binary

debug
symbols analysis.rb

report

printf
0101101

custom clang

all sync
variables
qualified?

source code

no

printf
0101101 instrumented

binarycustom LLVM

refactored
sources

Figure 3. Explicit type qualification workflow.

is no need for a points-to analysis if the programmer ex-
presses all synchronization operations using the atomic types
and intrinsic functions defined by the C11 standard. The
downside of this approach, compared to the aforementioned
alias analysis-based approach, is that it requires source code
refactoring. Furthermore, the C standard permits certain op-
erations (such as casting to and from void pointers) that al-
low programmers to discard the Atomic qualifier prior to
accessing a variable.

We modified clang to guide refactoring of source code to
only use explicitly qualified synchronization variables. Our
modified version of clang imposes a stronger typing disci-
pline onto the programmer by (i) displaying a warning when-
ever a pointer to a non-qualified variable is cast to a pointer
to an Atomic-qualified variable, (ii) displaying an error and
terminating compilation whenever a pointer to an Atomic-
qualified variable is cast to a pointer to a non-qualified vari-
able, and (iii) displaying an error and terminating compila-
tion whenever an Atomic-qualified variable is used in inline
assembly code.
We use our tool as shown in Figure 3. First, we use a stock
version of the LLVM compiler to compile the original, un-
modified source code of the program into a binary with em-
bedded debugging symbols. We analyze the resulting binary
using the Ruby script we mentioned before. Based on the
output of this script, we add type-qualifiers to variables used
in sync ops. We then repeatedly compile the refactored code
using our modified version of clang, and use clang’s warn-
ings and errors to propagate the Atomic type-qualifier up
and down the def-use chains of all pointers to sync variables
until we reach a fixpoint where all sync variables, as well as
pointers to sync variables are fully qualified. At this point,
clang will stop displaying warnings, and it will translate the
source code into LLVM IR code as intended. Finally, at the

1 void spinlock_lock(int* ptr) {

2 bool result = false;

3 while(! result) {

4 before sync op(ptr);

5 result = compare_and_swap(ptr , 0, 1);

6 after sync op(ptr);

7 if (result) break;

8 sched_yield ();

9 }

10 }

11

12 void spinlock_unlock(int* ptr) {

13 before sync op(ptr);

14 *ptr = 0;

15 after sync op(ptr);

16 }

17

18 void attribute ((weak)) before sync op(void* ptr) {}
19 void attribute ((weak)) after sync op(void* ptr) {}

Listing 3. Instrumented spinlock.

IR level, we use a modified version of LLVM, described be-
low, to add calls to our synchronization agent.

Although it has already proven to be useful in its cur-
rent state, our tool can still be improved in several ways.
First, we could extend the tool to assign the Atomic qual-
ifier automatically to volatile variables. As we argued be-
fore, the volatile qualifier can be used for synchroniza-
tion variables that are only accessed using aligned load/store
instructions, and are therefore not identified as sync ops by
our script. Second, we could try to automate the refactoring.
This might be difficult, however, since qualifying a pointer
to a synchronization variable could affect multiple compila-
tion units. Third, in certain cases, we could permit the use of
Atomic in easy-to-analyze inline assembly blocks.

4.4 Instrumenting Sync Ops
After identifying the relevant sync ops, the next step is

to insert the calls to the synchronization agent. We wrap the
sync ops at compile time, as shown in Listing 3. It shows the
original program code in black and the instrumentation code
in red. The before sync op and after sync op functions
are implemented in the synchronization agent. In our current
workflow, we dynamically link instrumented programs with
the agent, which means that the agent must be loaded for the
program to be able to run. This could be avoided by adding
empty versions of these two functions as weak symbols to
the instrumented program. This way, the program would call
the agent, if it is running, or perform a no-op, if the agent is
not running.
4.5 Synchronization Agents

We developed three different agents that each imple-
ment one of the sync op replication strategies laid out
below. All of them are shared libraries that implement
the before sync op and after sync op functions. The
MVEE forces the variants to load the agent by setting the
LD PRELOAD environment variable [26]. During its initial-
ization, the agent attaches to the synchronization buffer us-
ing the System V IPC interface [27]. The agent records the

order in which the master variant executes its sync ops in
this synchronization buffer. The slave variants’ agents can
consult the data in this buffer to replay their sync ops in an
equivalent order. To ensure that the master variant’s agent
knows that it must record sync ops and the slave variants’
agents know that they must replay sync ops, we added a new
system call that allows the variants to become self-aware.
We did not have to patch the kernel to add this system call,
as non-existing system calls are still reported to the MVEE’s
monitor.

Total-order replication agent. Our total-order (TO) repli-
cation agent replays all sync ops in the exact same order
in which they happened in the master variant. Figure 4(a)
shows two threads that execute under ReMon’s control. In
the master variant, thread m1 first enters and leaves a criti-
cal section protected by lock A at times t0 and t1 resp. At
those times, the wrappers of the corresponding sync ops log
the activities of thread m1 in the sync buffer. Next, thread
m2 in the master variant enters and leaves a critical section
protected by lock B at times t2 and t3 respectively. These
events are also logged chronologically in the buffer. Right
after t3, the buffer holds the contents indicated in the fig-
ure. Time stamps to the left and right of the buffer mark the
time the buffer elements are produced and consumed respec-
tively. The arrows on the left (right) show the position of the
producer (consumer) right after t3.

In the slave variant thread s2, corresponding to m2 in
the master variant, reaches the critical section protected by
lock B first, at time t4. At that time, the first element in the
buffer indicates that synchronization events in the master
variant occurred in thread m1 first, so thread s2 is stalled
in the wrapper of the sync op in enter sec. Only after the
first two elements in the buffer are consumed in thread s1 at
times t5 and t6, can thread s2 continue executing. Thus, even
though the two critical sections protected by locks A and B

are unrelated, thread s2 is forced to stall until thread s1 has
replayed the operations performed by thread m1.

This agent is trivial to implement, but not very efficient:
The lack of lookahead by consumers introduces unnecessary
stalls as indicated by the red bar in Figure 4(a).

Partial-order replication agent. Our partial-order (PO)
replication agent is more efficient with respect to stalling.
It only enforces a total order on dependent sync ops. The
sync ops are considered dependent if they operate on the
same memory locations. This agent may replay independent
sync ops in any order, as long as it preserves sequential con-
sistency within the thread. The PO agent is more complex
and introduces more memory pressure because the agents in
the slave threads have to scan a window, containing infor-
mation about the sync ops that have not been replayed yet,
in the buffer to look ahead. However, it typically introduces
much less stalling and generally outperforms the TO agent.
In Figure 4(b), we see the exact same order of events as in
Figure 4(a) until t4. This time, however, thread s2 may enter

master variant
threads

t0

sync
buffer

slave variant
threads

m1 m2

enter_sec(&A)

leave_sec(&A)t1
enter_sec(&B)

leave_sec(&B)

m1 &A

m1 &A

s1 s2

t7
t8

enter_sec(&B)

leave_sec(&B)

enter_sec(&A)

leave_sec(&A)

t4

wa
itt5

m2 &B

m2 &B

t2

t3
t6

(a) Total-order replication

master variant
threads

t0

sync
buffer

slave variant
threads

m1 m2

enter_sec(&A)

leave_sec(&A)t1
enter_sec(&B)

leave_sec(&B)

m1 &A

m1 &A

s1 s2

t6

enter_sec(&B)

leave_sec(&B)

enter_sec(&A)

leave_sec(&A)

t4
t5

m2 &B

m2 &B

t2

t3

t7

(b) Partial-order replication

master variant
threads

t0

sync
buffers

slave variant
threads

m1 m2

enter_sec(&A)

leave_sec(&A)t1
enter_sec(&B)

leave_sec(&B)

cA 0

cA 1

s1 s2

t9

enter_sec(&B)

leave_sec(&B)

enter_sec(&A)

leave_sec(&A)

t5
t6

cB 0

cB 1

t2

t3
cB 2enter_sec(&B)t4

b1 b2

enter_sec(&B)

wa
it

t7
t8

t10

(c) Wall-of-clocks replication

Figure 4. Replay sequences of three replication strategies.

the critical section without delay at t4 because the enter sec

operation does not depend on either of the operations that
preceded it in the recorded total order.

Although the PO agent eliminates unnecessary stalling, it
still suffers from poor scalability. The master variant must
safely coordinate access to the sync buffer by determining
the next free position in which it can log an operation. If
many threads simultaneously log operations, this inevitably
leads to read-write sharing on the variable that stores the next
free position. A similar problem exists on the slave variants’
side because the threads within each variant must keep track
of which data has been consumed by the variant. With mul-

tiple slave variants, this also leads to high sharing and, con-
sequently, high cache pressure and coherency traffic.

Wall-of-clocks replication agent. The above observation
led us to the design a third agent. This wall-of-clocks (WoC)
agent assigns all synchronization variables (which are the
subject of sync ops) to one of a fixed number of logical
clocks. These clocks capture “happens-before” relationships
between related sync ops [22].

In Figure 4(c), lock A stored at address &A is assigned to
clock cA. Lock B is similarly assigned to clock cB.

On the master side, the agent logs the identifier of the
logical clock associated with each sync op, as well as that
clock’s time. After logging each sync op, the agent incre-
ments the logical clock time of the associated clock.

In this agent, the logging is no longer done in a sin-
gle sync buffer. Instead there is one sync buffer per master
thread, such that each buffer has only one producer. In Fig-
ure 4(c), master thread m1 only communicates with slave
thread s1 through buffer 1, whereas thread m2 only commu-
nicates with thread s2 through buffer 2. This design avoids
cache contention when accessing shared buffers.

Neither the master nor the slave variants need to commu-
nicate their current buffer positions to other threads. Further-
more, the master’s logical clocks do not need to be visible to
the slaves. The information contained within the sync buffers
is sufficient for the slave variants to replay the same clock in-
crements on their own local copies of each clock.

In Figure 4(c), thread m1 first enters a critical section
protected by lock A at time t0. The agent observes that the
current time on logical clock cA is 0. It records the clock and
its time in buffer 1 and increments the clock’s time to 1. At
time t1, the agent logs the exit from the critical section in
buffer 1. This time around, the logical clock time is 1.

A similar situation then unfolds in thread m2 at time t2.
This time though, the critical section is protected by lock B,
of which the associated memory location is assigned to clock
cB, whose initial time also is 0. This information is logged
in sync buffer 2, along with information regarding the exit
of the critical section in thread m2 at time t3. At that point,
clock cB is incremented to 2.

In thread m1, a third critical section is entered at time
t4, which is again protected by lock B. This event involving
logical clock cB is logged in buffer 1 with clock time 2.

On the slave variant’s side, the threads are scheduled
differently in our example. There, thread s2 reaches a sync
op first, at time t5. The agent observes in buffer 2 that it
must wait until clock cB reaches time 0. Since this is the
initial time on the slave’s copy of that clock, the operation
can be executed right away and thread s2 will increment the
time on its copy of cB to 1. If we suppose that thread s2 is
then pre-empted and thread s1 gets scheduled, s1 will enter
and leave the critical section protected by lock A at times t6
and t7, consuming the first two entries in buffer 1, thereby
incrementing the slave copy of clock cA to 2.

The third operation in thread s1 at time t8 is the most
interesting. In the first sync buffer, the slave agent observes
that the sync op to enter a critical section has to wait until its
associated logical clock cB has reached time 2. However, in
the slave, that clock’s time was last incremented at time t5,
i.e., to the value of 1. Thread s1 must therefore wait until
some other slave thread has incremented the time on cB.
This will happen at time t9 in thread s2. Shortly thereafter,
the agent code executing in thread s1 will observe that cB

has reached the necessary value, and at t10 s1 will enter its
second critical section.

With this WoC, the replication agent only inserts accesses
to shared data, and hence coherence traffic, for two reasons.
First, it introduces accesses to sync buffers shared between
corresponding threads in the master and slave variants. This
is a fundamentally unavoidable form of overhead required
to replicate the synchronization behavior from the master to
the slave variants.

Secondly, the agent inserts accesses to shared clocks
whenever multiple threads in the original program were
already contending for locks at shared memory locations.
While these extra shared accesses in the replication agents
still introduce some overhead, we do expect the overhead to
scale with the pre-existing resource contention in the orig-
inal application. In other words, if the original application
uses contended, global locks that decrease the available par-
allelism, the replication agent will hurt it further. However, if
the original application involves a lot of synchronization, but
that synchronization is performed using uncontended, local
locks, the WoC replication agent will not increase contention
within the master or slave variants either.

As we will see in Section 5, the WoC agent consistently
outperforms the other agents on almost every benchmark.
Most importantly, as is the case with plausible clocks in
general, the replication will always be correct [41].

One important remark remains to be made, however.
While the WoC agent is certainly the more elegant and more
efficient of the three proposed designs, it is not fully optimal.
Our synchronization agents are prohibited from dynamically
allocating memory, as we explained in Section 3.3. Thus,
we cannot dynamically assign each memory location to its
own private clock. Instead, we have to pre-allocate a fixed
number of clocks statically and we have to assign lock mem-
ory locations to one of those clocks based on a hash of their
memory address. Because we want to use a cheap hash func-
tion, hash collisions are quite likely. Any such collision re-
sults in an m-to-1 mapping between multiple locks and each
clock. In other words, the WoC agent is bound to assign
some non-conflicting memory locations to the same logical
clock. When this happens, this introduces unnecessary seri-
alization and hence potentially also unnecessary stalls in the
slave variants. That said, our WoC agent purposely assigns
unrelated sync variables to the same clock. This happens,
for example, with adjacent 32-bit sync variables where the

first one is aligned to a 64-bit boundary, because a single
CMPXCHG8B x86 instruction could modify both variables at
the same time.
4.5.1 Handling Diversity

Our synchronization agents tolerate any form of diver-
sity that does not change the synchronization behavior of the
program. If the variants do exhibit different synchronization
behavior, which might happen, for example, if they use dif-
ferent memory allocators, then our synchronization agents
will likely not function correctly. Our agents do, however,
fully support address space layout diversity, without assign-
ing logical identifiers to synchronization variables, and with-
out maintaining an explicit mapping between the master and
slave addresses for the same logical variables. If the n-th
sync op executed by a master thread affects the variable
at address &A, then the corresponding slave threads know
based on the information recorded by the master, that their
n-th sync op should affect the same logical variable, even if
that variable is placed at a different addresses in the slave
address spaces.

5. Evaluation
We evaluated three aspects of our proposed techniques.

First, we evaluated the correctness and performance im-
pact of our synchronization agents by running two synthetic
benchmark suites under ReMon. Second, we evaluated the
number of sync ops instrumented in the aforementioned
benchmark suites. Third, we evaluated the security impact of
the agents and the shared sync buffers. Finally, we tie every-
thing together by modifying a realistic multithreaded server
program to use our synchronization agents. We then run mul-
tiple diversified variants of this server program, evaluate the
performance, and show that ReMon successfully detects at-
tacks against the program.
5.1 Correctness and Performance Evaluation

We evaluated the correctness and performance impact of
our techniques by running the PARSEC 2.1 and SPLASH-
2x benchmark suites on top of ReMon. We analyzed and in-
strumented the programs in these suites and ran them with
four worker threads. We excluded PARSEC’s canneal and
SPLASH-2x’ cholesky benchmarks from our tests. The
canneal benchmark is intentionally racy and therefore fun-
damentally incompatible with multi-variant execution envi-
ronments such as ours and cholesky does not run correctly
when compiled on our system (even outside the MVEE).

Several of the benchmark programs contained uninten-
tional data races which were identified and patched in the
literature [38]. We applied this set of patches, which were
kindly shared by the author of the aforementioned work.

Run-time Overhead. We ran our benchmarks on a dual-
socket server machine containing two Intel Xeon E5-2660
CPUs with 8 cores and 16 threads each. This machine has
64Gb of DDR3 RAM and 20MB of CPU cache per socket.
To maximize the reproducibility of our results, we disabled
hyper-threading, as well as all forms of power management

2 variants 3 variants 4 variants
total-order agent 2.76x 2.83x 2.87x
partial-order agent 2.83x 2.83x 3.00x
wall-of-clocks agent 1.14x 1.27x 1.38x

Table 1. Aggregated average slowdowns for each of the
synchronization agents

and clock frequency scaling. To isolate the performance
impact of our synchronization and replication mechanisms,
we disabled Address Space Layout Randomization (ASLR)
and did not apply any diversity techniques to our variants6.
Our server ran Ubuntu 14.04.04 LTS with version 3.13.11
of the Linux kernel. We used glibc 2.19 and compiled all
software with gcc 4.8.

Figure 5 shows the performance results for PARSEC and
SPLASH respectively. We also show aggregated averages
for each synchronization agent in Table 1. We measured the
native run time by running the non-instrumented binaries
outside our MVEE. We performed two sets of measurements
for single-variant executions7 of the benchmarks. For one
set, we enabled both physical CPUs. For the other set, we
enabled just one of the physical CPUs. We included only the
best results for each benchmark in Figure 5. Benchmark pro-
grams that execute few system calls but many sync ops (e.g.,
PARSEC’s streamcluster benchmark) ran significantly faster
with one CPU disabled. This is likely due to the operating
system’s scheduler’s tendency to balance the system load by
spreading the benchmarks’ threads across both CPUs, which
significantly increases the cost of cache misses on a NUMA
machine. A higher cost of cache misses, in turn, increases
the overhead incurred by our synchronization agents.

We compare the performance of the single-variant results
with the performance of two up to four variants of the instru-
mented binaries running inside the MVEE and tested with all
three of our synchronization agents. For all of our tests, we
used the largest available input set. We kept both of the phys-
ical CPUs enabled for all of the MVEE benchmarks since
this was the most favorable configuration.

We observe several trends in these results. First, our
partial-order agent outperforms the total-order agent in most
benchmarks, because the former introduces fewer unnec-
essary stalls. The total-order agent still performs better on
average, however, because the cache contention problems
we described in Section 4.5 clearly manifest in radiosity,
fluidanimate, and swaptions (with two variants), and in
dedup, and ocean ncp (with more than two variants). The
wall-of-clocks agent generally outperforms both agents.

A second observation is that, in some benchmarks, we
see superlinear performance degradation when moving from
three variants to four variants. This is because the total num-
ber of simultaneously executing threads exceeds the number

6 We did run separate tests with ASLR and diversity techniques enabled, as
discussed later on.
7 Native executions of the benchmarks without using an MVEE.

Benchmark run time syscall rate sync rate

PA
R

SE
C

2.
1

blackscholes 80.83 2.55 0.00
bodytrack 60.06 8.59 202.36
dedup 18.29 134.27 1052.45
facesim 142.52 4.14 288.75
ferret 103.79 2.29 225.10
fluidanimate 93.19 0.45 12746.59
freqmine 168.66 0.35 0.24
raytrace 147.54 0.78 88.33
streamcluster 136.05 5.63 18.78
swaptions 86.68 0.01 4585.65
vips 37.09 15.76 428.69
x264 34.73 0.50 15.98

SP
L

A
SH

-2
x

barnes 61.15 19.61 5115.99
fft 40.26 0.01 1.64
fmm 42.68 0.91 5215.01
lu cb 51.16 0.08 0.23
lu ncb 73.55 0.05 0.16
ocean cp 39.39 1.21 5.05
ocean ncp 41.68 1.08 4.55
radiosity 45.56 33.42 18252.68
radix 18.22 0.02 0.04
raytrace 52.52 6.63 536.79
volrend 52.02 15.86 1071.25
water nsquared 182.80 0.88 8.61
water spatial 59.84 148.27 9.63

Table 2. Native run times (in sec), and system call (in 1000
system calls/sec) and synchronization operation (in 1000
sync ops/sec) rates for PARSEC and SPLASH runs using
four worker threads.

of physical CPU cores our system has available. dedup and
ferret, for example, are pipelined benchmarks that run 3∗n
and 2+4∗n threads respectively in parallel8 Similarly, vips
runs 2 + n threads in parallel.

Finally, we observe that several benchmarks perform
badly, even when sufficient system resources are available.
dedup, for example, is 1.78× slower relative to its native
speed when running two variants with the wall-of-clocks
agent, while barnes and radiosity are 1.61× and 1.47×
slower under the same conditions. These slowdowns can,
in part, be attributed to the high number of system calls
and/or sync ops these benchmarks execute. As Table 2
shows, dedup executes over 134K system calls 1.02M sync
ops per second, whereas barnes and radiosity execute
more than 19K and 33K system calls per second and 5.12M
and 18.25M sync ops per second resp. Each of the system
calls invokes the MVEE monitor, which constitutes a perfor-
mance bottleneck even in the most efficient security-oriented
MVEEs [21, 45].

Correctness We verified the correctness of our proposed
techniques by repeating the above tests with ASLR enabled

8 n is the number of worker threads, which was 4 in our tests.

Figure 5. Run-time performance overhead in PARSEC and SPLASH, relative to native execution. The three stacks per
benchmark correspond to the three synchronization agents.

and with the non-overlapping code technique proposed in
related work applied to our variants [44]. We tested a vari-
ety of monitoring policies ranging from strict lockstepping
on all system calls to lockstepping only on security-sensitive
system calls. Our monitor is configured to detect divergence
under each of these configurations. No divergence was de-
tected in any of the benchmarks indicating that our proposed
techniques function correctly. Although the performance im-
pact of the diversity techniques we have tested is generally
small (<1%), there are some benchmarks in which these
techniques introduce a non-negligible overhead. Since the
focus of this paper is replication of sync ops, we disabled
diversity in our performance measurements.
5.2 Sync Ops Analysis

We ran the two-stage analysis described in Section 4.3 on
all of the benchmark programs. Table 3 shows an overview
of the sync ops we identified in each of the benchmarks
and in the shared libraries against which they are linked. We
omitted all programs and libraries in which we did not find
any sync ops. Type (i) and (ii) instructions were automati-
cally identified using a disassembler in the first stage of the
analysis. Type (iii) instructions were identified based on the
output of the first stage, and a manual points-to analysis.

It is worth noting that not all of the shared libraries
are used by all of the benchmarks. libgomp, the run-
time library for OpenMP programs, is used only in PAR-
SEC’s freqmine benchmark. Similarly, libstdc++, the
runtime library for C++ programs, is only used in PARSEC’s
streamcluster, bodytrack, fluidanimate, raytrace,
facesim, swaptions, and freqmine.

(i) (ii) (iii)
Base Libraries

libc-2.19.so 319 409 94
libpthreads-2.19.so 163 81 160
libgomp.so 68 38 13
libstdc++.so 162 3 25

PARSEC 2.1 binaries
bodytrack 201 0 8
facesim 385 0 8
raytrace 170 0 8
vips 4 0 6

Table 3. Sync ops identified in the PARSEC and SPLASH
benchmark suites. Type (i)/(ii) sync ops are instructions
with explicit/implicit LOCK prefixes. Type (iii) sync ops are
aligned load/store instructions to variables that are accessed
by type (i) or (ii) instructions elsewhere in the program.

The effective number of type (iii) instructions is likely
higher than the numbers we report in Table 3. Since our anal-
ysis operates at the source-code level, we do not account for
compile-time inlining. The instrumentation we describe next
is still correct, however, because we perform the instrumen-
tation at the source level too.

5.3 Instrumenting Synchronization Operations
Although automation is possible, we instrumented all of

the sync ops we identified in the aforementioned programs
and libraries manually. The instrumentation was straightfor-
ward for libgomp and libstdc++. These libraries can be
built for a generic (i.e., non-x86) target. The source code
for the generic target does not contain any inline assembly

code, and does not make any assumptions about the atom-
icity of aligned memory operations. As such, all sync ops
in the generic source tree use the easily identifiable gcc’s
atomic intrinsics [42], and regular memory accesses to syn-
chronization variables (i.e., the type (iii) instructions in Sec-
tion 5.2) are wrapped in atomic load and atomic store

instrinsics. We therefore chose to instrument these libraries
by overriding the atomic intrinsics at preprocessing time.

Instrumenting libc and libpthreads required more ef-
fort. Much of the code in these two libraries predates the
introduction of atomic intrinsics in gcc. All of the sync ops
in libc and libpthreads are therefore expressed in target-
specific assembly code. Moreover, type (iii) instructions are
(at least in code that targets the x86 platform) not explicitly
marked in the code as the developers implicitly assumed that
aligned loads and stores are atomic.

The sync ops we identified in PARSEC’s vips bench-
mark originated from GNOME’s base library libglib,
which is linked into the vips binary. Rather than to instru-
ment the sync ops directly, we configured libglib to use
pthread sync primitives rather than its own sync ops.

The sync ops we identified in PARSEC’s bodytrack,
facesim, and raytrace binaries were in code inlined from
the Standard Template Library (STL). The inlined code per-
forms thread-safe reference counting on STL containers. Al-
though accesses to the reference counter variables should be
instrumented in the general case, we did not have time to
instrument them in these benchmarks. Despite not instru-
menting these sync ops, we did not observe any divergent
behavior in these benchmarks. Furthermore, we believe that
the performance gain from not instrumenting the sync ops is
negligible. Specifically, the non-instrumented sync ops ac-
count for only 6.3e−6%, 3.9e−7%, and 0.0016% of the total
number of instructions executed by bodytrack, facesim,
and raytrace respectively.
5.4 Security Analysis

To understand the implications of supporting multi-
threaded applications on the MVEE’s security guarantees,
we take a closer look at the components we added to Re-
Mon: the synchronization agent and the synchronization
buffer. The sync agent runs at the same privilege level as
the rest of the variant’s code. Thus, it cannot interfere with
the monitor’s core tasks. We can therefore limit our analysis
to the implications of having a sync buffer mapped into the
variants’ address spaces.

This sync buffer is mapped onto writable memory pages
that are shared among all variants. These pages are not hid-
den, nor isolated from the variants in any way. However, our
monitor does ensure that each buffer is mapped at different,
non-overlapping addresses in all variants. The buffer could
therefore, in theory, be used to provide input that is not reg-
ulated by the monitor to all variants. However, our system
is designed such that only the synchronization agents ever
access the sync buffer, and such that no data in the buffer is
ever copied to any other memory location. Thus, as long as

the variants have not been compromised, the buffer does not
pose any additional channel to deliver exploit payloads.

Now, while our extensions do not alter the security guar-
antees of the underlying MVEE, it is possible for malicious
programs to communicate pointer values across different
variants by abusing the replication mechanism. This breaks
the underlying security assumption for MVEEs in general
that the variants cannot communicate private data such as
pointer values with one another and with the outside world.

The main observation is that replicating the results of
a system call across variants can result in a covert chan-
nel. For example, the result of sys gettimeofday and the
rdtsc instruction are replicated from the master variant to
the slave variants. If a variant has a data-dependent delay
between two system calls, the time delta between the exe-
cution of the second and first call is data-dependent. This
data-dependent delta is then replicated to the other variant,
which can recover the data from the delta. To abuse this suc-
cessfully, both variants need to be ‘self-aware’: one variant
needs to receive data while the other variant sends, and vice
versa. One can probabilistic decide whether a variant is the
master or slave by having each variant hash a pointer value,
which will differ across the variants. The variants then de-
cide whether or not to send based on this hash. At the end
of the exchange, both variants have the randomized pointer
values of both themselves and the other variant. Both vari-
ants can send these values to an outside attacker without any
divergence being detected.

A similar covert channel can be made by abusing the
replication of synchronization primitives to send data from
the master variant to the slave variant. In an application
with two threads, the first thread can lock and unlock a
mutex, where the unlocking happens after a data-dependent
loop. This data-dependent delay allows us to force whether
or not a pthread mutex trylock call on that mutex will
succeed in the second thread. Whether or not the trylock

succeeds will be replicated in the slave variant, which can
again reconstruct the original data by observing the pattern
of succeeded and failed lock attempts.

These proof of concept covert channels show that vari-
ants can communicate with each other and then leak their
randomized data to the outside world, despite the common
argument that monitors will detect any memory-dependent
values being sent to the outside world by different variants.
However, we stress that this is not an issue with our exten-
sions; rather, it is an issue with MVEEs in general. Further-
more, it is unclear how such covert communication and the
ability to send/receive variant-specific pointer values can be
used to mount a useful, concrete attack on a realistic program
rather a malicious proof of concept program. This seems to
require either very specific code flaws and code patterns, or
a degree of control over the program’s execution, such as a
JIT-based attack, that would make this covert channel super-

fluous. Mounting such an attack is outside the scope of this
security analysis.

5.5 Use Case: nginx
Now that we have evaluated all the performance, security,

and correctness aspects of our MVEE and its synchroniza-
tion agents in isolation, we want to show that our findings
are still valid when we run a realistic setup. We chose to run
version 1.8 of the nginx web server, which recently intro-
duced a thread pooling feature [5]. Part of the inter-thread
synchronization in nginx is based on pthread synchroniza-
tion primitives, which we had already covered as they are
widely used in the synthetic benchmarks we tested too. On
top of these primitives, the nginx developers have also built
some synchronization primitives of their own, using inline
assembly code and compiler intrinsics.

As we expected, if we do not instrument these custom
synchronization primitives, nginx does not function cor-
rectly when running multiple variants on top of our MVEE.
The server does start up normally, but quickly triggers a di-
vergence when network traffic starts flowing in. We then an-
alyzed, refactored, and instrumented the variants using the
tools described in Section 4.3.1. This whole process took
less than fifteen minutes. We identified 51 sync ops in total
in the nginx configuration we tested.

We verified that instrumented variants run correctly on
top of our MVEE, even with Address Space Layout Ran-
domization (ASLR), Disjoint Code Layouts (DCL) [44], and
Position Independent Executables (PIE) enabled, by gener-
ating web requests using the wrk benchmark tool. To evalu-
ate the server performance, we ran the wrk tool on a client
machine that communicated with our server via a local gi-
gabit network. We used the same dual-socket machine we
mentioned before to run two instrumented variants of nginx
with ASLR and DCL enabled on top of ReMon. nginx was
set up to spawn thread pools with 32 threads. We set wrk
up to generate requests for a static 4KiB web page using 10
simultaneous connections over a period of 10 seconds. The
average throughput of the variants running in the MVEE was
3% lower than the native throughput of the non-instrumented
program. We then repeated this test with the network traffic
sent on a loopback interface (and the benchmark tool run-
ning on the server itself). In this case, the average throughput
inside the MVEE was 48% lower than the native throughput.

Finally, we verified that our MVEE still detects diver-
gence when the server is under attack. To do so, we con-
structed a code-reuse attack that exploits the CVE-2013-
2028 vulnerability (which we re-introduced in this version
of nginx), and used a script to dynamically tailor the attack
to a specific running victim variant of nginx. As expected,
we found that our attack could successfully compromise ng-
inx running natively, or running as a single variant inside
our MVEE. When running two or more variants, however,
our MVEE detected divergence and shut down all variants
before the system could be compromised.

6. Related Work
Multithreading in MVEEs. GHUMVEE and ReMon are
not the only MVEE that have facilities specifically meant
to support multithreaded programs. With Orchestra, Salamat
et al. were the first to claim support for multithreaded pro-
grams [37]. Orchestra uses one monitoring thread, each re-
sponsible for monitoring one set of variant threads, to com-
pare the variants’ system call sequences per-thread rather
than globally. This design allows Orchestra to tolerate the
differences in the global system call sequences that naturally
occur in all types of multithreaded programs due to differ-
ences in how each variant’s threads are scheduled.

GHUMVEE, our own MVEE that formed the basis for
ReMon, was the first to extend support to multithreaded pro-
grams in which the threads interact with each other [43].
GHUMVEE forces all of the variants’ system calls to ex-
ecute in lockstep, and prevents system calls operating on
shared resources to execute simultaneously. The first version
of GHUMVEE also supported inter-thread synchronization,
but only came with the total-order synchronization agent.
GHUMVEE originally also required fully manual identifi-
cation and instrumentation of synchronization operations.

With VARAN, Hosek and Cadar presented the first
MVEE that eschews lockstepping in favor of loose variant
synchronization [19]. They proposed to use logical clocks to
capture the order in which the leader variant executes its sys-
tem calls, and to replay that same order in the follower vari-
ants. This design suffices to support loosely-coupled multi-
threaded variants, but fails when the variants use explicit
inter-thread synchronization through shared memory.

Deterministic Multithreading (DMT). DMT systems im-
pose a deterministic schedule on the execution order of in-
structions that participate in inter-thread communication, or
a deterministic schedule on the order in which the effects
of those instructions become visible to other threads. Some
DMT systems guarantee determinism only in the absence of
data races (weak determinism), while others work even for
programs with data races (strong determinism).

Some DMT implementations, especially the older ones,
rely on custom hardware [8, 15, 16, 20] or a custom op-
erating system [4, 10]. Of interest to us, however, are the
user-space software-based approaches [6, 9, 11, 14, 15, 28,
29, 31, 32, 34, 46]. Software-based DMT systems come in
many flavors but essentially, they all establish a determinis-
tic schedule by passing a token. We refer to the literature for
an excellent overview of the possible ways to implement the
deterministic schedule, as well as their implications [38]. In
the remainder of this discussion, we focus on the fundamen-
tal reason why DMT systems are incompatible with MVEEs
that run diversified variants: the timing of and prerequisites
for the deterministic token passing.

Most DMT systems require that all threads synchronize
at a global barrier before they can pass their token. Some of
the systems that employ such a global barrier, insert calls to

the barrier function only when a thread executes a synchro-
nization operation [6, 11, 28, 34]. This approach is incom-
patible with parallel programs in which threads deliberately
wait in an infinite loop for an asynchronous event such as
the delivery of a signal to trigger. Such threads never reach
the global barrier. Other DMT systems tackle this issue by
inserting barriers at deterministic points in the thread’s ex-
ecution. These deterministic points are based on the num-
ber of executed store instructions [32], the number of is-
sued instructions [46] or the number of executed instruc-
tions [9, 15]. All of these numbers are extremely sensitive
to small program variations, which makes such systems an
ill fit for use in diversified variants.

Conversion [31] does not use a global barrier but, like
other DMT systems, it relies on a deterministic token that
can only be passed when threads invoke synchronization op-
erations, which again is incompatible with parallel programs
in which some threads never invoke synchronization opera-
tions. RFDet [29] uses an optimized version of the Kendo
algorithm [32] to establish a deterministic synchronization
order. Like Kendo however, the order is still based on the
amount of executed instructions in each thread, which makes
RFDet equally sensitive to program variations.

Record/Replay (R+R). R+R systems capture the order of
synchronization operations in one execution of a program
and then enforce the same order in a different execution.
This can happen offline, by capturing the order in a file to
be replayed during a later execution of the same program, or
online, by broadcasting the order directly to another running
instance of the program. In the absence of data races, R+R
systems show many similarities with DMT techniques that
impose weak determinism.

RecPlay is a prime example of an offline R+R sys-
tem [35]. During recording, RecPlay logs Lamport times-
tamps for all pthread-based synchronization operations [22].
During subsequent replay sessions, synchronization opera-
tions are forced to wait until all operations with a earlier
timestamp have completed. Because it only enforces the
order of synchronization operations, RecPlay’s replication
mechanism incurs less overhead than preexisting techniques
that replicate the thread scheduling order or the order in
which interrupts are processed [3]. Moreover, RecPlay as-
signs the same timestamp to non-conflicting synchronization
operations, such that they can also be replayed in parallel.

Loose Synchronization Algorithm (LSA) was one of the
first techniques that adopted R+R for use in fault-tolerant
systems [7]. LSA designates one of the nodes as the master
node. The master node records the order of all pthread-based
mutex acquisitions and periodically replicates this order to
the slave nodes. These slave nodes then enforce the same
acquisition order on a per-mutex basis.

More recently, Lee et al. proposed Respec online replay
on multi-processor systems [25]. Oriented towards fault-
tolerant execution of identical variants, Respec purposely

records an unprecise order of synchronization operations in
the master process and speculatively replays that order in
the slave processes. At the end of a replay interval, Re-
spec checks whether the slaves are still synchronized with
the master process by comparing their state, incl. their reg-
ister contents. If not, it rolls them back. While recording,
Respec maps synchronization variables onto a statically allo-
cated clock, similarly to our wall-of-clocks agent. It is doubt-
ful, however, whether Respec’s approach could work in a
security-oriented MVEE like ours, in which diversity in the
variants makes it hard (if not impossible) to detect whether
the variants have diverged at the end of a replay interval.

Other online R+R techniques rely on custom hardware
support [8], and hence are not useful for a secure MVEE for
off-the-shelf systems.

7. Conclusion
Multi-variant execution environments increase the re-

silience of systems software by forcing adversaries to simul-
taneously compromise multiple, diversified program vari-
ants without causing divergence. This makes MVEEs a great
fit for legacy applications where security concerns justify
the additional resource consumption. Unfortunately, lack of
support for multi-threaded applications severely limits the
use cases for MVEEs at a time where even low-end, mobile
devices contain multi-core processors.

Our paper evaluates three synchronization strategies. One
of these, our novel wall-of-clocks agent demonstrates that
partially ordering synchronization operations among threads
while avoiding cache contention minimizes the overhead of
protection (1.14x and 1.38x for 2 and 4 variants respec-
tively). Additionally, we proposed a new strategy to embed a
replication agent into parallel programs, including programs
that use ad hoc synchronization primitives, and we described
the effort to do so. We believe that, with additional engineer-
ing effort, this strategy can be automated to a large degree.

Acknowledgments
The authors thank Jean-Pierre Lozi, our reviewers, the

Agency for Innovation by Science and Technology in Flan-
ders (IWT), and the Fund for Scientific Research - Flanders.

This material is based upon work partially supported by
the Defense Advanced Research Projects Agency (DARPA)
under contracts FA8750-15-C-0124 and FA8750-15-C-0085,
by the National Science Foundation under award numbers
CNS-1513837 and CNS-1619211, as well as gifts from Ora-
cle and Qualcomm. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA), its
Contracting Agents, or any other agency of the U.S. Gov-
ernment.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

flow integrity. In Proc. of the 12th ACM conference on Com-
puter and communications security, pages 340–353, 2005.

[2] L. O. Andersen. Program analysis and specialization for
the C programming language. PhD thesis, University of
Cophenhagen, 1994.

[3] K. M. Audenaert and L. J. Levrouw. Interrupt replay: a de-
bugging method for parallel programs with interrupts. Micro-
processors and Microsystems, 18(10):601–612, 1994.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. Communications of the
ACM, 55(5):111–119, 2012.

[5] V. Bartenev. Thread pools in nginx boost per-
formance 9x! https://www.nginx.com/blog/

thread-pools-boost-performance-9x/, 2015.

[6] C. Basile, Z. Kalbarczyk, and R. Iyer. A preemptive determin-
istic scheduling algorithm for multithreaded replicas. In Proc.
IEEE Int’l Conf. Dependable Systems and Networks, pages
149–158, 2002.

[7] C. Basile, Z. Kalbarczyk, and R. Iyer. Active replication
of multithreaded applications. IEEE Trans. on Parallel and
Distributed Systems, 17(5):448–465, 2006. ISSN 1045-9219.

[8] A. Basu, J. Bobba, and M. D. Hill. Karma: scalable determin-
istic record-replay. In Proc. Int’l Conf. on Supercomputing,
pages 359–368, 2011.

[9] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: a compiler and runtime system for determin-
istic multithreaded execution. ACM SIGARCH Computer Ar-
chitecture News, 38(1):53–64, 2010.

[10] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In Proc. OSDI, pages 177–192, 2010.

[11] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multi-
threaded programming for C/C++. ACM Sigplan Notices, 44
(10):81–96, 2009.

[12] L. Cavallaro. Comprehensive Memory Error Protection via
Diversity and Taint-Tracking. PhD thesis, Univ. Degli Studi
Di Milano, 2007.

[13] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems:
A secretless framework for security through diversity. In Proc.
15th USENIX Security Symp., pages 105–120, 2006.

[14] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang,
G. A. Gibson, and R. E. Bryant. Parrot: a practical runtime
for deterministic, stable, and reliable threads. In Proc. ACM
Symp. Operating Systems Principles, pages 388–405, 2013.

[15] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: determin-
istic shared memory multiprocessing. ACM SIGARCH Com-
puter Architecture News, 37(1):85–96, 2009.

[16] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: a relaxed consistency deterministic computer. ACM
SIGPLAN Notices, 46(3):67–78, 2011.

[17] I. O. for Standardization. Iso/iec 9899:2011: C11 standard,
2011.

[18] P. Hosek and C. Cadar. Safe software updates via multi-
version execution. In Proceedings of the 2013 International
Conference on Software Engineering, pages 612–621, 2013.

[19] P. Hosek and C. Cadar. VARAN the unbelievable: An efficient
n-version execution framework. In Proc. Int’l Conf. on Archi-

tectural Support for Programming Languages and Operating
Systems, pages 339–353, 2015.

[20] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin:
Deterministic or not? free will to choose. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th In-
ternational Symposium on, pages 333–334, 2011.

[21] K. Koning, H. Bos, and C. Giuffrida. Secure and efficient
multi-variant execution using hardware-assisted process vir-
tualization. In IEEE/IFIP International Conference on De-
pendable Systems and Networks, 2016.

[22] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21(7):558–565, 1978.

[23] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok:
Automated software diversity. In 2014 IEEE Symposium on
Security and Privacy (SP), pages 276–291, 2014.

[24] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap.
In ACM Sigplan Notices, volume 40, pages 129–142, 2005.

[25] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: efficient online multiproces-
sor replayvia speculation and external determinism. ACM
SIGARCH Computer Architecture News, 38(1):77–90, 2010.

[26] Linux Programmer’s Manual. ld.so(8)-Linux Manual Page, .

[27] Linux Programmer’s Manual. shmat(2)-Linux Manual Page, .

[28] T. Liu, C. Curtsinger, and E. Berger. DTHREADS: efficient
deterministic multithreading. In Proc. ACM Symp. on Oper-
ating System Principles, pages 327–336, 2011.

[29] K. Lu, X. Zhou, T. Bergan, and X. Wang. Efficient determinis-
tic multithreading without global barriers. In Proc. 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 287–300, 2014.

[30] M. Maurer and D. Brumley. Tachyon: Tandem execution for
efficient live patch testing. In USENIX Security Symposium,
pages 617–630, 2012.

[31] T. Merrifield and J. Eriksson. Conversion: Multi-version con-
currency control for main memory segments. In Proc. ACM
European Conf. on Computer Systems, pages 127–139, 2013.

[32] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: effi-
cient deterministic multithreading in software. ACM Sigplan
Notices, 44(3):97–108, 2009.

[33] PaX Team. PaX non-executable pages design & implemen-
tation. http://pax.grsecurity.net/docs/noexec.txt,
2004.

[34] H. Reiser, J. Domaschka, F. J. Hauck, R. Kapitza, and
W. Schröder-Preikschat. Consistent replication of multi-
threaded distributed objects. In Proc. IEEE Symp. Reliable
Distributed Systems, pages 257–266, 2006.

[35] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM Trans. on Computer
Systems, 17(2):133–152, 1999.

[36] M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. In Proc. ACM
Conf. on Programming language design and implementation.
ACM, 1996.

https://www.nginx.com/blog/thread-pools-boost-performance-9x/
https://www.nginx.com/blog/thread-pools-boost-performance-9x/
http://pax.grsecurity.net/docs/noexec.txt

[37] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra:
intrusion detection using parallel execution and monitoring of
program variants in user-space. In Proc. EuroSys Conf., pages
33–46, 2009.

[38] C. Segulja and T. S. Abdelrahman. What is the cost of weak
determinism? In Proc. Int’l Conf. Parallel architectures and
compilation, pages 99–112, 2014.

[39] B. Steensgaard. Points-to analysis in almost linear time. In
Proc. 23rd ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, pages 32–41. ACM, 1996.

[40] Y. Sui and J. Xue. SVF: interprocedural static value-flow
analysis in llvm. In Proc. 25th International Conference on
Compiler Construction, pages 265–266. ACM, 2016.

[41] F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant
size logical clocks for distributed systems. Distributed Com-
puting, 12(4):179–195, 1999. ISSN 0178-2770.

[42] Using the GNU Compiler Collection (GCC). atomic
builtins. https://gcc.gnu.org/onlinedocs/gcc/

_005f_005fatomic-Builtins.html, 2016.

[43] S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere.
GHUMVEE: efficient, effective, and flexible replication. In
Proc. Int’l Symp. on Foundations and practice of security,
pages 261–277, 2013.

[44] S. Volckaert, B. Coppens, and B. De Sutter. Cloning your gad-
gets: Complete ROP attack immunity with multi-variant exe-
cution. IEEE Trans. on Dependable and Secure Computing,
13(4):437–450, 2015.

[45] S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu,
P. Larsen, B. D. Sutter, and M. Franz. Secure and efficient
application monitoring and replication. In USENIX Technical
Conference, pages 167–179. USENIX, 2016.

[46] X. Zhou, K. Lu, X. Wang, and X. Li. Exploiting parallelism
in deterministic shared memory multiprocessing. Journal of
Parallel and Distributed Computing, 72(5):716–727, 2012.

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

	Introduction
	Background
	Handling Parallelism

	Design
	System Calls
	Inter-Thread Communication
	Requirements and Challenges

	Implementation
	Ordering System Calls
	Ordering Sync Ops
	Identifying Sync Ops
	Automation Opportunities

	Instrumenting Sync Ops
	Synchronization Agents
	Handling Diversity

	Evaluation
	Correctness and Performance Evaluation
	Sync Ops Analysis
	Instrumenting Synchronization Operations
	Security Analysis
	Use Case: nginx

	Related Work
	Conclusion

