Poly-Ge/poly-CdSe dunne-filmcircuits voor op glas geïntegreerde aansturing van vlakke beeldschermen

Poly-Ge/poly-CdSe thin-film circuits for on-glass integrated driving of flat-panel displays

English Summary

Table of contents 3
Abbreviations and acronyms
Symbols
Chapter 1 : Context and targets
Flat-panel displays and active matrix addressing
The history of flat-panel displays is briefly discussed and the most important technologies are reviewed. Special attention is paid to the principle of active matrix addressing.
Interconnection problems and integrated drivers
The problem of connecting a display to its peripheral electronics becomes more serious with increasing display resolution. Different traditional methods are discussed and the concept of integrated drivers is introduced, along with the pros and cons. The advantages of CTFT vs. nTFT logic are summarized and a brief overview of the current realisations in this field is given.1.2 Targets and work scheme21
Introduction
Some criticism about the attitude of the Belgian government with respect to scientific research, especially their confusion of the notions R&D.
General targets
The final aim of this doctoral research project is to show the feasibility of an active matrix display with integrated thin-film driver circuitry. The originality is the use of the semiconductors CdSe and Ge, which we expect to be superior — for this purpose — compared to poly-Si. Some subtasks can be defined, such as converting the existing top gate poly-Ge/poly-CdSe technology to a bottom gate technology and optimizing the circuit performance in this new technology.
Work scheme
Design of the technology (see chapter 2)
Circuit design (see chapter 3)
It is necessary to design 3 mask sets : one to optimize the Ge-TFT's, one to study the building blocks and a final one to show the operation of the integrated drivers. We cannot use most of the powerful CAD- tools that were designed for the Si technology.

Processing	5
Most of the work, but not much to say about.	
Evaluation (see chapter 6)	5
The realised devices and circuits will be evaluated in several ways.	C
Chapter 2 : Technology design	7
2.1 Introduction	7
The existing technology for CTFT circuits	7
Igor De Rycke and Jan Doutreloigne have used a top gate technology for	r
realizing nTFT resp. CTFT circuits. This had certain advantages for optimizing the second second second second	g
the semiconductor properties. The technology of Doutreloigne is described.	Č
The standard poly-CdSe active-matrix technology	0
This technology is described and it is explained that a bottom gate (plus	
partial top gate) is essential because of the light sensitivity of CdSe.	
Incompatibilities between the two technologies.	1
It is shown that it is virtually impossible to join the existing CTFT and pix	
technology on the same substrate.	
2.2 Proposed new technology	2
The initially proposed unified technology is described. The number of lift-off steps	
minimized to avoid problems with micro-burs and the total number of mask steps is ke	
low.	
2.3 Problems and solutions	3
Several technological problems have necessitated alterations of the new technolog	
There were problems with the Al gates. Using Cr created new problems. TiW proved	
be a good alternative. The complicated combined semiconductor/source/drain etchin	
step also caused problems, which were solved by re-introducing some non-critical lij	~
off steps. A curious problem was the fact that InAu no longer made good contact on G	
which it did in the past. I was not able to explain this in a short term and for pragmat	
reasons I had to find another source/drain-material for both CdSe and Ge. Ti works of	
Ge, but not on CdSe. TiW works on both, provided some thermal annealing steps and	·e
carried out.	
2.4 The $V_{\rm T}$ -problem of Ge	
Another mysterious problem is the fact that bottom gate Ge-TFT's have a total	
different threshold voltage behaviour than their top gate equivalents. A lot of time we	
invested in tuning several process parameters in order to obtain the san	
characteristics as in the top gate technology. Unfortunately this did not lead to succes	
Some interesting conclusions can however be drawn from these experiments. There an	
also some ideas that could not be worked out, because of the time scheme that had to b)e
followed.	
2.5 The eventual technology	9
Just what the title says.	
2.6 The eventual TFT-characteristics 4	-1
MOSFET parameters that fit best with the resulting TFT characteristics.	
	1
Chapter 3 : Circuit design	
3.1 Introduction	
3.2 Literature study	
Introduction : different classes of drivers	
Almost all driver circuits can be catalogued as commutators, scanners or SLI	
drivers (Shift,Latch,Buffer). The difference between these is explained, as we	
as their typical (dis)advantages. We can also discriminate between two an	
multi grey level drivers, digital and analogue drivers, nMOS and CMC	
drivers, Now follows a discussion of some interesting driver schemes the	πt

have been published. [Note : it is almost impossible to summarize this discussion any further, because it is already very compact. Therefore I refer to the paper I have presented on the 1st CdSe workshop, which was in fact the base for this chapter.]
Morin et al., 1981
Oldest poly-Si driver circuit. Typical scanner. Uses memory capacitor for each column. Prone to image bending. As far as I know it was never realised.
Malmberg et al., 1986
MiniGraphics displays. Typical commutator. Analogue driver, analogue grey
levels. Driver can be used for fault location. Uses CdSe as semiconductor. Was realised and works.
Tizabi et al., 1986
First CTFT driver using CdSe (and Ge). Uses sample-and-hold modules in column driver. Disadvantage is hysteresis in buffer characteristics, which limits number of grey levels. Very low number of TFT's. Row driver probably not powerful enough to prevent image bending. I suspect the circuit was never realised.
SLB with CdSe. Clocks up to 2 MHz. Digital line memory. Needs parallelism for high resolution.
Ohwada et al., 1988 51
Commutator with 4 grey levels. TFT's only used as switches. Lots of cross- overs in column driver. Powerful but complicated row drivers.
Matsueda et al., 1989 51
Hybrid scanner-commutator. 8-fold parallelism. Extremely redundant design
(all pixels addressed via 2 totally independent ways). Driver circuit can be used for fault detection.
Emoto et al., 1989
Very sophisticated design. Uses parallelism without requiring pre-processing of video data. Analog RGB input. Surprisingly low number of TFT's per
column.
R. Stewart et al., 1990
SLB driver with 32 grey levels. 100-fold parallelism. Uses chopped ramp type DAC's. Complicated circuitry to be realised in thin-film technology.
Others
Some references to other interesting papers.
Summarizing table
This table systematically summarizes the most interesting features of the referenced driver circuits.
Solutions for the image bending problems with scanners
Leaving more time between consecutive lines is the classic way to do this A more elegant approach would be to cut the gate lines in half and use two line
more elegant approach would be to cut the gute titles in half and use two title
scanners. the right one being delayed by half a line period compared to the left one. The only disadvantage is the fact that redundancy by two-sided addressing
scanners. the right one being delayed by half a line period compared to the left one. The only disadvantage is the fact that redundancy by two-sided addressing
scanners. the right one being delayed by half a line period compared to the left one. The only disadvantage is the fact that redundancy by two-sided addressing is no longer possible.
scanners. the right one being delayed by half a line period compared to the left one. The only disadvantage is the fact that redundancy by two-sided addressing

3.3 Discussion of chosen driver scheme	60
I have chosen a SLB-type circuit, comparable to the De Rycke type, but v complementary invertors or with depletion load invertors. Pass-TFT's are u instead of CMOS switches, because of the bad ON/OFF-ratio of the p-t	vith sed ype
<i>TFT's. The operation of the driver is discussed in more detail. Especially operation of the latch circuit (sense amplifier) requires some explanation.</i>	the
3.4 Simulations	63
Introduction	
After choosing a driver scheme, the components have to be dimensioned	
order to optimize performance. A pure heuristic way, in which all poss	
combinations of gate width and length, etc. are actually realised and tried	
is far too expensive and too slow. Therefore, preliminary circuit simulations	
necessary. Because of the large number of simulations that have been car	
out, only some of the results are presented here.	1001
Static invertor characteristics	64
Terminology	
The notions `stable operating points', `astable operating point', `no	
margins' and `gain' are introduced. Different invertor types shown.	
Simulation results	65
It is shown that, given our depletion type Ge-TFT's, the depletion-la	
invertors yield the best static invertor characteristic.	
Dynamic shift registers	67
Terminology and criterion for proper operation	
A quantity \triangle that describes the `goodness' of the operation of dynamic shift register is introduced. This allows us to use a limit	f a
number of simulations to predict the maximum operation frequency the shift register.	
Simulation results	
Dynamic shift registers with different invertor types and transis geometries are simulated at different frequencies. The resulting Δ'	s of
all these simulations are summarized in a number of graphs. This le	
to an optimum value for the transistor geometries and it predict maximum clock frequency of 5 MHz for the depletion-load type s register.	
Conclusion	71
The depletion-load invertor behaves best in static both as dynamic circuits first indication of the ideal geometries can be given.	. A
3.5 Other application : SSR for bargraph-display	72
A possible application for thin-film circuits where speed is not the primary demana	, is
the addressing of multi-pixel guest-host LC displays, such as the bargraph-t	ype
displays. Passive multiplexing can not be used because of hysteresis in this type of	
material. Direct addressing becomes too expensive because of the high number	
interconnections. Active addressing and an integrated static shift register can	
fabricated with a high yield for such a low number of pixels and is therefore attractive solution.	an
Chapter 4 : A better TFT-model for simulations.	75
4.1 Introduction	
4.1 Introduction All simulations until now were performed using the SPICE Level 1 Schichmann	
Hodges MOSFET model. In this chapter I propose a new, semi-heuristic, model that	t is
an extension of this simple model, but with which the subthreshold behaviour and superlinear `linear' region can be described.	ine

4.2 Static current equation
 The Schichmann & Hodges current equations are written on one line, using the step function to account for the transitions between the different operating regions. A term representing the shunt resistance R₀ of a TFT is added. Then, a hyperbolic function with one parameter V_c (curvature voltage) is introduced to smooth the transitions between the regions. Finally, the squares in the current equation are replaced by the exponent κ in order to model the superlinear behaviour. The transconductance β is replaced by B, the `preterconductance', and κ is called the `preterconductance exponent'. The resulting equation is a single-line formula describing the current in all operating regions (including sub-threshold) and requiring only 5 device parameters. 4.3 Dynamic behaviour
4.4 Implementation in simulation program
simulation program.
4.5 Parameter extraction and correspondence with measurements
Some algorithms are derived to extract the 6 model parameters from measurements of $I_{DS}(V_{GS})$ characteristics. It is illustrated that in this way, it is possible to achieve excellent agreement between model calculations and measurement over a large range of voltages.
4.6 Conclusion : pros and cons of the model
Advantages
 Simpler than Spice level 2 or 3; better than level 1; good subthreshold description, including shunt resistance; single-line formula, easy to implement in macro circuit; continuously derivable formulas, enhancing convergence speed of calculations; only 6 well-defined parameters, no parameter redundancy; easy parameter extraction from measurements; TFT modelled as a real 3-terminal device, no need to play tricks with the substrate potential. Disadvantages
Chapter 5 : Mask design
5.1 Introduction
 4 mask sets were designed. The first one was kept very simple so no time was lost considering details which were not important yet. With this set, a usable bottom gate technology was constructed, as seen in chapter 2. The second mask set was used to test the possible building blocks of the driver circuit. Several values of the geometric TFT parameters were tried out. This design was already more complicated because I tried to vary as many parameters as the limited substrate space (2"x2") would allow. Maskset 3 was a 64x64 pixel matrix. It was a by-product of maskset 4, which comprised complete driver circuits as well as two small 8x8 pixel matrices with integrated drivers, for demonstration purposes. 5.2 Design tools and realisation of masks; future of our mask design
All masksets were designed using in-house developed CAD tools. Because the follow-up of this software can no longer be guaranteed and because the available computer

platforms are changing rapidly, new solutions have to be found. I give on overview of the different possibilities. The realisation of the masks was done by laser plotting (4000 dpi) on a photographic foil and subsequent photolithographic copying onto TiW coated $5'' \times 5''$ glass plates.			
5.3 Detailed description of the mask sets	. 92		
In this section the mask sets are rather thoroughly described. This is especially us			
for reference during future designs of new mask sets or adaptions of the present se	*		
will only comment on those paragraphs that seem interesting enough for a `northing and the present se			
reader of this manuscript.	mui		
	02		
Maskset 1 : BOTCMP			
Introduction			
Selection of masks			
Order of process steps.	. 93		
Design-rules and positioning	. 94		
The modules	. 94		
Includes a diagram of the hierarchy of the modules (also in			
<i>description of the following mask sets.)</i> Maskset 2 : BOUWSTENEN			
Introduction			
Selection of masks			
Order of process steps	. 97		
Many variants of the `standard' technology are allowed.			
Design-rules and positioning	. 99		
The modules	. 99		
Maskset 3 : MASK64	103		
Introduction			
Pixel matrix. Safe design, but still a large aperture (54.25 % for a by 20 units cell.) Unit is 25 μ m.			
Selection of masks	103		
Order of process steps	103		
Design-rules and positioning			
The modules			
Not only the unit cell, but also test-inserts.	101		
Maskset 4 : DOGMA	106		
Introduction			
Selection of masks			
Order of process steps			
Design-rules and positioning	109		
The modules	109		
Personally I like Fig. 55 very much.			
Chapter 6 : Evaluation	115		
6.1 Introduction	115		
6.2 TFT's	116		
<i>Typical CdSe and Ge TFT characteristics are shown.</i> 6.3 Invertors			
DC-characteristics of simple invertors.			
	110		
Just what it says. Different invertor types are compared.	110		
DC-characteristics of cascades of invertors.			
Ring oscillators			
These were measured using a buffered probe with 12 pF input capacitance later also using a picoprobe with 0.1 pF input capacitance and 1 M Ω in resistance. The delay time as a function of the geometric aspect ration of th	nput		

	channel TFT is evaluated for different invertor types. Also the turn	n-on voltage
	is studied, as explained in my contribution to the 3rd Intl. CdSe work	kshop.
6.4 Analogue sv	witches	123
6.5 Static shift r	registers	124
The op	eration at 6 kHz and at 400 kHz is shown. We did not have the picop	probe at the
time of	these measurements. A criterion for estimating the maximum numb	per of pixels
that car	n be addressed with the unbuffered static shift register, is derived.	v I
	lift registers	127
	ifiers and push-pull buffers	
	ix (pixel matrix)	
opulu	Picture of an operating AMLCD with PN-LC from Dainippon Inc.	
Error d	contribution to this demo is the addressing software.	21 2
LITOL	<i>This is important, because (1) it allows quality control, so the best 2</i>	
	reserved for the more interesting projects, while the rest is used	0
	experimental purposes. (2) we get information about the number of result from the display filling and assembling. (3) it gives indication	
	origins of the faults, so we can try to improve our process.	<u> </u>
	Some striking facts about the detected errors are discussed and the	e usefulness
	of the shunted busbars is illustrated.	
	lrivers	
	eration of the dynamic shift register in a complete driver circuit is illu	
	siderations	
-	vield calculations are performed. The demands for making a flav	
	tible display are comparable to the demands for making a Megabit . tion that we cannot put hundreds of displays on the same substrate.	IC, with the
Chapter 7 : Conclusions		139
7.1 Solved prob	plems and remaining challenges	139
	ave I done ?	
	A new technology for making p-channel Ge TFT's with a stagge	
	gate structure, compatible with the poly-CdSe active matrix tech constructed. Many technological problems had to be solved to a	nology was chieve this.
	Published TFT-based driver circuit were intensively studied and con relevant information was summarized in a systematic way. Different	t methods to
	produce grey scales were compared as far as image quality, vie dependence, etc. are concerned and a new method was proposed. I	Based on all
	this information, a CTFT driver circuit was designed and network	
	were performed on the building blocks. An interesting application	
	shift register with TFT's was discussed. Stimulated by the di	•
	determining appropriate MOSFET model parameters from TFT me	
	a new, numerical, dedicated TFT model was constructed, reg	
	parameters and representing the most important TFT features. The	his model is
	used in the present simulations and automatic parameter extraction	ion is being
	implemented in our measurement software. A working driver	circuit was
	realised in three steps, each with their own mask set. A new, safe	64 _× 64 pixel
	active matrix design was the by-product. Electronics that were n	-
	demonstrate the driver circuits were realized and used. I have design	•
	location system for our active matrices and I have written softw	are for this
	location system for our active matrices and I have written softw interesting evaluation tool I have also written software for	•
	location system for our active matrices and I have written softw interesting evaluation tool. I have also written software for demonstrator. The most important results of my research were re	the display

What can still be done ?
Many ideas for making enhancement type bottom gate Ge TFT's were not
worked out. A demonstration of the 8×8 pixel matrices with integrated drivers
<i>could not take place because of yield problems.</i>
7.2 The future
I present my personal opinion about how the results of this research project could be
useful in industrial applications.
Appendix A : Detailed description of the process and the processing equipment used
I don't believe this actually needs a summary.
A.1 The substrates
Used substrates
Cleaning of the substrates
A.2 Pattern definition
A.3 Evaporations
Equipment
Among others, the method for achieving a 1 $Å$ Cu film is revealed.
Semiconductor sandwiches
A.4 Sputtering
A.5 Etching
A.6 Lift-off
A.7 Stripping
A.7 Suppling
A.o baking
Appendix B : Generalised TFT model
More fundamental derivation of the model equations.
B.1 Static current equation
B.2 Terminal capacitances C_{GS} and C_{GD} . 151
Appendix C : Evaluation equipment and measuring setups
C.1 General
A pico-probe is only available since the beginning of 1993. For applying the 12 signal
necessary for operation of a complete driver, elastomeric contacts were used.
C.2 DC-characteristics of TFT's
C.3 DC-invertor characteristics
C.4 Dynamic measurements
An existing programmable digital signal generator with TTL outputs was provided with
level shifters so voltages between 0 and 30 V could be achieved. The total circuit
operates properly up to about 1.5 MHz. This and the 12 pF probe capacity has greatly
limited the dynamic measurements.
C.5 Optical inspection
Microscope 157
Display driving
C.6 Error detection in matrix
References

Herbert De Smet, November 10, 1993