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Abstract—This paper introduces ABreakpad. It extends the Breakpad crash reporting system to handle software diversity effectively
and efficiently by replicating and patching the debug information of diversified software versions. Simple adaptations to existing open
source compiler tools are presented that on the one hand introduce significant amounts of diversification in the code and stack layout
of ARMv7 binaries to mitigate the widespread deployment of code injection and code reuse attacks, while on the other hand still
supporting accurate crash reporting. An evaluation on SPEC2006 benchmarks demonstrates that the corresponding computational,

storage, and communication overheads are small.
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1 INTRODUCTION AND MOTIVATION

The monoculture in software, in which identical copies of
programs are distributed to all users, has long been blamed
for easing the exploitation of malware [1], [2]. As a mitiga-
tion, software diversity has been proposed [3], [4], [5]. The
main goal is to prevent that an identified attack vector can
automatically be scaled up to many systems, thus lowering
the expected profit of attacks. As software diversification
can protect against many types of attacks, its use is becom-
ing mandated for more and more systems. Examples include
the requirement in many settings to use Address Space Lay-
out Randomization (ASLR) and MovieLabs’ Specification
for Enhanced Content Protection [6]. The latter mandates
software diversity and so-called copy and title diversity,
albeit without prescribing specific diversification schemes.
In practice, however, we observe that few, and only very
simple diversification schemes gain traction. With ASLR,
for example, only absolute addresses are randomized, but
offsets within executable binaries remain constant. These
limitations open the door to information leak attacks [7].
When academics present new, more advanced diversifi-
cation schemes, industrial developers typically appreciate
their protection strength, but their costs and limitations
with respect to the software development life cycle (SDLC)
severely restrict their practical usability. One of the customer
support issues relates to crash collectors. Google Break-
pad (http:/ /code.google.com/p/google-breakpad/), e.g., is
a small software component that can be embedded in appli-
cations to facilitate the collection of crash reports, even when
the application binaries are distributed to end users without
debug information. Its operation involving three parties is
visualized in Figure 1. When the application crashes on a
user’s system, the embedded Breakpad component sends
a stack dump (called minidump) to the crash collector
server. On that server, a tool then combines the minidump
information with the debug information stored in a so-
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called symbol file on the server. The tool then generates a
stack trace, which most often is first analyzed and classified
automatically. If no equivalent traces are found in a database
of previously received traces, the vendor’s developers are
notified that a previously unknown bug or previously un-
known trigger has been identified, at which point they can
start to study the trace manually. For obvious reasons, crash
collector tools like Breakpad have become quite popular.

When different users of an application execute different
code versions, however, this system no longer works out of
the box. Unless the crash collector stores symbol files for all
of the diversified versions, it lacks the necessary information
to identify and interpret the information in the received
minidumps. According to feedback we get from developers
of large, popular open source projects, simplistic solutions
to overcome the mismatch between diversified minidumps
and a single symbol file, such as permanently storing debug
information for all diversified versions, are infeasible be-
cause symbol files are quite large. The alternative solution
of rebuilding a software version and its debug information
on the server when a crash report comes in is considered
impractical as well: For larger programs, recompilation of
every crashed version would be compute-intensive, and it
requires the precise reproduction of the developer’s build
environment in the crash collection environment, which
might reside on a third party’s infrastructure.

Alternatively, we propose to extend the diversified stack
dumps with a small amount of delta data [8], which allows
the server to overcome the discussed mismatch without re-
quiring large amounts of persistent storage, compute power,
or communication bandwidth.

This paper presents such an extension for Breakpad
we call ABreakpad. It supports crash reporting of binaries
diversified with a combination of three existing diversifica-
tions. The contributions of this paper are the following:

e An analysis of the effects of three existing diversifi-
cation schemes on x86 and ARM debug information.

e An open-source implementation of those schemes
based on minimal adaptations to the widely used,
state-of-the-art LLVM 5.0 compiler.

o The ABreakpad approach, and an open source im-
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Fig. 1: Overview of Google’s Breakpad tools for crash collection (redrawn after the Breakpad website).

plementation thereof, in which Adata bridges the
gap between a diversified binary crash report and
debug information from a non-diversified binary.
This implementation consists of scripts that prepare
and manipulate inputs for Breakpad components,
but it involves no changes to the existing code base.
Two techniques to minimize the amount of Adata
necessary to bridge that gap.

An evaluation on a set of benchmark programs,
measuring the size of the Adata, as well as the
computational cost of building and handling it.

The main result is the first demonstration and open
source implementation of co-designed compile-time soft-
ware diversification on the one hand and crash report server
support for the diversified binaries on the other hand.

This paper is structured as follows. Section 2 provides
background information and analyses the problem to be
solved in terms of offset diversification schemes, debug
information required for crash reporting, and the impact of
the diversification on this information, on different types
of CPU architectures. Next, Section 3 presents an overview
and detailed discussion of the ABreakpad approach as an
extension of Google Breakpad. Section 4 discusses practical
aspects of the diversifying tool flow implementation. The
results of an experimental evaluation are presented in Sec-
tion 5, after which Section 6 discusses alternative designs
and generalization issues. Section 7 discusses related work
and Section 8 draws conclusions.

2 BACKGROUND & PROBLEM STATEMENT
2.1

In this work, we focus on diversification schemes that al-
ter offsets between instructions in a program and offsets
between elements in stack frames. We focus on compiled

Offset Diversification

languages such as C and C++ that provide no memory
safety [7]. The studied types of diversification have proven
to be useful on top of basic ASLR, because they raise the bar
for information leak attacks: When offsets within memory
segments are diversified on top of their start addresses, one
leaked address no longer directly informs attackers about
the locations of other potentially interesting elements. We
deploy three existing offset diversification schemes:

1) Function Shuffling The order of all the functions
in a whole binary is randomized. This randomizes

inter-procedural code offsets with high entropy [9].

2) Randomized NOP Insertion At random locations,
for some average frequency, NOPs (no-operations)
are inserted into the code bodies of all the functions.
This randomizes intra-procedural code offsets [10].

3) Randomized Stack Padding A random number of

bytes is inserted in between the stack locations of
buffers and those of the return addresses [1]. The
impact on the stack frames is visualized in Figure 2.
It randomizes the distance from buffers to stored
return addresses, as well as the distances between
return addresses in different stack frames.

We do not claim that these three schemes offer the most
powerful protection that diversification can offer. They do
offer significant protection, however, and as we will demon-
strate, can be made compatible with crash reporting.

To implement these schemes, stochastic decision pro-
cesses decide on the function ordering, on the locations to
insert NOPs, and on the amounts of stack padding to insert.
The stochastic decision processes are deterministic as they
are based on pseudo-random number generators (PRNGs).
To generate diversified code fragments, it suffices to feed the
PRNGs different random seeds.

As the three schemes are conceptually simple, their
decision processes do not involve checks of complex pre-
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Fig. 2: Stack frames in original and diversified binaries.

conditions on the code fragments to be diversified. Hence
no complex compiler technology is needed to replicate the
decision processes, even in cases where the application of a
scheme in one compilation step can trigger hard-to-predict
indirect effects by triggering additional code transforma-
tions later down the compilation process. All of the neces-
sary information to replicate them (such as function names,
function body sizes, ...) is readily available in standard
debug information, as will be discussed in the next section,
or can trivially be generated during the compilation process,
without needing to make large changes to the compilers.

A direct effect of the three schemes is that offsets en-
coded in the code section of a binary change. With the
first two schemes, the displacements between instructions
change, as does the offset of all instructions relative to the
start of the code segment of the binary. In the code section,
this implies changes to the PC-relative offsets encoded in,
e.g., direct control flow transfers. With the third scheme,
the direct changes occur in the displacements between the
base pointer and stack pointer on the one hand, and the
data items in a stack frame on the other hand. So offsets
encoded in stack memory operations change, and so do the
immediate operands of instructions that produce pointers to
stack-allocated data. In all three schemes, the diversification
hence results in changes to offsets encoded in instructions as
immediate operands. The indirect effect of those changes on
the debug information depends significantly on the type of
processor architecture, as we discuss in Sections 2.3 and 2.4.

2.2 Necessary Debug Information

The debug information of interest is embedded in the
symbol files used by Breakpad. Conceptually, it consists of
source line information and stack unwinding information.
For both of those, the code is partitioned in regions: short
sequences of consecutive instructions. The line information
consists of a single list of regions. For each region, the
start address, the size, and the corresponding source file
and source line number are stored. In the symbol files
that Breakpad uses, this information is stored in human-
readable form, as shown in Figure 3. Each line consisting of
hexadecimal numbers corresponds to one region.

The stack unwinding information also consists of a list
of regions, described by their start address and size. Each
region also comes with a description of the locations in the
program state where the debugger’s stack unwinder will
find the necessary information to unwind the stack.

Figure 4 shows an excerpt of an ARMv7 symbol file. The
post-fix expressions on registers (sp, rll, 1r, ...) express

Description:

FUNC address size parameter_size name
address size line filenum

Example excerpt:

FUNC
157c
1580
FUNC
15b0
15b4
1540
15e0
FUNC
15e8
15ec

157c 34 0 google_breakpad::LineReader: :PopLine
4 113 4

30 116 4

15b0 38 0 sys_close

4 2979 16

lc 2979 16

10 2979 16

8 2979 16

15e8 5c 0 google_breakpad::PageAllocator::FreeAll
4 142 13

8 142 13

Fig. 3: Source line mapping in the symbol file.

Description:
STACK CFI INIT address size regl: exprl reg2: expr2 ...
STACK CFI address regl: exprl reg2: expr2 ...

Example symbol file excerpts:

STACK CFI INIT lbdc f0 .cfa: sp 0 + .ra: 1lr
STACK CFI 1lbeO .cfa: sp 8 + .ra: .cfa -4 + ~ rll: .cfa -8 +
STACK CFI 1lbed4 .cfa: rll 4 +
STACK CFI INIT 28a4 f8 .cfa: sp 0 + .ra: 1r
STACK CFI 28ac .cfa: sp 20 + .ra: .cfa -4 + "~ rd4: .cfa -20 +
r5: .cfa -16 + ~ r6: .cfa -12 + °~ r7: .cfa -8 +
STACK CFI 28b4 .cfa: sp 904 +
Corresponding assembler code excerpts:
<functionl>: push {fp, 1lr}
add fp, sp, #4
sub sp, sp, #16
<function2>: push {r4, r5, re6, r7, 1lr}
cmp r3, #0
sub sp, sp, #884 ; 0x374

Fig. 4: Stack unwinding information in the symbol file.

how to compute the necessary properties of the frames on
the stack when execution has reached a given region. These
properties are the canonical frame address (.cfa), the re-
turn address (. ra), and the values of callee-saved registers
in a function’s caller. The first three records in the excerpt
relate to functionl, of which the prologue’s assembly
code shows it has a frame pointer (FP =r11 according to
the ARM EABI). The expression for .cfa on the first line
encodes that on entry to functionl, the stack pointer (SP)
still points to the start of the function’s stack frame. The
second line clarifies that after the push instruction, two
callee-saved registers can be found on the stack, and the
SP points 8 bytes beyond the start of the frame.

To enable the construction of a source-level stack trace
on a crash server on the basis of undiversified debug in-
formation and a diversified, crashed binary’s stack dump,
ABreakpad needs to be able to replicate the diversification’s
effect on the symbol file. Given the discussed format of
that file, ABreakpad needs to replicate the diversification-
induced changes to the number and ordering of regions,
changes to their start addresses and sizes, and changes to the
locations where relevant pieces of program state are stored.

We observed that in the symbol files of our benchmark
suites, about 90% of the records specify line number infor-



mation, and about 7% provide stack unwinding informa-
tion, with the rest spend on descriptions of the files and
paths, and on the interfaces that are exported. Those 7% do
occupy about 20% of the symbol file size, however: as can be
seen in Figures 3 and 4, stack unwinding records are much
longer than code/line region records.

2.3 Indirect effects in x86 binaries

On variable-width CISC architectures such as Intel’s x86,
the indirect effects of the three diversifications schemes are
mostly limited to additional changes in the displacements
between instructions. When, as a result of a changed offset,
less or more bytes are required to encode that offset as
an instruction’s immediate operand, the x86 compiler will
simply generate another form of the same instruction that
uses less or more bytes. In addition, as the compiler might
put certain instructions on specific alignments to optimize
instruction fetching or instruction caching, it might insert
different amounts of padding as a result of the diversifi-
cation. Such changes only alter the addresses and sizes of
regions in the symbol files.

More or less the same happens as a result of the random-
ized stack padding. In many functions, no instructions are
present in the function prologues/epilogues that only in-
crement/decrement the SP. To allocated /deallocate the ad-
ditional randomized padding in such functions, additional
instructions have to be inserted in the prologue/epilogue. In
the symbol file, this comes mostly down to splitting regions
in the stack unwinding information: one region before the
SP increment/decrement, and one region after it.

So replicating the effect of diversification on the debug
information stored on a crash collector requires updating
the number, addresses, and sizes of regions, as well as the
offsets where relevant state is stored in stack frames. To do
so, it suffices for the crash collector to have (i) the original,
undiversified binary including its debug information; (ii) a
script that replays the deterministic decision processes of
the randomizing diversification schemes; (iii) the seeds and
keys that were used for generating the diversified binary.

So on architectures like the x86, it suffices to embed
the seeds and keys in the binaries, to extend the Breakpad
client to send them along with the minidump to the crash
collector, and to extend the Breakpad minidump processor
to let it replicate the impact of the diversification process on
the symbol file. For that replication, not the whole original
compiler is needed. Instead, a simple script suffices that
replays the stochastic diversification decision processes for
the program at hand, i.e., taking into account the alignment
requirements of the individual program fragments and the
locations where different types of offsets are encoded in the
code. A complete approach that covers these features and
more is presented in Section 3.

2.4 Indirect effects in ARMv7 binaries

On architectures like the ARMv7 RISC architecture, the
situation is quite different.! The same effect plays, e.g., with
respect to the function prologues and epilogues, but for
three reasons there are many more indirect effects.

1. The 32-bit part of the ARMvS architecture, which is still om-
nipresent on mobile devices, is mostly identical to ARMv?7.
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Fixed-width instruction encoding. ARMv?7 instructions
are 16-bit or 32-bit wide. The immediate operands of ALU
and LD/ST instructions can therefore only be quite narrow,
so when offsets grow bigger because of diversification, it can
become impossible to encode them as immediate operands.
Instead, the offsets then have to be stored in registers.
This requires additional instructions and puts extra pressure
on the register allocator, as a result of which instructions
can also become scheduled in different orders. In fact, we
have observed that if the same offset has to be generated
multiple times, the compiler sometimes applies common-
subexpression-elimination [11], which can have a global
impact on register allocation and instruction scheduling.
Furthermore, we have observed that the compiler some-
times changes the base register used in LD /ST instructions,
e.g., when the offsets of a location in the stack frame relative
to the SP and/or the FP change.

Rotating immediate operands. The ARMV7 architecture
has a peculiar way of encoding offsets as 8 consecutive bits
that can be rotated over a 5-bit amount. It therefore also
happens that offsets that could not be encoded as immediate
operands in the original binary become perfectly fine ones
after diversification. For example, whereas an original offset
0x3ff0 cannot be encoded in one immediate operand, it does
work perfectly fine for the increased offset 0x4000 that can
result from adding stack frame padding.

The visible program counter. ARMv7 code typically
contains a sizable amount of PC-relative computations, both
in position-independent and in position-dependent code.
The reason is the visible program counter (PC). Constant
values that cannot be encoded in individual immediate
operands, such as vectors of numerical values to be used
by vector instructions, and constants unknown at compile
time, such as absolute addresses or inter-modular offsets,
are often loaded from so-called literal pools: data chunks
dispersed in between the code that are accessed through
PC-relative load operations. As our diversification schemes
can change the sizes of code fragments, and as only narrow
offsets can be encoded, they also affect the location where
the compiler injects the literal pools in between the code.
Whereas the order of instructions and literal pools can
remain the same when NOPs are inserted randomly in x86
code, it cannot remain the same in ARMv7 code.

In conclusion, when targeting an architecture like the
ARMv7, we have to expect much further reaching changes
to the code section, even if we only apply our three relatively
simple offset diversification schemes. Moreover, on such an
architecture it is impossible to replicate the changes to the
corresponding symbol file completely without replicating
part of the compiler infrastructure that was used during
register allocation, instruction selection, and instruction
scheduling. In other words, it cannot suffice to put a simple
script on the crash collector server to replicate the impact of
the diversification on the symbol file.

3 THE ABREAKPAD APPROACH

To overcome this problem, ABreakpad combines three main
concepts. The first concept is imperfect replication of the
diversification process” impact on the symbol file.



The second concept is patching of the imperfect replica-
tion result to make it perfect. The crash collector will not
only receive the necessary seeds and keys to replicate the
diversification decision process, but also a patch that will
allow it to fix any imperfection of the performed replication.
So the ABreakpad client has to send both the minidump, the
seeds and keys, and the patch to the crash collector.

The third concept is A-minimization, with which we
denote the adaptation of the compilation and diversification
process to minimize the sizes of the patches that the client
has to send to the crash collector.

Figure 5 presents an overview of the ABreakpad ap-
proach. It looks much more complicated than Breakpad
in Figure 1, but the main Breakpad components are still
present, and are in fact reused as is: ABreakpad consists
of scripts and unmodified existing Breakpad tools. As we
will discuss in Section 5, it requires only minimal changes
to the build system tools to generate the diversified binaries
and Adata.

3.1 Crash Handling & Stack Trace Generation

Importantly, the ABreakpad approach does not require any
change to the minidump that is sent by the client to the
server. The minidump file format as developed by Microsoft
is similar to core dump files, but much smaller, better
documented, and less OS-specific. A minidump contains

o Alist of the executable and all shared libraries loaded
into the process when the dump was created.

e A list of the process threads, with their stacks and
processor register contents. Complete stacks are in-
cluded because the applications typically do not
contain debug information to analyze the stack.

e Some more system information, incl. the processor
and OS versions, as well as the reason for the crash.

We only need adapt the Breakpad client such that it
sends the server a small chunk of Adata along with the
minidump (bottom right of Figure 5). This does not require
any patch to the Breakpad library (https://github.com/
google/breakpad/) that is to be linked into an application
to enable Breakpad crash reporting. That library is only
responsible for dumping the necessary information about
a crash to disk. A separate process is then responsible for
sending the data to the crash reporter. This isolation mini-
mizes the risk that Breakpad’s operation is corrupted by the
trigger of the crash (e.g., buggy code being executed). The
separate process needs to be implemented and customized
for every OS and usage scenario. For ABreakpad, we only
need to customize it some more to let it deliver the Adata
with the minidump. That Adata contains the random seeds,
keys, and other parameters that the server needs to perform
the imperfect replication, as well as the aforementioned
patch. If necessary, the Adata can be encrypted and signed
to guarantee authenticity, integrity, and confidentiality.

The crash collector server still persistently stores debug
info in the form of a single symbol file of the default binary.
No changes to its format are required, so the existing Break-
pad symbol dumper utilities for the major OSs can be reused
out of the box to extract the necessary information from
the DWARF or STABS debug sections in ELF object files
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or from stand-alone PDB (Microsoft’s Program Database
format) files.

In addition, the server persistently stores a diversity
opportunity log. This log is generated during the default
compilation, i.e., when the diversifying tool chain is invoked
without applying any actual diversification to generate the
default binary. It lists all the opportunities for diversification
that occurred during the generation of that binary, but that
were not exploited. For example, it lists all the program
points where the diversification process considered but
skipped inserting NOPs. An essential feature of the diversity
opportunity log file is that it lists (i) all decision points
where, during an actual diversifying run of the tools, ran-
dom numbers are drawn from the PRNG; (ii) the necessary
information for determining the diversification options from
which one is selected with each drawn random number.

When a crash report arrives on the server, the ABreakpad
replicator replicates the impact of the diversification process
on the symbol file in a couple of steps. First, the replicator
extracts, decompresses, and (optionally) decrypts the Adata.

Next, the replicator extracts the seeds, keys and possible
parameters from the Adata, to replicate the impact of the
diversification decision process on the default symbol file by
means of the opportunity log. The replicator initializes a
PRNG with the same parameters and random seeds that
were already used on the build system for the actual di-
versification of the binary from which the crash report was
achieved. The replicator then draws random numbers from
that PRNG at each point where the original diversification
process had already drawn numbers. For each drawn num-
ber, the replicator then adapts the content of the symbol
file to replicate (approximately) the impact the original
diversification step had caused on that file. The overall
result is an approximation of the diversified symbol file, i.e.,
the symbol file that the original Breakpad symbol dumper
tool had produced on the build system for the diversified
binary. It is an approximation because the replicator only
models direct effects of the diversification, such as increased
region sizes resulting from inserted NOPs, but no secondary
effects like the ones discussed in Section 2.4. So finally, the
replicator extracts the patch from the Adata and applies it
to the approximation, thus reproducing an exact copy of the
diversified symbol file.

As the contents of that diversified symbol file match
the contents of the received minidump, the existing Break-
pad minidump processor can then be used to produce the
human-readable stack trace. Notice that this stack trace
only contains information at the abstraction level of the
source code. Crashes occurring in corresponding regions
in differently diversified versions of the binaries will hence
produce exactly the same stack trace. As such, all existing
manual or automatic tools and techniques to analyze and
classify the stack traces, e.g., for triaging, still work out of
the box.

3.2 Generating the Adata

The top part of Figure 5 shows the adapted build system.
On the right, the standard Breakpad symbol dumper flow
is shown to generate the default symbol file to be stored
persistently on the crash collector server. This symbol file is
extracted from the default binary.
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On the left of the build system in Figure 5, the diversified
binary is generated, along with the diversification decision
process log that consists of the same info as the opportunity
log plus a description of the actual result from the applied
diversification, and a diversified symbol file. Based on this
log and symbol file, and on the default symbol file, our
ABreakpad symbol differ then generates the Adata, in particu-
lar the patch part of it. Finally, the Adata packer compresses,
and optionally encrypts and signs the data and injects it
as an additional section into the stripped diversified exe-
cutable. The resulting binary is then distributed to the end
user, ready to be executed and crash.

3.3 Combining Multiple Diversification Processes

In order to make the described approach work, we need to
ensure that the replication of the decision processes on the
crash collector on the basis of the opportunity log generated
for the default binary stays synchronized with the decision

process as it was executed during the generation of the di-
versified binary. This is non-trivial when one wants to apply
multiple forms of diversification one after the other. Because
of the already discussed indirect effects of diversifications,
the replication process does not know the exact outcome
of an earlier diversification applied to some code fragment.
The replication process hence does not know the exact form
of the code fragment onto which the later diversification is
applied.

For example, consider the design where randomized
padding is injected into a function’s stack frame first, and
random NOPs are inserted in its code body afterwards,
after instruction scheduling has been performed. Given the
ordering of compilation phases in a compiler, this is a rea-
sonable design [11]. As discussed in Section 2.4, the injected
padding can cause changes in the number of instructions
of the function body. If this actually happens, and if the
later NOP insertion process draws a random number for
each instruction in the code to decide whether or not to



insert a certain number of NOPs after that instruction, the
replicator will draw more or less random numbers from
the PRNG than were counted during the generation of the
default binary.

Fundamentally, the problem is that the diversifying NOP
insertion is then performed on code that differs from the
code from which the opportunity log was constructed. So in
that case, the replication of the decision process on the crash
collector will at some point become desynchronized with
how the actual diversification was decided. Unless special
care is taken, this will result in completely diverging repli-
cation from that point on, which can only be compensated
by including a huge patch in the Adata.

We avoid this in two ways. First, the decision processes
of the combined diversification schemes need to be care-
fully designed to become mostly, if not completely inde-
pendent. In our diversifying tool chain, we achieve this
by applying the later decision processes at a granularity
of code fragments that is not likely impacted by earlier
decision processes. Trivially, the order in which functions
are shuffled is completely independent from the number of
NOPs inserted in them, as well as from their stack padding
size. We also observed that although random stack padding
and NOP insertion often result in changes in the number
of instructions in the function bodies, in particular when
the ARMV7 architecture is targeted, they rarely impact the
structure of the functions’ control flow graphs (CFGs). The
few cases in which we did see changes to the CFGs are the
following;:

e When trampolines had to be inserted or could be
removed as a result of changed code displacements.

e When basic blocks became so big or small that they
(no longer) had to be split, e.g., to provide space for
a literal pool.

e When heuristics used by the compiler consider the
sizes of the involved fragments. For example, in the
LLVM compiler, we observed that the tail duplication
optimization considers code size (small blocks are
duplicated more), as do if-conversion and tail merging.

Randomized stack padding and NOP insertion can hence
impact the CFGs of functions. Importantly, the effects of the
mentioned transformations do not escape functions, as the
transformations are intra-procedural.

Whereas NOP insertion inherently changes the sizes of
code fragments, stack padding changes them much less
frequently. We build on this observation by performing the
stack padding insertion first, followed by the NOP insertion,
of which the decision process is performed basic block per
basic block, with a re-initialization of the used PRNG before
each block. So however the number of instructions in the
basic blocks are impacted by the former two diversification
steps, as long as the CFG of a function is not impacted,
the replicator’s decision process will remain synchronized
automatically. Function shuffling is applied last.

Our second way deals with the above cases where a
function’s CFG is actually changed as a result of the first
two diversifications. As function shuffling has no impact on
the function bodies, such changes come only from the stack
padding. In such cases, we accept the desynchronization,
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but we contain it to the function of which the CFGs are
changed, i.e., to that function’s part of the symbol file.

To avoid that the resulting desynchronization in the
replication spills over into other functions, the tools that
perform the diversification and the imperfect replication
resynchronize the used PRNGs upon entry to a function.
Such resynchronization per function can be implemented in
several ways. Hierarchical PRNGs are one option, whereby
the top-level PRNG is invoked on entry to each function. In
our tools, we alternatively reset the PRNG with a new seed
value that is computed by hashing a unique, immutable
identifier of the function combined with the diversifica-
tion seeds and keys. With cryptographically strong hash
functions, the new seeds can not be predicted by attackers
unless they know the (global) diversification seeds and key.
As a unique function identifier that is not be impacted by
any diversification step, we use the concatenation of the
(mangled) name of the function, the name of the object file
from which the function originated, and the name of its
section within that object file. By compiling code with the
-ffunction-sections flag, these identifiers are guaran-
teed to be unique. Every function is then put in its own
section in the generated object file, and that section name
then includes the function name, even for functions that are
themselves anonymous in the object file, such as C functions
declared static).

3.4 A-Minimization

With this paper, we want to demonstrate that crash re-
porting for diversified software is feasible with limited
overhead. So we aim for small Adata.

A first option to reduce the size of the Adata is to
compress it or to use more efficient encodings for the infor-
mation that needs to be stored in the Adata. Compression
and coding are not the focus of this paper, however, so in
the remainder of this paper, we will simply rely on existing
compression schemes to compress information encoded in a
custom developed, but likely suboptimal coding scheme.

A second technique is to adapt the processes that per-
form the compilation and diversification. Those processes
have an impact on the amount of imperfection in the replica-
tion, i.e., on the A between the diversified symbol files and
the symbol files reconstructed through imperfect replication.
Those processes can hence be tweaked to minimize that A,
which will in turn lead to a reduction in the amount of
patching information needed in the Adata. Tweaking the
processes is the option we explore in this section.

We opt not to achieve a smaller A at all cost, however.
Apart from the restrictions discussed in Section 3.3, we do
not want to impose strict limitations on the freedom with
which to apply the diversification schemes. For example,
when we let a compiler select a randomized amount of
stack padding for some function, we do not want to restrict
its selection to values that preserve the exact instruction
schedules in the function body. Besides helping us to keep
the diversification process decision logic (in the compiler
as well as in the replicator) independent of compiler in-
ternals, this ensures that the entropy generated by means
of the diversification does not depend more than strictly
necessary on artifacts of the code being diversified. From
the perspective of security, this is obviously an advantage.



Furthermore, we want to limit the changes we need
to make to existing compilers and related tools used for
generating and/or diversifying the binaries.

What remains then to reduce the A, is the selection
of the default compilation strategy and a minimal set of
adaptations to the compilation tools to enforce that strategy.
For the three forms of offset diversification we deploy, we
identified two tiny but very useful adaptations.

3.4.1 Adaptation 1: Default Stack Padding

The first adaptation is that 8 bytes of stack padding are
added in every function in the default, non-diversified bi-
nary. During the diversification process itself, every function
gets a randomized number of padding bytes that is a strictly
positive multiple of 8. This adaptation enforces the insertion
of padding operations in all function versions, i.e., default
ones and diversified ones. It therefore limits the number
of cases where the code regions of the function prologues
and epilogues as listed in the default symbol file need to be
split to match the regions in the diversified symbol file (as
discussed in Section 2.3).

The default padding enforces the inclusion of instruc-
tions to allocate and deallocate stack space in the function
prologues and epilogues: the single prologue then contains
one add sp, sp, #const instruction (or multiple ones,
if the size of that stack space, i.e., the const value, cannot
be encoded as a single immediate operand), and each copy
of the epilogues contains one (or more) sub sp, sp,
#const instructions, both in the default program version
and in the diversified versions. Without the default padding,
many functions in the default binary would not contain
such SP incrementing/decrementing instructions. For those
functions, the default padding minimizes the differences be-
tween default and diversified code and their corresponding
regions in the symbol files.

For functions that already allocate and deallocate stack
space in the default binary, adding default padding is useful
as well. We observed quite some functions where the local
area of a stack frame only holds relatively large arrays
whose sizes are powers of two. In those functions, the afore-
mentioned const operands are large values of which the
least significant bits are all zeroes. Those values can hence
be encoded as single immediate operands in the ARMv7 and
similar architectures. By adding another 8 bytes of padding,
a lower bit becomes set as well. So then the value can no
longer be encoded as a single immediate operand in the
default binary, just like it will likely not get encoded as a
single immediate operand in the diversified binaries, where
a randomized, but still relatively small amount of padding
is added. The average difference between the default binary
and the diversified binaries, and hence the average amount
of information to be stored in the Adata, is hence reduced.
For other functions, such as those with small local areas, the
added 8 bytes typically don’t impact which offsets can be
encoded as immediate operands. The added 8 bytes then do
not offer any benefit, but they also do not hurt in any way.

Minimizing the differences that randomized stack
padding introduces between default and diversified code
fragments is particularly important for the function epi-
logues; not only to make the corresponding regions in the
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symbol files more similar to one another, but also to limit in-
direct effects on the generated code. As a result of the default
padding, the epilogues in a function typically have the same
size in the default binary and in the diversified binaries.
Maintaining the same size for epilogues throughout the
stack frame diversification is important for A-minimization
because the size of basic blocks, which is the form under
which epilogues occur in the diversifying compiler’s in-
termediate code representation, plays a significant role in
the heuristics that steer some compiler optimizations, as
discussed in Section 3.3. As a result, the insertion of extra
instructions in the epilogues can result in altered CFGs. The
introduction of default padding reduces the occurrence of
such alterations. For the interested reader, the Appendix
provides a quantitative analysis of this effect. In any case,
reducing the number of alterations in the CFGs reduces
the number of desynchronizations during the imperfect
replication, thus minimizing the required Adata.

The 8-byte padding in the default binaries has no impact
whatsoever on the size or on the performance of binaries
distributed to end users: The default padding only influ-
ences the default symbol files and the Adata that will be
used to reconstruct the diversified symbol file. With respect
to security, there is only a small impact on distributed
software versions. By excluding the possibility of adding
zero bytes of stack padding to a function, keeping only the
values 8, 16, ..., 256, we reduce the entropy in the stack frame
layout of the diversified binaries from In(33) to In(32).

Note that this 8-byte padding in the default binary can
be implemented trivially in a diversifying compiler that
already injects randomized stack padding: Default stack
padding simply comes down to executing the diversified
stack padding code with a non-diversified amount.

With respect to correctness, we note that by making all
diversifying padding multiples of 8 bytes, the padding does
not affect the natural alignment of data in stack frames.
Typically, that data needs 8-byte alignment or less. This is
reflected in the application binary interfaces (ABIs) we know
of, and which impose at most 8-byte alignments. If data in
a stack frame needs stricter alignment, e.g., because vector
instructions will operate on wider data that needs 128-byte
or 256-byte alignments, special constructs need to be used
in the code that achieve such alignments independently of
the address at which the stack frame starts. Such constructs
include the use of alloca alloca or the allocation of a bigger
array than needed and then using only an aligned part in
that array of which the starting address is computed at
run time. As such constructs function correctly at whatever
allowed stack frame address, ie.,, at any 8-byte aligned
stack frame address according to the ABIs, those constructs
survive the addition of randomized amounts of padding
that are multiples of 8 bytes.

One can wonder whether the correctness of special pro-
gramming constructs such as tail recursion can be affected
by stack padding. We conjecture that this is not the case
when the padding is implemented correctly. For example,
we implement the stack padding insertion by simply asking
the compiler to reserve space for more local variables on the
stack as if more local variables were declared in the source
code of the functions. The correctness of the padding then
comes down to the correct implementation of the existing



stack frame allocation in the compiler. As that allocation is a
crucial aspect of any compiler, we can rely on its correctness.

3.4.2 Adaptation 2: SP/FP-relative access optimization

The second adaptation consists of disabling a minor op-
timization in the (ARM-specific) compiler backend. When
a function has a FP, the compiler back-end can choose
to access data in its stack frame via FP-relative LD/ST
instructions or via SP-relative ones. The decision can take
into account the offsets of the data relative to the FP and
to the SP. By choosing the option of which the offset can be
encoded in one immediate, rotating operand (as discussed
in Section 2.4), the code can be optimized.

After disabling that optimization, the compiler alter-
nates less between FP-relative and SP-relative addressing
as a result of randomized padding. The diversified binaries
therefore become more similar to the default binary, which
ultimately results in smaller Adata. The appendix backs this
up with quantitative data for the interested reader.

This adaptation is trivial to implement: In LLVM, a
one-line edit (to a condition in an if-statement) suffices.
However, unlike the default stack padding, this tweak does
potentially impact performance. In the SPEC2006 C and C++
benchmarks in our benchmark suite compiled with -02,
we observed no significant average performance impact:
the average execution times increased with the rather small
amount of 0.34%. For individual benchmarks, disabling
the optimization resulted into anything between a 0.86%
speedup and a 2.70% slowdown. These effects are likely
caused by accident, such as improved or worsened instruc-
tion cache behaviors that accidentally result from small
code changes, i.e., unintentional and beyond the scope and
awareness of the compiler’s optimizations [12]. Still, these
numbers indicate that there can be a small effect, that the
software developer in certain performance critical cases may
want to trade-off against the potential benefits in terms of
Adata size. The latter is evaluated in Section 5.

With respect to security, this adaptation has no impact:
The offsets in the stack frames do not change because of
this optimization, and hence the entropy resulting from
the offset randomization is not impacted. With respect to
correctness, this adaptation has no impact either: We only
let the compiler skip the exploitation of an optimization op-
portunity. In cases where the transformation implementing
the optimization would be mandatory to generate correct
code in the first place, it can of course still be applied as is.
We know of no such cases, however.

3.5 Profile-Guided Diversification

Some diversification schemes can benefit from profile in-
formation to reduce the overhead. For example, the per-
formance overhead of NOP-insertion can be reduced by
concentrating NOPs on infrequently executed program
points [10]. ABreakpad supports such profile-guided diver-
sification: As long as both the default compilation and the
diversifying compilation runs are served the same profile
information, the decision process logs and the diversity
opportunity log will be consistent with each other, so the
ABreakpad replicator will work just fine.

4 PROTOTYPE DIVERSIFICATION TooL FLOwW

As we want to demonstrate that our approach can work
with small Adata sizes even on architectures that are harder
to target, we evaluated it on the more challenging ARMv7
architecture. In particular, our prototype tools support the
32-bit subset of the ARMv7-A architecure (i.e., excluding
16-bit Thumb and Thumb?2 code).

Diversification processes can be applied at many stages
during the SDLC [4]. In our prototype implementation, the
three diversification schemes are applied when the binaries
are built. The schemes are applied in the already discussed
order using existing open-source compiler tools.

4.1 Stack Padding

First, we adapted LLVM 5.0 for randomized stack padding.
All functions get a random stack padding between 8 and
256 bytes, but always a multiple of 8 bytes, as discussed in
Section 3.4.1. The amount of padding for each function is
determined by hashing the function’s (mangled) name. The
diversification seed is the key to the hash function. In this
stateless scheme, the amount of padding in each function is
independent of the order in which functions are compiled.
This further eases the replay on the crash server, for which
all the necessary function names are already present in the
default symbol file.

Our LLVM patch to implement the stack padding and
related command-line options is 41 lines of code in total.
The stack padding itself is implemented in the architecture-
independent code of the LLVM compiler pass that inserts
function prologues and epilogues. Amongst others, that
pass determines the total size of each function’s stack
frame, including the space needed to implement calling
conventions. Our patch extends that computation to insert
randomized stack padding.

On top, a two-line patch sufficed to disable the FP/SP-
relative stack access optimization discussed in Section 3.4.2.

4.2 NOP Insertion

We further adapted the LLVM 5.0 ARM backend to perform
randomized NOP insertion and to generate an opportu-
nity log, implementing a decision process as discussed in
Section 3.3. It inserts a NOP in between every consecutive
pair of instructions in a basic block with a user-controlled
probability. For our experiments, we set this probability to
20%. More complex schemes, that introduce more entropy
in the offsets between individual instructions in function
bodies can easily be envisioned. Introducing many more
NOPs will likely not be acceptable, however, as it obviously
inflates the code size. As long as the more complex schemes
have a decision process along the lines of the one discussed
in Section 3.3, with a fixed number of random numbers
drawn per basic block, we conjecture that the Adata size
will not be impacted significantly.

To minimize the side effects of the NOP insertion that
would lead to inflated A-data, the NOP insertion is done
as late as possible in the compiler backend. The new NOP-
insertion compiler pass is invoked after instruction selec-
tion, if-conversion, instruction scheduling, register alloca-
tion, peephole and other assembly-level optimizations, and



code layout; and right before the very last LLVM ARM code
generation pass that inserts literal address pools and the
necessary trampolines. As already discussed in Section 3.3,
that last pass can only be executed while all the basic
blocks sizes are being finalized: Trampoline insertion and
literal address pool insertion leads to code size increases,
which might necessitate additional insertions, so they are
performed iteratively until a fix-point is reached. From then
on, no extra insertions can be performed (without risking
having to undo and redo the insertion of pools and trampo-
lines).

To replay the NOP insertion on the server, the oppor-
tunity log lists the functions’ code and data blocks, as
well as their sizes. The data blocks include blobs of data
that the compiler stores in the code section (for various
reasons) as well as the literal address pools. Those blocks
are marked as data, such that the NOP insertion replay
knows to skip them, i.e., not to insert NOPs in them. The
code blocks correspond to the basic blocks in the compiler’s
intermediate code representation. To enable the inclusion of
all the necessary information, in particular with respect to
literal address pools, the opportunity log is generated at the
end of the trampoline and address pool insertion compiler
pass.

Since the number of instructions per basic block can be
different in a diversified binary as a result of stack padding,
the data in the opportunity log allows for relatively accurate,
but not perfect replay on the crash server. The difference is
obviously covered by the patch in the Adata.

Despite our careful design to obtain accurate opportu-
nity logs, we observed that in some cases, the logs are
not completely accurate. When source code contains in-
line assembly fragments, the LLVM code generator handles
those mostly as strings, of which it estimates the maximal
code sizes to insert trampolines and literal address pools as
necessary. Most often, those estimates are correct. But some-
times LLVM overestimates their actual size. This results in
desynchronization during the NOP-replication, because the
replication then inserts NOPs in later blocks at incorrect
addresses, resulting in incorrect updates to the supposedly
corresponding regions in the symbol file.

Fortunately, this form of desynchronization occurs in-
frequently. Most user-space application and library code
(except for the standard system libraries) does not include
inline assembly. In our experiments, only the injected Break-
pad components contained inline assembly. For all but the
smallest programs, those components make up only a tiny
fraction of the whole binary. Moreover, the desynchroniza-
tion ends at the function boundary, when global resynchro-
nization is performed anyway. So the overall impact on the
sizes of the Adata is minimal.

We conjecture it is possible to eliminate this completely
by engineering a way in which incorrect estimates in the
opportunity log are patched on the basis of an inspection
of the actual assembler code generated during the default
compilation. This engineering task is left for future work.

Another source of errors in the NOP insertion replay, and
desynchronization, is the insertion of the NOPs themselves.
These can cause the location of the data pools inside the
function to change, or even cause the sizes of these pools
to change. This form of desynchronization happens rather
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infrequently.

Our LLVM patch to implement the NOP insertion tech-
nique and related command-line options is 148 lines of
code in total, 60 lines of which are used for outputting the
opportunity log.

4.3 Function Shuffling

We use the standard GNU linker for shuffling functions. In
preparation for this, we use the ~ffunction-sections
compiler flag to ensure that the compiler puts each function
into a separate code section in the generated object files. To
perform the actual shuffling, we simply generate a custom
linker script that enforces a shuffled order of all the code
sections, and hence of all functions. The order is determined
with a pseudo-random number generator that is seeded
with the diversification seed.

This process builds completely on existing linker func-
tionality. No patch to the linker source code is needed to let
it generate the diversified function orders. For generating
the linker script, we extract all the linked-in functions from
the linker map file. All linkers we know can produce such
a file, which basically documents how the original (i.e.,
default) linker script was executed on the linked objects.

To replay the shuffling accurately on the crash server, the
information extracted from the linker map file is needed,
i.e., the names and sizes of linked-in functions, as well as
their alignment requirements. These can be obtained from
the linker map file and from the object files generated
during the default compilation: the alignment requirements
of functions correspond to those of their corresponding
code sections in the object files. Those section alignment
requirements are explicitly encoded in the object files to
allow correct linking. We extract them to include them in the
opportunity log. During the replay, they are useful to predict
the amount of padding that needs to be inserted before each
function in the diversified binary, such that that amount of
padding does not need to be included in the Adata.

4.4 Adata

The uncompressed Adata our tools generate contain
human-readable ASCII text. With more engineering, smaller
patch sizes can likely be obtained, so the (compressed)
Adata sizes we report in the next section only put an upper
bound on what could be achieved with a more fine-tuned
implementation. If authenticity, integrity and confidentiality
are required for the Adata it can also be encrypted and
signed. This obviously adds some extra data. For example,
when we experimented with GPG (GNU Privacy Guard,
https:/ /www.gnupg.org/) to encrypt with AES256 and sign
using the SHA-1 hash and RSA, we observed that the
Adata grows with 354-356 bytes (depending on the needed
padding).

5 EXPERIMENTAL EVALUATION
5.1 Benchmarks and Correctness

For evaluating our approach and the correctness of our
implementation, we use the C and C++ programs from
the SPEC2006 benchmark suite. We evaluated the approach
on dynamically linked binaries, all of which also include



the BreakPad client next to the actual code. The dynami-
cally linked, position-dependent binaries were compiled at
optimization levels -01, -02, -0s, and -03. For all four
levels, we evaluated two versions: with and without the
-fomit-frame-pointer option. So in total, we evaluated
the benchmarks on eight compilation flag combinations.

For each of those eight combinations, we diversified the
benchmarks using 30 tuples of three random seeds, one for
each diversification scheme we implemented. All diversified
versions compiled and executed correctly with our patches
and three-step diversification. Hence our diversification im-
plementation can be considered validated.

To validate the correctness of ABreakpad’s crash report-
ing, we checked and confirm that the diversified symbol
files generated with our server-side replicator on the basis of
undiversified symbol files, the opportunity log, and Adata
are equivalent to symbol files obtained directly with the
symbol dumper from the debug info in the diversified bina-
ries. We also checked and confirm that correct source-level
crash reports are generated based on the diversified symbol
files and mini dumps that we produced by inducing crashes
at randomly selected program locations in the diversified
binaries.

5.2 Overhead

We evaluated the overheads introduced by the diversifica-
tion and the ABreakpad tools with the two A-minimization
techniques from Section 3.4 enabled. For benchmarks com-
piled with -02 -fomit-frame-pointer, Table 1 con-
tains the maximum and average sizes of the Adata for
our three techniques in isolation (A-C) and for all three
combined (D). The listed Adata sizes are the sizes of the
bzipped data, or simply the size of the random seeds if
there was no other Adata to be compressed. As the Adata
sizes vary from one diversified version to another, we list
their average size as well as the maximal sizes we observed
during our experiments. These sizes are indicated with
“(avg)” and “(max)” resp. The numbers (E) given for the
opportunity logs for three techniques combined are also
compressed using bzip2, as these files are quite large but
very compressible. Also given are the sizes of the default
(F) as well as the diversified symbol files (G), and the sizes
of the corresponding stripped binaries (H and J). For the
default binaries, we also report the average stack depth (I)
observed over their execution on SPEC training inputs. This
size corresponds to the amount of stack data that needs
to be sent to a crash server in a minidump. As for the
execution times, the table lists the time needed to compile
and link the default binary (K); to generate the Adata (L);
to create a stack trace for a crash in the main function of
the default binary, which requires no stack unwinding (M);
and to produce the diversified symbol file on the crash
server once Adata is delivered with a minidump (N). The
timing data was gathered using the Python timeit module
on a machine with 16 GB of main memory and an Intel
i7-4790 CPU. To put the absolute numbers in the table in
perspective, four columns contain relative numbers on the
right and aggregated numbers at the bottom of the table.
The formulas to compute the relative numbers are detailed
in the header rows.

”
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We did not include execution times for generating the
actual diversification, because the extra computation time
needed to perform the diversification is negligible compared
to the default compilation and linking times.

From the results in Table 1, we can draw several con-
clusions. First, the size of the Adata is small. Even for the
three techniques combined the extra Adata to be stored in
the binaries is roughly three orders of magnitude smaller
than the binary size for each benchmark. Compared to the
average stack size, which is a good indication of the average
size of minidumps to be send to a server, the Adata can
range from negligible for the sjeng benchmark to relatively
large, such as for perlbench benchmark. Thus, the need to
send Adata can significantly increase the amount of data to
be send to the crash server, up to a factor 3 for perlbench.
However, the increase is relatively high only for programs
with shallow stacks. The absolute increase is, in each case
still limited to less than seven kilobytes.

Secondly, the symbol files barely increase as a result of
diversification, and the opportunity logs are about an order
of magnitude smaller than the symbol files. We can thus
conclude that on the client as well as on the server, only a
relatively small price is paid in terms of storage for allowing
diversified symbol files to be recreated.

Thirdly, the computation times required to produce the
Adata on the build system and to produce the diversified
symbol files on the crash collector server are significant.
An important remark needs to be made, however. Both
the generation of the Adata on the build system and the
reconstruction of the diversified symbol file on the crash
collector are currently implemented in Python. Most of the
execution time is spent in reading and parsing the default
symbol file, and in allocating the internal data structures
that represent it. These steps can be optimized significantly,
by preprocessing the default symbol file such that it can
be mapped into memory with one file open operation,
by re-implementing the scripts in a performance-oriented
programming language, and by redesigning the internal
data structures for performance instead of research flexi-
bility. The reported processing times are therefore only a
large over-approximation of what more fine-tuned imple-
mentations will be able to achieve. We are hence confident
that the computational overhead on both the build system
and the crash collector server can be reduced to acceptable
levels. With a reduction with one order of magnitude, which
certainly seems within reach, the overhead on the crash
server could be reduced to approximately a doubling of the
computation time needed to produce a crash report.

Fourthly, the observations for C++ programs are in line
with those for C programs.

Fifthly, from the individual results in columns A-C, we
can make several interesting observations. Stack padding
requires significant but relatively little Adata. This results
from the fact that with the default stack padding discussed
in Section 3.4.1, relatively few changes to additional code
regions result from stack offset changes. For almost all
benchmarks, function shuffling only requires 4 bytes of
Adata, which are needed to store the key used for the
diversification. For one benchmark, sphinx3, more Adata
is needed. This results from a small number of system
functions being linked in from pre-compiled crt*.o files,
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execution time (seconds)

file size (bytes)

function NOP three diversifications combined build system crash server
padding shuffling insertion (3] (H) () () (K) (L) (M) (N)
(A) (B) (] opportunity average stripped | default | generating default replicating
Adata Adata Adata stack trace bol file

stack

default
binai ave g creation

perlbench (C) 66 115 4 4 2511 2917 2558 0.2% 206% 2958 106835 6% 1703748 1726441 1126652 1240 1321909 18.20 157 9% 0.054 0880 16.3
bzip2 (C) 41 122 4 4 401 513 419 0.2% 4% 553 26117 11% 234529 237271 152336 9600 177381 2.00 0.28 14% 0.009 0.150 16.7
gee (C) 260 537 4 4 5795 6161 6065 0.2% 177% 6561 248239 5% 5231787 5285175 3246200 3423 3779744  50.65 455 9% 0.272 2.470 9.1
mcf (C) 35 88 4 4 303 415 317 03% 48% 404 23671 16% 149260 151054 87816 659 103885 0.64 0.17 27% 0.006 0.110 183
milc (C) 35 77 4 4 495 582 512 0.2% 54% 614 38151 12% 328275 330600 190760 950 219996 2.81 0.29 10% 0.012 0190 158
namd (C++) 103 149 4 4 709 793 781 0.2% 23% 887 30232 6% 502722 506452 304944 3402 363119 6.08 0.51 8% 0.018 0.280 15.6
gobmk (C) 385 479 4 4 1829 1998 2205 0.1% 7% 2472 98676 7% 1406349 1414044 3299016 32764 3444768  12.59 111 9% 0.043 0.720 16.7
soplex (C++) 77 122 4 4 1140 1322 1169 0.2% 32% 1350 78129 9% 846066 849410 399260 3668 470111  15.79 0.64 4% 0.026 0.420 16.2
povray (C++) 229 301 4 4 2890 3212 3067 0.3% 65% 3381 121315 6% 1999433 2007128 989480 4698 1157394 18.84 1.86 10% 0.062 0920 14.8
hmmer (C) 69 97 4 4 906 1083 933 0.2% 66% 1099 48633 8% 609889 613010 336688 1418 395016 5.72 0.53 9% 0.021 0330 157
sjeng (C) 73 182 4 4 569 722 610 0.2% 0% 795 33107 10% 328271 331189 215952 272457 249381 2.14 031 14% 0.012 0.190 158
libquantum (C) 35 76 4 4 352 454 366 0.3% 48% 473 26819 15% 180141 182364 112432 763 129642 0.87 0.18 21% 0.007 0.120 17.1
h264ref (C) 86 134 4 4 1230 1433 1310 0.2% 53% 1496 60248 5% 1208518 1214016 698916 2493 818377 10.45 139 13% 0.039 0.600 154
Ibm (C) 35 74 4 4 287 377 301 03% 59% 391 22394 15% 149414 151062 87824 508 101282 0.38 0.16 42% 0.007 0.110 15.7
omnetpp (C++) 45 95 4 4 989 1121 1017 0.1% 117% 1146 122314 13% 925085 931298 685604 872 784839  17.12 0.84 5% 0.027 0500 185
astar (C++) 41 87 4 4 380 471 395 0.3% 8% 494 26128 13% 207289 209005 112468 5183 130663 1.02 0.20 20% 0.008 0.130 16.3
sphinx3 (C) 78 108 41 59 594 722 628 0.2% 1% 795 38789 10% 382806 385562 236656 122182 274199 3.40 0.33 10% 0.013 0.220 16.9
xalan (C++) 129 176 4 4 6510 6857 6711 0.2% 65% 7061 867475 11% 8122463 8164429 3898260 10283 4396542 120.89 4.69 4% 0.334 3.070 9.2
AVG: 0.2% 57% AVG: 10% AVG: 13% AVG: 156

MIN: 0.1% 0% MIN: 5% MIN: 4% MIN: 9.1

MAX: 0.3% 206% MAX: 16% MAX: 42% MAX: 185

client size & crash server compile time crash server

communication space overhead overhead time overhead

overhead

TABLE 1: Data sizes and execution times for ABreakpad use for benchmarks compiled at -O2 without FP.
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4 ’ ’ technique discussed in Section 3.4.2. We did not include the
N P effect of default padding (Section 3.4.1) because that does
- 4 - | not involve any trade-off, as it does not effect the diversified
_§ d - binaries themselves. The blue, left bars indicate the effect
q - o on Adata size of omitting the FP in functions where that
%20 e i is possible. On some benchmarks, this reduced the size; on
g - .! others it increases the size. On average, the effect is negligi-
z b ble. The right, orange bars indicate the effect on Adata size
of enabling LLVM’s SP/FP optimization when code with FP

0 ‘ ‘ ‘ ‘ i is generated for all functions. On average, enabling that op-

0 1 2 3 timization leads to 5% larger Adata, without outliers up to

18%. We conclude that disabling the SP/FP optimization is
a useful form of A-minimization for scenarios in which, for
whatever reason, developers insist on letting their compilers
generate code with FPs.

Default binary code size (MBytes)

Fig. 6: Correlation binary code size and Adata size.

Because the whole Adata of a diversified benchmark
version is more or less equal to a concatenation of Adata
chunks of the benchmark’s functions, and because the
effects of ommitting the FP and of disabling the SP/FP
optimization are also local to functions, the absolute effect
of those compilation options on a benchmark’s total Adata
size is also mostly a sum of their effects on a large amount

that do not feature separate sections for each function. As
a result, the alignment requirements of the functions are not
replayed correctly, and patching is needed instead. Finally,
the NOP insertion is responsible for the vast bulk of the
Adata. This is the case because NOP insertion affected the
location of literal address pools in ways that the simple

server-side replay cannot predict accurately.

Figure 6 charts the main result, i.e., the Adata size, in
function of the default binary code size for different com-
piler optimization levels (always with the A-minimization
techniques enabled). The correlation between the two at-
tributes of code size and Adata sizes is clear, and it is
also clear that the results are quite similar for the different
optimization levels, with or without FP.

of individual functions. If we assume that the large set of
functions in our benchmark suite is partitioned randomly
into the sets of functions of the individual benchmarks,
we expect the results shown in Figure 7 to look more
like Gaussian distributions than like uniform ones. And
that is what we see. We conclude that if one’s goal is to
minimize the Adata size even further than what we did,
the compiler options should not be enabled or disabled



per benchmark. Instead a choice should be made for each
individual function. With machine learning, or maybe even
simple human analysis and engineering, we conjecture that
it will be relatively straightforward to adapt a compiler
for this goal. Still, it would be much more intrusive than
the small patch we now deployed to let LLVM inject the
randomized stack padding, the NOP insertion, and the A-
minimization. So a trade-off needs to be made. Given the
already small sizes of the Adata with our implementation,
we considered it not interesting to investigate this any
further as of yet.

6 DISCUSSION

6.1 Alternative Designs

In an alternative design option of our approach, one could
embed a unique ID in each diversified binary version, store
all Adata of all program versions persistently on the crash
server instead of in the diversified binaries on the user
systems, and include IDs in delivered crash reports to let
the crash server look-up the corresponding Adata. The IDs
could then also serve as decryption and signature keys, such
that the data on the crash server remains confidential until
it is truly needed to build a crash report.

Despite the small sizes of the required Adata, one prob-
lem of such a design might be the required storage for all
that Adata. In our design with the Adata stored in the
binary on the user system, the storage space occupied by
old Adata is automatically freed as soon as an old binary
is discarded by the user, such as when an application is
uninstalled or replaced by an updated version. No third
party needs to be informed when such actions take place.

If the Adata is stored on a server instead, the server
either needs to hold on to multiple past and present ver-
sions of all Adata, or it needs to be informed about the
discarding of old binaries by users. In the former case, more
storage space is needed. The latter case, depending on the
application and usage context, involves the collection and
communication of privacy-sensitive and security-sensitive
information. Whether either of those options is feasible, is
an open question.

In any case, a substantial amount of additional storage
would be needed on the crash server. If a crash report
service runs on a (small) farm of servers or in the cloud,
it is also an open question as to what the cost might be of
coupling all servers in the service to the necessary storage
at sufficient throughputs and latencies. Whether or not
existing storage-computation solutions might still suffice is
unclear; answering this question is out of this paper’s scope.

In our design, where each contacted crash server re-
ceives the minidump and the Adata over the Internet,
only “centralized” access to the default symbol files and
opportunity logs is needed. Our experiments indicated that
accessing the opportunity logs on top of the symbol files
(that a standard Breakpad setup needs to access anyway) on
average requires only 10% more data to be accessed from the
“centralized” storage. A 10% increase definitely is an extra
cost, but it is not likely to void the feasibility of existing
storage-computation solutions.
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6.2 General Applicability

The top level of our ABreakpad implementation is
architecture-independent  and  compiler-independent.
Lower-level components are designed to cooperate with
standard Linux binutils tools such as objdump. On
top of that the design of the ABreakpad symbol differ,
the ABreakpad replicator, and the Adata format are
architecture-independent and compiler-independent.

The implementation of the replicator and the opportu-
nity log format are clearly architecture-dependent, however,
and have been tuned specifically for the diversification
schemes we deploy. Those schemes were also specifically
chosen for the ease with which their effects could be repli-
cated, resulting in small patches. In principle we can create
patches for any diversification scheme, but there are some
trade-offs. Unless replication is at least somewhat correct,
patches will grow to a size where it would be preferable to
simply replace them by the entire diversified symbol file. In
other words, our approach then offers no benefit. Likewise,
if the replication becomes too complex or time-consuming
for a certain diversification scheme, the ABreakpad ap-
proach loses its appeal.

Consider, for example, the many diversification schemes
discussed in the systematization of knowledge paper by
Larsen et al. [5], which we mark in italics below. We im-
plemented forms of three of these schemes: stack padding,
which is a form of Stack Layout Randomization; function
shuffling, which is referred to as Function Reordering; and
NOP insertion, which is a form of Garbage Code Insertion. We
conjecture that inserting other forms of garbage code will
not result in larger Adata as long as a similar amount of
code is inserted. We furthermore conjecture that other forms
can be supported with smaller Adata, because only NOPs
(having no side-effects) can be inserted anywhere in code.
Other instructions that have side-effects when executed, can
only be inserted where they cannot be reached, which is def-
initely in fewer places. As for stack layout randomization,
more heavy-weight schemes (such as those in which the
locations of local variables and spilled data in a stack frame
are permuted) will likely require larger Adata, because in
such schemes the offsets to the SP change. This is not, or at
least rarely, the case in our scheme.

Other existing schemes would result in no changes to the
debug information at all, and thus do not require any repli-
cation or patching. This will, e.g., be the case for some forms
of Register Allocation Randomization if the randomization is
limited to code-quality-maintaining randomization, i.e., if
no allocations are chosen that lead to longer code schedules.
Instruction Reordering and Basic Block Reordering have mostly
local effects and we conjecture that with enough detail in
the opportunity logs, which would hence become longer,
these can be replicated sufficiently well. Schemes that have
a larger impact on the control flow graph — such as Inlining
and Control Flow Flattening — would require significantly
more detailed opportunity logs and replication of compiler
internals, and therefore most likely do not fit our approach.

Our current ABreakpad diversification schemes are ap-
plied at the compilation and linking stages of the SDLC.
Schemes applied during later stages form no conceptual
problem. When the diversification happens after the binary
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Fig. 7: Impact on Adata sizes from omitting the FP and from disabling the FP/SP optimization (on benchmarks compiled
with FP) in LLVM (Section 3.4.2) for benchmarks compiled at -O2.

has been delivered to the user —as happens with diversifi-
cation at installation time, load time, or even at run time—
by nature the diversification can be performed without re-
quiring the complexity of a full build system. In practice this
typically requires that a form of opportunity log is included
in the distributed binary to steer the diversification, and
to allow it to be done both fast and conservatively, i.e.,
without altering the semantics of the diversified software.
So by nature the diversification effect on the symbol file can
then also be replayed on the crash server, assuming that it
has access to the same opportunity log and all sources of
randomness that were used during the diversification on
the user system. Few such sources are needed, and as in the
current implementation, they can be included in the Adata.

We conjecture that in such cases small opportunity logs
and Adata will suffice. This conjecture is supported by the
fact that currently proposed forms of diversification applied
late in the SDLC are relatively simple and free of (more
global) side effects as the ones we observed in, e.g., LLVM.
The reason is of course that they need to be deployed very
quickly to avoid downgrading the user experience, and
hence without heavy-weight compiler technology that can
rewrite code to compensate for side effects.

Finally, we see no reason why our approach would be
limited to specific compilation tool flows. In fact, before we
implemented NOP insertion in LLVM, we already had an
implementation in the post-link-time binary-rewriter Dia-
blo [13]. So the three schemes were implemented in three
separate tools: the compiler, the linker, and a binary rewriter.
While constructing its intermediate representation of the
binary code, Diablo converts literal address pool entries into
instructions. After implementing the NOP insertion, Diablo
then recreates literal address pools. Whereas LLVM creates
the pools per function, Diablo recreates them more globally,
in effect combining pools from multiple functions into single
pools. As a result, much fewer such pools end up in bina-
ries rewritten (and diversified) by Diablo. The number of
replay desynchronizations therefore was also much smaller
in those Diablo-diversified binaries. As a result, the required
Adata for NOP insertion was on average 2/3 smaller. For

some benchmarks, it was even 90% smaller. We eventyally
decided to switch to LLVM, however, because LLVM is a
mature, widely used tool, which makes the contributions in
this paper readily available to everyone. This required us to
adapt the generation of the opportunity log generation and
the replication only slightly.

7 RELATED WORK

In the past, both spatial and temporal software diversity has
been proposed as a solution to a wide range of problems:
Instruction set randomization can prevent, or at least de-
lay, reverse-engineering and tampering [14]. Multi-variant
execution can be used to detect malware intrusions [15].
Limited, rather coarse-grained forms of run-time random-
ization, such as address space layout randomization (ASLR),
are widely used and significantly raise the bar for memory
corruption attacks [16]. In the academic literature, more
fine-grained forms of diversification have been proposed
to raise the bar even further [9], [17], including for code
dynamically generated with JIT compilers [18]. Dynamic
temporal diversity has been proposed to mitigate timing
side channel attacks [19]. Advanced software fingerprint-
ing schemes can help in identifying the source of ille-
gitimate software copies [20]. Diversification can prevent
collusion attacks to identify software vulnerabilities based
on patches [21]. Some software vendors diversify the code
of their applications when major new versions are released,
to hide the location of the new, valuable functionality in
the new versions. Obfuscation tools and other software
protection tools inherently rely on diversification to mini-
mize the learning capabilities of attackers and to achieve
stealthiness [22]. Microsoft diversifies the Window’s system
call numbering over time to prevent (malicious and beging)
software targeting APIs they do not want to keep backwards
compatible [23].

With the exception of the latter form of diversification,
the other forms can only provide strong protection if code
is diversified, i.e., if the diversification is not limited to
changes in the embedded data.



8 CONCLUSIONS AND FUTURE WORK

In this paper we presented the ABreakpad approach to
enable crash reporting on diversified software. We vali-
dated this approach for applications on which multiple fine-
grained layout/offset diversifications are deployed. The tool
and diversification techniques require only minimal adapta-
tions to the build tool chain, and only a small price in storage
space and communication bandwidth is paid to support the
approach.

The source code of ABreakpad and all scripts to repro-
duce the results presented in this paper are available at
https:/ / github.com/csl-ugent/delta-breakpad.

Further improvements to our approach can be made
with respect to the employed diversification schemes. Cur-
rently these are rather simple, and it is worthwhile to inves-
tigate whether more complex techniques, such as techniques
that can be deployed at install time or at load time, or even
at run time, or techniques that can stop non-control data
exploits, can be supported and whether that will result in a
larger overhead in terms of Adata.
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APPENDIX
QUANTITATIVE ANALYSIS FOR A-MINIMIZATION

Histograms (a) and (b) in Figure 8 quantify the effect of
adding (default) padding to functions on their code size.
These histograms show how the function code sizes change
as a result of adding 32 different amounts of padding (8, 16,
..., 256) to each function in our benchmark suite compiled
with -02 -fomit-frame-pointer for part (a) and with
-02 for part (b) —the histograms look similar with other
options. The blue and gray histograms show the changes
when the default binary does not include 8 bytes of padding,
the orange and purple histograms show the changes when
the default binary does include 8 bytes of padding.

Notice that many size increases and size reductions
are obtained exactly 32 or 64 times in the blue and gray
histograms. This follows from the fact that the same in-
crease or reduction in size was observed for all of the 32
diversified versions of a specific function compared to its
default version without any padding. In the orange and
purple histograms, that situation does not occur. Clearly,
the changes on average become much smaller with the de-
fault padding. The average (absolute values of the) changes
are 6.03 (respectively, 5.90) bytes/function without default
padding, and only 0.036 (respectively, 0.013) bytes/function
with default padding. Also, the orange and purple his-
tograms peak at zero, whereas the blue and gray ones peak
at 8. So with the default padding, there are many more
functions for which diversified stack padding has no effect
at all on code size. Clearly, the default padding of 8 bytes is
advantageous for A minimization.

These numbers also indicate that the function size deltas
between default and diversified files are smaller on average
for code compiled with FPs than for code compiled without
FPs. The difference is almost completely due to function
versions where the non-zero delta when compiled with FP
grows bigger (i.e., more positive or more negative) in code
compiled without FP. The number of function versions with
zero delta compared to the default 8 byte padding version
remains almost constant with or without FP: Over 99.94%
of the 892K function versions (out of 895k total) that do
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(a) Benchmarks compiled without FP, with and without default padding, and with FP/SP-optimization disabled
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Fig. 8: Histograms of the variation in function size. The Y-axes start at 0.1 to visualize the difference between 0 and 1. The
presented average numbers are averages of absolute values of positive and negative variations.

not grow or shrink in our experiments as a result of stack 0.036 bytes/function to 0.013 bytes/function.
padding when compiled with FP, still do not grow or shrink
when compiled without FP.

Histogram (c) in Figure 8 visualizes the effect on func-
tion code size of disabling the SP/FP relative stack access
optimization. On average, the difference in size drops from
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