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Abstract—Graphics processing units (GPU), due to their massive computational power with up to thousands of concurrent threads
and general-purpose GPU (GPGPU) programming models such as CUDA and OpenCL, have opened up new opportunities for
speeding up general-purpose parallel applications. Unfortunately, pre-silicon architectural simulation of modern-day GPGPU
architectures and workloads is extremely time-consuming. This paper addresses the GPGPU simulation challenge by proposing a
framework, called GPGPU-MiniBench, for generating miniature, yet representative GPGPU workloads. GPGPU-MiniBench first
summarizes the inherent execution behavior of existing GPGPU workloads in a profile. The central component in the profile is the
Divergence Flow Statistics Graph (DFSG), which characterizes the dynamic control flow behavior including loops and branches of a
GPGPU kernel. GPGPU-MiniBench generates a synthetic miniature GPGPU kernel that exhibits similar execution characteristics as
the original workload, yet its execution time is much shorter thereby dramatically speeding up architectural simulation. Our
experimental results show that GPGPU-MiniBench can speed up GPGPU architectural simulation by a factor of 49x on average and
up to 589x, with an average IPC error of 4.7 percent across a broad set of GPGPU benchmarks from the CUDA SDK, Rodinia and
Parboil benchmark suites. We also demonstrate the usefulness of GPGPU-MiniBench for driving GPU architecture exploration.

Index Terms—Performance evaluation, workload characterization, general-purpose processing unit (GPGPU), synthetic workload

generation

1 INTRODUCTION

IN recent years, interest has grown rapidly towards har-
nessing the power of graphics hardware to perform gen-
eral-purpose parallel computing—so-called general-
purpose graphics processing units (GPGPU) computing.
Thanks to the affordable, powerful and programmable GPU
hardware [1], developers are increasingly using commodity
GPUs to perform computation-heavy tasks that would other-
wise require a large compute cluster. GPGPU programming
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models such as compute unified device architecture (CUDA)
[2], ATI Stream Technology [3], and OpenCL [4] allow pro-
grammers to use hundreds of thousands of threads to lever-
age the plenty of computation resources of today’s GPUs to
achieve massive computational power.

The computational power of modern-day GPUs is in
sharp contrast to the slow speed of GPGPU architectural sim-
ulation. GPGPU architectural simulation is extremely time-
consuming, for two reasons. First, architects need to simulate
realistic applications with large input data sets to evaluate
GPU micro-architecture designs with high fidelity. This
implies that many (up to hundreds of thousands) threads
need to be simulated. Second, if not single-threaded, parallel
GPU simulators are limited by the available number of cores
in the simulation host machine, which is typically a multi-
core CPU [5], [6], [7]. (Although the latest version (3.x) of the
publicly available GPGPU-Sim enables asynchronous kernel
launches from the CPU using pthread parallelism, the GPU
simulation engine itself is single-threaded [8].) Furthermore,
given the increased complexity of GPUs, it is to be expected
that the GPGPU simulation challenge is only going to
increase in importance in the years to come.

Table 1 shows the execution time of several CUDA
benchmarks on a real GPU device (NVidia GeForce 295)
and a GPGPU performance simulator (GPGPU-Sim) [5].
These measurements show that GPGPU performance simu-
lation is approximately nine orders of magnitude slower
compared to real hardware. Given how computer architects
heavily rely on simulators for exploration purposes at vari-
ous stages of the design, accelerating GPGPU architectural
simulation is imperative.

0018-9340 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE 1
Execution Time Comparison of CUDA Programs on a Real
NVIDIA GeForce 295 GPU Device vs. the GPGPU-Sim
Architectural Simulator
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Existing solutions to accelerating architectural simulation
of CPUs, such as sampling or statistical simulation, cannot
be readily applied to GPGPU simulation because of the rela-
tively small number of instructions executed per thread
(tens to hundreds of thousands of instructions) in a typical
GPGPU kernel—CPU benchmarks typically execute billions
to trillions of instructions per thread. Furthermore, the large
number of branch instructions in GPGPU workloads pro-
hibits the use of spreadsheet-based modeling techniques
used for pure-graphics GPU performance evaluation. We
therefore propose an alternative approach in this paper.

This paper proposes GPGPU-MiniBench, a framework
that generates miniature proxies of GPGPU workloads that
are both accurate and fast to simulate. GPGPU-MiniBench
first collects a profile to capture a GPGPU workload’s execu-
tion behavior. The central component in the profile is the
divergence flow statistics graph (DFSG) to characterize the
control flow behavior of threads in a GPGPU kernel in a con-
cise and comprehensive manner. Furthermore, we model
shared memory bank conflicts, memory coalescing behavior,
and thread hierarchy, next to a thread’s control flow behav-
ior and instruction mix. GPGPU-MiniBench generates a syn-
thetic GPGPU kernel from this statistical profile that exhibits
similar execution characteristics, yet is much shorter to
simulate compared to the original GPGPU workload.

More specifically, we make the following contributions:

e We analyze why existing micro-architecture simula-
tion acceleration techniques for CPUs and GPUs are
not suitable for GPGPU performance evaluation.

e We propose the new concept of the divergence flow
statistics graph to characterize the dynamic control
flow behavior of GPGPU kernel threads.

e We derive and characterize several typical loop pat-
terns in existing GPGPU kernels, which we exploit
to accelerate GPGPU architecture simulation.

e We develop a synthesis framework, called GPGPU-
MiniBench, to generate miniature proxies of CUDA
GPGPU kernels, which retain similar performance
but require much shorter simulation times.

e We validate the framework on four GPGPU micro-
architectures. Our experimental results show that
GPGPU-MiniBench can speed up GPGPU micro-
architecture simulation by a factor of 49x on average
and up to 589x with an average instructions exe-
cuted per cycle (IPC) error of 4.7 percent.

The rest of the paper is organized as follows. Section 2
provides general background on GPGPU architectures
and CUDA. Section 3 describes our characterization for 34
CUDA benchmarks and analyzes why existing simulation

Fig. 1. GPGPU architecture overview.

acceleration techniques for CPUs and GPUs are not suitable
for GPGPU. Section 4 elaborates on the design of our
GPGPU-MiniBench framework. Section 5 depicts our exper-
imental methodology, while Section 6 presents evaluation
results and analysis. Section 7 discusses related work and
Section 8 concludes the paper.

2 BACKGROUND

GPGPU refers to running General-Purpose computation on
Graphics Processing Units. Enhancements in the hardware
along with novel programming models such as CUDA [2],
OpenCL [4], and Brook+ [9] have spurred this trend. In this
paper, we consider NVidia’s GPGPU architecture and the
CUDA programming model without loss of generality.

Recently, NVidia introduced the Tesla, Fermi, and Kepler
GPU architectures, which significantly extend GPU capabil-
ities beyond graphics [2], [10]. Its massively multithreaded
processor array becomes a highly efficient unified platform
for both graphics and general-purpose parallel computing
applications [10]. As shown in Fig. 1, a typical GPU consists
of a number of streaming multi-processors (SM, also called
shader core), each containing multiple streaming processor
(SP) cores. Each SM also has several special function units
(SFUs), an instruction fetch and issue unit, a constant cache,
and a shared memory. The number of SMs and SPs may
vary across GPU generations. The SMs and the on-chip
global memory interface are connected to an interconnec-
tion network.

Compute unified device architecture is a programming
model developed for NVidia GPUs, which allows pro-
grammers to write programs using C functions called ker-
nels [2], [11]. The CUDA threads are organized in a three-
level hierarchy. The lowest level is the thread itself. The
next level is a group of threads called the cooperative thread
array (CTA) or thread block; threads in a CTA are allowed
to execute concurrently on an SM, communicate via shared
memory, and synchronize through barriers. At the top level,
a number of CTAs are grouped together to form a grid.
Threads may execute down different paths because of
branches. When threads in a single hardware thread execu-
tion batch (an NVidia warp or an AMD wavefront) follow
different execution paths, they must be executed sequen-
tially—a notion called branch or warp divergence—which
is harmful to performance.

A CUDA program typically consists of sequential and par-
allel parts. The sequential parts run on the CPU and the paral-
lel parts run on the GPU. The parallel parts themselves
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consist of one or more kernels, which can run concurrently
from the Fermi architecture [12] onwards. Since our goal is to
accelerate GPGPU micro-architecture simulation, we focus on
the parallel kernels. The sequential parts and the data passing
between CPU and GPU are out of the scope of this paper.

3 WHY CPU SIMULATION ACCELERATION
TECHNIQUES Do NoT APpLY TO GPGPU

Before proposing our solution to the GPGPU architecture
simulation challenge, we first revisit existing CPU simula-
tion acceleration techniques.

3.1 CUDA Kernel Characterization

We do this by first characterizing existing CUDA kernels to
provide supportive quantitative evidence during the analy-
sis and discussion of this study. We collect the following
characteristics using the GPGPU-Sim simulator [5]: instruc-
tion mix, basic block size, and the dynamic instruction count
per thread. The 35 CUDA kernels that we consider in this
analysis were drawn from the CUDA SDK, Rodinia and
Parboil benchmark suites. (See later for a detailed descrip-
tion of the experimental setup.)

The number of static basic blocks in a CUDA kernel
ranges from 10 to 25 for most benchmarks, with an average
of 22.8 basic blocks, see Fig. 4. Only two of the benchmarks,
namely CL and PNS, show more than 100 basic blocks. The
code footprint is substantially smaller for CUDA kernels
compared to typical CPU benchmarks such as SPEC CPU
and MediaBench with an average basic block count of 265.5
and 584.2, respectively [13].

Fig. 5 illustrates the number of dynamically executed
instructions per thread. This number typically varies from
dozens to tens of thousands and is extremely small com-
pared to SPEC CPU [14] and PARSEC [15] benchmarks,
which have dynamic instruction counts in the tens to hun-
dreds of billions range.

Furthermore, CUDA kernels feature large numbers of
threads, up to hundreds of thousands of threads per kernel
(i.e., unlimited for practical purposes). This is yet another
key difference with typical CPU workloads, which are sin-
gle-threaded or feature a limited number of threads.

3.2 Revisiting CPU Simulation Acceleration
Techniques for GPGPU

There exist a number of CPU simulation acceleration techni-

ques, which we revisit now in the context of GPGPU: sam-

pled simulation in time and space, statistical simulation,

and reduced input sets.

Sampling in time. Sampled simulation is a popular simu-
lation acceleration technique for CPUs. Its basic idea is to
sample the dynamic instruction stream and simulate a lim-
ited number of snapshots from the total program execution
and then extrapolate performance from these snapshots to
the entire program execution. Existing solutions in the CPU
space sample randomly [35], periodically [16], [17], or based
on application phase behavior [18]. TBPoint [40] very
recently proposes sampling-in-time for GPGPU workloads.
Although TBPoint achieves high accuracy while simulating
10 to 20 percent of the total kernel execution time, sampling
workloads with high control/memory divergence behavior
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Fig. 2. Normalized IPC (vertical axis) as a function of the fraction of
sampled threads (horizontal axis).

remains challenging. GPGPU-Minibench also targets these
challenging workloads while achieving even higher speed-
ups at small errors.

Sampling in space. An alternative to sampling in time
might be to sample in space, or to simulate a limited number
of threads out of the many (hundreds of thousands of)
threads that constitute a GPGPU kernel. Note that sampling
in space does not sample instructions from a single thread
but instead samples threads from a GPGPU kernel. As the
threads of a kernel may share hardware resources including
global memory or interconnection network, sampling in
space is likely to change several of the important GPGPU
performance characteristics such as branch divergence [19]
and memory coalescing behavior. In addition, the access dis-
tribution to the interconnection network, the partition camp
[20], bandwidth utility and DRAM efficiency of the memory
channels are also likely to be altered when reducing the
number of threads. We experimentally confirm this as illus-
trated in Fig. 2 which shows IPC as we (randomly) sample
threads, for our 35 benchmarks. For sampling in space
to work, we would need to observe a linear relationship
between the sampled IPC and the fraction of sampled
threads. This seems to be the case for many benchmarks.
Unfortunately, not all benchmarks exhibit this behavior, see
for example MUM. Fig. 3 explains why: the L1 data cache
miss rate, instruction cache hit rate, the global memory read
count, and number of stalls caused by global memory coa-
lescing does not change linearly with sampled thread count.
(We also tried sampling warps instead of threads, and found
it not to work either.) In summary, sampling in space works
for many benchmarks, but not all, hence it is not a generally
applicable technique. (Sampling in space by sampling a few
cores and scaling down global resources such as memory
bandwidth to preserve global resource contention may be a
possible solution but falls out of the scope of this paper.)

Statistical simulation. Statistical simulation reduces simu-
lation time by generating a small synthetic program with
the same behavioral characteristics as the original workload
[21], [37]. The basic idea during the synthesis phase is to
reduce the number of times each basic block is executed
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proportional to the execution of the basic block in the origi-
nal workload. Given the small dynamic instruction count
per thread and the small number of basic blocks in a
GPGPU kernel, this approach is unlikely to work for
GPGPU kernels, as infrequently executed basic blocks get
eliminated during the synthesis process.

Reduced inputs. Reducing the input data set is yet another
popular and easy-to-apply approach for reducing simula-
tion time. A significant concern with reduced input sets for
GPGPU workloads is that performance (IPC) heavily corre-
lates with problem size, as illustrated in Fig. 7 for the NW
and HS benchmarks. (We made similar observations for the
other benchmarks.) Hence, reducing input size may affect
thread count, its interactions through shared resources and
the workload’s branch and memory behavior. KleinOsow-
ski et al. [33] reported how challenging input set reduction
is for CPUs; we expect input set reduction to be even more
challenging in the GPGPU context.

GPU spreadsheet modeling. Current practice in GPU pre-
silicon performance evaluation using graphics workloads—
typically spreadsheet-based analysis—does not apply to
GPGPU either. GPGPU workloads exhibit more irregular
code than typical graphics workloads, which is apparent
from its branch behavior, as illustrated in Fig. 6. Although
the percentage of branches (8.6 percent on average) is low
compared to SPEC CPU programs [26], it is high compared
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to graphics applications: an average number of 4.5 percent
of all dynamically executed instructions are branches in
graphics benchmarks (OpenCL programs from NVidia
GPU Computing SDK [36]), see Fig. 8.

4 GPGPU BENCHMARK SYNTHESIS

We now propose GPGPU workload synthesis to address
the GPGPU simulation challenge. Our framework, called
GPGPU-MiniBench, generates miniature proxies of real
GPGPU kernels that are both representative and fast to
simulate. GPGPU-MiniBench consists of three steps as
shown in Fig. 9. In the first step, a profile is collected by
capturing the threads’ inherent execution characteristics
by executing the GPGPU workload with a given input
within the profiler. Subsequently, the profile is used as
input to a code generator to generate a synthetic minia-
ture GPGPU benchmark; the original benchmark’s input
is contained in the synthetic kernel clone. In the final
step, the synthetic benchmark is simulated on an execu-
tion-driven architectural simulator, such as GPGPU-Sim.
The final goal of GPGPU-MiniBench is to generate minia-
ture GPGPU kernels that are representative of the original
kernels, yet run for a shorter amount of time, yielding sig-
nificant simulation speedups.
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Fig. 8. The percentage of branch instructions in typical graphics GPU
kernels.

Note that we focus on synthesizing a miniature proxy for
a single kernel with a large input data set. If a GPGPU
benchmark consists of multiple kernels or the kernels are
executed multiple times, GPGPU-MiniBench can be easily
applied to each kernel (execution).

4.1 GPGPU Kernel Profiling

During kernel profiling, we collect a number of program
characteristics that collectively capture the inherent execu-
tion characteristics of GPGPU workloads. These characteris-
tics are such that they enable reusing synthetic miniature
benchmarks across GPGPU micro-architectures. Profiling is
a one-time cost and is done using a heavily modified ver-
sion of CUDA-Sim, which is 5 to 15 times faster compared
to timing simulation. We now describe the collected charac-
teristics in more detail.

4.1.1 Thread Hierarchy

As mentioned in Section 2, the batch of threads that execute
a kernel is organized as a grid of CTAs. The thread hierarchy
characteristic controls the amount of thread-level parallel-
ism of a kernel and how threads are assigned to streaming
multiprocessors. Since reducing the number of threads is
likely to change the overall performance of a kernel as dis-
cussed in Section 3, we maintain the same grid and CTA
dimensions in the synthetic as in the original kernel.

4.1.2  Instruction Mix

For GPGPU, different instructions may have dramatically
different throughput [27], [28]. Note that the instruction
throughput is defined as the number operations executed
per clock cycle per multiprocessor. For example, for

GPGPU Workload @ Profile containing :
Benchmark Profiler —-thread hierarchy
--control flow
— --instruction mix
Code @ --warp divergence
- Generator [€ ] --shared memory bank conflict
Execution --memory coale sce
Driver +
Performance Simulator Miniature
Metrics @ CB;:nC;}I:rl;ljark
GPGPU
Device

Fig. 9. The GPGPU-MiniBench synthesis framework.
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NVidia’s compute capability 2.0, the throughput of the
native 32-bit floating-point add instruction is 32, while it is
only 4 for the 32-bit floating-point instructions reciprocal and
reciprocal square root [27]. Preserving the instruction mix is
thus important to accurately mimic the performance of a
GPGPU kernel. We therefore profile instruction opcodes and
data types, which are used to fill in instructions in the basic
blocks of the synthetic clone. Additional information must
be collected for branch instructions such as setp and bra, and
memory instructions such as Id and st. More details will be
presented in the following paragraphs regarding branch
memory behavior.

4.1.3 Control Flow

Capturing the control flow behavior for each thread by col-
lecting a trace for each thread would be prohibitively costly
because of the massive number of threads in a GPGPU ker-
nel. CUDA-Sim for example, simulates each thread inde-
pendently, rather than grouping them into warps and
running warp-instructions in lockstep as the actual hard-
ware does; this makes it difficult to collect warp divergence
information without generating traces. We therefore pro-
pose the divergence flow statistics graph to characterize the
control flow behavior of a kernel in a concise and compre-
hensive way.

Fig. 10 illustrates the DFSG. The nodes (solid line boxes)
represent basic blocks. Each node contains four fields:
name, ECount, LCount, and SCount. The name field is a
basic block’s ID. ECount is the execution count denoting
how many times a basic block is executed by all threads.
LCount is the loop count and quantifies how many times
the given basic block was iterated over in a loop by all
threads. We use SCount to count how often synchroniza-
tions happen at the basic block.

The edges (solid arrows) represent the jumps between
basic blocks. A dash box near the start of a solid arrow
denotes the statistics of a basic block’s out-edge. A box near
the end of an arrow represents the basic block’s in-edge.
OECount and IECount represent how often control flow
leaves or jumps to the basic block by all threads, respec-
tively. TCount denotes the number of threads executing the
edge. Note that because of loops, the number of times an
edge is executed (OECount or IECount) does not need to be
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equal to the number of threads executing the edge (TCount);
TCount counts the number of threads executing the edge at
least once, and OECount and IECount count how often the
edge is executed by any thread.

4.1.4 Shared Memory Bank Conflicts

Shared memory is as fast as a register on a typical GPU.
However, the performance of shared memory decreases
dramatically if there are bank conflicts between threads [2],
[19], [29]. In order to preserve similar shared memory bank
conflict behavior in the synthetic clone, we need to clone the
shared arrays and their access behavior from the original to
the synthesized version. We therefore profile the shared
arrays which includes collecting (1) the number of shared
arrays, (2) the data type and size of each array, and (3) the
way the arrays are accessed. The latter is done by maintain-
ing the array’s base address and its index, which is a func-
tion of the thread’s ID. By doing so, we reproduce the same
memory access patterns as long as the address is an affine
expression of the thread ID.

4.1.5 Memory Coalescing

GPUs provide a memory coalescing mechanism to improve
memory performance by merging global memory accesses
from different threads within a warp into a single memory
transaction if contiguous memory addresses are accessed
[2]. To clone the memory behavior, we glean the global
array information in a similar way as we do for shared
arrays. However, global arrays, in contrast to shared arrays,
come in different forms: (i) the global arrays can be explic-
itly defined in the CUDA source code; or (ii) pointers to
global arrays get passed as parameters to CUDA kernel
functions, so-called parameter pointers, to copy data back and
forth between the CPU and GPU. We account for both cases,
and capture an array’s base address and its index. As for
shared array accesses, we reproduce the same memory
access patterns as long as the address is an affine expression
of the thread ID.

4.2 Code Generation

Having described how we collect a profile of a GPGPU ker-
nel in the previous section, we now detail on how we gener-
ate a synthetic clone.

4.2.1 Loop Patterns

Our synthetic benchmark generation framework aims at
faithfully mimicking control flow, branch divergence and
memory access behavior. Moreover, as we will describe in
detail, we leverage control flow behavior, and loops in par-
ticular, for controlling and reducing the simulation time of
synthetically generated kernels. We therefore describe loop
and control flow behavior in more detail now in the current
and next section.

We identified three typical loop patterns from a detailed
inspection of the DFSGs of the CUDA benchmarks consid-
ered in this study. Fig. 11 illustrates these three typical loop
patterns. A self-loop consists of a single basic block that jumps
to itself. A normal-loop consists of multiple basic blocks in
which a basic block jumps to a dominator block through a
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Fig. 11. The three typical loops in GPGPU kernels.

backward jump. Fig. 11c illustrates the combination of (a)
and (b): self-loops and normal-loops may be nested to form
more complex loop structures. By analyzing all the experi-
mented benchmarks, we found all loops for all benchmarks
to fall under at least one of these three loop patterns (either
directly or indirectly/recursively). Note that different
threads executing a CUDA loop may iterate the loop for a
different number of times, which leads to branch divergence
behavior. In this case, the loop condition directly or indi-
rectly depends on the thread’s ID. This situation is quite
common in CUDA benchmarks based on our observation.

4.2.2 Divergence Behavior Modeling

To achieve similar performance between the synthetic clone
and the original GPGPU kernel, it is crucial to preserve its
divergence and control flow behavior. In addition, it is also
important that the synthesized kernel exhibits similar basic
block execution behavior to that of the original kernel.
GPGPU-MiniBench models these two aspects through the
DFSG as previously introduced. Fig. 13 shows the DFSG of
the Kmeans (KM) benchmark as an example. We can easily
derive how many threads execute a particular basic block
from the DFSG. For example, basic block #0 is executed 57,600
times by 57,600 threads of which 51,200 threads jump to basic
block #1 and the remaining 6,400 threads jump to basic block
#12. For the ease of reasoning, we partition the control flow
graph of a kernel into two parts, namely the outside- and the
inside-loop area as shown in Fig. 12. We define the basic blocks
located outside any loop to be part of the outside-loop area; all
other basic blocks are located in the inside-loop area. The
modeling of the outside-loop area is relatively easy whereas the
modeling of the inside-loop area is slightly more complicated.

In the discussion to follow, we define the global thread
ID as

gThreadlD = blockNInGrid x threadPer Block

+ thread NInBlock (1)

with threadNInBlock the index of the given thread in its
thread block or CTA, blockNInGrid the index of the given
block within the grid, and threadPerBlock the number of
threads per block. We consider three dimensions (3D). The
2D and 1D case can be derived from the 3D case by setting
the corresponding value(s) to 0. The thread index within its
block equals

threadNInBlock = tid.x + tid.y x ntid.x + tid.zntid.xntid.y
(2

Outside-loop area. For branches in the outside-loop area, we
simply assume that the first N threads go in one direction,
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Fig. 12. Overview of divergence flow modeling.

while the remaining threads go the other way. (We find this
simple heuristic to work well for our workloads.) Knowing
how many threads jump in one or the other direction is eas-
ily derived from the DFSG.

Inside-loop area. Modeling branches in the inside-loop area
is a bit more complicated. We describe the modeling of the
inside-loop in three cases: (1) self-loops, (2) jump point of a
normal-loop, and (3) target point of a normal-loop.

1) Self-loop. Based on our observation, most of the self-
loops are thread-independent, i.e., the number of iterations
of a loop is typically constant across threads. Hence we sim-
ply set the number of iterations of a self-loop to the LCount
as specified in the DFSG.

2) Jump point of a normal-loop. We define the jump point of
a normal-loop as the basic block that jumps backwards. For
example, in Fig. 12, basic block #6 is the jump point of a nor-
mal-loop, and basic block #1 (OTO direction) is the backward
target while basic block #7 (OT1 direction) is the forward tar-
get. We make a distinction between the following cases
based on the jump point’s statistics.

(i) The number of threads jumping backwards equals the
total number of incoming threads to the current basic block.
In other words, all threads jump backwards.

(ii) The number of threads jumping backwards is less than
the total number of incoming threads to the jump point. We
set the first N threads to jump back-wards. (Again, we find
this simple heuristic to work well for our set of workloads.)

3) Target point of a normal-loop. We define the target point
of a normal-loop as the direct target of a backward jump
(e.g., basic block #1 in Fig. 12 is a target point). We consider
four sub-cases.

(i) All threads take the same direction.

(ii) One group of threads goes to one direction and the
other group of threads goes to the other direction, but
the number of iterations of the two groups of threads is
the same.

(iii) A number of threads go to one direction, the rest
goes to the other direction, and the sum is greater than the
number of incoming threads to the jump point. This indi-
cates that the number of iterations varies across threads,
which we model as such.

(iv) The branch condition does not depend directly on the
thread ID but depends on a result calculated by the thread
itself (indirect thread ID dependence). This is the same as the
branches in traditional single-threaded programs. In this
case, we use a uniform random number generator to gener-
ate the branch condition at each iteration (while making sure
we obey the branch statistics, i.e., the number of threads
going in either direction is identical to the original kernel).
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Fig. 13. The DFSG of the Kmeans benchmark.

4.2.3 Reducing Simulation Time

The existence of loops in CUDA threads provides us with
an opportunity to reduce simulation time while preserving
performance and behavior. The central idea to our approach
is to reduce the number of iteration counts by a given factor,
called the reduction factor. The basic intuition is that reduc-
ing loop iteration count reduces simulation time of a kernel
while preserving execution behavior in terms of the number
of instructions executed per cycle. One key question now is
how to determine the reduction factor. This is non-trivial
given there are multiple loops in a kernel that are often
nested; hence the question is, should we consider a single
reduction factor across all loops, or should we determine
reduction factors on a per-loop basis? Also, how should we
determine the reduction factor?

The maximum possible reduction factor can be easily
derived from the DFSG as the maximum LCount in the
graph. The maximum simulation speedup is thus obtained
by setting the iteration count to one for all loops. While we
found this to be fairly accurate for most benchmarks while
yielding high simulation speedups, accuracy can be
improved significantly for some benchmarks by choosing a
lower reduction factor (at the cost of slower simulation
speed). We will evaluate the impact of the reduction factor on
accuracy and simulation speed in the evaluation section.

4.2.4 Code Generation

We now describe the various steps to generate a synthetic
miniature kernel. Fig. 14 shows the overview of our code
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Create a kernel object

main_function()

{

}

{

global __ void kernel ( - );

|
allocate host and device memory | o

kernel <<<gridDim, blockDim>>J|*( )

global __ void kernel ( -+ )

calculating global threadID ;

create opcode for basic blocks” — 7

create Instructions for basic blocks

Fig. 14. Overview of GPGPU synthetic workload generation.

generation framework. We follow a top-down hierarchy:
kernel, basic block, and instruction. There are also auxiliary
codes generated between the different levels in the hierar-
chy to set information such as kernel parameters and diver-
gence rate to control the execution of the synthesized kernel.

1)
2)

3)

4)

5)

6)

Create a kernel object to represent a CUDA kernel.
Set the parameter information for the kernel, espe-
cially the parameter pointers, the data types and the
order of the parameter pointers. This is done in order
to clone the memory coalescing behavior of the origi-
nal kernel to the synthesized one, as described in
Section 4.1.

Create basic blocks based on a .dot file as shown in
box Din Fig. 14. The .dot file is obtained through pro-
filing, and captures the control flow graph of the
original kernel.

Set the divergence rate for each branch in the created
control flow graph. The settings are based on the
models described in Section 4.2.2 (box ). If the
branch is a loop branch, we set its loop count to
LCount/reduction factor.

Generate kernel prototype code. This uses the
parameter information set by step 2.

Generate the main function code. In the main func-
tion body, generate code to allocate host and device
memory, copy data from host to device, call the ker-
nel, and copy the results back to the host.

N HERWN=O

NOVEMBER 2015

O--ECount:17536

O--SCount:17536

0O--L.Count:0

Out Edeges:(0,1)---OECount:17536 *** TCount:17536

On Edeges :(0,3)---OECount:0 *** TCount:0

On Edeges :(0,3)---OECount:0 *** TCount:0

0

MOV _OP

CVT OP

LD OP

global threadID

Param space: 7

SETP OP: %pl

case éiETP_OP:

case S32 TYPE:

case BRA_OP:

case LD OP:
asm volatile("ld.global.ul6.%rl [ %rs20+0];"

asm volatile(".reg pred %p_20;");
asm volatile("setp.gt.u64 %p_20, %rgl3, 512;");

asm volatile("@%p_20 bra inst60;");

7)
8)

9)
10)

11)

12)

13)

Generate code to define global arrays, if any.
Generate kernel definition code. Use the following
steps to generate code inside the kernel body.
Generate code to define shared arrays, if any.
Generate code to calculate the global thread ID using
Formula (1).

Generate code to define loop control variables and
initialize them. This is based on step 4.

Fill opcode for basic blocks based on the opcode profil-
ing described in Section 4.1. The output of the profil-
ing is a file that contains the opcode chain. This file is
one of the inputs of our code generator. Box @ in
Fig. 14 shows an example.

Emit instructions based on opcode for basic blocks.
The most important instructions are setp and bra
because they determine the control flow behavior.
The setp instruction sets branch conditions and bra
executes the jump. The conditions set by setp are
based on the models described in Section 4.2.2
and the information set by step 4. When emitting
the Id or st instructions, it needs to check if these
instructions are used to access shared or global
arrays. This employs the distance information
described in Section 4.1 (‘shared memory bank
conflicts” and ‘memory coalescing’). The distance
information is stored in the output file of profiling
which contains the opcode chain, as shown in box
@ of Fig. 14.
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10 =—— TABLE 2
2 9 m The CUDA Benchmarks Used in This Paper, the # of
,§ 3 1 = Instructions per Thread and the Total # of Threads
<9 mim —
; 7 e benchmark Abr. # of threads | Insts/thread
E 6 M MumerGPU (DNA) MUM 50,176 739
° 5 L HHHHHHHb— Petri-Net Simulation PNS 51,200 3,884
2 | IRIRIRIRINI LU Decomposition LU 20,480 976
E 4 Matrix Transpose MT 4,194,304 48
g3 I Tnnmnmn Breadth First Search BFS 32,768 30
o 2 H HHHHHH Needleman-Wunsch NW 40,000 831
= 1 1 IRINIRIRINI Scan(Para-Prefix sum ) SLA 1,310,720 181
0 1 LIl LU LR UL Nearest Neighbor NE 60,032 101
- et mtn e o <o Histogram 64 64T 17,536 1310
EEEEézgémioémg;ﬁ%?’t;Q%ZZUE%EZE‘”;EBE Black-5choles B5 61,440 3,189
= = =g Cellular Automation CL 512 24,083
benchmarks 3D Laplace Solver LPS 12,800 6,385
Fig. 15. Total dynamic instruction count for our 35 benchmarks, from K means KM 57,600 2,119
which we randomly select 15 out of the top-25 longrunning benchmarks LIBOR Monte Carlo. LIB 4,096 122,068
(black bars) 8 more benchmarks, for which sampling in space fails, are 3D stencil computation | ST3D 230,400 10,471
included as well (gray bars). Magnetic Resonance
Imaging FHD MRIF 32,768 11,883
Scalar Product SP 32,768 795
Particle Filter PF 256 153,622
As shown in the box @ of Fig. 14, each instruction is Matrix multiplication MM 256,000 950
emitted with assembly code using asm statements embed- Neural Network NN 113,568 1,026
ded in CUDA code [31]. The use of the wvolatile directive Leukocyte Tracking L 307,420 27,816
R . Levenshtein Distance LV 32,768 16,065
for each asm statement prevents the compiler from modi- Store GPU STO 19152 2517

fying these machine instructions, i.e., the code emitted by
the compiler is exactly what the framework generates.
The instructions are targeted towards a specific Intermedi-
ate Language (IL), PTX in our case. However, the code
generator can be easily modified to emit instructions for
any IL of interest. The generated code is compiled by the
nocc compiler [32] from NVidia and the binary can run on
execution-driven GPGPU simulators and real GPGPU
devices.

As an example, box @ of Fig. 14 also shows a part of the
synthesized code. The setp and bra instructions control the
divergence flow of the synthesized kernel. In this example,
when the global thread ID is greater than 512, the execu-
tion jumps to instr60 which is the first instruction of the
target basic block. Otherwise, the execution goes to the
next basic block. This dictates that the first 512 threads go
to the next basic block while the other threads jump to the
target basic block. The Id instruction in the box @ illus-
trates how we control the memory coalescing ratio. %120 is
a register value related to the thread ID. If the element size
of the global arrays shown in box ® equals 4, register
%120 then equals the product of thread ID and 4. This
makes the global memory accesses by threads within a
warp to be coalesced.

Note that the proposed framework does not handle
cache effects explicitly. This may need to change in the
future as GPGPU kernels get optimized better for cache
performance. For our workloads, we did not observe
kernel performance to be highly sensitive to cache
performance.

5 EXPERIMENTAL SETUP

As previously mentioned, we analyzed instruction, basic
block, and thread characteristics for 35 benchmarks from
the CUDA SDK [36], Parboil [38], and Rodinia [39] bench-
mark suites. However, to reduce overall simulation time,
we limit ourselves to 23 benchmarks in total. Fifteen

benchmarks were randomly selected out of the top-25 long-
running benchmarks, see Fig. 15. The other eight bench-
marks (MUM, PNS, LU, MT, BFS, NW, SLA, and NE) are
those that could not be accelerated well through sampling
in space, according to Fig. 2. The goal of the experiments for
these 8 benchmarks is to validate how well GPGPU-Mini-
bench performs. Table 2 lists these 23 benchmarks along
with their thread count and number of instructions per
thread.

We use the GPGPU-sim_v2.1.1b [5] to evaluate our
approach. The simulator is configured to evaluate the four
GPU micro-architecture configurations with different num-
bers of streaming multiprocessors (Table 3).

6 EVALUATION

In this section, we first evaluate the efficacy of GPGPU-
MiniBench. Subsequently, we compare it with an approach
that sets the number of loop iterations to one in the source
codes of the CUDA workloads.

6.1 Evaluation of GPGPU-MiniBench

We consider the following factors in the evaluation of
GPGPU-MiniBench: (i) the impact of the reduction factor on
simulation speed and accuracy, (ii) achieved simulation
speedup, (iii) accuracy (or IPC error), and (iv) other metrics
such as shared memory bank conflicts, memory coalescing
and branch divergence behavior.

We define simulation speedup as follows:

simulation_timeoriginal

speedup = 3)

simulation_timegyihetic

with simulation_timeyigina the time to simulate the original
benchmark on the GPGPU performance simulator, and
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TABLE 3
Four GPGPU Architecture Configurations

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 11,

Configurations Confl Conf2 Conf3 Conf4

# of Streaming Multiprocessors 8 28 56 110

(SM)

Warp size 32

SIMD Pipeline Width 8

# of Threads/Core 1,024

# of CTAs/Core 8

# of Registers/Core 16,384 16,384 32,768 32,768

Shared Memory/Core (KB) 16 (16 banks, 1 access/cycle/
bank)
8KB (2-way set assoc, 64 lines)

64KB (2-way set assoc,

Constant Cache Size/Core
Texture Cache Size/Core

64 lines)
# of Memory Channels 8 8 8 8
L1 Data Cache 128 KB 128 KB 256 KB 256 KB
L2 Cache None
Bandwidth Per Memory Module 8 (Bytes/Cycle)
DRAM Request Queue Capacity 32
Memory Controller FR-FCFS

Immediate Post Dominator
Round Robin among read
warps

Branch Divergence Method
Warp Schedule Policy

SM—streaming multiprocessor.

simulation_timegynperic the time to simulate the synthesized
benchmark clone on the same simulator.
We define the relative error for a metric M as

Msyn - Mom’
Mori
with M, and M,,; obtained by simulating the synthetic

and original benchmark, respectively.

(i) Impact of reduction factor on simulation speed and accuracy.
As previously mentioned, GPGPU-MiniBench reduces simu-
lation time by decreasing loop iteration counts using a reduc-
tion factor. In this section, we study how this reduction factor
affects GPGPU architecture simulation speed and accuracy.
The values of reduction factors are 2, 4, 8, etc., in powers of 2.
The maximum reduction factor of a benchmark depends on its
maximum number of loop iterations. In our approach, the
maximum number of loop iterations is divided by the reduc-
tion factor and the rounded down value of this result is set as
the loop iteration count in the synthesized benchmark. If the
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Fig. 16. The impact of reduction factor on speedup.
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Fig. 17. The impact of reduction factor on IPC error.

rounded down value of the result is 1, then the maximum
reduction factor is obtained. Because loop iteration counts
are workload-specific, different benchmarks may have dif-
ferent maximum reduction factors.

Figs. 16 and 17 quantify speed and accuracy, respec-
tively, as a function of the reduction factor. Fig. 16 shows that
a larger reduction factor results in more speedup for all the
benchmarks, while Fig. 17 reveals that a larger reduction
factor incurs higher IPC error. Apart from two benchmarks
(SP and LV), the maximum IPC error is less than 8.5 percent.
This indicates that we can choose the maximum reduction
factor to achieve the largest possible simulation speedup
while preserving good accuracy.

(ii) Simulation speed. Fig. 18 shows simulation speedup for
our benchmarks when their maximum reduction factors are
employed. The maximum speedup is 589x for the PF
benchmark.

Looking at Table 2, the number of dynamic instructions
per thread for this benchmark is about 150 thousand. This
result demonstrates that GPGPU-MiniBench is most effec-
tive at reducing simulation time for benchmarks with large
per-thread instruction counts. On average, our approach
can speed up GPGPU architecture simulation by a factor
40, 46x, 52x and 58x for the 8-SM, 28-SM, 56-SM, and
110-SM configurations, respectively. The harmonic mean
speedup equals 49 x.

Interestingly, we also obtain significant speedups for
five of the eight benchmarks for which sampling in space
does not work. Our approach does not accelerate the sim-
ulation for MT, BFS, and NE, as these benchmarks do
not execute any loops. Hence, both sampling in space

10
9
8
Y
o
£5
84
3
2
1
0 = < ot @ ol o0
j2} el /M —
S£35627% 3805380858225 5¢

Fig. 18. Achieved simulation speedup (log scale) through GPGPU-
MiniBench for our four architectures with varying numbers of of stream-
ing multiprocessors.



YU ET AL.: GPGPU-MINIBENCH: ACCELERATING GPGPU MICRO-ARCHITECTURE SIMULATION

]

II?(} ;elative error(%)

19 i e |

L

=3
=)

E
z

=
M

OocmbNOm:‘!leI\)ONbc«oo
L e e L

LPS |-
LIB |-
ST3D |
MRIF |-
SP
LV
STO |
AVG

23
m O

64H -
PF
MM
NN
LT

m
4

BFS |-
SLA

=
=

MUM [
PNS -
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and our approach do not work well for these three
benchmarks. How to speed up the GPGPU acceleration
for these benchmarks is subject to future work.

(iii) IPC error. Fig. 19 shows the relative IPC error of the
synthesized versus original benchmarks for the 56-5M con-
figuration. The absolute average error equals 4.5 percent.
For the eight benchmarks for sampling in space failed to
work, we obtain an average error of 3.3 percent, and no
error higher than 6.2 percent, which indicates that our
approach outperforms sampling in space.

Note that we observe both positive and negative
errors—for some benchmarks, GPGPU-MiniBench yields
a performance overestimation, and for others it yields an
underestimation—this indicates there is no systematic
bias in the modeling framework. We analyzed the rea-
sons for the errors, and we found these errors are due to
various simplifying assumptions made in the framework.
In particular, the number of loop iterations of a GPGPU
kernel may vary across threads, which our model does
not capture as it assumes that all threads iterate loops
for the same number of times. Furthermore, we make
the assumption that we preserve execution characteristics
as we reduce the number of loop iterations; note we do
this on purpose to reduce simulation time, yet it incurs
some inaccuracy.

Fig. 20 quantifies accuracy across four different GPU
architectures—this is to illustrate how accurate GPGPU-
MiniBench is to analyze relative performance differences
across the GPU design space. There are a couple of observa-
tions to be made here. First, this graph reconfirms the accu-
racy reported in Fig. 19 across different GPU architectures,
i.e., the synthetic performance results closely match the
ones for the original workload. Second, GPGPU-MiniBench
is able to accurately track relative performance differences
across architectures and workloads. For example, the per-
formance difference seems to be small between the four
GPU architectures for the CL, PF and NN benchmarks. For
some benchmarks, performance improves with increasing

900

—— 8-SM_ori

800 -
—#— 8-SM_syn

700 + -
28-SM_ori

600 + -
28-SM_syn
2% 56-SM_ori
& —— 56~ ori

=400 -

—8— 56-SM_syn
=+ 110-SM_ori

300 A
200 A
100

== 110-SM_syn

Fig. 20. IPC for four architectures for the synthetic and original
workloads.
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Fig. 21. IPC error obtained by reducing the number of loop iterations to
one in the source code.

number of SMs but stagnates beyond 56 SMs, see for exam-
ple LIB, SP and LV; for the other benchmarks, performance
continues to improve with an increasing number of SMs.
GPGPU-MiniBench captures all of these trends accurately.
(iv) Other metrics. We considered other metrics next to IPC
to evaluate the synthesis framework, namely shared
memory bank conflicts, memory coalescing behavior and
branch divergence rates. We find the synthetic clones to
accurately mimic these metrics compared to the original
workloads, in spite of the simplifying assumptions we
make in the framework.

6.2 Comparison against Loop Reduction

Since GPGPU-MiniBench reduces simulation time by reduc-
ing the number of loop iterations in the synthesized code to
one, one may think that setting the number of loop itera-
tions to one in CUDA source code directly might be equally
accurate while being much simpler to implement. Unfortu-
nately, loop reduction does not work well for most CUDA
benchmarks, as shown in Fig. 21. The IPC error for most
benchmarks is very high, with an average IPC error as high
as 34.4 percent.

The reason is that the CUDA compiler changes the
control flow of a workload when we set the number of loop
iterations to one in the source code which leads to non-rep-
resentative code. GPGPU-MiniBench on the other hand pre-
serves control flow behavior of the synthesized code

(0) (0) (0)
(1) (1)
ew 0 QW

(2) (b) ()

Fig. 22. The static control flow graphs of the benchmark MM with three
versions. (a) The original version;(b) the loop reduction version;(c) the
synthesized version.
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compared to the original code. Fig. 22 shows the control
flow graph of the benchmark MM as an example. As can be
seen, loop reduction significantly changes the static control
flow graph of MM, while GPGPU-MiniBench does not.

7 RELATED WORK

Micro-architecture simulation is a key tool for computer
architecture research and development. A lot of research
has been done towards accelerating CPU simulation, see
for example [16], [17], [18]. Only recently has interest
grown regarding GPGPU architecture simulation, as
exemplified by GPGPU-Sim [5], [8], Ocelot [6], [19] and
Barra [7]. These simulators are critical to GPGPU archi-
tecture research, but they are slow. To the best of our
knowledge, we are the first to attempt to accelerate
GPGPU architecture simulation.

Recently, Huang et al. accelerate GPGPU architecture
simulation by sampling thread blocks [40] using TBPoint.
Sampling thread blocks is a good idea since CUDA encour-
ages programmers to write programs with little communi-
cation between thread blocks. Although TBPoint achieves
high accuracy while simulating 10 to 20 percent of the total
execution time of the kernel (simulation speedup of 5 to
10x), sampling workloads with high control/memory
divergence behavior remains challenging. GPGPU-Mini-
bench also targets these challenging workloads with a very
different approach, and achieves high accuracy and higher
simulation speedups (by 49x on average).

Synthesizing workloads/traces for performance evalua-
tion has been an active area of research. Several recent
studies report good accuracy and significant simulation
speedups using synthetically generated benchmark clones
over running full workloads on cycle-accurate simulators
[13], [21], [22], [23], [37]. However, all of this prior work
focused on long-running CPU programs. For parallel pro-
grams, especially GPGPU kernels, it is very difficult to
apply the CPU synthetic techniques, as argued in Section 2.
We carefully analyze the unique characteristics of GPGPU
kernels and propose GPGPU-MiniBench as an alternate
workload synthesis approach for accelerating GPGPU archi-
tecture simulation.

8 CONCLUSION

Slow micro-architecture simulation speed has been a
major and constant concern for several decades in the
CPU domain, and now with the emergence for GPGPU
computing, there is a strong need for simulation acceler-
ation techniques for GPGPU. In this paper, we have
argued that existing CPU simulation acceleration techni-
ques do not readily apply to GPGPU. We therefore pro-
posed a very different approach in this paper. GPGPU-
MiniBench generates synthetic clones of real GPGPU
workloads that exhibit similar execution characteristics
(within 5.1 percent on average) as the original workloads
while being much shorter to simulate (88x on average).
GPGPU-MiniBench is accurate enough for making high-
level design decisions and trend analyses in GPGPU
architectures and systems.
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