
i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 1 — #1 i
i

i
i

i
i

Ontwerp van intelligente aanstuurcircuits
voor het automatiseren van de configuratie
bij modulaire beeldschermsystemen

Design of Intelligent Drivers for
Automatic Configuration in Modular Display Systems

Ir. Pieter Bauwens

Promotor: Prof. dr. ir. J. Doutreloigne

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen
Elektrotechniek

Vakgroep Electronica en Informatiesystemen
Voorzitter: Prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2010–2011

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 2 — #2 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 3 — #3 i
i

i
i

i
i

Ontwerp van intelligente aanstuurcircuits
voor het automatiseren van de configuratie
bij modulaire beeldschermsystemen

Design of Intelligent Drivers for
Automatic Configuration in Modular Display Systems

Ir. Pieter Bauwens

Promotor: Prof. dr. ir. J. Doutreloigne

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen
Elektrotechniek

Vakgroep Electronica en Informatiesystemen
Voorzitter: Prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2010–2011

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 4 — #4 i
i

i
i

i
i

ISBN nummer:

NUR code:

Depot nummer:

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 5 — #5 i
i

i
i

i
i

Promotor:

Prof. dr. ir. J. Doutreloigne

Onderzoeksgroep CMST
Vakgroep Electronica en Informatiesystemen
Technologiepark 914A
B-9052 Zwijnaarde

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 6 — #6 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page i — #7 i
i

i
i

i
i

Dankwoord

Het is een apart gevoel. Vier jaar lang lijkt het einde nog ergens in een verre,
onbekende toekomst te liggen, en dan opeens is het er. De laatste tests zijn af-
gelopen, de laatste hoofdstukken geschreven. Ietwat onwennig zet je de eerste
stapjes uit het mentaal isolement waar je de voorbije maanden vertoeft hebt. Je
kijkt nog even achterom en slaakt een tevreden zucht: “Het is af.”.

Dit gevoel gaat gepaard met een sterke dankbaarheid voor iedereen die op één
of andere manier een steentje heeft bijgedragen. De grootste stenen komen van
André Van Calster en Jan Doutreloigne. Zij zijn degenen die mij de kans hebben
aangeboden om dit doctoraat te beginnen. Met de verscheidene etentjes en an-
dere evenementen zorgde André voor een sterke sociale band onder de collega’s,
één van de pijlers waarop de aangename CMST-sfeer steunt.
Met Jan als promotor weet je dat je het goed getroffen hebt. Je wordt ten volle
gesteund in de keuzes die je maakt en je kan ervan op aan dat, als je even geen
uitweg ziet, Jan met veel plezier (en het nodige geduld) je de juiste richting zal
wijzen. Aan beiden, bedankt!

Hoe eenzaam een doctoraat ook mag lijken, met de juiste collega’s merk je daar
helemaal niets van. Een speciale bedanking gaat dan ook naar mijn bureaugeno-
ten. Ann, je hebt me als groentje onder je vleugels genomen en ook erna kon ik
altijd bij je terecht. Bedankt en veel plezier met je kleine Silke! Stefaan en Benoit,
bedankt voor de vele interessante discussies, gaande van electronica en fysica tot
religie en ethiek. Vincent wil ik in eerste instantie bedanken als onze persoon-
lijke Linux-helpdesk, maar verder ook nog voor het jaarlijkse optreden met het
GUSO-orkest. Jodie, je passie voor muziek viel in goede smaak, en gaf zo nu
en dan de motivatie zelf nog eens aan de piano te gaan zitten. Dominique en
Liang, misschien niet de grootste babbelaars in de hoop, maar twee sympathieke
jongemannen die zeker hebben bijgedragen aan de sfeer in de bureau. Bedankt!

Het grootste deel van voorgenoemden hoort bij een groep die ook nog een speci-
ale vermelding verdient: De Designers. We vormen misschien een kleinere groep
binnen CMST, maar samen staan we sterk. Een band die nog versterkt wordt
door het sporadisch “ribbekes fretten”.
Ook de andere collega’s (binnen en buiten CMST) krijgen een hoop bedankjes,
voor hun al dan niet werkgerelateerde bijdragen. Wim Meeuws voor de hulp met

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page ii — #8 i
i

i
i

i
i

ii Dankwoord

de Cadence en Synopsys programma’s, Lieven voor het layouten van de bordjes,
Bjorn voor zijn ultieme handigheid bij het solderen, Nadine voor haar spontani-
teit, Erwin voor zijn leuke verhalen, Wim voor zijn schaterlach, . . . en iedereen
anders, bedankt!

Ook buiten de werkomgeving zijn er heel wat mensen om te bedanken. Zij zorgen
dan misschien niet voor het bijdragen van de professionele stenen, maar vorm-
den eerder de mortel die de stenen bijeen hield. Bart, Jasper en Leen, Bas en
Gudrun, Steven,. . . , bedankt om goede vrienden te zijn! Ook aan alle anderen
die ik misschien net iets te weinig kan zien.
Aan de mensen van de Chinese les wil ik dit nog kwijt:
同学们和万老师，我们一起学汉语学了已经四年了。你们是好朋
友！每星期一晚上，我很高兴去上课。谢谢你们！

En laatst maar niet minst, mijn ouders en zusje. Dankzij hen sta ik waar ik nu sta,
en geen woorden kunnen uitdrukken hoe dankbaar ik daarvoor ben. Bedankt
voor het steunen, het vertrouwen, voor alle evidente en minder evidente zaken.
Zusje, lieve zus, hoe oud je ook mag worden, je zal altijd mijn klein zusje blijven,
bedankt voor de levendigheid die je brengt. Je weet het misschien niet, maar je
hebt me veel geleerd!

Kortom, bedankt!

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page iii — #9 i
i

i
i

i
i

Contents

Dankwoord i

List of Tables vi

List of Figures vii

Samenvatting xi

Summary xv

List of Abbreviations xix

1 Introduction 1
1.1 The search for an intelligent modular display system 1
1.2 Publications . 3

2 It’s all about displays 7
2.1 Introduction . 7
2.2 Display technologies . 7

2.2.1 Cathode Ray Tube . 7
2.2.2 Plasma Display Panel . 9
2.2.3 LEDs and OLEDs . 11
2.2.4 Liquid Crystal Displays . 14
2.2.5 Some other display technologies 22

2.3 Transmissive, emissive, reflective? 24
2.4 Driving the display: active and passive matrix driving 25
2.5 Something about e-paper . 28

3 Modular Displays 33
3.1 Introduction . 33
3.2 Solving the issues with passive matrix driving 33

3.2.1 Limitation of multiplexability 34
3.2.2 Reduction of brightness . 35

3.3 Creating free-form displays . 37

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page iv — #10 i
i

i
i

i
i

iv Contents

3.3.1 Tiled displays . 37
3.3.2 Transformable LED . 39
3.3.3 CurveLED . 39
3.3.4 FlyFire . 39

3.4 Two birds, one stone: modular displays 40
3.4.1 What is it exactly? . 40
3.4.2 What can they solve? . 42

4 Network and Communication Protocols 45
4.1 Introduction . 45
4.2 OSI 7 layer model . 45
4.3 Protocols . 48

4.3.1 I2C . 48
4.3.2 RS-232 . 50
4.3.3 SPI . 51
4.3.4 USB . 51
4.3.5 Ethernet . 54

5 A first modular display driver 59
5.1 Introduction . 59
5.2 Requirements . 59

5.2.1 The display . 59
5.2.2 The driver . 61

5.3 Implementation . 61
5.3.1 Communication protocol . 62
5.3.2 General principles . 65
5.3.3 Rx and Tx . 66
5.3.4 Main Control . 67
5.3.5 Sequencer . 68

5.4 A simple example . 68
5.5 Setting up the test environment . 68

5.5.1 Driving a ChLCD . 69
5.5.2 Driving a LED display . 75

5.6 Some first results . 77
5.6.1 Results from the ChLCD . 77
5.6.2 Results from the LED display 80

5.7 Can we do better? . 80

6 Improved modular display driver 85
6.1 Introduction . 85
6.2 Requirements . 85

6.2.1 The display . 85
6.2.2 The driver . 86

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page v — #11 i
i

i
i

i
i

Contents v

6.3 Implementation . 86
6.3.1 General principles . 89
6.3.2 Rx and Tx . 89
6.3.3 Main Control . 91

6.4 A simple example . 92
6.5 Setting up the test environment . 94
6.6 Some first results . 94
6.7 Is there still room for improvement? 96

7 A free-form modular display driver 99
7.1 Introduction . 99
7.2 Requirements . 100

7.2.1 The display . 100
7.2.2 The driver . 100

7.3 Implementation . 101
7.3.1 A little terminology . 103
7.3.2 Communication protocol . 103
7.3.3 General principles . 104
7.3.4 Rx . 110
7.3.5 Tx . 112
7.3.6 Out Control . 112
7.3.7 Output multiplexers . 113
7.3.8 Main Control . 113

7.4 A slightly less simple example . 117
7.5 Setting up the test environment . 120
7.6 Some first results . 120
7.7 But maybe we could do something more? 122

8 Improved free-form modular display driver 127
8.1 Introduction . 127
8.2 Requirements . 128

8.2.1 The display . 128
8.2.2 The driver . 129

8.3 Implementation . 130
8.3.1 Communication protocol . 130
8.3.2 General principles . 131
8.3.3 Rx, Tx and Out Control . 136
8.3.4 Main Control . 136

8.4 Another example . 141
8.5 Setting up the test environment . 144
8.6 Some first results . 147
8.7 This is the end, isn’t it? . 151

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page vi — #12 i
i

i
i

i
i

vi Contents

9 Design and Layout of the FrIIDoM Driver 155
9.1 Introduction . 155
9.2 Four drivers in one chip . 155
9.3 On-chip clock generator . 159
9.4 Power-On Reset . 162
9.5 LED drivers . 164

9.5.1 8-bit adjustable current source 165
9.5.2 Switch . 169

9.6 From VHDL code to ASIC layout . 169
9.6.1 Gate-Level Netlist and DFT 172
9.6.2 Place and Route . 175

10 Results and Applications 179
10.1 Introduction . 179
10.2 Setting up the (final) test environment 179

10.2.1 Design of the test boards . 179
10.2.2 Design of the GUI . 184

10.3 Measurement results . 185
10.3.1 8-bit adjustable current sources 185
10.3.2 400 mA row switches . 185
10.3.3 Clocks and Manchester (de)coding 188
10.3.4 Refresh rates . 191
10.3.5 Modular Display Driver . 191
10.3.6 Improved Modular Display Driver 195
10.3.7 Free-Form Modular Display Driver 196
10.3.8 Improved Free-Form Modular Display Driver 200

10.4 Future design considerations . 204
10.4.1 Issues in the free-form modular display driver 204
10.4.2 Improvements on the Physical Layer 207
10.4.3 Clock adjustments . 207

10.5 Significance and applications . 208
10.5.1 Increasing the multiplexability in passive-matrix displays . 208
10.5.2 Advantages for the ChLCD 208
10.5.3 Advantages for a LED display 208
10.5.4 Creating a passive-matrix PDLC display 209
10.5.5 Free-form displays . 210
10.5.6 Using flexible modules . 212
10.5.7 Outside the display world . 214

11 Conclusion and Future Prospects 219
11.1 Main achievements . 219
11.2 Future work . 220

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page vii — #13 i
i

i
i

i
i

Contents vii

A VHDL implementation of Main Control (1) 223

B VHDL implementation of Main Control (2) 229

C VHDL implementation of Main Control (3) 235

D VHDL implementation of Main Control (4) 253

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page viii — #14 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page ix — #15 i
i

i
i

i
i

List of Tables

4.1 Signals used by the RS-232 protocol, for example between a PC and
a modem. 50

6.1 The addresses that need to be sent out , corresponding the gate
numbers . 89

7.1 Command sequences used by the free-form modular display driver. 104
7.2 The states from the state register in the free-form modular display

driver explained . 113

8.1 Command sequences used by the improved free-form modular
display driver. 131

8.2 The states from the state register in the improved free-form modu-
lar display driver explained . 138

8.3 Output sources . 141
8.4 Extrapolation of the simulation results 151

9.1 Component parameters of the clock generator 159
9.2 Component parameters of the Schmitt trigger 160
9.3 Component parameters of the POR 162
9.4 Component parameters of the current source 165

11.1 Overview of the properties of the created drivers. 220

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page x — #16 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xi — #17 i
i

i
i

i
i

List of Figures

1.1 Las Vegas by night and electronic paper by E Ink 2
1.2 Free-form displays . 3

2.1 Cross section of a CRT display . 8
2.2 Cross section of a PDP . 10
2.3 The inner workings of a LED . 11
2.4 The structure of an OLED . 13
2.5 The three types of LC . 15
2.6 The twisted-nematic liquid structure. In the absence of an elec-

trical field, the light changes polarization (left). In the presence
of an electrical field, the light remains unchanged. 16

2.7 The angle of the molecules versus the applied voltage (a). The
resulting electro-optical response (b). (SHARP) 17

2.8 The angular distortion versus the applied voltages for the differ-
ent initial twist angles (a). The resulting electro-optical response
(b). (SHARP) . 18

2.9 A PDLC film in the absence (a) and presence (b) of an electrical
field . 19

2.10 A general electro-optical response of a PDLC film 20
2.11 In the stable planar state, the incident light is reflected (a). In the

focal conic state, no light is reflected (b). 21
2.12 A schematical representation of the response of ChLC to a volt-

age pulse . 22
2.13 Distinction between driving methods. 26
2.14 General electro-optical characteristic of a PM-addressable liquid

crystal. 27

3.1 Dual scan display . 34
3.2 Quad scan display . 35
3.3 MLA driving schemes for a 2-row display 38
3.4 Transformable LED from Barco . 39
3.5 CurveLED . 40
3.6 Flyfire from MIT . 41

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xii — #18 i
i

i
i

i
i

xii List of Figures

3.7 Several network topologies for modular displays 41

4.1 A sample schematic of I2C-use with one master (a microcon-
troller) and three slave nodes . 49

4.2 Data transfer is initiated with the START bit (S). Then, the bits on
the SDA line are sampled when SCL is high. When the transfer
is complete, a STOP bit (P) is sent. 49

4.3 RS-232 communication . 51
4.4 Configuration for SPI communication. 52
4.5 The tiered-star topology for the USB protocol. 52
4.6 Network topologies using Ethernet: (a) a bus network. (b) a star

network . 55

5.1 A display configuration (a) and the corresponding driver config-
uration (b). 60

5.2 The block diagram of the first modular display driver. 62
5.3 Communication protocol for the first modular display driver. . . 63
5.4 An example of a manchester coded signal. The signal reads 011 . 64
5.5 Manchester decoder state diagram with corresponding signals. . 64
5.6 The initialization process in the first modular display driver . . . 65
5.7 Block diagram of Rx . 66
5.8 Block diagram of Tx . 67
5.9 The state diagram of the first modular display driver 67
5.10 An example display configuration (a) with the corresponding

waveforms (b) using the first modular display driver. 69
5.11 The electro-optical response for a PSChT cell to a singe AC volt-

age pulse. 70
5.12 Influence of the pulse width on the reflectivity of the PSChT cell.

Starting from a cell in the SP state (a) and the FC state (b) 71
5.13 The conventional minimal-swing driving scheme. (a) shows the

voltage levels on the row and column electrodes. (b) shows the
resulting voltage levels over the pixel. 72

5.14 The used ChLCD. It has four modules in one row, each with 16×
4 pixels. 72

5.15 The FPGA board. The four FPGAs each represent one modular
display driver. The outputs of the FPGAs are visible on the pins
on the board. 74

5.16 The multiplexer board. There are six multiplexer chips (DILA).
Two are used to drive the row electrodes, four are used to drive
the column electrodes. 74

5.17 Test setup for driving a ChLCD with the first modular display
driver. High-voltage source is seen above. Left are the FPGA
and multiplexer board. Right is the ChLCD. 75

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xiii — #19 i
i

i
i

i
i

List of Figures xiii

5.18 A passive-matrix LED display. 76
5.19 A LED-display module (a) and the controller board (b). Each

module has an FPGA, with the Sequencer acting as a row and
column driver. 77

5.20 Voltage levels on a row and column electrode of the ChLCD (a
and c (with grayscale)) and over a pixel (b and d (with grayscale)),
using the conventional minimal-swing driving scheme. 78

5.21 Images on the ChLCD using the first modular display driver . . . 79
5.22 Configuration of a modular LED display, with the first modular

display driver (b). The display can be controlled with a GUI (a). . 81

6.1 A possible display configuration for the improved modular dis-
play driver (a) and the corresponding driver configuration (b). . . 87

6.2 The block diagram of the improved modular display driver. . . . 88
6.3 The initialization process in the improved modular display driver.

When a module receives an address from two gates (lower right
module), it chooses one gate as input gate. No data will be for-
warded to the other gate. 90

6.4 Block diagram of Rx . 91
6.5 Block diagram of Tx . 92
6.6 Example of the initialization process for the improved modular

display driver. The considered display is shown in Figure 6.1b. . 93
6.7 GUI for the improved modular display driver 95
6.8 Display configuration. The corresponding GUI is shown in Fig-

ure 6.7. 95

7.1 The possible display configurations are the same as with the im-
proved modular display driver, but with the free-form modular
display driver, the GUI shows a real-time view of the configuration.100

7.2 The block diagram of the free-form modular display driver. . . . 102
7.3 The genealogical tree created using the free-form modular dis-

play driver. A module (M) has a parent node (P), child nodes
(C), sibling nodes (S), ancestor nodes (A) and offspring nodes (O). 103

7.4 The shout routine in the free-form modular display driver 106
7.5 Block diagram of Rx . 110
7.6 Out Control chooses the parent signal to be sent to child nodes

and combines the child signals to be sent to the parent node. . . . 112
7.7 The state machine of the free-form modular display driver 114
7.8 Example of the initialization process for the free-form modular

display driver, according to the display configuration shown above.118
7.9 Example of the driver signals when a module (M5) is added after

the initialization, when a module (M4) is removed, and during
the polling routine. 119

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xiv — #20 i
i

i
i

i
i

xiv List of Figures

7.10 Images of the GUI and the corresponding display setup for the
free-form modular display driver. First the top three modules are
turned on (a), then the lowest two (b). The result is shown in (c). . 121

7.11 After the modules were added, the display still works as required. 122

8.1 Displays that can be used with the improved free-form modular
display driver. The dark edge represents gate 0. 128

8.2 The send routine in the improved free-form modular display driver132
8.3 Block diagram of Rx . 136
8.4 The state machine of the improved free-form modular display

driver . 137
8.5 Example of the initialization process for the improved free-form

modular display driver, according to the display configuration
shown above. 142

8.6 Example of the driver signals when a module (M3) is added after
the initialization, when a module (M2) is removed, and during
the polling routine. 143

8.7 Flat representation of a display configuration with square modules145
8.8 Flat representation of a display configuration with triangular mod-

ules with overlap. 146
8.9 Display was turned on looking like (a), the GUI (b) shows the

corresponding representation . 148
8.10 After adding a module (a), the GUI (b) shows the corresponding

representation . 149
8.11 After removing a parent node (a), the GUI (b) shows the corre-

sponding representation . 149
8.12 Simulation results of the initialization times (a) (in µs) for the best

and worst case scenarios. (b) shows the average initialization
time per module (in µs.) . 150

9.1 Schematic of the FrIIDoM driver 157
9.2 The layout of the FrIIDoM driver. The four distinct blocks are the

four drivers (left to right, top to bottom: driver 0, driver 3, driver
2, driver 1). On top and at the bottom you can see the 8 current
sources and 8 switches respectively. 158

9.3 Schematic of the clock generator 159
9.4 Schematic of the Schmitt trigger . 160
9.5 Simulation results of the clock generator. 161
9.6 Schematic of the POR . 162
9.7 The POR isn’t generated correctly if the supply voltage slew rate

is too low. Rise time of (a) is 150µs, rise time of (b) is 250µs. 163
9.8 With the extra circuitry, the POR is correctly generated for both

fast and slow rising supplies. 164

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xv — #21 i
i

i
i

i
i

List of Figures xv

9.9 Schematic of the current source . 166
9.10 Simulation results of the current source 167
9.11 Layout of the current source . 168
9.12 Layout of the row switch . 170
9.13 The VHLD-to-ASIC workflow . 171
9.14 Example of scan chain insertion. Flip-flops are replaced with flip-

flops with an internal multiplexer. 173
9.15 A typical tester cycle in a full scan design. 174
9.16 (a) shows the empty floorplan with added power lines. (b) shows

the floorplan after the standard cells are inserted 175
9.17 (a) shows the layout after final routing. (b) shows a close-up. . . . 176

10.1 FrIIDoM Test board . 180
10.2 Test structure for the row switches. 181
10.3 A FrIIDoM LED module . 182
10.4 The FrIIDoM controller . 183
10.5 GUI for the FrIIDoM driver. 184
10.6 The outputs of a current source with the corresponding control

signal. 186
10.7 A module with all LEDs on. LEDs are driven with 20mA (a),

10mA (b), 5mA (c) and 2mA (d). 187
10.8 The performance of the row switches when having to sink 100mA

(a), 200mA (b) and 370mA (c) . 189
10.9 Distribution of the on-chip clock. 20MHz and 10MHz 190
10.10 The initialization process of a display of two modules with the

free-form modular display driver using Manchester code. 190
10.11 Expected and measured refresh rates 191
10.12 The initialization process in a display of two modules, using the

first modular display driver (a). After the initialization, the by-
pass is activated (b) . 192

10.13 A larger display with the first modular display driver. Before
initialization (a) and after initialization (b). 193

10.14 The image drawn in the GUI is represented correctly on the display.194
10.15 The initialization process of a display of two modules using the

improved modular display driver. 195
10.16 A larger display using the improved modular display driver. Be-

fore initialization (a) and after initialization (b). 197
10.17 Examples of how the improved modular display driver performs

on a larger display, controlled by the GUI. 198
10.18 Initialization signals (a) and polling signals (b) of a display of two

modules using the free-form modular display driver. 199

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xvi — #22 i
i

i
i

i
i

xvi List of Figures

10.19 Initialization process using the free-form modular display driver.
The yellow overlay shows which modules will be turned on next.
The red lines represent the created tree structure. 201

10.20 After module (1,1) was removed, the affected modules have been
rerouted and all the used addresses found their way to the micro-
controller . 202

10.21 Initialization signals (a) and polling signals (b) of a display of two
modules, using the improved free-form modular display driver . 203

10.22 Initialization process using the improved free-form display driver.
The yellow overlay indicates which modules will be turned on
next. The tree structure can be derived from the blue arrows in
the GUI. 205

10.23 After all modules have been initialized, the GUI is used to draw
an image and display it. 206

10.24 If a module is removed, it is detected by the system. The affected
modules will reroute so they can still receive data. 206

10.25 A PDLC display with glass carriers (top) and PET carriers (bot-
tom) in their reflective state (left) and its transparent state (right). 211

10.26 A passive-matrix PDLC display with PET carriers, with all pixels
off (VOFF = 2.2V) (left) and with one pixel on (VON = 7.0V) (right).212

10.27 The UTCP process flow . 213
10.28 Final result of the UTPC process. The whole package is bendable 214
10.29 Examples of modular robots. The PolyBot (a), the M-TRAN (b),

the CKBot (c) and the SuperBot (d). 215

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xvii — #23 i
i

i
i

i
i

Samenvatting

We zijn er ons allen van bewust dat we in een wereld leven waar displays niet
uit weg te denken zijn. Ze behoren tot elk aspect van ons leven. Tegelijk worden
de eisen die we stellen aan deze displays steeds strenger. We willen een hogere
resolutie, een beter contrast, een grotere flexibiliteit (zowel fysische flexibiliteit
als aanpasbaarheid). Modulaire display systemen kunnen een handje helpen de
displays van enkele van deze vereisten te voorzien. Een modulair display sys-
teem is een soort display waarbij het display zelf is onderverdeeld in (al dan niet
volledig) onafhankelijke modules. Elke module heeft zijn eigen (klein) display
en alle modules werken tesamen om de illusie van één groot display te creëren.
Intelligente modulaire display systemen geven nog wat extra functionaliteit aan
deze displays. Dit doctoraat stelt vier van zo’n intelligente systemen voor.
Hoofdstuk 2 geeft een overzicht van de bestaande beeldschermtechnologieën en
hun eigenschappen. Het verschil tussen actief en passief matrix aansturing wordt
er ook aangehaald. Er kan aangetoond worden dat, wanneer passieve aansturing
gebruikt wordt bij een aantal beeldschermtechnologieën, er altijd een afweging
zal zijn tussen de bereikbare resolutie en contrast (of helderheid). Als je het aantal
rijen in een display wilt verhogen, zal dit ten koste gaan van het contrast. Een
modulair display kan dit verhelpen. Elke module heeft zijn eigen onafhankelijk
display. Het verhogen van het aantal rijen kan eenvoudig gebeuren door het
toevoegen van enkele modules. Dit zal uiteraard geen invloed hebben op het
contrast van de individuele moduledisplays.
Een andere handige eigenschap van modulaire displays is dat ze kunnen gebruikt
worden voor de zogenaamde free-form displays. Dit zijn displays waarvan de ge-
bruiker de vorm grofweg zelf kan bepalen. Hun vorm is niet vast en kan worden
veranderd. In zijn meest eenvoudige vorm zijn dit displays die schaalbaar zijn.
Modules kunnen hierbij gebruikt worden om een zeer groot display te bouwen
met een zelf te kiezen beeldverhouding. In een meer algemene vorm kan dit bete-
kenen dat de precieze vorm van het display kan aangepast worden. Hoofdstuk 3
geeft enkele voorbeelden van systemen die dit trachten te bereiken. Een modu-
lair display systeem kan hier ook voor geschikt zijn. De modules worden aan
elkaar gekoppeld om zo een willekeurige vorm te creëren, maar dat toch werkt
als één geheel. Hiertoe zullen de modules met elkaar moeten communiceren.
Alle modules zijn identiek en zullen via een zelfde datalijn met de microcontrol-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xviii — #24 i
i

i
i

i
i

xviii Samenvatting

ler verbonden zijn. Om de verschillende modules uit elkaar te houden, moet er
met adressen gewerkt worden. Maar net omdat alle modules identiek zijn (geen
hardgecodeerde adressen) zal deze adrestoewijzing via software moeten gebeu-
ren. Dit vereist enige intelligentie van het systeem. Maar dat is dan ook het
onderwerp van dit doctoraat.
Aangezien de modules verbonden zijn in een netwerk, lijkt het logisch een kijkje
te nemen naar de beschikbare netwerkprotocollen. Dit gebeurt in Hoofdstuk 4.
Het zal blijken dat geen van die protocollen onze noden volledig vervult en dat
het efficiënter is onze eigen specifieke protocollen te definiëren. In het algemeen
zal zo’n protocol bestaan uit twee fasen. De eerste fase is de initialisatiefase, waar
de modules hun adres verkrijgen. De tweede fase is de normale werkingsfase.
Elke module heeft een bypass tussen de ingang en uitgang. Deze bypass zal inac-
tief zijn tijdens de initialisatiefase, waardoor een module alleen maar zal kunnen
communiceren met zijn directe buren. Tijdens de normale werkingsfase wordt
de bypass actief, zodat alle modules op dezelfde datalijn verbonden worden.
In deze normale werkingsfase zullen alle drivers reageren op parameterdata en
beelddata. De parameterdata bevat informatie over de te gebruiken refreshrate,
het aantal rijen en kolommen die de module moet aansturen en specifieke beeld-
schermeigenschappen (bv. de instelstroom voor een LED display).
We starten in Hoofdstuk 5 met het beschrijven van de eerste driver, de ‘modular
display driver’. Deze driver is bedoeld voor het aansturen van modules die ver-
bonden zijn in een bus netwerk. De modules zijn verbonden als een daisy chain.
Dit wil zeggen dat elke module één ingang en één uitgang heeft. De uitgang van
de ene module is de ingang van de volgende. Dit is een zeer eenvoudig netwerk,
en heeft bijgevolg een zeer eenvoudig protocol. Elke module krijgt een adres van
de vorige module in de rij en stuurt het volgende adres door naar de volgende
module. Vanwege deze eenvoud, kunnen we hier nog niet echt spreken van een
free-form display driver. Deze driver is vooral bedoeld voor het verhogen van de
multiplexeerbaarheid in passive matrix beeldschermen.
De driver uit Hoofdstuk 6, de ‘improved modular display driver’, is een uitbrei-
ding op de vorige driver. Hij is geschikt voor modules in een mesh netwerk.
In zo’n netwerk heeft elke module vier in- en uitgangen: aan elke zijde één. Met
deze driver is het mogelijk een eenvoudig free-form display te maken. De manier
waarop de modules hun adres verkijgen lijkt sterk op de manier die hierboven
beschreven is. Een module krijgt een adres toegestuurd op één van zijn ingangen
en zal aan zijn andere uitgangen een berekend adres uitsturen. We moeten echter
wel opletten voor datalussen. Deze treden op wanneer er zich meer dan twee
paden tussen twee modules bevinden. Data, zoals adressen, kunnen vast komen
te zitten in zo’n lus. In dit hoofdstuk wordt dan ook een primitieve manier van
data routing aangehaald.
De eerste echte free-form modular display driver krijgen we te zien in Hoofd-
stuk 7. Deze wordt ook gebruikt in mesh netwerken, dus er kunnen dezelfde

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xix — #25 i
i

i
i

i
i

xix

displays gemaakt worden als met de vorige driver. Deze driver zal echter het
systeem van wat meer functionaliteit voorzien. Hij zal het systeem in staat stel-
len om de gecreëerde vorm van het display te detecteren, hoe de verschillende
modules geconnecteerd zijn. Dit wordt dan weergegeven in een Grafische User
Interface (GUI) op een computer. Aangezien het netwerk niet veranderd is ten
opzichte van het vorige, kan een adres van een module nog steeds berekend wor-
den door zijn buren. Om de GUI te laten weten welke modules er aanwezig zijn
(i.e. hoe het display eruit ziet), volstaat het dat alle modules hun adres naar de
microcontroller sturen. Uiteraard zal dit op een gecontroleerde manier moeten
gebeuren. De displayvoorstelling in de GUI is real-time. Wanneer er na de ini-
tialisatiefase modules worden toegevoegd of verwijderd, zal de GUI geupdated
worden, terwijl het display zelf zonder problemen verder werkt. Dit vereist een
grotere complexiteit in het routeringsalgoritme. Om de problemen met datalus-
sen tegen te gaan, zal elke module slechts naar één input kijken (gekozen tijdens
de initialisatiefase). Dit zal een databoom creëren waarbij elke module data ont-
vangt van één parent node en die zal doorsturen naar nul tot drie child nodes.
Maar wanneer een parent node wordt verwijderd, betekent dit nog niet dat de
child nodes geen data via een andere weg zouden kunnen krijgen. Het data-
routeringsprotocol moet er dus voor zorgen dat de databoom wordt aangepast
als een module verwijderd wordt. Wanneer er een nieuwe module toegevoegd
wordt, moet deze uiteraard ook aan de databoom worden toegevoegd.
De laatste driver, de ‘improved free-form modular display driver’ wordt in
Hoofdstuk 8 besproken. Deze heeft dezelfde eigenschappen als de vorige driver,
zijnde dat de vorm van het display kan gedetecteerd worden en dat er modules
kunnen toegevoegd en verwijderd worden na initialisatie. Hetgeen deze driver
nog wat complexer maakt is dat de modules in een veel uitgebreider netwerk
kunnen geconnecteerd worden. Ze kunnen op om het even welke manier ver-
bonden worden, ongeacht de oriëntatie van de modules. Het algoritme laat ook
toe om met driehoekige, vijfhoekige, zeshoekige, ... modules te werken. Deze
extra vrijheidsgraad opent de weg naar een hele nieuwe reeks van mogelijke
displays. Zo zouden ze verbonden kunnen worden om bijvoorbeeld een 3D
gevormd display te maken. Deze extra vrijheidsgraad betekent ook dat de com-
municatie een stuk complexer zal zijn. Terwijl bij de vorige driver de adressen
konden bepaald worden aan de hand van de adressen van de naburig modu-
les, kan dit nu niet langer. De modules kunnen op geen enkele manier weten
hoe ze precies verbonden zijn, en zijn dus niet in staat een zinnig, uniek adres
te berekenen voor hun buren. De enige entiteit die adressen kan bepalen is de
microcontroller zelf. Aangezien deze slechts één module tegelijk zal kunnen
behandelen, is er een protocol nodig dat een point-to-point verbinding tussen
elke module en de microcontroller voorziet. Aangezien nu de adressen geen
informatie meer bevatten over de locatie in het display, zal er andere data nodig
zijn om te detecteren hoe de modules verbonden zijn.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xx — #26 i
i

i
i

i
i

xx Samenvatting

Elk van die vier vernoemde drivers is geı̈mplementeerd in VHDL en is getest
op modules met een FPGA. De eerste driver is ook getest met een cholesterisch
display. De GUI is geprogrammeerd in Visual C++ en een microcontroller voor-
ziet de directe communicatie met de modules. De resultaten van deze testen zijn
te vinden in de respectievelijke hoofdstukken. Het blijkt dat alle drivers en de
geı̈mplementeerde protocollen correct werken. Zoals verwacht is de initialisatie-
tijd bij de complexe tegenhangers groter dan bij hun eenvoudige tegenhangers.
Deze initialisatietijd is sterk afhankelijk van het aantal modules enerzijds, maar
anderzijds kan ook de precieze moduleconfiguratie deze tijd sterk beı̈nvloeden.
Na deze tests zijn de vier drivers geı̈mplementeerd in een chip, de FrIIDoM dri-
ver. Hiervoor is de C35 CMOS technologie van AMS gebruikt. Dit verloop kan
gevolgd worden in Hoofdstuk 9. Deze driver is ontwikkeld om een LED display
van maximaal 8 × 8 LEDs aan te sturen. Het heeft geı̈ntegreerde LED drivers
(stroombronnen voor de kolommen, schakelaars voor de rijen), een on-chip klok
en een power-on reset. In de parameterdata is een byte voorzien om de LED
stroom met 8-bit precisie aan te passen. De stroombron is berekend om maxi-
maal 50mA te kunnen uitsturen. Dit betekent ook dat de schakelaar voor de rijen
een stroom van 400mA moeten kunnen geleiden.
Om de FrIIDoM driver te kunnen testen zijn testbordjes en nieuwe modules ge-
maakt (zie Hoofdstuk 10). De stroombronnen en schakelaars werden op het test-
bord getest. Wanneer er parameters werden verzonden met een stijgende waarde
voor de instelstroombyte, steeg de uitgangsstroom van de stroombronnen lineair,
met een maximumwaarde van 50mA. Ook de schakelaars werden getest. Deze
werden verplicht een steeds grotere stroom te geleiden. De stroom kon worden
opgedreven tot 360mA (maximum waarde te bereiken met meetopstelling) zon-
der dat de schakelaars een krimp gaven. De functionaliteit van de drivers kon
getest worden met de modules. Bij alle drivers werkte de initialisatiefase zonder
problemen. Bij de eerste drivers werden de adressen correct doorgegeven, bij de
laatste twee drivers kregen de modules het juiste adres en werd de displayvorm
juist gedetecteerd. Wanneer er modules werden toegevoegd en verwijderd, werd
dit correct weergegeven in de GUI. Modules die hun data verkregen via zo’n ver-
wijderde module kregen een nieuw pad naar de microcontroller. Alle drivers re-
ageerden ook op een goede manier op de verzonden parameters. De refreshrate,
LED stroom en gebruikte rijen en kolommen konden worden aangepast. Buiten
de derde driver konden ook de datasequenties goed worden verwerkt, zodat het
beeld dat in de GUI gemaakt werd, kon worden afgebeeld op het display. De
derde driver bleek wat problemen te hebben bij het detecteren van adressen in
een datasequentie. Mogelijke oorzaken (en verdere aanpakken) zijn te vinden in
dit hoofdstuk.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xxi — #27 i
i

i
i

i
i

Summary

We are all aware that we live in a world that is filled with displays. They are
present in every corner of our lives. The properties we require for those displays
are becoming more and more stringent. High resolution, high contrast, high flex-
ibility (physical flexibility as well as customizability). Modular displays can help
provide for some of those properties. A modular display system is a type of
display where the display is divided into several (whether or not completely)
independent modules. Each module has its own private (small) display and all
modules work together to give the impression of being one big display. Intelli-
gent modular display systems provide some extra functionality to those displays.
This Ph.D. describes four different versions of such an intelligent modular display
system.
Chapter 2 gives an overview of some important display technologies and their
properties. It also provides the basic insight in the difference of passive and ac-
tive matrix display driving. It can be calculated that with passive matrix driving
and with certain types of display material, there will always be a compromise be-
tween the achievable resolution and contrast (or overall brightness). If you want
to increase the number of rows of such a display, you will have to decrease the
contrast. A modular display system can overcome this. Every module has its
own display, independent from the others. Increasing the number of rows can be
done by simply adding some more modules. This will obviously have no effect
on the contrast of the individual module displays.
Another aspect of modular display systems is that they can be used to create free-
form displays. These are displays that can be created ‘on the go’. They don’t have
a fixed shape, it can be changed. In its simplest form, this is just a scalable display,
where modules are used to create one, very big display, or where the aspect ratio
of the display can be changed. In its more complex form, this could mean that the
precise shape of the display can be changed. Chapter 3 gives some examples of
systems that allow the display to be created with an irregular shape. A modular
display system can also be used for this. Modules can be connected to each other
to create a random display shape, that works as one display. In order to achieve
this, the modules will need to communicate with each other. Every module is
exactly the same and they will be connected to the microcontroller with the same
data line. To be able to distinguish the modules, they all need to be assigned an

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xxii — #28 i
i

i
i

i
i

xxii Summary

address. We do not want to hardcode an address, so it will have to be assigned
through software. This needs some intelligence. But then again, this is the topic
of this book.
Since the connected and communicating modules are in fact a communication
network, we’ll take a look at some of the popular network protocols in Chap-
ter 4. We will conclude that none of these protocols will fit our needs exactly,
and that it is more efficient to create our own protocols. In general, the protocols
consist of two phases. The initialization phase, where the addresses are being
assigned, and the normal operation. The modules all have a bypass (connecting
input and output), which is inactive during the initialization phase (modules can
only communicate with their neighbors) and active during the normal operation
(all modules are connected to the same data line). In the normal operation, all
drivers are able to read parameter and image data. Parameter data includes re-
fresh rate, number of rows and columns used in the display and specific display
properties (like current strength in a LED display).
In Chapter 5 we start off by describing the first driver, the modular display driver.
This driver is meant for modules connected in a bus network. They are connected
as a daisy chain. Every module has one input and one output. The output of one
module is connected to the input of another. This is a very simple network, and
has a very simple protocol. Each module will receive an address of the previous
module, and send the next address through to the next module. Due to the sim-
plicity of this network, it can’t really be used for free-from displays. It is helpful
for the multiplexability problem of passive matrix displays, though.
The driver from Chapter 6, the improved modular display driver, is an extension
of the previous driver. This driver is suited for mesh networks. In this network,
every module has four inputs and outputs, one on each side. With this driver, it is
possible to create a basic free-form display. The method for assigning an address
is similar to the one above. A module receives an address on one of its gates, and
will send calculated addresses to the other gates. We must take care, though. In a
mesh network there can be data loops where there is more than one path between
modules. This can cause data (e.g. addresses) to be stuck inside a loop. In this
chapter we’ll show a primitive way of data routing.
The first real free-form modular display driver is discussed in Chapter 7. It is also
suited for mesh networks and the same displays as with the driver above can be
created. But this driver adds some more complexity, some more intelligence to
the system. It provides the means for the system to recognize how the modules
are connected to each other, what the display looks like. The detected display
shape is then represented in a Graphical User Interface (GUI) on the PC. Since
we have the same network as above, modules can still calculate addresses for
adjacent modules. For the GUI to know which modules are present, it suffices for
all modules to send their own address to the microcontroller. This will have to
happen in a controlled way of course. The representation in the GUI is real-time.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xxiii — #29 i
i

i
i

i
i

xxiii

When modules are added or removed after the initialization phase, it is detected
and the display continues working. A more complex routing protocol had to
be implemented. The data loops are coped with by only looking at one module
for data input, chosen during initialization. This creates a spanning tree, where
every module has one parent node and none to three child nodes. But when a
parent node is removed, it does not necessarily mean that its child nodes cannot
receive data through another path. The data routing protocol should rebuild the
spanning tree when that happens. Also, when new modules are added, they have
to be added in the tree.
The last driver, the improved free-form display driver, is presented in Chapter 8.
This driver has the same properties as the driver from Chapter 7. The created dis-
play shape can be detected and shown in a GUI and modules added or removed
after initialization will be detected and will not interfere with the operation of the
display. However, the modules are no longer limited to a mesh network. They
can be connected any way you like, without regards of the orientation of the
module. The algorithms also allows triangular, pentagonal, hexagonal, ... mod-
ules (they have to be of the same type within one display, though). This extra
degree of freedom creates a whole new range of displays that can be created.
Modules can be connected so that they create a 3D-shaped display for example.
This extra degree of freedom also means that the communication protocol has be-
come more complex. While all previous driver could receive their address from
a adjacent module, this is no longer the case using this setup. There is no way for
the modules to know how they are connected, so there is no means to calculate
a meaningful, unique address. Every address should come from the microcon-
troller itself. The microcontroller can only handle one module at a time, so there
is need for a connection set-up between every module and the microcontroller.
Since the addresses will then no longer hold information about the location of
the modules, extra information is needed to derive the way the modules are con-
nected.
Every one of those drivers is implemented in VHDL and tested with FPGA-
equipped modules and a LED display. The first driver was also used to drive
a Cholesteric LCD. The GUI was created with Visual C++ and a microcontroller
provided the immediate communication with the modules. The results of these
tests can be seen in their respective chapters. It seems that every driver works
as expected. It shows that, as expected, displays using the more complex drivers
take longer to initialize, though their exact initialization time is dependent on the
number of modules (obviously) but also how they are connected.
After the successful tests, the four drivers were implemented in one chip, the FrI-
IDoM driver. For this, the C35 CMOS technology from AMS was used. Chapter 9
shows this process. This driver is created for a maximal 8 × 8 passive matrix
LED display. It has implemented LED drivers (current sources for the columns,
switches for the rows), on-chip clock and Power-On Reset. In the parameter

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xxiv — #30 i
i

i
i

i
i

xxiv Summary

stream, the LED current can be adjusted (8-bit precision). The current sources
can output a 50mA current. This means that the switches on the row electrodes
must be able to withstand 400mA.
To test the FrIIDoM driver, a new test board and modules were made (See Chap-
ter 10). On the test board the current sources and switches were tested. Sending
an increasing current-parameter byte shows a linearly increasing output current,
reaching 50mA on its highest point. The row switches were tested up to 360mA
(maximum using our test setup), without flinching. The functionality of the
drivers was tested with the modules. The initialization phase of all drivers works
without a problem. Using the first two drivers, all modules receive an address
correctly. Using the last two drivers, the addresses are correctly distributed and
the display shape detected. When modules were added they were added in the
GUI. When modules were removed, they disappeared from the GUI and, impor-
tantly, the modules that depended on that module to receive data were rerouted.
All drivers were successful in processing the sent parameter data, changing the
refresh rate, LED current and display size. Apart from the third driver, all drivers
could process incoming data correctly, displaying the data from the GUI on their
screen. The third driver had some difficulties detecting its own address in a data
stream. Possible explanations (and further approaches) for this are found in this
chapter.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xxv — #31 i
i

i
i

i
i

List of Abbreviations

Notation Meaning
AC Alternating Current
AM Active Matrix

ASIC Application Specific Integrated Circuit
ATPG Automated Test Pattern Generation
CAD Computer Aided Design

ChLC(D) Cholesteric Texture Liquid Crystal (Display)
CMOS Complementary MOS

CRT Cathode Ray Tube
DC Direct Current
DFT Design For Testability

FPGA Field-Programmable Gate Array
FPS Frames Per Second

FTDI Future Technology Devices International
GUI Graphical User Interface
I2C Inter-Integrated Circuit
IP Internet Protocol

ITO Indium Tin Oxide
LC(D) Liquid Crystal (Display)
LCoS Liquid Crystal on Silicon
LSB Least Significant Bit

MLA Multi Line Addressing
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MSB Most Significant Bit
(O)LED (Organic) Light-Emitting Diode
PDLC Polymer Dispersed Liquid Crystal
PDP Plasma Display Panel
PET PolyEthylene Terephthalate
PM Passive Matrix

POR Power-On Reset
RMS Root Mean Square

RS-232 Recommended Standard 232
SPI Serial Peripheral Interface

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page xxvi — #32 i
i

i
i

i
i

xxvi List of Abbreviations

(S)TN (Super) Twisted Nematic
STP Spanning Tree Protocol
TFT Thin Film Transistor
USB Universal Serial Bus

VHDL VHSIC Hardware Description Language
VHSIC Very-High Speed Integrated Circuit

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 1 — #33 i
i

i
i

i
i

Man’s greatest asset
is the unsettled mind.

Isaac Asimov (1920-1992)

1
Introduction

1.1 The search for an intelligent modular display
system

We live in a world where displays are becoming more and more important, and
ubiquitous. Almost everywhere we go, we can see a display enlighten us with it’s
information (pun intended). Whether it’s a LED display giving us the latest traffic
information, an LCD screen showing the newest promotions in your favorite fast
food restaurant or maybe an e-book showing the newspaper of today, displays
are present in almost every aspect of our lives. This rise is far from over and in
the coming years we’ll see a lot more display applications seeping into our daily
environment.
Our demands on these displays also keep increasing. We want some of them
to be extremely big (Figure 1.1a), others we like to keep small, but with a good
resolution and contrast (Figure 1.1b). These two applications don’t seem to have
an awful lot in common, but there is something that binds them.
When using certain display technologies, there is always a compromise between
the achievable resolution and contrast. When you want to increase the one, you
automatically decrease the other (See Chapter 2 for a detailed explanation). If you
want to create a decent e-paper application (with properties comparable with
regular paper) both resolution and contrast must be fairly high. A piece of pa-
per printed with a standard printer, already has a resolution of 300 dpi or more.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 2 — #34 i
i

i
i

i
i

2 Introduction

(a) View of the strip in Las Vegas, by night (b) Electronic paper by E Ink

Figure 1.1

Compare that to the 72-96 dpi a standard computer monitor has to offer. Also
the contrast cannot be too low. A typical newspaper has a contrast of 5:1 to 8:1.
E-paper is normally an inherent reflective display (emitted light is reflected am-
bient light, see Chapter 2), where the beautiful paper-like white can be hard to
achieve. One of the solutions for the displays coping with this problem (resolu-
tion vs. contrast) is the main topic of this book: modular display system. If the
display is divided in several modules, the resolution can be disconnected from
the contrast (See Chapter 3).
And why this beautiful picture of Las Vegas, you ask? If you have been in Las
Vegas, you were no doubt overwhelmed by the sheer size of some of the displays.
It is quite obvious that these displays aren’t made in one piece. You’ve probably
heard me coming from a mile away, but again, the solution lies with modular
displays. Several smaller displays are tiled to create one, very large, display.
Some other, new applications, could benefit from modular display systems. Espe-
cially in the range where the displays move away from the traditional rectangular
shape.
Figure 1.2a shows a LED display embedded in clothing, by Lumalive, Philips.
While this might as well be a rectangular display, things change if you also want
to display something on the sleeves and front, if you want your entire jacket to
behave as one display. Here, a modular display system could also come in handy.
The shape of the display is that of the jacket, and can be created by connecting
several modules together.
Modular display systems could also allow us to create almost any shape we
want. Take the magnificent illuminated globe during the Beijing 2008 Summer
Olympics for example (Figure 1.2b). This effect was generated with projection

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 3 — #35 i
i

i
i

i
i

1.2 Publications 3

(a) Display embedded in cloth-
ing, by Lumalive Philips

(b) Illuminated globe during the Beijing 2008 Olympics

Figure 1.2

systems, but (probably on a smaller scale) a similar display could be created us-
ing the correct modular display system.
But, in order for any of these systems to work properly, some intelligence is
needed. What if every module is identical (no hardcoded address), how will the
addresses be assigned? What if some modules are missing or broken? Is there
need for some routing algorithm? What if modules are added or removed dur-
ing operation? Can the display configuration be detected? And most of all, how
can it be done with as little as possible intervention of the user? The main topic
of this Ph.D. is to design some of those intelligent modular systems. In the end,
four systems were designed, one more intelligent than the other. They are thor-
oughly discussed in four chapters (Chapter 5 to 8). They were all implemented
in VHDL and tested on an FPGA. After proven successful, a custom chip was de-
signed with the four drivers integrated (Chapter 9). Chapter 10 gives a detailed
overview of the final results of the created display systems.

1.2 Publications

Papers published in a SCI-journal

• P. Bauwens and J. Doutreloigne, Drivers for Free-Form Modular Displays, Jour-
nal of the Society of Information Display, Vol. 18(3), 2010, pp. 235-239

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 4 — #36 i
i

i
i

i
i

4 Introduction

• P. Bauwens, A. Monté, W. Christiaens, J. Doutreloigne and J. Vanfleteren,
Improved Passive-Matrix Multiplexability with a Modular Display and UTCP
Technology, Displays, Vol. 30(2), 2009, pp. 71-76

• A. Monté, P. Bauwens and J. Doutreloigne, New driving scheme for intelligent
power-efficient high-voltage display drivers, Journal of the Society of Informa-
tion Display, Vol. 16(11), 2008, pp. 1171-1180

Papers presented at international conferences listed as P1-publications

• P. Bauwens, J. Doutreloigne and A. Monté, A Driver for Modular Passive-
Matrix Displays, Proceedings of the 14th International Display Workshops
(IDW’07), 2007, Sapporo, Japan, pp. 1317-1320

• P. Bauwens and J. Doutreloigne, A Free-Form Modular LED-Display Driver,
Proceedings of the 29th International Display Research Conference (IDRC’09),
2009, Rome, Italy, pp. 287-290

Papers presented at international conferences listed as C1-publications

• P. Bauwens and J. Doutreloigne, A New Driver for an Intelligent Modular Dis-
play System, SID2010 Digest of Technical Papers, 2010, Seattle, USA, pp.
1397-1400

• S. Maeyaert, B. Bakeroot, J. Doutreloigne, A. Monté, P. Bauwens et al., In-
tegrated Driver with Optical Compensation for Improved Uniformity of Emissive
Displays, Proceedings of the 8th International Meeting of Information Dis-
play (IMID’08), 2008, Seoul, Korea, pp. 692-695

• A. Monté, J. Doutreloigne and P. Bauwens, A Completely Integrated Power-
Efficient High-Voltage Driver for Bistable Displays, Proceedings of the 27th In-
ternational Display Research Conference (IDRC’07) , 2007, Moscow, Russia,
pp. 428-431

• P. Bauwens, J. Doutreloigne and A. Monté, A New Driving Technology for
Passive-Matrix Displays, Proceedings of the 27th International Display Re-
search Conference (IDRC’07), 2007, Moscow, Russia, pp. 158-160

Papers presented at international conferences without proceedings

• P. Bauwens and A. Monté, Driving a Modular Passive-Matrix Display, SID-ME
Chapter Spring Meeting, 2008, Jena, Germany

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 5 — #37 i
i

i
i

i
i

1.2 Publications 5

• A. Monté and P. Bauwens, Design of a New Power-Efficient High-Voltage
Bistable Display Driver, SID-ME Chapter Spring Meeting, 2008, Jena, Ger-
many

Papers presented at national conferences

• P. Bauwens, Research on New Technologies for ‘Electronic-Paper’ Applications,
8th FirW PhD Symposium, Faculty of Engineering, Ghent University, 2007

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 6 — #38 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 7 — #39 i
i

i
i

i
i

The whole purpose of education
is to turn mirrors into windows.

Sydney J. Harris (1917-1986)

2
It’s all about displays

2.1 Introduction

In this chapter I’ll give a basic introduction into the display world. We’ll start off
by describing some of the older and newer display technologies in Section 2.2. It
is followed by a section where we elaborate on a specific classification in display
technologies, which will help to clarify some vocabulary. In Section 2.4 we take
a peak at a main division in driving a display, the difference between active and
passive matrix driving, and some important consequences. Last but not least,
we’ll have a look at a special kind of display, namely the e-paper, since this was
one of the main motivators for starting this Ph.D.

2.2 Display technologies

2.2.1 Cathode Ray Tube

The first Cathode Ray Tube or CRT saw its light somewhere in 1897 when the Ger-
man physicist Karl Ferdinand Braun modified the Crookes tube (an experimental
electrical discharge tube) with a phosphor coated screen [1, 2]. He conveniently
called it the “Braun tube”. It was only ten years later that the Russian scientist
Boris Rosing used the CRT technology to display simple geometric shapes on the
screen.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 8 — #40 i
i

i
i

i
i

8 It’s all about displays

Cathode ray tubes use an electron beam. It was first called ‘cathode ray’, because
the beam emanated from the cathode (negative electrode) of a vacuum tube [3].
This electron beam will hit the phosphorescent screen to light it up. There needs
to be a very good vacuum in the tube, to avoid scattering of the electrons by
collisions with air molecules. See Figure 2.1 for a cross section of a CRT.

Heater

Cathode
Control

grid Acceleration
anode

Focussing
anode

Plates for
horizontal
deflection

Plates for
vertical

deflection

Electron beam

Conductive
coating

Fluorescent screen

Figure 2.1 – Cross section of a CRT display

The electron beam source is an electron gun at the back of the monitor. The cath-
ode, at the left hand side, emits electrons because it is raised to a high temperature
by the heater, causing the electrons to evaporate from the surface of the cathode.
The accelerating anode, with a small hole at its center, is kept at a high positive po-
tential (1-20kV) relative to the cathode. This gives rise to an electric field between
the cathode and accelerating anode, accelerating the electrons. Electrons passing
through the hole in the anode form a narrow beam and travel with constant hori-
zontal speed from the anode to the screen. The area where the electron hits, lights
up.
The control grid regulates the amount of electrons that reach the anode, thus con-
trolling the brightness of the spot on the screen. The focusing anode makes sure
that every electron in the beam, hits the same spot on the screen. The beam can
be deflected by an electric of magnetic field, to trace over the entire screen. This
happens when it passes the two pairs of deflecting plates or coils. One pair controls
the horizontal deflection, the other the vertical deflection. A picture is formed by
very rapidly scanning the entire screen (left to right, top to bottom) and precisely
controlling the amount of electrons for every point on screen.
One kind of phosphor with one electron beam will only produce one color. In
color CRTs, three electron guns are used, aiming for three different phosphors,

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 9 — #41 i
i

i
i

i
i

2.2 Display technologies 9

emitting red, green and blue respectively. Those phosphors are packed together
in stripes (aperture grille) or round clusters (shadow mask). These grilles or
masks make sure that an electron does not hit the wrong phosphor.

2.2.2 Plasma Display Panel

The first, albeit monochrome, Plasma Display Panel or PDP was developed in
1964 at the University of Illinois by Donald Bitzen and Gene Slottow [1, 4]. How-
ever, the world had to wait for successful plasma televisions until after the rise
of digital and other technologies. In 1983, IBM demonstrated a 19-inch (48 cm)
orange-on-black monochrome display. In 1992, Fujitsu introduced the world’s
first 21-inch (53 cm) full-color display and later, in 1997 the first 42-inch (107 cm)
plasma display with a resolution of 852x480. Philips had a PDP of the same size
and resolution that year, it was the only PDP to be displayed to the retail pub-
lic. Until the early 2000s, plasma displays showed some important benefits over
LCDs. They provided better blacks, faster response time, greater color spectrum,
and wider viewing angle. They could also be made much bigger. LCDs seemed
to be a technology only suited for smaller displays. However, improvements
in VLSI (Very-large-scale integration) fabrication technology have narrowed that
technological gap. LCD displays can now be made in larger sizes and their lower
weight, often lower power consumption and falling prices make them competi-
tive with PDPs.
PDPs, as CRTs, use phosphors to create an image on screen. The way the phos-
phors are excited, however, is completely different. Figure 2.2 shows a cross sec-
tion of a PDP.
Plasma is a gas made up of free-flowing ions (electrically charged atoms) and elec-
trons. A plasma display consists of thousand of tiny cells with an inert mixture
of noble gases (neon and xenon). Under normal conditions, the gas is mainly
made up of uncharged particles. This changes very quickly when a voltage is
placed across a cell. The introduced free electrons will collide with the atoms,
knocking loose other electrons. When this happens, the atom becomes positively
charged. It becomes an ion. Hence, a plasma is formed. The positively charged
particles will be attracted to the negatively charged area, while the electrons will
be rushing to the positively charged area. Particles are constantly bumping into
each other. These collisions will excite the atoms in the plasma, causing them to
release photons of energy. A gas with xenon and neon atoms, these will be ultra-
violet photons. These are invisible to the human eye, but can be used to excite a
phosphorescent material that can emit visible photons (see below).
The voltage across the gas in one specific pixel is established by having a special
electrode structure and charging the correct electrodes (See Figure 2.2). Address
electrodes (See also Section 2.4) are placed behind the cells, along the rear glass
plate. The transparent display electrodes, surrounded by an insulating material and

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 10 — #42 i
i

i
i

i
i

10 It’s all about displays

coated with a protective layer, are placed on top of the cell, along the front glass
plate. The electrodes run across the entire screen. The horizontal top electrodes
and the vertical address electrodes form a grid. When a top and bottom electrode
is charged, the cell at the intersection of both electrodes will be ionized.
As explained, this will stimulate the gas atoms to release ultraviolet photons.
These photons will excite one of the phosphor atoms, coated on the inside wall of
the cell. One of the phosphors electrons will jump to a higher energy level. When
this electron falls back to its normal level, a visible light photon is emitted [5].
Just as with the color CRT, every pixel is made up of three separate subpixel cells,
each with different colored phosphors: red, green and blue. While CRTs control
the amount of electrons sent to adjust the brightness of a pixel, plasma panels use
pulse-width modulation: by varying the pulses of current flowing through the
different cells thousands of times per second, the control system can increase or
decrease the intensity of each subpixel color to create billions of different combi-
nations of red, green and blue. In this way, the control system can produce most
of the visible colors. Plasma displays use the same phosphors as CRTs.

Front plate glass

Dielectric
layer

Display electrodes
Magnesium oxide coating

Rear plate glass

Dielectric layer

Address electrode

Pixel

Phosphor
coating in

plasma cells

Figure 2.2 – Cross section of a PDP

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 11 — #43 i
i

i
i

i
i

2.2 Display technologies 11

p-type n-type

+ -

holes electrons

Figure 2.3 – The inner workings of a LED

2.2.3 LEDs and OLEDs

LEDs

While the phenomenon of electroluminescence (in which a material emits light in
response to an electric current passed through it) was already discovered in 1907
by the British experimenter H. J. Round, and later (1927), independently, by the
Russian Oleg Vladimirovich Losev, no practical use was made of the discovery
for several decades [6]. It was not until 1961 that the first infrared Light-Emitting
Diode or LED was created by the Americans Robert Biard and Gary Pittman.
The birth of the first visible-spectrum (red) LED was developed in 1962 by Nick
Holonyak Jr. The first LEDs became commercially available in late 1960s. They
were commonly used as indicators, and in seven-segment displays, first in ex-
pensive equipment such as laboratory and electronics test equipment, then later
in such appliances as TVs, radios, telephones, calculators, and even watches. As
the LED materials technology became more advanced, the light output was in-
creased, and LEDs became bright enough to be used for illumination.
Figure 2.3 shows the inner workings of a LED. I will not go into the specifics of the
physical processes that occur inside a LED, but I will skim the basic principles.
A diode is the simplest sort of semiconductor device. Most semiconductors are
made of a poor conductor that has had impurities (atoms of another material)
added to it. Adding impurities is called doping. When a semiconductor is doped
with atoms with extra electrons, an N-type material is created. An N-type material
has extra negatively-charged particles, free electrons can move from a negatively
charged area to a positively-charged area. A P-type material is created when the
semiconductor is doped with atoms with less electrons, creating electron holes in
the material. Electrons can jump from hole to hole (towards a positively-charged
area), creating the illusion of a hole moving towards the negatively-charged area.
A diode consists of an N-type material bonded to a P-type material, with elec-
trodes on each end. Without a voltage applied to the electrodes, the electrons
from the N-type region will fill up the holes in the P-type region along the junc-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 12 — #44 i
i

i
i

i
i

12 It’s all about displays

tion between the regions. This zone, where the semiconductor is returned to its
insulating state, is called the depletion region. Applying a positive charge to the
electrode on the N-type and a negative charge to the electrode on the P-type will
only increase this depletion region, causing no current to flow. When, on the
other hand, a negative charge is put on the N-type area and a positive charge on
the P-type, the free electrons in the N-type area will be repelled by the negative
electrode and drawn to the positive electrode. The opposite holds for the holes in
the P-type area. If the voltage difference between the electrodes is high enough,
the electrons in the depletion zone are pulled out of their holes. The depletion
zone will disappear and current will flow. The free electrons moving through a
diode can fall in empty holes in the P-type area, causing an energy drop which is
released as a photon. The frequency of the photon (relative to the energy drop),
and so the color, is dependent on the used materials.
But some colors are more difficult to make. It was not until the 1990s that low-cost
efficient blue LEDs emerged, completing the red-green-blue color triad needed
for a color LED display.

OLEDs

An organic LED (OLED) is, as implied by the name, a specific kind of LED.
Tang and Van Slyke of Eastman Kodak first reported light emission from small-
molecule organic systems in 1987. The company went on to patent this materials
technology and has since licensed it to other companies, which have continued
its development. In the past few years, many new small-molecule OLEDs have
been discovered and refined, considerably diversifying the playing field. The
first OLED product, a monochrome car stereo display, reached the market in 1997
[1, 7].
The operation of the OLED is basically the same as that of the regular LED (See
Figure 2.4)
Between the metal cathode and the transparent anode, there is an emission layer
and a conductive (or hole transport) layer, both made of an organic material.
Sometimes more layers are added (electron transport layer, hole injection layer)
to improve efficiency [8, 9, 10]. On the anode there is a glass substrate. One of the
great advantages of the OLED is that it can be made flexible, although other sub-
strate materials are needed [11]. The emission layer transports the electrons from
the cathode, the conductive layer transports the holes from the anode. When, as
with the regular LED, an electron and a hole combine they will emit a photon.
In the materials used, the holes have a greater mobility then the electrons, so this
will happen in the emission layer, hence the name. The frequency of the photon
(the color of the emitted light) depends on the used material. So for a full color
OLED TV, you need a layer that emits blue light, one that emits red light and one
that emits green light.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 13 — #45 i
i

i
i

i
i

2.2 Display technologies 13

Metal cathode

Electron transport layer

Emissive layer

Hole transport layer

ITO anode

Glass substrate

Figure 2.4 – The structure of an OLED

Different material technologies exist for creating OLEDs. They are typically a
phosphorescent or fluorescent material. What these materials do is they can ab-
sorb energy (like high enery particles or photons) and re-emit the energy as a
photon with a specific wavelength. Phosphorescence is similar to fluorescence
except the light emission continues even after the source of energy is removed. It
is said that the phosphorescent OLEDs are much more efficient than their fluo-
rescent counterparts [12].
OLEDs have a lot of great advantages over both LCDs and regular LEDs. They
can be made lighter, thinner and more flexible. They are brighter than LEDs
and do not require backlighting like LCDs (see below), which makes them more
power efficient. OLEDs are easier to produce and can be made to larger sizes.
Because OLEDs are essentially plastics, they can be made into large, thin sheets.
It is much more difficult to grow and lay down so many liquid crystals. OLEDs
have large fields of view, about 170 degrees. Because LCDs work by blocking
light, they have an inherent viewing obstacle from certain angles. OLEDs pro-
duce their own light, so they have a much wider viewing range.
There are still some problems though. One of the biggest problems OLEDs copes
with, is the limited lifespan. While red and green OLED films have longer life-
times (46,000 to 230,000 hours), blue organics currently have much shorter life-
times (up to around 14,000 hours). Another problem is that water can easily de-
stroy OLEDs.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 14 — #46 i
i

i
i

i
i

14 It’s all about displays

2.2.4 Liquid Crystal Displays

One could probably write an entire book about liquid crystals (LC) and their use
in liquid crystal displays (LCD). I will only cover some of the basic principles and
give a few examples of LCD technologies that might pop up in later chapters of
this book.

Liquid crystals

Liquid crystals are substances that can be in a phase between the liquid and
solid phase. They were already discovered in 1888 by the Austrian physiolo-
gist Friedrich Reinitzer [1, 13]. Because it shared characteristics of both liquid
and crystal, it got the name “fliessende krystalle”. The name “liquid crystal” was
born. He discovered it by varying the temperature of certain crystals. At a certain
temperature, their state changed from crystals to liquid crystals. These types of
LC are called thermotropic. There are also lyotropic LCs, based on a reaction with
water or another solvent. These are mainly investigated in the fields of biochem-
istry and bionics and will not be discussed here.
Research on LCs made a slow start. In 1922, Georges Friedel describes the struc-
ture and properties of liquid crystals and classified them in 3 types (see below).
The patent for the first practical application of the technology (the liquid crys-
tal light valve) was filed in 1936 [14]. It was not until the 1960s, however, that
serious studies of the materials and the effects of electric fields on these devices
were carried out. The first use of a liquid-crystal device as a display dates back
to Williams and Heilmeier in 1963.
As said above, Friedel divided the liquid crystals in three types. Liquid crystal
molecules are often shaped like rods or plates that encourage them to align col-
lectively along a certain direction. The division was made based on this natural
ordering of the modules. The three types are the smectic, nematic and cholesteric
type [15].

• Smectic liquid crystals: In smectic type liquid crystals, the cigar-like molecules
are arranged side by side in a series of layers as shown in Figure 2.5a. The
long axes of all molecules in a given layer are parallel to one another and
perpendicular to the plane of layers.

• Nematic liquid crystals: In the nematic state, the molecules are not as highly
ordered as in the smectic state, but they maintain their parallel order (See
Figure 2.5b). On average, the nematic liquid crystals are aligned in one
direction. Liquid crystals used in electronic displays are primarily of the
nematic type.

• Cholesteric liquid crystal: The molecules in cholesteric liquid crystals are
arranged in layers (See Figure 2.5c). Within each layer, molecules are

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 15 — #47 i
i

i
i

i
i

2.2 Display technologies 15

(a) Smectic LC (b) Nematic LC (c) Cholesteric LC

Figure 2.5 – The three types of LC

aligned in parallel, similar to those in nematic liquid crystals. The molec-
ular layers in a cholesteric liquid crystal are very thin, with the long axes
of the molecules parallel to the plane of the layers. A special aspect of the
cholesteric structure is that the direction in each layer is displaced slightly
from the corresponding director of the adjacent layer. The displacement
is cumulative through successive layers, so that the overall displacement
traces out a helical path, giving the liquid crystal some interesting proper-
ties.

Liquid crystal displays

After the invention of the LCD in 1963, things started to move faster. In 1970
the twisted-nematic (TN) field effect was discovered by Hoffmann-LaRoche [16],
which is still employed in most of the active-matrix and direct-drive LCDs made
today. A year later, the first LCD using this TN-effect was produced. It was a
long road from the simple watch displays of the early 1970s to the full-color LCD
desktop monitors of today. One by one, every technical challenge posed by the
CRT standard has been met and in many cases exceeded. At the end of 2001,
we could find excellent LCD monitors on the shelf in any major retail electronics
store. In 2007 the LCD televisions surpassed CRT units in worldwide sales.
Liquid crystals find their use in display applications because of the difference
in their properties in presence and absence of an electrical field. For example,
light might be scattered, blocked or have its polarization changed by the LC in
the absence of an electrical field, while the LC in the presence of an electrical
field leaves the light unchanged. Color filters can be used to create the needed
primary colors for a full color LCD. A lot of different LCD technologies exist, but

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 16 — #48 i
i

i
i

i
i

16 It’s all about displays

Polarizer

Polarizer

Alignment layer

Figure 2.6 – The twisted-nematic liquid structure. In the absence of an electrical field, the
light changes polarization (left). In the presence of an electrical field, the light remains

unchanged.

I will only discuss the TN and its big brother the Super-Twisted Nematic (STN)
because of their importance in the display world and Cholesteric displays and
PDLC displays because they are mentioned further in this book.

(S)TN

When a nematic liquid crystal lies on a surface with grooves, the molecules of the
LC will line up with the grooves. When the LC is sandwiched between two layers
with grooves in directions perpendicular to each other, the LCs will be forced into
a helical twist of 90°. The entire display structure consists of a polarizer, an align-
ment layer with grooves, glass with a transparent electrode, the liquid crystal,
another transparent electrode on glass, the second alignment layer with perpen-
dicular grooves and the second polarizer with a perpendicular polarization to the
first polarizer. (See Figure 2.6).
As the light strikes the first polarizer, only one polarization is let through. The
TN LC has such an effect on the polarized light, that it will rotate the polarization
90°. This way, it can safely pass the second polarizer. When this light comes from
a light source at the back of the display, the pixel will emit light. Things change
when a voltage is applied between the two electrodes. In that case, the LCs will

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 17 — #49 i
i

i
i

i
i

2.2 Display technologies 17

Voltage

M
id

l
y

T
lt

A
l

-
a

e
r

i

n
g

e

(a)

P
e

rc
e

n
t
tr

a
n

sm
is

si
o

n

Voltage

(b)

Figure 2.7 – The angle of the molecules versus the applied voltage (a). The resulting
electro-optical response (b). (SHARP)

orient themselves more or less (depending on the strength of the electric field)
parallel to the applied field. The polarized light is no longer completely twisted
by the LCs and is partially blocked by the second polarizer. The pixel appears to
be gray, or black if the light was completely blocked by a sufficiently strong field.
By controlling the twist of the LCs in each pixel, the transmission of the exact
amount of light that passes through can be varied. Figure 2.7 shows the response
of a typical TN cell to an applied voltage. Figure 2.7a shows the angle of the
molecules as a function of the applied voltage. Figure 2.7b shows the resulting
electro-optical response, being the amount of light transmitted through the liquid
crystal. A transmission of 10% can be considered black, a transmission of 90% can
be considered white. This is 90% of the maximum light that can be transmitted.
The polarizer filters 50% of the light source, so a white pixel corresponds with a
total transmission of 45%. Color filters are used to create color pixels.
The biggest problem with a simple TN LCD is the limited viewing angle. This
can be reduced by using other technologies like IPS (In Plane Switching) where
the applied field is horizontal instead of vertical, leaving the LC molecules al-
ways parallel to the substrate, or VAN (Vertically Aligned Nematic) where the
molecules will align themselves perpendicular to the field. The curve in Fig-
ure 2.7b is not really steep. The voltages for 10% (VOFF) and 90% (VON) are quite
far apart. In Section 2.4 we’ll see that because of this, passive matrix driving (also
discussed in that section) will put serious limitations on the achievable resolu-
tion. To increase the resolution, we’ll have to move to active matrix driving, or
make the curve steeper.
This is exactly the purpose of the Super-Twisted Nematic (STN) LC. In 1984, Terry
Scheffer found that, when doping the TN LC with a cholesteric LC, cells could be
made where the LC doesn’t twist 90°, but 270°[17]. With some more adjustments,
other twist angles were possible. Figure 2.8 shows how this affects the electro-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 18 — #50 i
i

i
i

i
i

18 It’s all about displays

Voltage

la
ye

r
il

A
g

le
M

id
-

T
t

n

(a)

Voltage

i
P

e
rc

e
n

t
tr

a
n

sm
ss

io
n

(b)

Figure 2.8 – The angular distortion versus the applied voltages for the different initial twist
angles (a). The resulting electro-optical response (b). (SHARP)

optical/distortional responses.
The steeper the curve of the electro-optical response, the higher the resolution can
be using passive matrix driving. However, grayscale images require intermediate
points along the curve. For this reason, many commercial STN displays use a
twist angle of 210°.
Of course, the STN LCDs also has its drawbacks. The shifted transmission spec-
trum of the device causes an undesirable coloration. This was solved by adding
another STN layer (Double STN or DSTN), with a twist in the opposite direction,
nullifying the shift. The contrast was further increased with the introduction of
the Film Compensated STN (FSTN). An extra filter layer is placed between the
STN display and rear polarizer to increase the sharpness and contrast. Also the
Dual Scan STN increased the contrast. The screen is divided into halves which
are scanned simultaneously, doubling the lines being refreshed per second.

PDLC

Polymer Dispersed Liquid Crystal is based on a different principle. It switches
between a scattering state and a transparent state. In the scattering state, the in-
cident light is scattered back and will be perceived as milky white. With a light
absorber at the back, the transparent state will appear black [18]. PDLCs are thin
polymer films with dispersed LC microdroplets. They do not require polarizers.
The absence of polarizers greatly reduces light loss through the cell in the trans-
parent state (polarizers usually block over 50% of the incident light in TN cells)
[19].
Figure 2.9 shows a PDLC film in the presence and absence of an electrical field.
When no electrical field is applied, the nematic LC in the droplets will align itself
randomly per droplet. In the “off-state” the PDLC film appears milky white due

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 19 — #51 i
i

i
i

i
i

2.2 Display technologies 19

Light

Polymer

LC

(a)

Light

Polymer

LC

(b)

Figure 2.9 – A PDLC film in the absence (a) and presence (b) of an electrical field

to the scattering caused by the refractive index mismatch encountered by incom-
ing light at the liquid crystal/polymer interface. When an electric field is applied
across the film, the liquid crystal molecules within the micro-droplets align with
the electric field. If the ordinary refractive index of the liquid crystal within the
droplets is sufficiently close to the index of the polymer matrix material, the in-
coming light is no longer scattered and the PDLC film becomes clear [20].
To create a PDLC film, mixture of LCs and monomers (non-cured polymers) is
created. This mixture has to be cured with UV to obtain a stable film. During the
UV curing process, polymerization starts. This results in a separation between
the polymer an the LC molecules. The size of the droplets is generally in the
order of several micrometers. However, the size, and consequently some electro-
optical properties, can vary a lot depending on the preparation of the PDLC.
Smaller droplets means more scattering, but a higher voltage is needed to turn
them transparent. Other variables are the materials used and the ratio they are
mixed in. Parameters that control the way the photo-induced polymerization
takes place are the temperature, UV intensity and UV cure time [18, 21, 22, 23].
Also the cell thickness plays an important role. The thicker the cell, the more the
light will be scattered in the “off-state”, but the higher the switching voltages will
be. A general electro-optical response of a PDLC film of 20µm thick, is shown in
Figure 2.10. Keep in mind that the voltages shown are not representative for all
PDLC films, since these are, as said, highly dependent on the film parameters.
From the graph it is also clear (or it will be clear after reading Section 2.4) that
PDLC is not very multiplexable. For this reason it is mostly used in direct drive
applications (like smart windows, switching between transparent and frosted).
With the correct color filter, it is also possible to create full color PDLC displays
[24].

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 20 — #52 i
i

i
i

i
i

20 It’s all about displays

Voltage (RMS)

T
a

n
sm

itt
a

n
ce

 (
%

)
r

Voff Von

Figure 2.10 – A general electro-optical response of a PDLC film

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 21 — #53 i
i

i
i

i
i

2.2 Display technologies 21

(a) (b)

Figure 2.11 – In the stable planar state, the incident light is reflected (a). In the focal conic
state, no light is reflected (b).

Bistable cholesteric liquid crystal

As said in the beginning of this section, cholesteric liquid crystal (ChLC) has a
special helical structure in which the liquid crystal molecules are aligned along a
common direction on a plane perpendicular to the helical axis but the molecules
on different planes are twisted with respect to each other. The liquid crystal is
a periodic optical medium along the helical axis; the refractive index oscillates
periodically [25]. This creates a Bragg reflector, which reflects light within a certain
wavelength band, depending on the twist of the helical structure.
Cholesteric reflective displays are made of two substrates with a ChLC sand-
wiched between them. They exhibit two stable states at zero field condition [26],
meaning that no voltage is required to keep the crystal in a particular state, only
to change state. One of them is the stable planar state (SP) in which the helical
axis is more or less perpendicular to the cell substrates, as shown in Figure 2.11a.
Incident light within the reflection band is reflected backward. The material has a
bright appearance in this state. The other one is the focal conic state (FC) in which
the helical axis is more or less parallel to the substrates, as shown in Figure 2.11b.
Incident light is diffracted or scattered in the forward direction and absorbed by
the absorption layer coated on the bottom substrate. The material in this state has
a black appearance.
Switching between the two stable states is done by applying the correct voltages.
The liquid crystal molecules tend to align parallel to applied electric fields. If an
intermediate voltage is applied across the cell when the ChLC is in the planar
state, all the molecules will be aligned perpendicular to the applied field. This
makes the planar state unstable. At higher voltages the helical structures will be

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 22 — #54 i
i

i
i

i
i

22 It’s all about displays
e

fe
ct

iv
ity

R
l

10V 30V 50V

SP

FC FC

SP

RMS Voltage

Figure 2.12 – A schematical representation of the response of ChLC to a voltage pulse

unwound, but if the applied field is not high enough, the helices themselves will
turn and the ChLC will be switched to the focal conic state. Since this is a stable
state, they will remain there even after the applied voltage is removed. When the
voltage is high enough to unwind the helical structure, the ChLC is said to be
found in the homeotropic state, where all molecules are aligned with the electric
field. This is an unstable state, and when the high voltage is removed quickly
the liquid crystal relaxes into the planar state. A schematic representation of the
optical response to a voltage pulse can be seen in Figure 2.12.
Since the color of the reflected light depends on the twist in the helical structure,
it is possible to design a ChLC for reflecting a certain color. Monochromatic dis-
plays can be made from a single layer of ChLC. Full color displays need a stack
of three layers, reflecting blue, green an red light [27, 28].

2.2.5 Some other display technologies

Field Emission Display

A Field Emission Display (FED) is based on the same principles as the CRT. High
velocity electrons are shot against a phosphorescent screen, which will light up.
But, instead of an electron gun to emit the electrons a large array of fine metal tips
or carbon nanotubes is used [29]. Every pixel will have its own set of nanotubes,
which can be activated separately. Whereas the electron gun in the CRT relied on
heating the cathode to emit electrons, the FED relies on cold emission. When a
voltage is applied (in the order of kV) a very high electrical field will be generated
between the cathode (nanotubes) and the anode (metal mesh at the screen side),

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 23 — #55 i
i

i
i

i
i

2.2 Display technologies 23

due to the very fine tips of the nanotubes. This field will pull the electrons from
the tips and throw them against the phosphorescent screen.
Due to the cold cathodes, the emittors can be packed close together with their
supporting electronics, without causing the entire display to overheat. The as-
sembly of cathodes can then be placed close enough to the glass face of the dis-
play. As a result, the display can be made flat like the PDP.

Electrophoretic Display

Electrophoretic displays (EPDs) are based on the movement of charged particles
in a fluid. When this mixture of particles and fluids is placed in a cell and a
voltage is applied, the particles will move away from (or towards, depending of
the charge) top of the cell. If the particles and the fluid have a different color, the
top of the cell will obtain one of those colors, depending on the applied voltage.
Another option is using a transparent fluid and mixing it with two types of par-
ticles (e.g. black and white) with opposite charge. One voltage will pull the black
particles to the top and the white to the bottom, the opposite voltage will pull
the white particles to the top. Because of the large viscosity of the fluid, rather
large voltages are needed to separate the black and white particles. The advan-
tage though is that due to that viscosity, the particles remain in the same place
when the voltage is removed, making the display bistable.

Electrowetting Display

Wetting is the ability of a liquid to maintain contact with a solid surface, result-
ing from intermolecular interactions when the two are brought together. A fluid
with little wetting will be more like a sphere on the surface, while a fluid with
more wetting will be more smeared out. Electrowetting is the modification of the
wetting properties of a hydrophobic surface with an applied electric field.
In an electrowetting display, water and (colored) oil are the main actors [30]. With
no voltage applied, the oil forms a flat film between the water and a hydrophobic
(water-repellent), insulating coating of an electrode, resulting in a colored pixel.
When a voltage is applied, the hydrophobic surface becomes hydrophilic and the
oil is pushed aside, resulting in a white pixel if there is a white reflective layer
beneath the element.

Electrochromic Display

Electrochromism is the phenomenon displayed by some materials of reversibly
changing color when a burst of charge is applied. An electrochromic layer can
be colored and turned transparent by the injection of ions (positively charged
particles) and electrons [31]. The color change is persistent and energy need only

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 24 — #56 i
i

i
i

i
i

24 It’s all about displays

be applied to effect a change, which makes it a bistable technology. However,
it is a very slow process, so it is not suitable for displaying video material. It is
often used in smart windows or large-area information displays like advertising
boards where high switching speed is not required.

2.3 Transmissive, emissive, reflective?

An important distinction in display technologies is the difference between reflec-
tive, transmissive and emissive displays.
Transmissive displays use a backlight. The image is formed by pixels blocking or
transmitting the light. LCDs using technologies like (S)TN, VAN, ISP can be used
as transmissive displays. They are usually low in power efficiency because the
backlight is always emitting light, even when a black screen is to be displayed.
Another consequence is the limited contrast ratio, since the ‘blackness’ of black is
dependent on the blocking ability of the LC, which isn’t 100%. Typically, an LCD
has a contrast ratio of 1,000:1. There is a technique, called local dimming, which
can improve this ratio. The uniform backlight is replaced with individual LEDs,
which can be turned off in the areas where black is to be displayed. This way,
ratios up to 10,000:1 can be achieved [32]. This might seem a good improvement,
but compare this with the contrast ratio of a CRT or PDP. With these displays,
perfect black is possible, which gives them theoretically an infinite contrast ratio,
but is practically said to be about 2,000,000-5,000,000:1.
This is the difference with an emissive display, where light is only generated from
the pixels when they are turned on. This is the case, for example, with CRT, PDP
and OLED displays. In theory, these emissive displays should be more energy ef-
ficient, but due to low efficiency in the light generation process most emissive and
transmissive flat panel displays have comparable efficiency. In retail, it is often
claimed that a PDP consumes a lot more power than a LCD, however, these mea-
surements are done with the display showing a completely white screen, which
is not representable for real-life television.
A third category is that of the reflective displays. Ambient light is reflected (or
not) to produce an image. Examples are an (S)TN display with a reflective surface
at the back, a PDLC display, a ChLCD and electrophoretic/electrowetting/elec-
trochromic displays. Reflective displays are most efficient. They are particularly
good where ambient light is very bright, such as direct sunlight. They obviously
do not work well in low-light environments.
There are also displays that are a combination of reflective and transmissive dis-
plays, called transflective. They use a semi permeable mirror that is able to reflect
ambient light, and transmit light from the backlight. This is used in cell phones.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 25 — #57 i
i

i
i

i
i

2.4 Driving the display: active and passive matrix driving 25

2.4 Driving the display: active and passive matrix
driving

Another important distinction in displays is the way they are driven, how the
voltage to turn a pixel on or off is applied. There is passive matrix driving, active
matrix driving and the older direct drive.
In direct drive displays, every pixel has its own electrode (with a common bottom
electrode). Applying voltage to a pixel will have no effect on the other pixels.
It is clear that, with an increasing number of pixels, the number of electrodes
becomes unmanageable. For a display of N pixels, N + 1 electrodes are needed.
This driving method was for example used in 8-segment alphanumeric displays
you find in your old alarm clock (See Figure 2.13c).
A more efficient use of electrodes is found in so called matrix driving, where the
display has a mesh of horizontal and vertical electrodes. There is a pixel at each
intersection. A display with (M× N) pixels will only need (M + N) electrodes.
To display an image on the screen every row is selected one after another, these
are called the address electrodes. During the selection of a certain row, the column
electrodes are used to provide the pixels of that row with the correct voltage, they
are often called data electrodes. Using passive matrix driving, the top and bottom
electrodes of a pixel are directly connected to its row and column electrode. The
voltage difference the pixel sees will be the difference between both electrodes
(See Figure 2.13a). This has some important consequences. Since the same col-
umn electrode is used to provide the voltages for all pixels in that column, the
pixels of a non-selected row can be influenced during the driving of the pixels of
a selected row. They are no longer electrically separated, like with direct drive.
The problem arises when using display materials that respond to the RMS (Root
Mean Square) value of the applied signal. The luminance of a pixel in such a dis-
play, will not only depend on the voltage applied when its own row is selected,
but will be influenced by every pixel value in that column. The more rows there
are, the more difficult it is to make a large difference between the ‘on’ voltage
(VON) of a pixel, and the ‘off’ voltage (VOFF). In short, to achieve a certain con-
trast, there is a maximum number of lines that can be multiplexed. Alt & Pleshko
[33] derived that, with NMAX the maximum number of lines,

VON
VOFF

=

√√
NMAX + 1√
NMAX − 1

�� ��2.1

Or, when demanding a specific contrast, with VOFF = Vth and VON = Vth + ∆
(See also Figure 2.14), for ∆ << Vth :

NMAX =

(
Vth
∆

)2 �� ��2.2

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 26 — #58 i
i

i
i

i
i

26 It’s all about displays

Row (address)
electrode

Column
electrode

Pixel

(a) Passive matrix driving

Row (address)
electrode

Column
electrode

Pixel

(b) Active matrix driving

Common
electrode

Pixel
electrode

(c) Direct drive

Figure 2.13 – Distinction between driving methods.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 27 — #59 i
i

i
i

i
i

2.4 Driving the display: active and passive matrix driving 27

Vth

e
L

u
m

in
a

n
c

Off OnD

Voltage (RMS-value)

Figure 2.14 – General electro-optical characteristic of a PM-addressable liquid crystal.

Another issue arises during the passive matrix driving of fast responding dis-
plays. Take an (O)LED display for example. Every pixel in that display will only
be emitting light when its row is selected. When the other rows are being se-
lected, the pixel stays dark. This means that, to achieve a certain total brightness
of the screen, the more rows there are, the brighter the pixels need to shine during
their short row time. This is especially a problem with OLEDs where the lifetime
is strongly dependent on how hard they are driven. Passive matrix displays are
generally characterized with slow response time and poor contrast. They are easy
and cheap to make, though.
Active matrix displays are developed to remove that limitation. The ‘active’ part
denotes the presence of an active element, in this case the transistor. Every pixel
has its own transistor and storage capacitor (See Figure 2.13b). In this case, when
a row is selected, the pixel transistor is activated and the column electrode can
charge the storage capacitor according the desired pixel value. When the row is
not selected, the transistor is inactive and the pixel is electrically isolated from
the column electrode (and the voltage over it remains the same). It is not influ-
enced by the column electrode when it is applying voltages for other selected
rows. This way, there is no inherent limitation on the number of lines that can be
multiplexed. But because of this transistor (and extra ground line), active matrix
displays are harder to make. The transistors can be made on glass like Thin Film

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 28 — #60 i
i

i
i

i
i

28 It’s all about displays

Transistors (TFT) or on silicon like LC on Silicon (LCoS). Currently there is also
a lot of research on creating TFTs on flexible substrates, to create flexible, active
matrix displays like AMOLED (Active Matrix OLED) displays.

2.5 Something about e-paper

Electronic paper or e-paper can be described as “any combination of display tech-
nology and application that provides a valid alternative concerning features and
usability compared to traditional paper” [34]. This means that, ideally, e-paper
should have a couple of properties. It should be thin, light and flexible. It should
have a resolution comparable to printed paper. A budget printer already offers a
resolution of 300 dpi (dots per inch), while the resolution of a standard PC mon-
itor is about 72 to 96 dpi. E-paper should have at least the contrast ratio of a
typical newspaper, around 5:1 to 8:1. It should have a large viewing angle and be
clearly visible in the brightest sunlight. And last but not least, it should be ultra
low power.
It is quite a challenge to create a display technology that can provide for all of
these properties, but there are some technologies that can help. Technologies like
ChLCD and EPD for example. These are bistable (low power consumption) LCs,
with a contrast ratio that can go up to 20:1 and can be made flexible. They do
require high voltages, though. A ChLCD may need up to 100V to switch states.
This Ph.D. was started with the aim of creating an easy to make, flexible, passive
matrix e-paper display with a high resolution and good contrast. As said in the
previous section, passive matrix displays and good contrast/resolution don’t go
well together, so the research towards a method to increase the resolution without
touching the contrast was started. The following chapters will explain how this
is done and how that same method was expanded to shift the main focus of this
Ph.D. to modular display systems in general.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 29 — #61 i
i

i
i

i
i

References

[1] D. E. Mently, “State of Flat-Panel Display Technology and Future Trends,”
Proceedings of the IEEE, vol. 90, no. 4, pp. 453–459, April 2002.

[2] Wikipedia. Cathode ray tube. [Online]. Available: http://en.wikipedia.org/
wiki/Cathode ray tube

[3] P. S. Christaldi, “Cathode Ray Tubes and Their Applications,” Proceedings of
the IRE, vol. 33, no. 6, pp. 373–381, June 1945.

[4] Wikipedia. Plasma display. [Online]. Available: http://en.wikipedia.org/
wiki/Plasma display

[5] H. Bechtel, T. Jüstel, H. Gläser, and D. U. Wiechert, “Phosphors for plasma-
display panels: Demands and achieved performance,” Journal of the SID,
vol. 10, no. 1, pp. 63–67, January 2002.

[6] Wikipedia. Light-emitting diode. [Online]. Available: http://en.wikipedia.
org/wiki/Light-emitting diode

[7] Wikipedia. Organic LED. [Online]. Available: http://en.wikipedia.org/
wiki/Organic light-emitting diode

[8] S. V. Slyke, M. Hettel, M. Boroson, D. Arnold, N. Armstrong, and J. Andre,
“Passive Matrix OLED Displays: Operational and Storage Stability,” in Pro-
ceedings of the 20th International Display Research Conference (IDRC2000), 2000,
pp. 341–345.

[9] S. Tokito, T. Tsuzukia, F. Satoa, and T. Iijima, “High-efficiency blue and white
phosphorescent organic light-emitting devices,” Current Applied Physics,
vol. 5, no. 4, pp. 331 – 336, April 2005.

[10] T. Matsushima, M. Takamori, Y. Miyashita, Y. Honma, T. Tanaka, H. Aihara,
and H. Murata, “High electron mobility layers of triazines for improving
driving voltages, power conversion efficiencies, and operational stability of
organic light-emitting diodes,” Organic Electronics, vol. 11, no. 1, pp. 16 – 22,
January 2010.

http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Plasma_display
http://en.wikipedia.org/wiki/Plasma_display
http://en.wikipedia.org/wiki/Light-emitting_diode
http://en.wikipedia.org/wiki/Light-emitting_diode
http://en.wikipedia.org/wiki/Organic_light-emitting_diode
http://en.wikipedia.org/wiki/Organic_light-emitting_diode

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 30 — #62 i
i

i
i

i
i

30 References

[11] R.-Q. Ma, R. Hewitt, K. Rajan, J. Silvernail, K. Urbanik, M. Hack, and
J. Brown, “Flexible active-matrix OLED displays: Challenges and progress,”
Journal of the SID, vol. 16, no. 1, pp. 169–175, January 2008.

[12] M. Hack and J. J. Brown, “High-Efficiency AMOLEDs,” Information Display,
vol. 18, no. 7, pp. 16–19, Jule 2002.

[13] Wikipedia. Liquid crystal. [Online]. Available: http://en.wikipedia.org/
wiki/Liquid Crystals

[14] MarconiWireless Telegraph Company, “The liquid crystal light valve,”
British Patent 441 274, 1936.

[15] H. Kawamoto, “The History of Liquid-Crystal Displays,” Proceedings of the
IEEE, vol. 90, no. 4, pp. 460–500, April 2002.

[16] Hoffmann-LaRoche, “Lichtsteuerzelle,” Swiss Patent 532 261, 1970.

[17] T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid crystal
display,” Applied Physics Letters, vol. 48, no. 10, pp. 1021–1023, November
1984.

[18] F. Bruyneel, “Introduction of Color in Reflective PDLC and PNLC Microdis-
plays,” Ph.D. dissertation, Ghent University, 2002.

[19] G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC)
films,” Electronics & Communication Engineering Journal, vol. 4, no. 2, pp. 91–
100, April 1992.

[20] R. Karapinar, “Electro-optic Response of a Polymer Dispersed Liquid Crys-
tal Film,” Turkish Journal of Physics, vol. 22, no. 3, pp. 227–236, March 1998.

[21] Y. G. Fuh, K. L. Huang, C. H. Lin, I.-I. C. Lin, and I. M. Jiang, “Studies of the
Dependence of the Electra-Optical Characteristics of Polymer Dispersed Liq-
uid Crystal Fihns on Curing Temperature,” Chinese Journal of Physics, vol. 28,
no. 6, pp. 551–557, December 1990.

[22] S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence
of the morphology of polymer dispersed liquid crystals on the UV polymer-
ization process,” Journal of Applied Physics, vol. 81, no. 9, pp. 5992–5999, May
1997.

[23] J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland,
and T. M. Millerd, “Dependence of the electro-optical properties of poly-
mer dispersed liquid crystals on the photopolymerization process,” Journal
of Applied Physics, vol. 81, no. 9, pp. 5984–5991, May 1997.

http://en.wikipedia.org/wiki/Liquid_Crystals
http://en.wikipedia.org/wiki/Liquid_Crystals

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 31 — #63 i
i

i
i

i
i

References 31

[24] F. Bruyneel, D. Cuypers, H. D. Smet, and A. V. Calster, “Reflective Color
PDLC Display using Color Filters,” in SID’02 Symposium Digest of Technical
Papers, 2002, pp. 534–537.

[25] D.-K. Yang, “Flexible Bistable Cholesteric Reflective Displays,” Journal of Dis-
play Technology, vol. 2, no. 1, pp. 32–37, March 2006.

[26] D.-K. Yang, J. L. West, L.-C. Chien, , and J. W. Doane, “Control of reflectivity
and bistability in displays using cholesteric liquid crystals,” Journal of Applied
Physics, vol. 76, no. 2, pp. 1331–1333, July 1994.

[27] M. Okada, T. Hatano, and K. Hashimoto, “Reflective Multicolor Display Us-
ing Cholesteric Liquid Crystals,” in SID97 Symposium Digest of Technical Pa-
pers, vol. 28, 1997, pp. 1019–1022.

[28] D. Davis, K. Hoke, A. Khan, C. Jones, X. Y. Huang, and J. W. Doane, “Mul-
tiple color high resolution reflective cholesteric liquid crystal displays,” in
Proceedings of the 17th International Display Research Conference (IDRC97), 1997,
pp. 242–245.

[29] Y. Saito, K. Hata, R. Mizuchima, T. Tanaka, S. Uemura, T. Nagasako, J. Yotani,
and T. Shimojo, “Field Emission from Carbon Nanotubes and its Application
to FED elements,” in Proceedings of the 18th International Display Research Con-
ference (IDRC98), 1998, pp. 173–181.

[30] B. J. Feenstra, R. A. Hayes, I. G. J. Camps, L. M. Hage, M. T. Johnson,
T. Roques-Carmes, L. J. M. Schlangen, A. R. Franklin, A. F. Valdes, and
R. A. Ford, “A Reflective Display Based on Electrowetting: Principle and
Properties,” in Proceedings of the 23th International Display Research Conference
(IDRC2003), 2003, pp. 322–324.

[31] Wikipedia. Electrochromic devices. [Online]. Available: http://en.
wikipedia.org/wiki/Electrochromic devices

[32] H. Chen, J. Sung, T. Ha, Y. Park, and C. Hong, “Backlight Local Dimming
Algorithm for High Contrast LCD-TV,” in Proceedings of the 9th Asian Sympo-
sium on Information Display, 2006, pp. 168–171.

[33] P. M. Alt and P. Pleshko, “Scanning limitations of liquid-crystal displays,”
IEEE Transactions on Electron Devices, vol. ED-21, no. 2, pp. 146 –155, February
1974.

[34] W. Hendrix, “Design of Low-Power High Voltage Driver Chips for Bi-Stable
LCD’s,” Ph.D. dissertation, Ghent University, 2006.

[35] A. Monté, “Design of an Intelligent High-Voltage Display Driver to Min-
imize the Power Consumption in Bistable Displays,” Ph.D. dissertation,
Ghent University, 2008.

http://en.wikipedia.org/wiki/Electrochromic_devices
http://en.wikipedia.org/wiki/Electrochromic_devices

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 32 — #64 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 33 — #65 i
i

i
i

i
i

Reality is that which,
when you stop believing in it,
doesn’t go away.

Phillip K. Dick (1928-1982)

3
Modular Displays

3.1 Introduction

In this small chapter I will give an introduction to modular displays, what they
are, what they do and what they’re trying to solve. We’ll start out by taking a look
at some display designs aiming to solve the issues that arise when driving with a
passive matrix. In Section 3.3 we’ll introduce briefly some existing systems that
can create a free-form display, a display that can be shaped as desired. In the last
section we’ll see how modular displays cover those two areas.

3.2 Solving the issues with passive matrix driving

In Section 2.4 passive matrix driving was discussed. This type of displays is ap-
parently very easy to make because of the lack of any TFT beneath the LC. But
we all know there’s no such thing as a free lunch, so this advantage comes with
some disadvantages. For a certain contrast, the number of lines that can be mul-
tiplexed is limited. For a certain light output per pixel, the total brightness is
reduced depending on the total number of lines. There are some technologies
that can reduce these restrictions .

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 34 — #66 i
i

i
i

i
i

34 Modular Displays

Figure 3.1 – Dual scan display

3.2.1 Limitation of multiplexability

Dual scan displays

The essence of this limitation is the fact that each column electrode can only be
used to drive a limited number of pixels. Dual scan displays will not remove
the limitation, but they reduce it [1]. Take a look at Figure 3.1. The display is
split up in two sections, an upper half and lower half. The column electrodes run
only across one half of the display. They are accessed both from the top as from
the bottom. This way, when each set of column electrodes drives the maximum
number of pixels, the total number of pixels across a vertical line is doubled.
Using a dual scan display, twice as much rows can be multiplexed compared to
single scan displays. Also, since both sections can be scanned at the same time, a
dual scan display will be able to refresh faster.

Quad scan displays

Quad scan or multi scan displays take it a step further. Again, it is not the aim
to completely remove the limitation but simply to reduce it enough. These types
of display will try to divide the screen in more parts. The upper and lower part
of the dual scan display can also be divided in two parts. The main problem en-
countered is the fact that the column electrodes of these new parts aren’t easily
accessible. The contacts also need to come from the top or the bottom of the dis-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 35 — #67 i
i

i
i

i
i

3.2 Solving the issues with passive matrix driving 35

Figure 3.2 – Quad scan display

play, so special structures are needed [2]. An example is given is Figure 3.2. Each
seperate part of the column electrodes can account for the maximum number of
lines, meaning the total resolution can be quadrupled. Although one must real-
ize that the connections to the column electrodes themselves can and will cause
artifacts in the display.

3.2.2 Reduction of brightness

MLA

It’s not really necessary to make a definitive distinction between the techniques
for increasing the multiplexability and brightness, because in the end it all comes
down to the Alt & Pleshko limitation from Section 2.4. The techniques discussed
above could very well be used to increase the overall brightness of the display.
But I would say that these techniques are more appropriate for slow respond-
ing LCs, while the techniques described below apply to fast responding LCs.
This is also the reason why Multi-Line Addressing (MLA) was developed. The
slow ‘frame-responding’ LCs caused a reduction in contrast and visible flicker-
ing. Multi-Line Addressing was initially developed to increase the contrast (and
thus multiplexability) in fast responding STN LCDs. The concept of MLA stems
from the early work on generalized matrix addressing by Nehring & Kmetz [3],
which proved the validity of Alt & Pleshko’s selection ratio limit.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 36 — #68 i
i

i
i

i
i

36 Modular Displays

What they proved is that, when using general matrix addressing (see below), the
equality from Equation 2.1 is only an equality when the number of rows N is a
perfect square. In the other case, it is possible for VON/VOFF to be higher. They
calculated that

VON
VOFF

=

√
1 +

N√
n0(N − n0)(N − 1)− n0

, for N ≥ 6
�� ��3.1

with n0 the closest integer to ν0:

ν0 =
1
2
(N −

√
N)

�� ��3.2

When N is a perfect square, Equation 3.1 can be simplified to Equation 2.1 from
Alt & Pleshko.
The reason for this difference is that Alt & Pleshko started from the conventional
time multiplexing of the display. Select a row, apply the data to the column,
select next row. The applied voltage on the column electrode for a certain pixel,
will only depend on the state of that pixel alone (e.g. 0V if pixel is off, 5V is pixel
is on). Nehring & Kmetz proposed a more general matrix addressing, where
multiple rows are being selected at the same time, hence Multi-Line Addressing.
In this scheme, the voltage applied on the column electrodes isn’t meant for one
pixel alone, but will depend on the entire ‘state’ of that column.
I will not go to much into the mathematical details, but it might be interesting to
see how this is done. Every column has a specific state, which is called λ. In a
display with N rows, there are 2N states possible (each pixel can be either on or
off). The periodic potentials that will be applied to the row electrodes are called
Fi(t) with (i = 1, · · · , N), which are orthogonal functions. The potentials for the
column electrodes, depending on the state λ of that column, are noted by Gλ(t)
and are determined by

Gλ(t) =
N

∑
i=1

a(λ)i · Fi(t)
�� ��3.3

When taking a look back at the conventional driving scheme, Fi(t) would be
strobe functions (high for a short time when te row is selected, low for the rest
of the time when the row is not selected) and a(λ)i would only be dependent on
bit i (on the ith row). But this does not provide the best results. In the general
matrix addressing scheme the coefficients are dependent on the entire state of the
column (with n the number of pixels in that row that are on):

a(λ)i =

{
bn, when pixel i is off
cn, when pixel i is on

�� ��3.4

These coefficients can be calculated by maximizing the minimal VON/VOFF that
will occur. Same goes for the RMS value F of the row potential functions Fi(t).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 37 — #69 i
i

i
i

i
i

3.3 Creating free-form displays 37

Figure 3.3 shows examples for a display with N = 2 (normalized for the threshold
voltage (Vth = 1)). The calculated values in this case are:

F =
√

2
b0 = 1/2 c1 = −1/2
b1 = 3/2 c2 = −(2

√
2− 1)/2

Figure 3.3b shows the results when using the strobe functions. There is one big
disadvantage. When taking into account the reverse polarities needed to drive
the display (netto no DC voltage), there is need for 9 different voltage levels,
which is not so practical. Figure 3.3c uses a different set of orthogonal functions,
and only needs 7 voltage levels. Figure 3.3d only needs 5.
The advantage of MLA is that with this technique, fast responding LCs can be
used so the refresh rate can be increased. But, more importantly in this section,
the maximum voltage supply can be reduced. For a constant RMS value, the
maximum voltage will be lower if the voltage pulses are more distributed in time,
instead of one big pulse. This is why this technique is extensively used in OLED
displays [4]. Instead of providing a desired light output by giving the OLEDs one
big pulse, which reduces their lifetime significantly, the lower pulses are more
spread out over the entire frame time.

3.3 Creating free-form displays

On a somewhat lighter note, I will give some examples of systems aiming to
provide a free-form display. A free-form display is a display without a fixed
shape. It can be transformed and changed to suit the user’s wishes. In its simplest
form, this could just mean that the display is scalable. In this case the display
retains its rectangular shape, only the size and aspect ratio can be changed.

3.3.1 Tiled displays

Tiled displays are in se not really a specific system, but more a collective noun of
systems where several displays work together to display one large image. These
can be direct view displays, although projection based systems, where it’s the
projectors that are being tiled, are also considered to be tiled displays [5]. In any
case, these displays (or projectors) will not communicate directly to each other,
but rather through a central server.
The main issues, and research topics, are to make the transition between the sev-
eral tiles seamless. When using direct view displays, there is always an edge
around the display. One of the solutions to work around this problem, is to use
light guides [6]. The light of the pixels is guided to create a slightly larger display
area, that overlaps with the edges of the underlying displays. This problem is not

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 38 — #70 i
i

i
i

i
i

38 Modular Displays

F0

F1

G0 G1 G2 G3

(a)

0

2

0

2

F0

F1

0

0

0

0

1

-1

3

3

-1

G0

G1

G2

G3

-2 2+1

(b)

0

0

F0

F1

G0

G1

G2

G3

2

2

2
- 2

- 2
2

-2 2

2 2

- 2
2

-2 2

2 2

4- 2

-4+ 2

(c)

F0

F1

G0

G1

G2

G3

3

- 3

-2 3

2 3

3

- 3

0

-2 3

2 3

-2 3

2 3

(d)

Figure 3.3 – MLA driving schemes for a 2-row display

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 39 — #71 i
i

i
i

i
i

3.3 Creating free-form displays 39

Figure 3.4 – Transformable LED from Barco

present using projection systems, however another issue is present. A display, or
a projection, will always differ a little bit depending on the specific device that is
used. Some will be a little brighter, or the colors are a little bit different, etc. A
feedback loop is needed to try to circumvent this problem. A camera, connected
to the central server, is placed in front of the screen to detect irregularities. This
information can be used to adjust the images displayed, to create a seamless tiled
display [7].

3.3.2 Transformable LED

The Transformable LED was developed by Barco. It consists of individual, com-
pact, high quality LED pixel modules that can be used as building blocks to sculpt
any design possible (See Figure 3.4). The pixel modules can be combined with a
variety of specifically designed carriers (mechanical structures) into any shape
customers desire [8].

3.3.3 CurveLED

CurveLED [9] is something a bit similar. It is a system that builds a display out
of several LED ropes, a LED curtain. The ropes themselves can be separated after
each pixel, so the length of the rope can be adjusted. They are mounted in a
module that holds 8 ropes and the connection between two such modules can be
bent 45°. Figure 3.5 shows the LED curtain in action.

3.3.4 FlyFire

Another amazing project (still a work in progress) is called FlyFire [10]. It’s a
project initiated by the SENSEable City Laboratory in collaboration with ARES
Lab (Aerospace Robotics and Embedded Systems Laboratory) at MIT and says it

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 40 — #72 i
i

i
i

i
i

40 Modular Displays

Figure 3.5 – CurveLED

“aims to transform any ordinary space into a highly immersive and interactive
display environment”.
Flyfire uses a large number of remotely controlled, self-organizing ”micro he-
licopters”. Each helicopter contains small LEDs and acts as a smart pixel.
Through digitally controlled movements, the helicopters perform elaborate and
synchronized choreographies, generating a unique free-form display in three-
dimensional space. Using the self-stabilizing and precise controlling technology
developed by the ARES Lab, the motion of the pixels is adaptable in real time.
The Flyfire canvas can transform itself from one shape to another or bring a two-
dimensional photographic image into an articulated shape. Today the researchers
at MIT are able to simultaneously control a handful of micro helicopters, but they
are aiming to scale up and reach very large numbers. Figure 3.6 shows one of the
pixel helicopters, together with a (conceptual) image of a possible 3D free-form
display.

3.4 Two birds, one stone: modular displays

3.4.1 What is it exactly?

Modular displays are displays that, as the name implies, consist of several mod-
ules. Each module is an independent display that can be connected to either a
central server or microprocessor, or to another module. In contrast to tiled dis-
plays there is no point-to-point link to the central server, so we have to take in
account some kind of routing algorithm to provide every module with data. Sev-
eral network topologies are possible [11], each with its own advantages and dis-
advantages.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 41 — #73 i
i

i
i

i
i

3.4 Two birds, one stone: modular displays 41

Figure 3.6 – Flyfire from MIT

(a) (b) (c)

Figure 3.7 – Several network topologies for modular displays

The bus network (Figure 3.7a) provides a very simple solution of general connec-
tivity for a small number of display modules, but does not scale well with a large
number of display modules. The mesh network is the easiest to create with iden-
tical modules, but cannot route data efficiently. Data can get stuck in a loop, it
keeps being sent from one module to another. The tree network has fewer links
and no data loops, but is more susceptible to defects and errors in the nodes.
We’ll see that, except for the driver discussed in Chapter 5, we’ll start from a easy
mesh network and transform it, through software, to a tree network optimized
for that particular situation.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 42 — #74 i
i

i
i

i
i

42 Modular Displays

3.4.2 What can they solve?

Limitation of multiplexability

As explained, a passive matrix display can only have a limited amount of rows
for a desired contrast. When the display is divided in several independent mod-
ules, this limitation only applies to the modules themselves, not to the display
as a whole. It is an extension of the dual scan display, which can be seen as a
modular display with two modules. A modular display has no theoretical limit
in multiplexability. It is only a matter of having enough modules.

Reduction of brightness

Same goes for the limitation of brightness. You can add more rows to the display
by adding modules, without having to reduce the time that one row is selected,
i.e. without reducing the brightness.

Creating free-form displays

Free-form displays can be created by connecting the modules together to create
a shape. Although routing algorithms need to be used to provide every module
with data. More freedom in forms can be obtained by creating new ways for the
modules to be connected. Can they be connected to form a 3D shape? Can the
modules themselves have different shapes? In the next few chapters, a couple of
modular display systems will be proposed.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 43 — #75 i
i

i
i

i
i

References

[1] Wikipedia. Dual Scan. [Online]. Available: http://en.wikipedia.org/wiki/
Dual Scan

[2] C.-T. Lu, C.-I. Chao, K.-J. Ho, P.-Y. Chen, H.-M. Tsai, E.-C. Chang, and C.-K.
Yen, “Multi-Scan-Line Passive-Matrix Organic EL Display,” in Proceedings of
the International Display Manufacturing Conference (IDMC’07), 2005, pp. 730–
731.

[3] J. Nehring and A. R. Kmetz, “Ultimate Limits for Matrix Addressing of RMS-
Responding Liquid-Crystal Displays,” IEEE Transactions on Electron Devices,
vol. ED-26, no. 5, pp. 795–802, 1979.

[4] C. Xu, A. Karrenbauer, K. M. Soh, and C. Codrea, “Consecutive multiline
addressing: A scheme for addressing PMOLEDs,” Journal of the SID, vol. 16,
no. 2, pp. 211–219, February 2008.

[5] Y. Yamaguchi, “Large Screen Display: Past, Present and Future,” in Proceed-
ings of the 17th International Display Research Conference (IDRC1997), 1997, pp.
278–280.

[6] A. C. Lowe, N. A. Gallen, and P. A. Bayley, “Tiling technology for large-area
direct-view displays,” Journal of the SID, vol. 14, no. 5, pp. 427–435, May 2006.

[7] A. Majumder, E. S. Bhasker, and R. Juang, “Advances towards high-
resolution pack-and-go displays: A survey,” Journal of the SID, vol. 16, no. 3,
pp. 481–491, March 2008.

[8] Barco.com. Barco pushes creative boundaries with new transformable LED.
[Online]. Available: http://www.barco.com/events/pressrelease/2257/

[9] CurveLED. CurveLED. [Online]. Available: http://www.curveled.net/

[10] Flyfire. Flyfire. [Online]. Available: http://senseable.mit.edu/flyfire/

[11] T. Ohkami, “Modular display: an approach to intelligent display systems,”
in SID96 Symposium Digest of Technical Papers, vol. 27, 1996, pp. 225–228.

http://en.wikipedia.org/wiki/Dual_Scan
http://en.wikipedia.org/wiki/Dual_Scan
http://www.barco.com/events/pressrelease/2257/
http://www.curveled.net/
http://senseable.mit.edu/flyfire/

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 44 — #76 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 45 — #77 i
i

i
i

i
i

I hear and I forget.
I see and I remember.
I do and I understand.

Confucius (551-479 BC)

4
Network and Communication

Protocols

4.1 Introduction

This will be another small chapter. Last chapter introduced modular displays
and showed that they form some sort of network. Each module is a node in the
network and, depending of the functionality of the driver, these nodes need to
communicate with each other. When this work was presented in conferences,
some people asked why this or that protocol wasn’t used instead of the one that
was proposed. In this chapter, some network and communication protocols will
be introduced. In the chapters about the drivers themselves (Chapters 5 to 8)
we’ll see why these protocols are or aren’t applicable.

4.2 OSI 7 layer model

In 1984 ISO (International Organization for Standardization) developed the Open
Systems Interconnection (OSI) model. It is a conceptual framework of standards
for communication in a network across different equipment and applications [1].
It is an architectural model, used for inter-computing and inter-networking com-
munications. In this model, the communication process is divided into 7 layers,
each with clear characteristics. The goal is to have a communication process that

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 46 — #78 i
i

i
i

i
i

46 Network and Communication Protocols

uses several protocols, residing on different layers. The layers and their proto-
cols are independent from each other. A protocol on a higher layer doesn’t know
(and doesn’t need to care) which protocols are used on the layers below. This
simplifies implementation when a protocol on one of the layers is changed. Not
all protocols can be allocated in one specific layer, though. Basically, layers 7
through 4 deal with end to end communications between data source and desti-
nations, while layers 3 to 1 deal with communications between network devices.
Since the communication between the modules mutually and between the mod-
ules and the microcontroller are low level, only the first two layers will be of any
importance. Below is an overview of the layers with a short description [2].

1. Physical Layer
The Physical Layer consists of the hardware transmission technologies of
a network. It describes the relationship between a device and a physical
medium, how the individual bits of information will be transferred. Exam-
ples are RS-232, I2C, Bluetooth, DSL (Digital Subscriber Line, communica-
tion over telephone network), the physical layers of the USB and Ethernet
protocol, etc.

2. Data Link Layer
The Data Link Layer defines how data, as a whole, will be transferred be-
tween network entities. This includes to detect and possibly to correct er-
rors that may occur in the Physical Layer. Data will be packaged in frames
and the Physical Layer is used to send these packages to an adjacent node
or put it on a shared medium. In this last case, the Data Link protocols
will also specify how to deal with frame collisions. Frame collisions occur
when two or more devices try to use the shared medium at the same time.
Data Link protocols define how to detect and recover from those collisions.
Since there are multiple devices on the shared medium, correct delivery of
frames is done through the use of hardware addresses. A frame’s header
contains source and destination addresses that indicate which device orig-
inated the frame and which device is expected to receive and process it.
These addresses are flat, they have no information about the logical or phys-
ical group to which the address belongs. Examples are the Ethernet proto-
col, IEEE 802.11 wireless LAN, Spanning Tree Protocol, parts of the USB,
I2C and RS-232 protocols, etc.

3. Network Layer
While the Data Link Layer will only send a frame to the adjacent node, the
Network Layer provides the functional and procedural means of transfer-
ring variable length data sequences from a source to a destination host via
one or more networks. The Network Layer takes care of the routing of the
frames sent by the Data Link Layer, while controlling the flow and conges-
tion of packages. It uses normally a connectionless model. This means that

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 47 — #79 i
i

i
i

i
i

4.2 OSI 7 layer model 47

no connection is set up before sending. The package is just equipped with
an address and sent off. This address will normally be assigned from a hier-
archical system. As opposed to the addresses of the Data Link Layer, these
addresses contain information about a logical group the address belongs to.
This provides a way to route the packages. The Internet Protocol (IP) is an
example of a Network Layer protocol.

4. Transport Layer
Moving to the more application-oriented layers, the Transport Layer is
responsible for delivering data to the appropriate application process on
the host computers. For process-to-process communication, the Transport
Layer uses port numbers. Together with the source and destination IP ad-
dress, this constitutes a network socket, identifying the process-to-process
communication. Usually, several processes on one device will access the
network, so the Transport Layer protocols take care of the statistical mul-
tiplexing of data from different application processes, i.e. forming data
packets, and adding source and destination port numbers in the header
of each Transport Layer data packet. There can be either connection ori-
ented communication (meaning that a connection is set up before sending)
or connectionless communication. Using connection oriented communi-
cation, the data stream is divided into packages called segments. These
segments are numbered making it possible to retrieve missing or erroneous
segments and re-order out-of-order data, making it an end-to-end reliable
communication. The best known example is the Transfer Control Proto-
col (TCP) used in the Internet Protocol Suite (TCP/IP). The connectionless
communication doesn’t offer a reliable end-to-end connection, but can be
a lot faster. An example is the User Datagram Protocol (UDP), used for
streaming video.

5. Session Layer
The Session Layer provides the mechanism for opening, closing and man-
aging a session between end-user application processes. Communication
sessions consist of service requests and service responses that occur be-
tween applications located in different network devices. These requests and
responses are coordinated by protocols implemented at the session layer. It
provides authentications and permissions (e.g. SSH).

6. Presentation Layer
The Presentation Layer manages the presentation of the information in an
ordered and meaningful manner. This layer’s primary function is the syn-
tax and semantics of the data transmission. It converts local host computer
data representations into a standard network format for transmission on
the network. On the receiving side, it changes the network format into the
appropriate host computer’s format so that data can be utilized indepen-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 48 — #80 i
i

i
i

i
i

48 Network and Communication Protocols

dent of the host computer. Its main functions are conversion, encryption
and compression.

7. Application Layer
The Application Layer provides a means for the user to access information
on the network through an application. This layer is the main interface for
the user to interact with the application and therefore the network. This
layer interacts with software applications that implement a communicat-
ing component. Such application programs fall outside the scope of the
OSI model. Application layer functions typically include identifying com-
munication partners, determining resource availability, and synchronizing
communication. When identifying communication partners, the applica-
tion layer determines the identity and availability of communication part-
ners for an application with data to transmit. When determining resource
availability, the application layer must decide whether sufficient network
resources for the requested communication exist. In synchronizing com-
munication, all communication between applications requires cooperation
that is managed by the application layer. Some examples of application
layer implementations include Telnet, File Transfer Protocol (FTP), Simple
Mail Transfer Protocol (SMTP), HyperText Transfer Protocol (HTTP), etc.

4.3 Protocols

In this section, some protocols will be discussed. It would be useless (and im-
possible) to discuss them all, so I picked a few that might seem relevant to the
network that will be generated with our modular display, keeping in mind that
we want to keep everything as simple as possible. The protocols discussed here,
will belong in one of the first two layers of the OSI model.

4.3.1 I2C

I2C (Inter-Integrated Circuit) is a multi-master serial single-ended computer bus.
It uses two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock
(SCL), pulled up with resistors (See Figure 4.1). The used addresses are 7 bits
long. With 16 reserved addresses, a maximum of 112 nodes can communicate on
the same bus. A node can take one of two roles: master (node that issues the clock
and addresses slaves) and slave (node that receives the clock line and address).
The bus is a multi-master bus which means any number of master nodes can be
present, although most systems only include one. Additionally, master and slave
roles may be changed between messages (after a STOP bit is sent) [3].
The I2C-compatible hardware slave device come with a predefined address. At
the beginning of a transaction, the master node transmits the device address of

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 49 — #81 i
i

i
i

i
i

4.3 Protocols 49

Master
(µC) Slave Slave Slave

SDA

SCL

Vdd

Figure 4.1 – A sample schematic of I2C-use with one master (a microcontroller) and three
slave nodes

SDA

SCL

S P

Figure 4.2 – Data transfer is initiated with the START bit (S). Then, the bits on the SDA line
are sampled when SCL is high. When the transfer is complete, a STOP bit (P) is sent.

the intended slave. The slaves are responsible for checking and recognizing their
own address. To be able to connect several identical devices on the line, some of
the address bits are configurable at the board level. The limit is then set by the
number of user-configurable address bits (typically two bits, allowing up to four
identical devices).
Communication starts when the master sends a start bit followed by the address
of the slave it wishes to communicate with. This is followed with a bit, indicat-
ing whether it wishes to write (0) to or read (1) from the slave. The slave, if it
exists, will respond with an acknowledgment bit (active low). According to the
read/write bit it send, the master continues in either transmit or receive mode.
The slave chooses the complementary mode. Data is sent with most significant
bit first. The start bit is indicated by a high-to-low transition of SDA with SCL
high; the stop bit is indicated by a low-to-high transition of SDA with SCL high.
When the master writes to a slave, it will send each byte separately with the slave
sending an ACK bit after each byte. The same process happens when the master
wishes to read. The slave will send the bytes, while the master responds with an
ACK bit after every byte. Transmission is ended by the master with a stop bit. It
may also send another start bit, if it wishes to retain control of the bus for another
transfer (See Figure 4.2).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 50 — #82 i
i

i
i

i
i

50 Network and Communication Protocols

Name Purpose
Data Terminal Ready (DTR) Tells modem that PC is ready to be con-

nected.
Data Carrier Detect (DCD) Tells PC that modem is connected to

telephone line.
Data Set Ready (DSR) Tells PC that modem is ready to receive

commands or data.
Request To Send (RTS) Tells modem to prepare to accept data

from PC.
Clear To Send (CTS) Acknowledges RTS and allows PC to

transmit.
Transmitted Data (TxD) Carries data from PC to modem

Received Data (RxD) Carries data from modem to PC.
Common Ground (GND) Common return path for all signals.

Table 4.1 – Signals used by the RS-232 protocol, for example between a PC and a modem.

4.3.2 RS-232

The RS-232 (Recommended Standard 232) serial communication protocol is a
standard protocol used in asynchronous serial communication. It is commonly
used in computer serial ports. Its original purpose was to connect a terminal with
a modem. The serial communication link between two devices comprises several
components [4]. There are the devices themselves, obviously, with an UART (Uni-
versal asynchronous receiver/transmitter) possibly accompanied with a voltage
converter circuit, and the serial channel itself. The UART takes bytes of data and
transmits the individual bits in a sequential fashion. At the destination, a second
UART re-assembles the bits into complete bytes. The voltage converter circuit
will translate the voltage levels generated by the UART (normally TTL/CMOS
voltages) to voltages defined by the RS-232 protocol. The standard requires the
transmitter to use +12V and -12V, but requires the receiver to distinguish voltages
as low as +3V and -3V. Some manufacturers therefore built transmitters that sup-
plied +5V and -5V and labeled them as “RS-232 compatible”. The serial channel
itself can have up to 22 wires. Besides the two data wires (one for each flow of
direction, RxD and TxD) and the common ground wire (GND), there can be a lot
of control wires, but not all of them are always needed. See Table 4.1 for the most
used signals. In its minimal form, RS-232 communication only requires 3 wires:
RxD, TxD and GND (or even two if data only flows in one direction).
In the control signals, no clock signal is available. The devices communicate with
each other at a previously established bit rate. The bits are arranged in 7 or 8 bit
words, encapsulated between a start and stop bit. It’s also possible to include a
parity (control) bit. There are a couple of ways to implement a parity bit. You can

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 51 — #83 i
i

i
i

i
i

4.3 Protocols 51

b2Start Stopb0 b1 b3 b4 b5 b6 b7 parity

LSB MSB

Figure 4.3 – RS-232 communication

set it to be always 1, or always 0. If the parity bit is wrong, there’s a good chance
there are more errors in the frame. You can also set the parity bit to a value that
makes the total number of 1’s or 0’s in the frame odd or even. Figure 4.3 shows
an example.

4.3.3 SPI

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link. It
is basically “three-wire plus slave selects” serial bus, with one master and sev-
eral slaves. [3]. Each device on the bus acts simultaneously as a transmitter and
receiver. Two of the three lines transfer data (one line for each direction: MOSI
(Master Out, Slave In) and MISO (Master In, Slave Out)) and the third is a serial
clock (SCLK) (See Figure 4.4). Each slave has a slave select input (chip enable),
which has a dedicated line to the master node (hence “three-wire plus slave se-
lect”). When the master wishes to communicate with one of the slaves, it will
enable the slave using its slave select wire. The master will generate the clock
signal.
The SPI bus employs a simple shift register data transfer scheme: Data is clocked
out of and into the active devices in a first-in, first-out fashion. It is in this manner
that SPI devices transmit and receive in full duplex mode.

4.3.4 USB

While previous protocols were mostly situated in the Physical Layer of the OSI
model, the Universal Serial Bus (USB) protocol can be considered also to be part
of the Data Link Layer. It provides the means to communicate with several de-
vices through a single medium (using addresses). The USB protocol allows for
127 devices to be connected to a host controller. These devices can be connected
in a tiered-star topology (See Figure 4.5). In a star topology, all devices are di-
rectly connected to the controller (no common line). A tiered-star topology is a
star topology where every “ray” of the star can be another star (by using a USB
hub). Sometimes devices are also functioning as a hub. In this way, some sort of
tree structure can be created with several levels (tiers). However, the USB proto-
col specifications tell us that only five tiers can be used [5].

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 52 — #84 i
i

i
i

i
i

52 Network and Communication Protocols

SCLK

MOSI

MISO

SS1

SS2

SS3

Master

SCLK

MOSI

MISO

SS1

Slave 1

SCLK

MOSI

MISO

SS2

Slave 2

SCLK

MOSI

MISO

SS3

Slave 3

Figure 4.4 – Configuration for SPI communication.

root
hub

device
device/

hub

hub

device

device

hub

device

device

device

hub
device

device

Host Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

device/
hub

device

device

device

Figure 4.5 – The tiered-star topology for the USB protocol.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 53 — #85 i
i

i
i

i
i

4.3 Protocols 53

At the Physical Layer, the USB consists of 4 wires. VDD (5V), ground and two data
wires (D+ and D-). The data wires are used differentially (both wires take oppo-
site values). The data itself is sent using NRZI (Non-Return to Zero, Inverted)
encoding. NRZI-encoding means that a logical ‘0’ causes a transition on the data
wires, while a logical ‘1’ causes no transition. To make sure that there are at least
some signal transitions, USB also uses bit stuffing. When bit stuffing is used an
extra 0 bit is inserted after any series of six 1 bits. This means that seven consecu-
tive 1 bits always results in an error. Data is sent in packages of different lengths,
depending on the type of package. Each package is preceded with a synchroniza-
tion sequence, a package identifier (PID) and ends with error checking bits (CRC)
and an end-of-package identifier (EOP). At the host (or hub) side, D+ and D- are
pulled down with a 15kΩ resistor. A device has a 1.5kΩ pull-up resistor, which
will pull up the line. This way a connected device can be detected. A low-speed
device will pull up the D- wire, a full-speed device pulls up the D+ wire. When
a new device is connected, initialization (or enumeration) is started, where the
device will receive its address. But more about this later. First, let’s take a look at
how USB operates at a higher level.
A connection (called pipe) is made between the host and an endpoint on a de-
vice. Each endpoint represents a part of a device that fulfills one specific purpose
for that device, such as to receive commands or transmit data. A full speed de-
vice can have up to 16 endpoints, though low speed devices can have only three.
Several endpoints can account for one function of the device, and a device can
consist of several functions. The endpoints are numbered (set at design time).
To set up a pipe with one endpoint, both the address of the device itself and the
desired endpoint number are used. Endpoint 0 is supported by all devices when
powered up. This endpoint is the target of the default pipe. After the attachment
of a device has been detected, endpoint 0 is used to initialize the device.
I will not go into the details about the different types of packages and pipes,
because that would take us too far. I will, however, mention briefly the initializa-
tion process and data transmission because of its relevance to the next chapters.
In short, there are handshake packages (e.g. ACK as response to a data package),
token packages (only sent by the host, could be seen as control packages, always
contains address and endpoint number) and data packages (containing the actual
data). For example, the host wants to send some data to a device with address A
(endpoint E). First, a token package is sent (OUT) indicating that the host wants to
send something. This package will contain the address A and endpoint number
E of the specific device. The next package will be a data package (max. 1024 bytes
in full-speed devices, 8 bytes in low-speed devices), which will only be processed
by device A, which will send it to its endpoint E. This device will respond with
a handshake package (ACK). For every new data package, a new token package
needs to be sent. Initialization works with the same principle. As said, when a
device is connected, it will pull one of the data wires high. When this is detected,

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 54 — #86 i
i

i
i

i
i

54 Network and Communication Protocols

the host put the device in the reset state by pulling both data wires low. When
hubs are used, it’s the hub that will detect the new device. It will use its endpoint
0 to let the host know about the new device. The host will then command the hub
to put the new device in the reset state (pulling both data wires low). After the
device is reset it will respond to address 0. In other words, during configuration,
the host will always set up a pipe with (address 0, endpoint 0). The host can now
communicate with this device and by using special tokens (setup token) can ask
for the device description and give it a specific address.

4.3.5 Ethernet

Another technology that can find its place in both the Physical Layer and the
Data Link Layer is Ethernet. It is actually not one specific technology, but rather a
family of frame-based computer networking technologies for local area networks
(LANs). Systems can be connected with twisted pair cabling (UTP), coaxial cable,
optic fiber, etc. It was originally based on the idea of computers communicating
over a shared coaxial cable acting as a broadcast transmission medium. To let this
happen in an orderly fashion, the CSMA/CD (Carrier Sense Multiple Access with
Collision Detection) protocol is used [6]. Basically this protocol follows the same
protocol that we use (when we’re being polite) when talking in a group. Before
we begin to talk, we check if nobody is talking. If it is quiet, we begin to talk and
everybody who was planning on talking waits. If two people start talking at the
same time, they both stop, wait a while, and one of them will start talking again
first. CSMA/CD uses the same principle. Each system continuously listens for
traffic on the medium to determine when gaps between frame transmissions oc-
cur (carrier sense). Systems may begin transmitting any time they detect that the
network is quiet (multiple access). If two or more stations in the same CSMA/CD
network (collision domain) begin transmitting at approximately the same time,
the bit streams from the transmitting stations will interfere (collide) with each
other, and both transmissions will be unreadable. If that happens, each transmit-
ting station must be capable of detecting that a collision has occurred before it has
finished sending its frame. Each must stop transmitting as soon as it has detected
the collision and then must wait a quasi-random length of time (determined by a
back-off algorithm) before attempting to retransmit the frame.
The advantage of CSMA/CD is that, all nodes can “see” each other directly. All
“talkers” share the same medium - a single coaxial cable - however, this is also a
limitation; with only one speaker at a time, packets have to be of a minimum size
to guarantee that the leading edge of the propagating wave of the message gets
to all parts of the medium before the transmitter stops transmitting. If not, not
all collisions can be detected. This also means that the minimal size of a packet is
relative to the total length of the medium.
The topology of an Ethernet network can take different forms. Originally only a

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 55 — #87 i
i

i
i

i
i

4.3 Protocols 55

Ethernet bus segment

Ethernet bus segment

repeater

(a)

hub/switch

(b)

Figure 4.6 – Network topologies using Ethernet: (a) a bus network. (b) a star network

bus topology was possible (See Figure 4.6a). All devices are directly connected to
each other with a single connection. As said, this single connection has a maxi-
mum length for the collision detection to work properly. The maximum length
was also related to signal degradation: the farther the signal has to travel, the
more transformed it gets, the more difficult it is to read. Later, repeaters were intro-
duced to increase this maximal length. This solution tackles both the problem of
collision detection and signal degradation. The repeater will amplify the signals,
so it can travel farther. Collision detection is also implemented in the repeaters.
When it detects a collision, it will send a jam signal, causing both transmitters
to stop sending. This does not mean that you can expand the LAN indefinitely.
The rule said one should only connect 5 segments on a single network (maximal
4 repeaters), and only 3 segments should be populated (i.e. have hosts attached).

Another improvement came when these repeaters had more than two ports. Re-
peaters with multiple ports are called Ethernet hubs. With hubs, a star-connected
topology can be created (See Figure 4.6b). They reduce the complexity in cabling
and provide a point-to-point cabling (one wire between two devices). When one
of the cables is damaged, the rest of the network isn’t affected. It is important to
notice that the collision domain hasn’t changed by introducing hubs. Hubs will
simply forward everything they receive. This changed with the introduction of
Ethernet switches. These switches can ‘learn’ where systems are located, and will
only forward data for a certain system to a port where this system is connected
to.
Packages are recognized, by the system and the switches, by a unique address:
the LAN address (Ethernet address or MAC (Media Access Control) address).
This is a 6 bytes long address which is given to every Ethernet adapter by its
manufacturer. A complete Ethernet package starts with a preamble (8 bytes),
followed by the MAC address of the destination (6 bytes) and the MAC address

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 56 — #88 i
i

i
i

i
i

56 Network and Communication Protocols

of the source (6 bytes). The next two bytes indicate the Ethertype, the protocol
that is used on the higher Network Layer. Then the data follows (46-1500 bytes)
with 4 bytes for error checking. At the end, there is an interframe gap. This is the
minimal time between frames, the minimal time a node has to wait and check the
line before sending.
With a topology like in Figure 4.6b there is a considerable problem. When one
of the switches breaks down, it’s possible that a whole part of the network is
disconnected from the rest. For this reason it is wise to provide redundant paths
between nodes, so when one of the paths fails the other can take over. However,
this too has a disadvantage. By inserting redundant paths, loops are created in
the network. This can cause packages to wander around in the network. If this
goes on unchecked, the network gets flooded. To solve this the Spanning Tree
Protocol (STP) is developped [7]. In this protocol, the switches will communicate
with each other to create a spanning tree. A spanning tree of a network is where
all nodes are connected through exactly one path. If one of the connections would
fail, the switches can be rerouted to create a new spanning tree. How this protocol
works is said best in Radia Perlmans own words [7]:

Algorhyme

I think that I will never see
A graph more lovely than a tree.

A tree whose crucial property
Is loop-free connectivity.

A tree that must be sure to span
So packets can reach every LAN.

First the root must be selected
By ID, it is elected.

Least-cost paths from root are traced
In the tree, these paths are placed.

A mesh is made by folks like me
Then switches find a spanning tree.

–Radia Perlman

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 57 — #89 i
i

i
i

i
i

References

[1] Javvin Technologies, Network Protocols Handbook. Javvin Technologies, 2004.

[2] Wikipedia. OSI Model. [Online]. Available: http://en.wikipedia.org/wiki/
OSI Reference Model

[3] Application Note: I2C Manual, Philips, 2003.

[4] Wikipedia. Rs-232. [Online]. Available: http://en.wikipedia.org/wiki/
RS-232

[5] Beyond Logic. USB in a NutShell. [Online]. Available: http://www.
beyondlogic.org/usbnutshell/usb1.htm

[6] Cisco Systems, Internetworking technologies handbook. Ciscopress, 2004.
[Online]. Available: http://www.cisco.com/en/US/docs/internetworking/
technology/handbook/Ethernet.html

[7] R. Perlman, Interconnections: bridges, routers, switches, and internetworking pro-
tocols. Addison-Wesley, 2000.

[8] J. F. Kurose and K. W. Ross, Computernetwerken, een top-down benadering. Pear-
son, 2003.

http://en.wikipedia.org/wiki/OSI_Reference_Model
http://en.wikipedia.org/wiki/OSI_Reference_Model
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-232
http://www.beyondlogic.org/usbnutshell/usb1.htm
http://www.beyondlogic.org/usbnutshell/usb1.htm
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Ethernet.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Ethernet.html

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 58 — #90 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 59 — #91 i
i

i
i

i
i

Research is what I’m doing
when I don’t know what I’m doing.

Wernher Von Braun (1912-1977)

5
A first modular display driver

5.1 Introduction

In this chapter, we’ll talk about the design of a first, simple, modular display
driver. The prime objective of this driver was to increase the multiplexability
of passive-matrix displays, as discussed in Chapter 2 , but, as will be shown in
Section 10.5, other applications can also benefit from this design. The first couple
of sections deal with the functionality of the driver. Afterwards we’ll take a look
at some first testing results.

5.2 Requirements

5.2.1 The display

Before trying to determine what the driver is supposed to do, we should take a
look at the display itself. As said, we want to use the modular structure to in-
crease the multiplexability of passive-matrix displays. The multiplexability will
be increased when the row electrodes (or groups of row electrodes) become inde-
pendent. We can, for example, create long rectangular modules which run over
the entire width of the display. This is actually the same approach the dual and
quad scan displays take. Only now, the number of ‘row groups’ can be expanded
indefinitely. Another option is to create square modules and also group the col-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 60 — #92 i
i

i
i

i
i

60 A first modular display driver

(a)

µC

(b)

Figure 5.1 – A display configuration (a) and the corresponding driver configuration (b).

umn electrodes. The modules in one row can have common row electrodes that
are driven by a simple row driver, or they can have completely independent row
electrodes. In this last case, each module is completely independent and has an
integrated row and column driver. The size and resolution of the modules will
depend on the used display material.
In any case, the modules are in a fixed position. In order to minimize the number
of connections on the display, each module has one input and one output. They
are connected in a daisy-chain: the input of a module is the output of the previous
module (See Figure 5.1). Only the first module is directly connected to a micro-
controller. This microcontroller provides the communication between the display
and the PC. To connect every module with the microcontroller, each module has
an internal bypass. When activated, all incoming data will be forwarded to the
output. When all bypasses are activated, all modules appear to be connected to
one data line. The created network will have a bus topology (Chapter 3).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 61 — #93 i
i

i
i

i
i

5.3 Implementation 61

5.2.2 The driver

Since all drivers are connected to the same data line, there is need for some kind
of addressing. We do not want to hardcode an address in each driver. We want
every module to be identical. The assigning of an address will have to happen
through software. Furthermore, we want the driving parameters, such as tim-
ing information, current or voltage levels,... to be adjustable, since these can be
dependent on external factors (e.g. temperature, used material). The microcon-
troller will send the info on how to adjust the driving parameters to all the chips
at once. The parameter info is meant for every module, so it will not be accom-
panied by an address.
In the case were the row electrodes are not independent, there is also need for
some kind of synchronization between the row drivers on the side and the mod-
ules of the corresponding row. When a row driver selects a row, all the column
drivers on that row of modules have to put their data on the columns at the exact
same time. In short, the column drivers will need to be able to distinguish and
interpret image data, parameter data and (possibly) synchronization signals.
At first glance it seems that the I2C protocol would be helpful. However, as said
in Chapter 4 this protocol does not provide dynamic addressing (I2C assumes
a given, fixed address for each device). We also want to limit the number of
connections on the display. The I2C protocol needs an extra line to provide a
clock signal to the devices. We’re probably better of basing the protocol on RS-
232. Since data only needs to flow in one direction (from PC to modules) this can
be achieved by using only two wires: the data wire and the ground wire. Since
RS-232 operates purely on the Physical Layer level, we will need to develop a
protocol that takes care of the addressing of the modules.

5.3 Implementation

The block diagram of this driver is shown in Figure 5.2. In short, Rx and Tx are
in charge of respectively the correct receiving and sending of the data streams.
Main Control is, as expected, the backbone of the driver. It consists of a small state
register and generates the control signals for the other blocks. The address, image
data and parameter data are stored in the Memory. The Sequencer is the only part
of the driver that is dependent on the used display material. It will generate the
signals for the row and column electrodes depending on the information in the
memory. In the next sections, we will take a look at the different blocks.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 62 — #94 i
i

i
i

i
i

62 A first modular display driver

Main Control

Addr. Param.
data

Image
data

Sequencer

Memory

Row
driver

Column
driver

G
a

te
 o

u
t

a
G

te
 in

Manch.

Dec.

Rx
Manch.

Enc.

Tx
Bypass

Figure 5.2 – The block diagram of the first modular display driver.

5.3.1 Communication protocol

First let’s take a look at the used communication protocol. Data will only flow
from the microcontroller to the modules, so there won’t be any problems with
data collisions on the data line. The microcontroller can just send data as he sees
fit. Start and stop bits will indicate the beginning and end of a data stream. As
with the RS-232 protocol, the start bit is a logical 0, the stop bit a logical 1. The
data lines are equipped with pull-down resistors, so that, when nothing is driving
the line, it will be read as a logical 0. This does not really matter for this version
of the modular display driver, but the reason for this will become clear in later
chapters.
The data stream itself starts with a control bit, which indicates whether the fol-
lowing data is image data (1) or parameter data (0). In the case of image data,
the following 8 bits are the address of the module the image data is meant for.
Addresses are sent with least significant bit (LSB) first (See Figure 5.3).
A parameter sequence is 4 bytes long. The first byte controls the refresh rate of
the display. The second byte tells the module the number of rows and columns
used in the display. The module may be designed for an 8× 8 display, but can
adjust its waveforms to adequately drive a 7× 5 display for example. The last
two bytes can be used for display specific properties, e.g. the current level in a

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 63 — #95 i
i

i
i

i
i

5.3 Implementation 63

Start Image/Parameter

Address Image data

Parameter data

Figure 5.3 – Communication protocol for the first modular display driver.

LED display.
The length of the image sequences is dependent on the size of the display and
determined by the second parameter byte. Each row in the display will be repre-
sented by one byte.
As with the RS-232 protocol, the modules communicate on a fixed frequency.
Each module will need its own internal clock. When the data sequences are not
very long, or when the clocks are very precise this doesn’t create problems. When
this is not the case, and a module reads the data sequence at a slightly different
speed than the microcontroller sent it, the read data will be wrong. Since the tim-
ing errors will accumulate throughout the data sequence, the longer the sequence,
the more chance of misreading the data. Very precise clocks can be created using
crystal based clocks or by laser trimming the capacitors and resistors in an inte-
grated clock to very precise values (See Chapter 9). These options are not always
possible or are too expensive. A way to cope with this problem is to embed a
clock signal in the data signal. The resulting signal is called a Manchester coded
signal [1].
Instead of using a fixed voltage level per data bit (high level for 1, low level for 0),
voltage transitions are used. A falling edge represents a logical 0; a rising edge
represents a logical 1. This way, there is an edge in every data bit to which we
can adjust the on-chip clock. As an example, ‘Data’ in Figure 5.4 represents the 3
bit long bit stream 011. On the downside, the needed bandwidth is doubled and
an extra action is required to decode the Manchester-coded signal.

Coding and decoding the Manchester code

Coding Manchester code is as simple as XOR-ing the data signal with the clock
signal (See Figure 5.4). This also makes it clear what is meant by ‘embedding the
clock signal in the data signal’.
Decoding the code is a little bit more difficult. We have to look for transitions
in the signal. If we can read the signal right after the transition in the middle of
every bit, we’re decoding the signal. The problem lies with the fact that not every
transition is a transition in the middle of a bit. Sometimes there are transitions be-
tween bits (Manch(11) ⇒ 0101), sometimes there aren’t (Manch(10) ⇒ 0110).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 64 — #96 i
i

i
i

i
i

64 A first modular display driver

Data

Clock

Manchester
code

Figure 5.4 – An example of a manchester coded signal. The signal reads 011

S3

S0

S1

S2

D = 0

 D = 1

D

 0=

D
 =

 0D
 =

1

D = 1

/

D
 =

0
1g
 0

C

C
 g

 1

C
 g

 1

D

clk

C

Data

0 1 1

0 1 1

Figure 5.5 – Manchester decoder state diagram with corresponding signals.

There are a couple of ways to deal with this.
A first way is using the state machine from Figure 5.5. The state machine uses the
coded signal D and a clock signal clk as input, and generates signal C, which has
a rising edge somewhere after the transition in the middle of the bit of the coded
signal. When D is read with a flip-flop clocked with signal C, the correct data is
received. In the example in Figure 5.5, we start in state S3. At the rising edge of
clk, D is changed to 0. We move to state S0 and C is set to 1. At clk’s next rising
edge, we find ourselves in state S1 (independent of D) and C is reset to 0. The next
rising edge should lie in the first half of the next bit (This puts some restrictions
on the frequency of the clk signal. This will be addressed below). According to
D, we move towards S2 (D = 0) or S3 (D = 1). C remains unchanged as long as
D keeps its value. When D changes (transition in the middle of the bit), C will be
set to 1 again. Since clk has to have at least three rising edges per data bit to work
correctly (three states per data bit: S2/S3, S0 and S1), the frequency of the clk

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 65 — #97 i
i

i
i

i
i

5.3 Implementation 65

µC

µC

0x00

0x01

Figure 5.6 – The initialization process in the first modular display driver

signal fclk should be at least 3 fbit . As said above, the third rising edge of clk after
the transition in the middle of the bit should lie in the first half of the next bit. If
fclk is too high (> 5 fbit), this rising edge can still occur in the same bit, causing the
decoder to fail. This means the precise frequency of clk is not important. As long
as 3 fbit < fclk < 5 fbit , the decoder will function properly. When we create an on-
chip clock with a frequency set to 4 fbit , there will not be any decoding problems,
even with a frequency variance of 25% (assuming that the microcontroller uses a
crystal based clock with a precise frequency).
When the frequency of the processing clock of the driver is much higher than
the bit frequency, another option becomes available. Now it is just a matter of
counting the time between two transitions. In a Manchester coded signal, there
are ‘long’ (a whole bit) and ‘short’ (half a bit) periods between transitions. When
a ‘long’ period has passed, the data must be read after the transition. When a
‘short’ period has passed, we must wait for the next transition to read the data
(See also Figure 5.5). Differentiating between a ‘long’ and a ‘short’ period can be
done by claiming that any period longer than 0.67 times the nominal bit time (tbit)
is a ‘long’ period. This way a clock variance of 33% can be dealt with (0.67tbit =
(0.5 + 33%)tbit = (1− 33%)tbit).

5.3.2 General principles

When the display is turned on, all modules have their bypass inactive. The mod-
ules are in a wait state, waiting to receive an address. The microcontroller sends

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 66 — #98 i
i

i
i

i
i

66 A first modular display driver

Data

Manch.
decoder

Counter

FF

FFStart-bit
det.

Decoder
Clock
gen.

Image/Param.
det.

dec.clock ena

Image/Param

Receiving
data

1

Figure 5.7 – Block diagram of Rx

out an address (e.g. 00000000). This will only be seen by the first module. This
module will now send an address to the next module, by adding 1 to the received
address. This module will have address 00000001 and will send out address
00000010 (See Figure 5.6). When a module received and sent out an address,
it will activate the bypass. When every module went through this initialization
process, all modules will have an address and are directly connected to the mi-
crocontroller. They are now ready to receive data. If we need synchronization
signals, we can use for example a specific address that we’re sure that is unused
(e.g. 00000000 if the microcontroller sends 00000001).

5.3.3 Rx and Tx

As said, Rx and Tx will be used to send and receive data, controlled by Main
Control. They have an internal Manchester coder/decoder. They are clocked at
a speed of 20 times the bit rate, so, if necessary, we can use the second way of
decoding the Manchester code (counting clock edges between transitions).

Rx

When Rx sees a falling edge on the data line after a while of inactivity (start bit),
the decoder clock generator is activated (See Figure 5.7). This will generate the con-
trol signals (enable signals for the flip-flops) for correctly reading the data. This
also includes the case where the signal is Manchester coded. In that case, the
decoder clock enable will count the time between transitions so the signal is de-
coded as described above. Rx also presents two control bits, Receiving data (high
when receiving data) and Image/Param (the first bit of the data sequence, indicat-
ing whether the data sequence is parameter or image data)

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 67 — #99 i
i

i
i

i
i

5.3 Implementation 67

Manch.

Bit clk

Addr. +1

Incrementer

Shift Register Manchester
Encoder

Data out

Data in
Bypass Control

Figure 5.8 – Block diagram of Tx

Wait

Receive
address

Send
address

Normal
operation

S0

S1

S2

S3

Start bit

End

End

Reset

Figure 5.9 – The state diagram of the first modular display driver

Tx

Tx is nothing more than a simple shift register with some extra functionality (See
Figure 5.8). When the address is received it is loaded in Tx which adds 1 and
shifts it out the output at the correct speed (of course while making sure that
the correct start and stop bits are used). When we’re using a Manchester coded
signal, it will XOR its output with a clock. After the initialization, the shift register
is bypassed and the incoming data is directly forwarded to the output.

5.3.4 Main Control

Main Control generates the control signals for the other blocks. It can be seen as a
(albeit very small) state machine. It might be interesting to look at, to see how it
evolves over the next few drivers. There are four distinct states (See Figure 5.9).
We start in state S0 when the display is turned on. When a start bit sequence is
detected (Rx) we move to state S1 where the address is received. Main Control

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 68 — #100 i
i

i
i

i
i

68 A first modular display driver

enables the address register and the decoder clock enable signal from Rx is used
to read the address. When the address is received, we enter state S2 where the
address for the next module is sent. Main Control loads the address in Tx and
enables its shift register to send data. When the address is sent, we arrive at the
final state S3. Here, the bypass is activated and the Sequencer is started. From this
point on data can be received. After a reset, the state machines goes back to state
S0.
Parallel with this state machine is the control block for the receiving of image and
parameter data. This will be the same block in all four drivers. Main Control will
enable the registers based on the data control bit and decoder clock enable signal
from Rx. Before enabling the registers for image data, it will check if the address
that was sent with the data stream matches its own address.

5.3.5 Sequencer

This block will be dependent on the used display material. It will also be the
same in the four drivers. The Sequencer reads one byte from the image memory
and presents it on the column electrodes while selecting the corresponding row.
The unused rows and columns (depending on the information about the display
size in the parameter memory) are left low. After a while the next byte is read
and the next row selected. The speed of this process is determined by the refresh
rate stored in the parameter memory. In Section 5.5 some more specific examples
are elaborated.

5.4 A simple example

Figure 5.10 shows a simple example of a display configuration with the first mod-
ular display driver. The framed waveforms show some important signals within
one module. The microcontroller sends out an address (in this case 0x00) and the
incrementing addresses propagate through the display. Address 0x01 reaches
module M2 and is clocked by the decoder clock enable, after which Tx is enabled to
send out the following address. When finished, the bypass is activated. At the
end, some data (which is immediately seen by every module) enters. Since the
first data bit is 0, we’re dealing with incoming parameters.

5.5 Setting up the test environment

We implemented the driver as described above in VHDL (VHSIC Hardware De-
scription Language). This code is used to program an FPGA (Field-Programmable
Gate Array). For reference, the source code of the most important block, the Main

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 69 — #101 i
i

i
i

i
i

5.5 Setting up the test environment 69

µC

M1 M2

M3M4

(a)

µC M1

M1 M2

M2 M3

M3 M4

main_state

start_bit

dec_clk_ena

address

Tx_ena

bypass_control

M2

(b)

Figure 5.10 – An example display configuration (a) with the corresponding waveforms (b)
using the first modular display driver.

Control is listed in Appendix A. FPGA’s come in all sizes, with varying speed,
number of logical elements, number of input and output pins, etc. The Altera
Cyclone EP1C3T144C6N seemed to fit our purposes. It has 144 pins of which
104 can be used as input or output pins. With it’s 2910 logical elements, it pro-
vides enough calculating power for our needs. It also has about 7.5 kB RAM
memory. The design was optimized to work at a speed of 20MHz. The corre-
sponding bit rate is 1MHz (See Section 5.3). Since this FPGA is a volatile device
(programming is lost when power is cut), it’s often combined on the test board
with a non-volatile configuration device. In this case, the EPC2 device [2]. After
programming this device, it will on its turn configure the FPGA every time the
board is turned on.
This first driver was tested on a couple of displays. It was used to drive a
cholesteric display (See Chapter 2) and a LED display.

5.5.1 Driving a ChLCD

Driving the display with the conventional minimal-swing drive scheme

As explained in Chapter 2, a ChLCD is a bistable display. The two stable states
are the Focal Conic (FC) and Stable Planar (SP) state. A typical electro-optical
response is shown in Figure 2.12. The electro-optical response of the ChLCD
we used is shown in Figure. 5.11. It is a Polymer Stabilized Cholesteric Texture

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 70 — #102 i
i

i
i

i
i

70 A first modular display driver

0.3

0.2

0.1

0.0

0 10 20 30 40 50 60 70 80

A

B

V1 V2 V3 V4

V (V)

Reflectance

SP

FC

H

Figure 5.11 – The electro-optical response for a PSChT cell to a singe AC voltage pulse.

(PSChT) LC used by Kent Displays [3]. This kind of LC has the merit of a wide
viewing angle due to the dispersed polymer in the LC that disturbs the orienta-
tion of the helical axes. The reflectivity of the cell was measured after a time delay
of approximately 1 second following the pulse.
When the voltage level over the cholesteric liquid crystal cell is lower than V1 the
state of the liquid crystal will not change. The reflectivity of a cell in the SP state
will start to decrease if the voltage level over the cell surpasses V1. It decreases
approximately linear with increasing voltage. When V2 is reached, the liquid
crystal will have changed to the stable FC state. If the voltage would be released
now, the LC would remain in this state. Further increasing the voltage (above
V3) makes the reflectivity rise again linearly with increasing voltage. A voltage of
V4 forces the LC back into the SP state. Voltage levels on this last slope can also
be used to acquire gray scales in the LC [4]. An important issue is that the ChLC
can’t sustain a DC voltage. The permanent polarization would pull the molecules
apart. To solve this, every applied voltage has to be followed by a voltage of the
same absolute value and duration, but with opposite sign.
The evolution of the LC is not only dependent on the voltage level, but also on the
duration of the applied pulse. Figure 5.12 shows its influence. From Figure 5.12a

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 71 — #103 i
i

i
i

i
i

5.5 Setting up the test environment 71

(a) (b)

Figure 5.12 – Influence of the pulse width on the reflectivity of the PSChT cell. Starting
from a cell in the SP state (a) and the FC state (b)

we learn that with pulses below 10ms , it becomes difficult to get a sufficient
contrast. Figure 5.12b tells us that with faster pulses the voltage levels need to be
higher for the cell to change to the SP state.
There are several driving schemes to drive a ChLCD [5]. We will use the conven-
tional minimal-swing driving scheme, shown in Figure 5.13 (See also Chapter 2
on driving a display). With this driving scheme, the needed voltage swings are
minimal and identical for the row and column electrodes. As you can see in Fig-
ure 5.13b, there will be no DC component over the pixel. The voltage levels to
get into the FC and SP state are achieved in a selected row (S) while the voltage
levels on a non-selected row (NS) remain low enough not to change the state.
Grayscales can be achieved by dividing the line time in a portion with voltage
levels for driving to the SP state, and a portion with voltage levels for driving to
the FC state. This will force some cells in the pixel to the SP state, while others
remain in the FC state, creating a grayscale. The longer the portion for driving to
the SP state, the more cells are forced into the SP state, the more reflective the dis-
play becomes. For a better performance, the display needs a double reset (reset
to SP, reset to FC) before writing the frame.
Figure 5.14 shows the used ChLCD. It is a 16× 16 display. It is not really divided
into modules. As said the column electrodes should be cut when grouping the
row electrodes to make them electrically independent. But since this test is simply
to check the implemented driver, we assumed that the display is divided in four
modules in one row. Each module has 16× 4 pixels.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 72 — #104 i
i

i
i

i
i

72 A first modular display driver
o

R
w

 1
C

o
m

n
1

lu

Frame 1 Frame 2

FC SP

SNS

V /24

-V /24

V /23

-V /23

V -V /23 4
-(V -V /2)3 4

V /24

-V /24

NS NS NSS

FC FCSP FC

(a)

Frame 1 Frame 2

SNS

V4

-V4

V3

-V3

NS NS NSS

-(V -V)/24 3

(V -V)/24 3

(b)

Figure 5.13 – The conventional minimal-swing driving scheme. (a) shows the voltage
levels on the row and column electrodes. (b) shows the resulting voltage levels over the

pixel.

Figure 5.14 – The used ChLCD. It has four modules in one row, each with 16× 4 pixels.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 73 — #105 i
i

i
i

i
i

5.5 Setting up the test environment 73

Design of the test boards

As is clear from Figure 5.11 and Figure 5.13, we need several and fairly high
voltage levels to drive a ChLCD. It is not possible to directly drive the display
from the FPGA. Instead, the Sequencer of the modular display driver will generate
control signals for high-voltage multiplexers which, in their turn, will drive the
display. Two boards were created. One board has the FGPAs with the necessary
electronics, the other board is equipped with the high-voltage multiplexers. The
reason these two are separated is because this way the board with FPGAs could
still be used for other purposes. Since we created a modular display of the type
where the modules are not completely separated (row electrodes for modules in
one row are connected), the Sequencer in the driver can only play the part of the
column driver. The row driver is common for the four modules.
The FPGA board is depicted in Figure 5.15. The four FPGAs each represent one
modular display driver. At startup, they are all configured at the same time with
the same configuration device (EPC2), ensuring that every driver is exactly the
same. Each driver has a separate clock (Osc.), making them completely inde-
pendent from one another. However, the clocks are generated by precise crystal
oscillators (SG531, clocking at 20 MHz) , so no Manchester coding was needed.
The DS89C420 from Dallas takes the role of the microcontroller. There is room for
external memory and communication with the outside world is possible using
RS-232 communication with the PC (MAX232 and a female RS-232 connector).
The outputs of the modular display drivers (i.e. the outputs of the Sequencer) are
accessible on pins on the board. These will be connected to pins on the multi-
plexer board.
The multiplexer board is shown in Figure 5.16. There are six high-voltage multi-
plexers [6] on this board. These are the DILA chips, created by Dr. Ir. Ann Monté
at CMST. It has 8 multiplexers, each capable of multiplexing 8 voltages up to 100V.
Each multiplexer has a 4-bit selecting input [5]. Two of the DILA chips are used
to drive the row electrodes. They are controlled by a microcontroller, functioning
as the row driver. Because of the limited number of ports on the microcontroller,
latches are used to provide the DILA chips with the correct control signals. The
other four DILA chips drive the row electrodes. In total, we can drive a display
with 16× 32 pixels. We will only use two out of those four DILA chips, though,
to drive the display from Figure 5.14.
The control signals for the column-driving DILA chips come from the FPGA
board. From an external source, the 8 high-voltage inputs (See Figure 5.13) are
presented to the DILA chips.
Since there is one row driver and four column drivers, I told that there would
be need for some synchronization between the drivers. Since driving a ChLCD
is very slow (order of 10-20ms per line) there is no real need for synchronization
between the column drivers. The Sequencer of the first driver will still be long

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 74 — #106 i
i

i
i

i
i

74 A first modular display driver

Figure 5.15 – The FPGA board. The four FPGAs each represent one modular display
driver. The outputs of the FPGAs are visible on the pins on the board.

Figure 5.16 – The multiplexer board. There are six multiplexer chips (DILA). Two are used
to drive the row electrodes, four are used to drive the column electrodes.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 75 — #107 i
i

i
i

i
i

5.5 Setting up the test environment 75

Figure 5.17 – Test setup for driving a ChLCD with the first modular display driver. High-
voltage source is seen above. Left are the FPGA and multiplexer board. Right is the

ChLCD.

from finished driving the first line when the last driver receives its data. The
synchronization of the row driver with the column drivers happens through the
pass-pulses the DILA chip needs to read the selecting input [5]. These are con-
trolled by the row driver, so the row driver synchronizes the row signals by itself,
with the column signals from the column drivers. The entire setup is shown in
Figure 5.17.

5.5.2 Driving a LED display

Driving the display as a passive-matrix display

I use the term ‘as a passive-matrix display’ because technically, LEDs are active
components (See Chapter 2). It just means that there aren’t any transistors used
to keep the LED on during the frame time. In a passive-matrix LED display, the
cathodes of the LEDs in one row are connected to one row electrode, the anodes of
the LEDs in one column are connected to one column electrode (See Figure 5.18).
LEDs are current driven, rather than voltage driven. In this case, a selected row

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 76 — #108 i
i

i
i

i
i

76 A first modular display driver

Column data

R
o

w
se

ct

le

Figure 5.18 – A passive-matrix LED display.

is a row where the current can flow away , whereas a non-selected row is a row
where no current can flow. When current is pushed into the column electrodes
(depending on the desired image), only the LEDs on the selected row will emit
light. Controlling whether in a row can flow current or not can be accomplished
by placing switches on the row electrodes and activating (selected row) or deac-
tivating (non-selected row) them.

Design of the test boards

As opposed to above, where the modules in the display were not completely
independent (common row electrodes), we wanted to create a display with com-
pletely separable modules. For this reason we created some LED-display mod-
ules, shown in Figure 5.19a. We chose a LED display because they are easy to
drive and easy to create. They will also be used to test the other versions of mod-
ular display drivers. Each module is equipped with an FPGA and its configu-
ration device. The Sequencers column-electrode outputs are connected to buffers
(MM74HC541N) that can be used in this case as current sources when loaded
with resistors. The row-electrode outputs are connected to switches (DG202BDJ).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 77 — #109 i
i

i
i

i
i

5.6 Some first results 77

(a) (b)

Figure 5.19 – A LED-display module (a) and the controller board (b). Each module has an
FPGA, with the Sequencer acting as a row and column driver.

The LED display itself has 7× 5 pixels (TA12-11 from Kingbright). Each FPGA
has a 20MHz clock (SG531). The modules can be connected to each other by a
series of pins. There are four groups of pins, making connection to any of the
four sides possible. Two of each group of pins go to the FPGA (input and out-
put), although for this modular display driver only one input and one output is
necessary. The other pins are used for power routing and some extra pins from
and to the FPGA as reserve.
With LED-display modules alone, of course, not much will happen. We need a
controller board that is able to communicate with the modules and, if needed,
with the PC. The controller board is shown in Figure 5.19b. It uses the Dallas
DS89C420 microcontroller with the possibility of using external Flash memory.
The board provides a USB interface to communicate with the PC. An FTDI chip
(FT232RL) translates the signals from the USB to the RS-232 protocol the micro-
controller uses. Through this interface, it is also possible to program the micro-
controller.

5.6 Some first results

5.6.1 Results from the ChLCD

Using the test setup as described in previous section, we were able to successfully
drive the ChLCD and, in doing so, we proved that the modules correctly received
their address and that the image data reached the desired modules. The Sequencer

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 78 — #110 i
i

i
i

i
i

78 A first modular display driver

(a) (b)

(c) (d)

Figure 5.20 – Voltage levels on a row and column electrode of the ChLCD (a and c (with
grayscale)) and over a pixel (b and d (with grayscale)), using the conventional minimal-

swing driving scheme.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 79 — #111 i
i

i
i

i
i

5.6 Some first results 79

(a) (b)

(c) (d)

Figure 5.21 – Images on the ChLCD using the first modular display driver

designed to drive the ChLCD provided the control signals for the multiplexer
board. The outputs of those multiplexers (column and row electrode) are shown
in Figure 5.20a. The next figure (5.20b) shows the voltage levels as seen by the
pixel. This corresponds with the desired waveforms as discussed in previous
section, preceded by a double reset sequence. Figure 5.20c on the other hand,
shows the voltage outputs when driving the display with a grayscale driving
scheme, with the resulting voltage over the pixel in Figure 5.20d.
In Figure 5.21 you can see some images on the ChLCD.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 80 — #112 i
i

i
i

i
i

80 A first modular display driver

5.6.2 Results from the LED display

Also the modular LED display worked as expected. To control the display, I
created a Graphical User Interface (GUI) in Visual C++. A screen shot can be
seen in Figure 5.22a. It allows the user to choose the size of display in a module
(which will be sent as a parameter to the drivers) and the total size of the display
(number of rows and columns of modules). The refresh rate, which is also sent as
a parameter to the drivers, can also be adjusted. The desired image can be created
by drawing with the mouse on screen. After choosing the correct COM port, the
image (and parameters, if they have changed) can be sent to the drivers. With
these independent modules, we can create a display configuration as depicted in
Figure 5.1b. It is shown in Figure 5.22b. With this setup, we were able to control
the displayed images. The drivers also responded correctly when the refresh rate
and the number of used rows and columns changed.
An interesting characteristic is the time needed to initialize the display. There is
not a lot of information to be sent between modules (only the address), so this will
be quite fast. Since the modules are connected in a chain, the total initialization
time will obviously be dependent on the number of modules. With a data rate of
1Mbit/s, it takes a display about 9, 6µs per module to be initialized.
Section 10.5 will give some insight in the significance and possible applications
of this driver.

5.7 Can we do better?

Section 5.6 told us that this modular display driver can be used to remove the
limitation in multiplexability in passive-matrix displays. Section 10.5 shows some
other applications. While these are interesting results, we might do more with
modular displays.
The first modular display driver, is designed for fixed displays. Displays where
the drivers would be integrated and where the connections between the drivers
cannot be changed. But what if we make the modules completely independent.
What if we let the user create its own display by connecting modules to each
other? And if we do that, we might as well allow him to create a more irregular
shaped display.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 81 — #113 i
i

i
i

i
i

5.7 Can we do better? 81

(a)

(b)

Figure 5.22 – Configuration of a modular LED display, with the first modular display
driver (b). The display can be controlled with a GUI (a).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 82 — #114 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 83 — #115 i
i

i
i

i
i

References

[1] W. Stallings, Data and Computer Communications. Pearson, 2007.

[2] Cyclone Device Handbook, Altera Corporation, 2005.

[3] J. W. Doane, D. K. Yang, and Z. Yaniv, “Front-lit flat panel display from poly-
mer stabilized cholesteric textures,” in Proceedings of the 12th Int. Display Re-
search Conf., 1992, pp. 73–76.

[4] A. Khan et al., “Reflective cholesteric LCDs for electronic paper applications,”
in Proceedings of the IDMC’05, 2005, pp. 397–399.

[5] A. Monté, “Design of an Intelligent High-Voltage Display Driver to Minimize
the Power Consumption in Bistable Displays,” Ph.D. dissertation, Ghent Uni-
versity, 2008.

[6] J. Doutreloigne, H. D. Smet, and A. V. Calster, “A new architecture for mono-
lithic low-power high-voltage display drivers,” in Proceedings of the 20th Inter-
national Display Research Conference (IDRC2000), 2000, pp. 115–118.

[7] P. J. Ashenden, The VHDL Cookbook. University of Adelaide, 1990.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 84 — #116 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 85 — #117 i
i

i
i

i
i

A pessimist is one who makes difficulties
of his opportunities.

An optimist is one who makes opportunities
of his difficulties.

Harry Truman (1884-1972)

6
Improved modular display driver

6.1 Introduction

In this chapter we will take a look at an improved version of the first modular dis-
play driver. It can still be used to increase the multiplexability in passive-matrix
displays, but it has some other applications as well (See Section 10.5). It provides
more freedom to the user when creating a display. As we’ll see in Section 6.2 we’ll
move away from the daisy chain structure, which will make the modules less de-
pendent on one specific other module if this were to fail initialization. Some other
issues will be lurking around the corner, but they will be dealt with in Section 6.3.

6.2 Requirements

6.2.1 The display

As opposed to the display for the first modular display driver, we want to have
a display where the modules are not fixed in position. The display now consists
of completely independent modules, each with its own separate driver. To let
the user create a display as he sees fit, each module will have four input/output
gates, so they can be connected to each other by any side (See Figure 6.1a). As
was the case with the first modular display driver, only one of the modules will be
directly connected to the microcontroller, which will provide the communication

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 86 — #118 i
i

i
i

i
i

86 Improved modular display driver

with the PC. The modules have internal bypasses which, when activated after the
initialization, will connect every module to the same data line.

6.2.2 The driver

The driver requirements explained in Section 5.2 have not changed. Every mod-
ule needs an address and these addresses need to be assigned completely through
software. There still needs to be a distinction between parameter data and image
data. Since every module is independent, synchronization signals won’t be nec-
essary for now.
Since every module can have four connections, we will have created a mesh net-
work which has some advantages and disadvantages [1]. The advantage over a
bus (or daisy chain) network is that the display can have modules missing (or
malfunctioning) without interfering with the rest of the display. The disadvan-
tage, in our case, is that when the bypasses activate, there will be several open
paths between modules. And if we’re lucky (and we mostly are) there will be
loops in the network. Since the bypasses have small delays, it’s possible that data
is stuck in a loop and keeps being sent from one module to another. For this
reason, a primitive network protocol needs to be developed to cope with this.
We can, as in previous chapter base our communication protocol on RS-232, but
since our network has become a little bit more complex, maybe other (network)
protocols are more applicable. The USB protocol does provide our needed dy-
namic addressing, but the problem lies with the possible network topologies.
Section 4.3 explains the tiered-star topology of the USB protocol. Theoretically
we could create our display in such a way that it would fit in this topology, but
we’ll have to avoid the extra connections between modules that would make it
into a mesh network. But, above all, the USB protocol specifications tell us that
only five tiers can be used. This poses an unacceptable limitation on the possible
display configurations. So, we will slightly change the network protocol from
the first modular display driver and try to incorporate solutions for the issues
raised above. This time, we’ll need a two-way communication channel between
the modules. So three wires are needed.

6.3 Implementation

As you can see in Figure 6.2, the block diagram of the driver resembles the previ-
ous driver for a great deal. Only Rx, Tx and the state machine in Main Control are
slightly different. The communication protocol (i.e. start bit and stop bits, control
bit for distinction parameter/image data) will also be the same.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 87 — #119 i
i

i
i

i
i

6.3 Implementation 87

(a)

µC

M1

M2 M3 M4

M5 M6

(b)

Figure 6.1 – A possible display configuration for the improved modular display driver (a)
and the corresponding driver configuration (b).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 88 — #120 i
i

i
i

i
i

88 Improved modular display driver

Main Control

Addr. Param.
data

Image
data

Sequencer

Memory

Row
driver

Column
driver

Gate 1

Gate 3

G
a

te
 2

G
a

0
te

Manch.

Dec.

Rx

Manch.

Enc.

Tx

Figure 6.2 – The block diagram of the improved modular display driver.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 89 — #121 i
i

i
i

i
i

6.3 Implementation 89

6.3.1 General principles

When the display is turned on, all bypasses are inactive. The microcontroller will
again send the first address (0x00) to the connected module. As with the previ-
ous driver, the module will calculate the addresses for the neighboring modules.
The address byte used here is divided in two parts. The first nibble (4 bits) in-
dicates the number of the column the module is in, the second nibble indicates
the number of the row. Determining the addresses for neighboring modules is as
simple as adding or subtracting 1, according to the gate the address is sent to (See
Table 6.1). The addresses are cyclic, so 0x0 subtracted by 1 gives 0xF. The gates
are numbered from 0 (00) to 3 (11), starting at the left side and turning clockwise
around the module.

gate column row
00 −1 =
01 = −1
10 +1 =
11 = +1

Table 6.1 – The addresses that need to be sent out , corresponding the gate numbers

From Figure 6.3 its clear that if there are several paths from the microcontroller
to a module, this module will receive this address –it will of course always be the
same address– multiple times. But the module may only send it once, and best
not to a module that already has an address. For this reason, only one of the gates
will be chosen as input. The gate where a module first receives an address, will
be the input gate. If two addresses are received at the same time, the gate with
the lowest gate number gets the highest priority. This makes also sure that every
module is connected to the microcontroller through the shortest path. The other
gates will be output gates, but will be closed when a start bit is detected on that
gate (during initialization). This would mean that the module connected to that
gate already receives data from another module, so there’s no need to send data
there. This is actually a very crude implementation of the Spanning Tree Protocol
(See Chapter 4).
By only looking at one (dynamically chosen) input gate, and cutting away un-
necessary connections, a tree structure is created. When the bypasses are closed
after receiving and sending the addresses, there won’t be any loops left to cause
problems.

6.3.2 Rx and Tx

As said Rx and Tx are very similar to the one from the first modular display driver
(See Section 5.3). I will just cite the differences here.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 90 — #122 i
i

i
i

i
i

90 Improved modular display driver

µC
0x0F

0x01

0x10

µC
0x20

0x11

0x11

0x1F

0x1F0xFF

0x0E

0x02

0xF1

Figure 6.3 – The initialization process in the improved modular display driver. When a
module receives an address from two gates (lower right module), it chooses one gate as

input gate. No data will be forwarded to the other gate.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 91 — #123 i
i

i
i

i
i

6.3 Implementation 91

Start-bit
det.s

Data int

Manch.
decoder

Counter

FF

FF

Decoder
Clock
gen.

Image/Param.
det.

dec.clock ena

Image/Param

Receiving
data

00

01

10

11

t
D

a
a

input control

Figure 6.4 – Block diagram of Rx

Rx

Rx now has to monitor four gates instead of one. There are four start bit detectors,
which present their outputs to Main Control. There will the decision be made
which gate will function as the input gate. A multiplexer selects the chosen data
signal and from then on the functionality of Rx is the same as in Chapter 5 (See
Figure 6.4).

Tx

Analogous to above, Tx now has four shift registers. Addresses are calculated
and sent simultaneously. Each shift register can be disabled when Main Control
decides not to send data to a specific gate (Out control). After the initialization,
bypasses are activated and the input data is forwarded to the necessary gates (See
Figure 6.5).

6.3.3 Main Control

The state machine in Main Control has exactly the same states as in the first mod-
ular display driver (See Figure 5.9). There are only some small changes in func-
tionality. When the display is turned on (state S0), Main Control waits for an in-
coming start bit. On an incoming start bit, a signal in control will be adjusted

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 92 — #124 i
i

i
i

i
i

92 Improved modular display driver

Manch.

Bit clk

(-1, 0)

Incr/Decr. Shift Register Manch.
Enc.

(0,+1)

(+1,0)

Addr.
(r, c)

(0, -1) Data 00 out

Data 01 out

Data 10 out

Data 11 out

Data int
Out

Control

Figure 6.5 – Block diagram of Tx

according the gate number this start bit originates from. This signal controls the
multiplexer from Rx. If two gates would receive a start bit at the same time, the
lowest gate number gets the highest priority. The address itself is received in
state S1. When, in this state, Main Control sees start bits on another gate, a signal
out control is adjusted, to disable the shift registers and bypasses that would
send data to that gate. Note that in the ideal case, given the fact that a module
will not send data to a module from which it received data and assuming that
the time to calculate and send addresses is exactly the same for each module, a
module will only receive addresses on maximum two gates and these addresses
will arrive at exactly the same time.

6.4 A simple example

Using the same structure as previous chapter, let’s take a look at a simple exam-
ple. The considered display configuration is the one shown in Figure 6.1b. The
waveforms in Figure 6.6 show the corresponding initialization process.
The microcontroller starts by sending out address 0x00 to M2. After it received
the address M2 sends the addresses 0x0F, 0x10 and 0x01 to M1, M3 and M5
respectively. Keep in mind that addresses, just as everything, are sent with the
LSB first. Since M2 has row number 0x0, M1 in the row above receives number

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 93 — #125 i
i

i
i

i
i

6.4 A simple example 93

µ
C

M

2
M

2
 a

d
d
r.

M
2

M

1
M

1
 a

d
d
r.

M
2

M

3
M

3
 a

d
d
r.

M
2

M

5
M

5
 a

d
d
r.

M
3

M

4
M

4
 a

d
d
r.

M
3

M

6
M

5

M

6
m

a
in

_
st

a
te

a
d
d
re

ss
in

_
co

n
tr

o
l

o
u
t_

co
n
tr

o
l

b
yp

a
ss

_
co

n
tr

o
l

g
a
te

 0
0
 o

u
t

g
a
te

 0
1
 o

u
t

g
a
te

 1
0
 o

u
t

g
a
te

 1
1
 o

u
t

M
6

Fi
gu

re
6.

6
–

Ex
am

pl
e

of
th

e
in

it
ia

liz
at

io
n

pr
oc

es
s

fo
r

th
e

im
pr

ov
ed

m
od

ul
ar

di
sp

la
y

dr
iv

er
.

Th
e

co
ns

id
er

ed
di

sp
la

y
is

sh
ow

n
in

Fi
gu

re
6.

1b
.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 94 — #126 i
i

i
i

i
i

94 Improved modular display driver

0xF. M3 and M5 received their address at the same time, and will send the next
address (0x11) at the same time to M6. Taking a closer look at M6, we see that
at the moment the addresses start, the decision about which gate to use as input,
is made. In this case, in control is 0x01, meaning gate 0x01 is chosen. I said
earlier that gates with a smaller gate number have a higher priority, so normally
gate 0x00 should have been chosen. It is not visible in the picture, but to simulate
this setup I added some small variations to the clocks of the different modules.
If you would zoom in, you would see that the start bit of M3 arrives a little bit
earlier. Early enough to be seen as M6 as the first arriving address. The 4-bit
vector out control is immediately adjusted not to send any data to the input
gate. When the address from M5 arrives, this gate is also disabled for output,
resulting in out control = 0xC = 1100. The two lowest gates are disabled,
the rest is enabled. As a consequence, the addresses that M6 calculated will only
be sent to those two highest gates. At the end, parameter data is coming in,
immediately seen by every module, but not necessarily forwarded to all the gates.

6.5 Setting up the test environment

Since the main goal here is to be able to build up a display from independent
modules, we can use the LED modules from Section 5.5.2. The first modular
display driver only had one input and one output gate, but the LED modules
were designed to provide four input/output gates (See Figure 5.19a). The VHDL
implementation is printed in Appendix B. Some parts are exactly the same as in
the implementation of the first modular display driver. These were not printed
again.
The GUI also hasn’t changed much (See Figure 6.7). Since the GUI has no way
of knowing how the user built the display, the user has to tell it to the GUI. We
chose to let the user enter the maximum dimensions of the display, rather than
to let him enter the exact configuration. But when something is drawn on the
display, the data will be sent for the entire display, also for modules that aren’t
actually there.

6.6 Some first results

We built some displays and looked at how they reacted at the commands from
the GUI. Again, they all worked fine. Every module received an address and
processed the data from the PC correctly. Since the Sequencer hasn’t changed from
previous driver, changing the refresh rate and number of used rows and columns
went without a problem. Figure 6.8 shows one of the display configurations, with
could be controlled with the GUI from Figure 6.7.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 95 — #127 i
i

i
i

i
i

6.6 Some first results 95

Figure 6.7 – GUI for the improved modular display driver

Figure 6.8 – Display configuration. The corresponding GUI is shown in Figure 6.7.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 96 — #128 i
i

i
i

i
i

96 Improved modular display driver

Since the addresses can be handed out in parallel, the total initialization time of
a display will not be only dependent on the number of modules, but more on the
way they are connected. More precisely, it is dependent on the longest Manhat-
tan distance from the microcontroller [2]. The name alludes to the grid layout of
the streets in Manhattan, where the shortest path between two locations, created
by walking along the streets, is the sum of the (absolute) differences of their co-
ordinates. Every module is connected to the microcontroller through the shortest
path, so the initialization time will be dependent on the number of modules in
the longest path. Since the information that is sent between modules is the same
as with the first modular display driver, the total time is 9, 6µs per module in that
path.

6.7 Is there still room for improvement?

The driver explained here, allows us to create our own displays using simple,
independent modules. The modules themselves will distribute the addresses and
they will make sure that there aren’t any problems with data loops. It is a system
that works and that could be used in a number of applications.
But, of course, there are some shortcomings. The main shortcoming being that
the user has to enter the exact configuration of the display, manually in the GUI.
To make it easier (which we did) the user could also just enter the maximum di-
mensions of the display, but then there is a lot of unnecessary data transmission.
Ideal would be that the GUI would somehow be able to detect the exact config-
uration of the display. When the user creates a display, the configuration shows
up in the GUI. No manual entering, no unnecessary data transmission.
Another limitation applies. Since the communication is unidirectional, the mi-
crocontroller has no way of knowing if something went wrong during the ini-
tialization. Above that, it would be more efficient if the microcontroller knows
exactly when the initialization is finished, instead of just waiting for the maximal
initialization time.
A third shortcoming is that after the initialization no modules can be added or re-
moved without interfering with the display operation. A true free-form modular
display driver would allow the user to add and remove modules, while the dis-
play keeps working. To combine this with the issue raised above, the GUI should
also have an real-time view of the configuration of the display. When a module
is added or removed, it should show up (or disappear) in the GUI.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 97 — #129 i
i

i
i

i
i

References

[1] T. Ohkami, “Modular display: an approach to intelligent display systems,” in
SID96 Symposium Digest of Technical Papers, vol. 27, 1996, pp. 225–228.

[2] Wikipedia. Manhattan distance. [Online]. Available: http://en.wikipedia.
org/wiki/Manhattan distance

[3] P. J. Ashenden, The VHDL Cookbook. University of Adelaide, 1990.

http://en.wikipedia.org/wiki/Manhattan_distance
http://en.wikipedia.org/wiki/Manhattan_distance

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 98 — #130 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 99 — #131 i
i

i
i

i
i

I’d rather be a “could-be”,
if I cannot be an “are”;

because a “could-be” is a “maybe”
who is reaching for a star.

I’d rather be a “has-been”
than a “might-have-been”, by far;

for a “might-have-been” has never “been”,
but a “has” was once an “are”.

Milton Berle July (1908-2002)

7
A free-form modular display driver

7.1 Introduction

In this chapter, a free-form modular display driver will be described. This driver
can, as his name indicates, be used to create free-form displays. Free-form dis-
plays are built from independent modules (well, we are creating modular display
drivers, aren’t we?) that can be connected to create a desired shape. This sounds
an awful lot like what was said about the improved modular display driver, how-
ever, this driver will have a lot more functionality. A lot of the ‘freedom’ of this
free-form modular display driver comes from the fact that the actual configura-
tion of the display is detected and shown in a GUI. More so, this driver makes it
possible to add and remove modules while the display is running. The require-
ments these properties impose on the driver are explained in Section 7.2. The
implementation (Section 7.3) still resembles the previous two drivers, but will be
somewhat more complex due to the added functionality. As always, we’ll take a
look at a (maybe slightly less) simple example in Section 7.4 and check out some
test results in Section 7.6.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 100 — #132 i
i

i
i

i
i

100 A free-form modular display driver

Figure 7.1 – The possible display configurations are the same as with the improved mod-
ular display driver, but with the free-form modular display driver, the GUI shows a real-

time view of the configuration.

7.2 Requirements

7.2.1 The display

The display setup itself doesn’t differ much from the setup for the improved mod-
ular display driver (Section 6.2). Every module is completely independent and
can be connected by four sides to create a desired display. One of the modules
is connected to the microcontroller, which provides the communication with the
PC. Communication with the PC will now play a bigger role in the operation of
the display, since the display will be in constant contact with the PC to ‘tell’ it how
its modules are connected. This not only needs to be done during initialization,
but during the entire time the display is turned on, to provide a real-time view of
the configuration to the user.

7.2.2 The driver

The basic requirements for the improved modular display driver still apply here
(Section 6.2), but with some extras. The address of a module can still be deter-
mined by the surrounding modules. We’ll still start out with a mesh network,
from which we need to create a tree structure. Since we want to be able to detect
the exact configuration of the display, it’s important that every module knows
which of its output gates are used by other modules. Every module will have

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 101 — #133 i
i

i
i

i
i

7.3 Implementation 101

to keep track of one parent node and 0− 3 child nodes. This resembles the tree
structure from the improved modular display driver (except the fact that the im-
proved modular display driver didn’t care if there was a module connected to its
gates), but it needs one major difference. This tree needs to be fully dynamic. As
said in the introduction, it should be possible to add and remove modules while
the display is running, after the initial tree is already created. When a module is
added, it should be added in the tree. When a module is removed, it should be
removed from the tree. But there is a problem with the latter. Since the tree makes
sure that there will be only one path from the microcontroller to any module [1],
the modules in a branch will stop receiving data when one of the parent nodes in
that branch is removed. In some occasions, however, those modules might have
another path to the microcontroller. In other words, when a module is removed,
the tree should be (partially) rebuilt.
Last but not least, the modules need to be able to communicate with the micro-
controller in order to give it the necessary information to determine the configu-
ration of the display. Again, the dynamic addressing of the USB protocol seems
interesting, but for the same reasons as in previous chapter, it’s not applicable in
our situation. This time there are even more reasons. Even if we were satisfied
with the limited topology that can be created, this topology is completely fixed. It
is not the dynamic tree that we need. The SPI protocol (Section 4.3) would allow
the microcontroller to communicate directly with a module, without the need for
an address. But, as explained, the protocol uses 3 + n wires (with n the number
of modules). For larger displays, this becomes impossible. Again, it’s probably
more efficient to create our own, dedicated protocol.

7.3 Implementation

The block diagram in Figure 7.2 still has most of the features from the previous
two drivers. The Memory and Sequencer are exactly the same, and everything is
controlled by Main Control with a state machine. The simple bypass structure has
become a little bit more complex, though, and is replaced with Out Control since
now we need more than just data being forwarded from parent node to child
node. The modules will also need to be able to talk to each other or sometimes
even the microcontroller itself. This will become clear in following sections. Also,
because of the fact that the modules can independently talk to each other, every
gate needs its own Rx. We have a lot of different sources that could drive the
outputs, so multiplexers are used to choose the appropriate source.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 102 — #134 i
i

i
i

i
i

102 A free-form modular display driver

Main Control

Addr. Param.
data

Image
data

Sequencer

Memory

Manch.

Enc.

Tx

Manch.

Dec.

Rx

Manch.

Dec.

Rx

Manch.

Dec.

Rx

Manch.

Dec.

Rx

P C

C P

Out Control

State
machine

Row
driver

Column
driver

Gate 1

a
G

te
 0

G
a

te
 2

Gate 3

Figure 7.2 – The block diagram of the free-form modular display driver.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 103 — #135 i
i

i
i

i
i

7.3 Implementation 103

C,O C,O C,O

O

S

P,A

A

O O

M

A

Figure 7.3 – The genealogical tree created using the free-form modular display driver. A
module (M) has a parent node (P), child nodes (C), sibling nodes (S), ancestor nodes (A)

and offspring nodes (O).

7.3.1 A little terminology

To simplify the explanation of some situations that will occur, I’ve defined some
new terms. As said, the goal is to create a tree structure, where a module (M)
has a parent node (P) and several child nodes (C). This already shows some hints
towards a genealogical tree, so why not expand that idea? An example is shown
in Figure 7.3. Every module might also have one or two sibling nodes (S). These
are the nodes with the same parent node as the module. The chain of parent
nodes of a module (parent node, parent node of the parent node, etc.) are called
the ancestor nodes (A) of that module. Ancestor nodes provide the path from the
microcontroller to the module. The closer an ancestor is to the microcontroller,
the older it is. A module can also have a lot of offspring nodes (O). These are the
nodes that see that module as an ancestor node. When a module breaks down,
all offspring nodes are affected.

7.3.2 Communication protocol

For this driver, the communication protocol will be a little bit different. Data
sequences will still be preceded with a start bit (0) and ended with a stop bit
(1) (Well, most of the time, but this will become clear later). The biggest differ-
ence is that every data sequence will also have a command sequence. A lot of
different information can be sent between modules, so the modules (and the mi-
crocontroller) need to know what to do with it. Each command is three bits long.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 104 — #136 i
i

i
i

i
i

104 A free-form modular display driver

The exact meaning of the command is fixed most of the time, but sometimes the
meaning changes according to the state of Main Control. Some of the commands
are followed by data, others are not. The command sequences and their meaning
can be found in Table 7.1. The commands, as everything, are sent with LSB first.

Command Info
000 adr ack Send address + address
001 adr req Request address
010 sht req Request shout permit
011 sht ack Shout permit
100 sht Shout address + address
101 sht end Shout last address + address
110 param Send parameter data + data
111 data Send image data + data

Table 7.1 – Command sequences used by the free-form modular display driver.

7.3.3 General principles

When we want to create a display that needs to keep working when modules are
added or removed, every module needs to be aware of its surrounding neigh-
bors. This is where the pull-down resistors on the data line come in. As said
in Section 5.3, we didn’t really need them at that point, but now, things have
changed. When a module sees a high input on one of it’s gates, it can be sure that
there is a module on the other side, driving the line. We can expand this a little
more. A module doesn’t need to drive the line. When a module only drives its
outputs high when it has a path available to the microcontroller, other modules
will know that a low line means that at that gate there is either no module, or
a module that is not (yet) connected to the microcontroller. In either case, not a
module that could function as a parent node. When a module sees a high line,
it knows connecting to that module will provide it with a path to the microcon-
troller. How this works will be clear after the next paragraphs.

Detection of the configuration

One of the most significant changes of this driver is that it is supposed to detect
the exact configuration of modules in the display. Since the address of a module,
which will be calculated in the same way as the previous driver (See Section 6.3),
is in fact the row and column number of that module in the display, this address
can be used as coordinates for that module to build up the display at the PC side.
When the PC knows all the used addresses in the display, it can show us the
exact configuration of the display. The only issue is how to get all addresses to

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 105 — #137 i
i

i
i

i
i

7.3 Implementation 105

the PC (or microcontroller). This has to happen in a controlled way, to avoid data
collisions and to avoid flooding the microcontroller with addresses.

Initialization

When the display is turned on, every module will look out for a high input. As
said above, as long as a gate has a low input, there is (for now) no path to the
microcontroller available through that gate. When a module sees a high input on
a gate, it knows it can get an address through that gate. The module connected
to that gate will become its parent node. The module immediately requests an
address from its parent node by sending an adr req and waits for an address
(adr ack).
When the address is received, the module will drive all its outputs high. This
way the neighboring modules are notified that a path is available through this
module. They should start asking for addresses immediately, so the module waits
for incoming adr reqs. An incoming adr req is answered with an adr ack
followed with the correct address. The address is calculated according to the gate
the request originates from (See Table 6.1). It’s obvious that at every gate where a
adr req comes in, a module is connected that will be a child node of this module.
The adr reqs are used to determine where the child nodes are, which is stored in
a vector (children). adr reqs are handled one at a time, with the lowest gate
number having the highest priority. The other modules will have to wait their
turn. Using this technique, every module will be connected to the microcontroller
through the fastest (i.e. shortest) path. In the end, a minimum spanning tree
with a fixed root (i.e. module directly connected to the microcontroller) will be
created[2]. In se this is a simple implementation of the Spanning Tree Protocol
discussed in Section 4.3. When all adr reqs are handled (or when no adr reqs
were received) the module will try to send its address to the microcontroller. This
action will be called shouting.
A shouting routine works as follows. Since there isn’t a direct connection with
the microcontroller yet (which is a good thing), the module will try to send its
address to its parent node. The parent node receives this address and will try to
send it to its own parent node, and so on. The address will propagate through the
path of ancestor nodes until it reaches the microcontroller. To send an address to
the parent node, the module asks for a shout permit (sht req). When the parent
node is ready (meaning it has already sent its own address or any other address
stored in the shout buffer), it sends a sht ack and waits for the incoming ad-
dress. The module will then shout the address using either sht or sht end. The
difference between those two will be explained later (See Figure 7.4 for an illus-
tration). The incoming address will be stored in the parent node’s shout buffer.

After sending its own address, the module will look for incoming sht reqs from

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 106 — #138 i
i

i
i

i
i

106 A free-form modular display driver

µC M1 M2

M3 M4

request permit shout ‘X’X

µC M1 M2

M3 M4

µC M1 M2

M3 M4

1

µC M1 M2

M3 M4

µC M1 M2

M3 M4

µC M1 M2

M3 M4

2

µC M1 M2

M3 M4

µC M1 M2

M3 M4

µC M1 M2

M3 M4

2

4 3

µC M1 M2

M3 M4

µC M1 M2

M3 M4

µC M1 M2

M3 M4

3 4 4

waiting request

Figure 7.4 – The shout routine in the free-form modular display driver

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 107 — #139 i
i

i
i

i
i

7.3 Implementation 107

its child nodes. The first addresses that will be shouted will be the addresses
from the child nodes itself, but in the end all addresses from all offspring nodes
will have to pass through this module. This poses a small problem. How does
a module know how many offspring nodes there are, how many addresses to
expect, when to stop waiting for incoming sht reqs? When a module wants to
shout its own address, it checks if it has child nodes or not. If it doesn’t, this
means that the only address it needs to shout will be its own address. It will
shout this address using sht end. Any module that does have child nodes will
only shout an address using sht end when every child node has sent a sht end.
In other words, shouting using sht end simply means that the attached address
is the last address that will be sent from this module. All addresses from all the
offspring nodes have been sent. When the microcontroller receives a sht end,
every address has reached the microcontroller and the initialization is finished.
After the initialization, the ‘bypasses’ are activated. Only now, the bypasses work
in two ways. Data from the parent node is forwarded to the child nodes (and only
to the child nodes). But also, data coming from the child nodes is combined (see
paragraph on Out Control, Section 7.3.6) and sent to the parent node (and thus
to the microcontroller). This last bit is a bit tricky, since it might cause problems
when two or more modules are trying to send something to the microcontroller.
Modules trying to send something to the microcontroller will not happen very
often. This is explained in next paragraph.

Adding modules

One of the reasons why adr req/adr ack is used instead of just sending the
addresses to all gates, is that not every module is necessarily present at that time.
We want to create a driver which makes it possible to add modules to the dis-
play after initialization. Let’s see what happens when a new module is attached
to an already present module. Since this last module has a path available to the
microcontroller, its outputs are driven high. The new module will immediately
see a high input and will send an adr req to its new parent node. Since, at this
point, the new module isn’t a registered child of the parent node yet, the adr req
will only be seen by the parent node and not forwarded to the microcontroller.
The new module receives an address (adr ack) and will try to shout the address
to the parent node. We still don’t want to activate the bypass towards this new
module, though. For several reasons, first, the new module doesn’t realize the
initialization for the rest of the display is already over and that it could cause
problems if it would simply perform a sht req (which would be directly sent to
the microcontroller). Second, if the microcontroller is sending data and the by-
pass is activated mid-sequence, the new module would appear to receive faulty
data. So, for now, the bypass stays closed.
As I was saying, the new module will try to shout the address to the parent node

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 108 — #140 i
i

i
i

i
i

108 A free-form modular display driver

by sending a sht req. The parent node lets it shout (sht ack) and the new
module will shout its address. If only one module is added, it uses a sht end
of course. Now comes the tricky part. The parent module needs to send the
address to its own parent node, but since all other modules have their bypasses
activated, it will be directly sent to the microcontroller. The parent node checks
if the line is free (no incoming parameter or image data) and if it is free, sends a
sht req to the microcontroller. The data line will be free in between two frames.
The microcontroller sends a frame by sending image data to every module, then
waits before sending the next frame. The time to check if the data line is free must
simply be longer than the time between the data sequences for two modules, but
shorter than the time between the end of one frame and the start of the next frame.
This method poses one restriction on the adding of modules, though. When two
new modules would be added on different places at the same time, the two new
parent nodes would try to shout at the same time, which would cause collisions.
This could be avoided by using collision detection and multiple-access protocols
explained in Chapter 4 [3], but this was not implemented. We simply prohibit
that two modules are added at the same time on a different place. That works
too. Multiple modules can be added at the same time, but it should be one group
of modules, all connected to only one module. Another thing that we need to
be careful about is that the sht req and following sht(end) will be seen by
all ancestor nodes, and the returning sht ack by all modules. All modules will
have to follow whats going on, without intervening, to avoid confusion.

Removing modules

A couple of problems can arise when removing a module. This module was prob-
ably a child node of another module. Since there is no-one left to drive the line,
the line will be pulled down. But since the corresponding gate was considered a
child gate, this low signal will be forwarded to the ancestor nodes and the micro-
controller. So when a module sees a low signal on one of its child gates, it could
be that its own child node is gone, or one of its other offspring nodes is gone.
The precise method to check whether an offspring node is gone (own child or
not) will be explained in Section 7.3.4. When Rx notifies that an offspring node is
missing the bypass from that node is deactivated. If the signal remains low, then
it is one of the own child nodes that is gone and the children vector is adjusted.
If the signal returns to a high voltage then it was one of the other offspring nodes
and no action is required (other than reactivating the bypass, of course).
As said in Section 7.2, another problem can make removing modules a little bit
more difficult. When a module is removed, its entire offspring would stop re-
ceiving data notwithstanding there might be an other path through which they
could receive data. The tree has to be rebuilt so solve that problem. When Rx
notifies that the parent node is gone, Main Control performs a full reset. Since
data from the parent node is forwarded to all offspring nodes, Rx actually noti-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 109 — #141 i
i

i
i

i
i

7.3 Implementation 109

fies when an ancestor is gone. Or, in other words, when a module disappears, the
entire offspring performs a full reset. After a full reset, the memory is still intact
(address and data are remembered), but Main Control will have returned to the
begin state. Bypasses are deactivated, outputs are pulled low, children vector
is emptied, in control is reset. The entire offspring will start looking for a high
input, just as during the initialization. When one of those modules is connected
to another module that wasn’t part of the affected offspring, it will see a high in-
put on that gate. The new parent node is chosen. The following initialization will
be a little bit different, though, for two reasons. First, since the module still has
an address, it does not have to receive one. But, more important, second, it’s very
possible that multiple modules of the former affected offspring find a new parent
node at about the same time. If all those new parent nodes would start to shout,
there would be a lot of data collisions, as explained above. And anyway, a shout-
ing routine isn’t necessary because the microcontroller hasn’t forgotten about the
modules that were in the offspring. There is no need to shout the addresses.
So, when a module finds a new parent, it will not send an adr req but an adopt
request (adpt req). The careful reader will have noted that the adpt req com-
mand isn’t present in Table 7.1 (It isn’t). This is because the data command will
be used instead. The data command could only come from a parent node, so
seeing data on one of the gates that isn’t the parent node, means there is a mod-
ule there that wants to be adopted. The parent responds with an adpt ack (=
adr ack without address) to complete the adoption. The module is now recon-
nected to the tree and will drive its outputs high. Other modules from the former
offspring can now perform an adpt req to this module. Note that this way,
a module that was once a parent node of another module, can now become its
child node. After this procedure, the affected part of the tree is rebuilt and every
module that can connect to the microcontroller, will be connected.

Keeping the GUI updated

When the initialization is finished, all used addresses have been sent to the micro-
controller. With these addresses, the GUI can show the current configuration of
the display. When modules are added or removed after the initialization, the GUI
needs to be updated. When modules are added, the new addresses are also sent
to the microcontroller, so the GUI can adjust the configuration. When removing
modules, however, it becomes a little bit more difficult. A module cannot ‘an-
nounce’ that it has disappeared. And even if that could (e.g. parent node telling
that one of its child nodes is gone), there is no way of knowing if the entire off-
spring of the removed module was able to reconnect to the microcontroller.
The only option is to periodically check which addresses are still used, and which
have disappeared. This is done through a poll. Every 1-2 seconds, the microcon-
troller performs a poll request. This will be the sht req command. It’s still an

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 110 — #142 i
i

i
i

i
i

110 A free-form modular display driver

Start bit
det.

Gone

Addr.
avail.

Manch.
decoder

Counter

Decoder
Clock
gen.

Wait

Shift reg.
cmd

C
o

m
m

a
n

d
s

Data in

gone

address available

Command decoder

Figure 7.5 – Block diagram of Rx

unambiguous command, since it cannot be sent by a parent node during initial-
ization. When the modules see sht req from their parent nodes, they deactivate
all bypasses and start the polling routine, which is actually just a complete shout
routine from during initialization. Every module will try to shout their address
to the microcontroller, but since the bypasses are inactive, it will only reach to
the parent node, which will shout it to its own parent. When a module hasn’t re-
ceived any sht reqs by the time it received a sht ack, it will assume that it has
no children (in the case the missing child hasn’t been noticed yet) and will shout
using sht end, otherwise using sht. As during the initialization, the polling
routine is over when the microcontroller gets a sht end. The microcontroller
again knows all currently used addresses and the GUI can be updated.

7.3.4 Rx

Since the communication protocol has changed and become a bit more compli-
cated, Rx has some more functionality. Figure 7.5 shows the block diagram. The
Start bit detector and Decoder clock generator (with the Manchester decoder) are the
same as in previous drivers. The Command decoder replaces the Image/Parameter
detector. The extra functionality is provided by the Address available block, which
looks for high inputs while filtering out glitches. The Gone block detects when
the attached module might have disappeared.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 111 — #143 i
i

i
i

i
i

7.3 Implementation 111

Command decoder

This block actually consists of three smaller blocks. A wait block, a shift regis-
ter and the actual decoder. When a start bit is detected, the wait block (which is
a counter) is activated and counts the incoming command bits. The command
bits are shifted into the register. After three bits, when the command is finished,
the shift register is disabled and the decoder enabled. The decoder has nine out-
puts, one for each command and one to indicate that a command is received (cfr.
Receiving data from Section 5.3). As long as Rx is not reset, the signals remain
available. This is necessary because a module can for example receive multiple
sht reqs, but can only process one at a time. The others are kept available in
their respective Rxs.

Address available

The Address available block will look for a high input. A high input indicates that
an address (and path) is available through that gate, and will be presented to the
Main Control. Possible glitches on the data line are filtered out by demanding
that the data line remains high for a specific time. But there is another issue that
we need to be aware of. Let’s assume two adjacent modules that aren’t siblings.
Call them M1 and M2. When M1 looses its parent node it will try to find a new
parent node, which will be M2. At the moment M1 looses its parent, it goes into
full reset, pulling its outputs low. But this is seen by M2 as the start of a command
(modules need to listen to unused gates for commands, because there might be a
new module attached there). If M1 sees the high output from M2 and if it would
almost immediately send an adpt req, this command would be misread by M2
because, according to him, the command started when M1 pulled its outputs low.
Therefor, Address available must at least wait for 5 bits (1 start bit, 3 command bits,
1 bit to let the Rx be reset) before presenting the signal to Main Control.

Gone

Gone will present a high signal to Main Control when it suspects that the attached
module has gone missing. As said in Section 7.3.3, we can not be sure at this time
whether a parent node or one of the ancestor nodes is gone (not that it matters, be-
cause the same action is required), or whether a child node or one of the offspring
nodes is gone (this time it does matter). But the Gone block doesn’t need to care, it
just tells when he suspects a module is missing and Main Control will do the rest.
Detecting when a module is missing is dependent on whether Manchester code
is used or not. If you see a signal that remains low for longer than one bit period,
there is definitely something wrong when Manchester code is used. When no
Manchester code is used, we can only know if a module is missing when no data
is being received. In both cases of course, the Gone signal is only relevant if there

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 112 — #144 i
i

i
i

i
i

112 A free-form modular display driver

Gate 0

Gate 1

Gate 2

Gate 3

Gate 0

Gate 1

Gate 2

Gate 3

out_ctrl(0)

out_ctrl(1)

out_ctrl(2)

out_ctrl(3)

in_ctrl

parent children

children parent

data_int

data_ext

Figure 7.6 – Out Control chooses the parent signal to be sent to child nodes and combines
the child signals to be sent to the parent node.

should be a module in the first place (i.e. high Address available signal).

7.3.5 Tx

Tx, on the other hand is a little bit simpler than before. It is now only a simple
shift register (with the possibility of Manchester coding its output). The contents,
which can be a calculated address for a child node, are loaded by Main Control.
No calculation of any kind is done in Tx. The shift register here is 12 bits long:
1 start bit, 3 command bits and 8 bits for sending an address if needed. There is
also no more bypass present in Tx. Tx is now only one of several sources that can
be used for output.

7.3.6 Out Control

As said before, Out control will take the function as bypass, connecting the parent
node and child nodes. Figure 7.6 shows how this is done. From parent node to
child node a simple multiplexer suffices. The data signal from the parent node
is called data int. The child signals need to be combined to one signal, before
it can be sent to the parent. When a child node is present (out control=1) its
default output is 1. So should the output towards the parent node be. Only when
a child node sends data, should the output towards the parent node be changed.
A child node that is not present (out control=0) should not interfere with the
process. Figure 7.6 shows the logic that accomplished this. The combined signal
from the child nodes is called data ext. Which gates can participate and which
can’t are controlled by out control. This will be the same as the children

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 113 — #145 i
i

i
i

i
i

7.3 Implementation 113

vector from before for the most of the time. But not always. When it is sus-
pected that a child node drops out, the bypass needs to be temporarily disabled
(out control) but the child node must not be removed from the children
vector. Or, when a new child node is connected after the initialization, the bypass
to this child cannot be immediately activated, notwithstanding the parent node
already listed it as its child.

7.3.7 Output multiplexers

These are simple 4-to-1 multiplexers. Each gate can output one of the following
signals. The default output. This is the value that will be sent to the gates not
connected to either child or parent node (0 when no address is available, 1 when
address is available). The command or Tx output, for when a command needs
to be sent. The data int signal for the child nodes and the data ext signal for
the parent node.

7.3.8 Main Control

Because of the added functionality, Main Control will be a lot more complicated
than in previous drivers. It can still be represented as a state machine, which is
shown in Figure 7.7. There are 11 states, they are enumerated in Table 7.2. There is
also a time-out counter present in Main Control, if it takes too long for a command
to be received (timer is set to 13ms) action needs to be taken. The dotted lines in
Figure 7.7 show what happens if there is a timeout or if a wrong command is
received.

State Info
S0 Begin state
S1 Send address request or adopt request
S2 Receive address or adpt ack
S3 Receive address requests or adopt requests
S4 Send address or adpt ack
S5 Send shout request
S6 Receive shout permit
S7 Send shout
S8 Receive shout request
S9 Send shout permit
SF Normal operation

Table 7.2 – The states from the state register in the free-form modular display driver ex-
plained

When the display is turned on, or after a full reset, we start out in state S0. When

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 114 — #146 i
i

i
i

i
i

114 A free-form modular display driver

S2

S4

S1

S3

S5

S0

S6

S7

S8 SF

S9

2

1

3

6

12

14

16

18

5

4

7

20

19

15

11

10

17

9 13

8

Info # Info
1 Address available 11 Shout permit sent
2 Address request sent 12 Own address shouted
3 Own address not yet shouted 13 Shout using sht end
4 Address request received 14 Address request received
5 Address sent 15 New child after initialization
6 Address requests finished 16 Pass address (return 17)
7 Shout request sent 17 Adopt permit received
8 Shout permit received 18 Parent node gone
9 Shouted using sht 19 Adopt permit sent

10 Shout request received 20 Start poll

Figure 7.7 – The state machine of the free-form modular display driver

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 115 — #147 i
i

i
i

i
i

7.3 Implementation 115

a high input is detected, we go to state S1 to send an address or adopt request
(adr req or adpt req), depending on whether we already have an address or
not (See Section 7.3.3, ‘Removing modules’). In state S2, we wait for an address
(adr ack) or an adopt acknowledgment (adpt ack). If the latter is received, we
can immediately go to the final state SF. S2 is also used to receive addresses from
child nodes when these are shouting their addresses. If something went wrong
or a timeout occurred, we go back to state S0, to ask for a new address, or to state
S8 if we are in the shout routine, to process the other shout requests (see below).
So, from S2 we can go in several directions, but I’ll try to follow it chronologically.
After receiving an adr ack from the parent node in S2, we first need to provide
the possible child nodes with an address. This happens in S3, where we wait for
incoming adr reqs.
If an adr reqs is received, state S4 is used to calculate and send the correspond-
ing address to the needy child, after which we go back to state S3 to process
the other adr reqs. States S3 and S4 are also used to process incoming adopt
requests in the same way. When a adr req or adpt req enters in state S3,
the children vector is adjusted. After sending an adpt ack as response to an
adpt req, state S4 is followed by the final state SF. When all address requests
are handled or when no address requests were received (we’ll wait for 20 clock
cycles for an address request to come in), we are ready to shout our own address
in state S5. After the initialization process, we could arrive in state S4 because of
a new module that has been added. In that case, we don’t need to shout our own
address and can go immediately to state S8 to receive shout requests.
State S5 is used to send a shout request. During the initialization, a shout request
can simply be sent, but when initialization is over and we find ourselves in this
state because of a new module that has been added, we have to make sure the
data line is free. This is explained is Section 7.3.3, ‘Adding modules’. If the re-
quest is sent, we can go to state S6 to wait for a permit. If this permit doesn’t come
or is received incorrectly, we go back to S5 to request it again. The shouting itself
happens in state S7. Here we will make the decision whether to shout with sht
or sht end. A vector (adr end) keeps track of the gates from which a sht end
has arrived. If this vector equals the children vector, a sht end is used. So,
if there are no children, sht end will be used when shouting our own address.
After shouting with sht end, we can go to the final state SF. In the other case,
we go to state S8 to process the shout requests from our child nodes.
Since we can only arrive in state S8 when there are still child nodes that didn’t
shout using sht end, we should definitely receive at least one request. If this
doesn’t happen when the timeout timer runs out, we will have to assume that an
offspring node malfunctions. We have to send the last received address again,
but now using sht end. We adjust the adr end vector and go back to state
S5 to send a shout request. If every module follows this procedure, it will only
be the module that has a child node malfunctioning that will have to adjust its

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 116 — #148 i
i

i
i

i
i

116 A free-form modular display driver

adr end, which is what we want. The other modules (the ancestor nodes that
would also be waiting for a sht req) would receive the sht req just in time. (If
the module with the child node malfunctioning doesn’t have sibling nodes, the
sht req would probably come just too late. The requests would always come in
just as the timer runs out, which makes it dependent on the exact clock frequency.
But when that module does have a sibling node, the ancestor nodes would still
be busy processing the info on the sibling node when the timer of the affected
module already started running.) When everything is OK, though, and a shout
request is received in state S8, a shout permit is sent in state S9. After this, we go
back to state S2 to receive the shouted address.
We are now in the shout routine where S2 is used to receive the shouted ad-
dresses. When an address is shouted using sht end, the adr end vector is ad-
justed. If no address is received or the wrong command is received from the
expected child, we go back to state S8 to wait for the child to request to shout
again. Since state S5 (send shout request) is the fall-back state for when some-
thing goes wrong while trying to shout, this should happen. If the address is
correctly received, we go to S5 to perform a shout request ourselves. During the
shout routine, we stay in the same 6 states: S5 (send shout request), S6 (receive
shout permit), S7 (shout), S8 (receive shout request), S9 (send shout permit), S2
(receive address). The loop will be broken when every child has shouted using
sht end (adr end = children) at which point we’ll move from S7 to the final
state SF (after shouting using sht end ourselves). The initialization is over. Out
Control is activated and the Sequencer is started.
A couple of things can happen in this final state. When the parent (or ancestor)
node is gone, everything is reset and we go back to the begin state, S0. When an
offspring node is gone, we can stay in the same state, but we do need to check if
it is our own child node that is removed or not. This is explained in Section 7.3.3,
‘Removing modules’. Another important command that can be received, here, is
the polling request from the microcontroller. When this happens, Out Control is
deactivated, the adr end and children vector are reset and we go to state S5
to send a shout request, to shout our own address. From there, we are back in
the shout loop (S5, S6, S7, S8, S9, S2), the children vector will now be adjusted
according the received shout requests in state S8. After the polling (shouting)
routine, we will be back in SF. When a new module is added, or when a module
needs a new parent, we receive an address request or an adopt request. In this
case, we go to state S3 and handle it from there (S3, S4, S3, S5, S6, S7, SF for a
new module, S3, S4, SF for an adopted module). A final thing that needs to be
done in this state is keeping track of other transmissions. If, for example, there is a
new offspring node which needs its address shouted to the microcontroller, there
will be some data passing through not meant for us. More precise, there will be a
shout request coming from one of the child nodes, followed by a shout permit by
the microcontroller, followed by a shout by one of the child nodes. For the shout

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 117 — #149 i
i

i
i

i
i

7.4 A slightly less simple example 117

request and permit, we can stay in the SF, but for the shout itself, we go briefly
to state S2 to let the address pass. Any other command that is not recognized or
not expected to be received in state SF, whether from a child node or the parent
node, is ignored.

7.4 A slightly less simple example

Figures 7.8 and 7.9 show some driving signals from the free-form modular dis-
play driver driving the display from Figure 7.8a. The initialization process is seen
in Figure 7.8. The display is turned on and M1 asks the microcontroller for an ad-
dress. After the address is received, M1 puts its outputs high so that M2 can do
the same thing. Since there are no more pending address requests, M1 can al-
ready start shouting. M2 processes the address requests from M3 and M4, in that
order, while adjusting the children vector. M1 was already finished shouting
its own address, so M2 can immediately start shouting after asking. M1 received
the address from M2 and shouts it to the microcontroller. In the mean while, both
M3 and M4 requested a shout permit from M2. M3 is granted first and since M3
has no child nodes, it shouts using sht end. adr end is adjusted. M4 does not
get a permit before M2 cleared its shout buffer by shouting the address from M3
to M1. When M4 can finally shout, it also uses sht end and adr end is again
adjusted. All children have now finished shouting, so M2 also uses sht end to
shout the address from M4. Finally, M1 also shouts using sht end and the ini-
tialization is finished. It is only now that out control is adjusted, to activate
the bypasses of the modules.
Figure 7.9 shows what happens if we add and remove modules. First M5 is added
in the system (See Figure 7.9a). The lowest gate number is connected to M4, so
this will become its parent node. M5 asks and receives an address, and shouts it
to M4. M4 shouts the address directly to the microcontroller, as the bypasses of
all other modules are activated. The state of Main Control of M2 changes to S2 as
the shouted address passes. A little bit later, M4 is disconnected. After M2 detects
the missing child node (gone = 1), it quickly adjusts the out ctrl vector. Since
M4 is M2’s own child node, the children vector is adjusted. M1 also adjusted
its out ctrl at the same time, but realized that it was not its own child node
that has disappeared, and changed it back to what it was. M4 was also the parent
node of M5. The missing parent node is detected and the state goes back to S0.
M5 tries to reconnect to the system by sending an adopt request to M3. M3 now
has an extra child node and M5 a new parent node. At the end of the waveforms,
a polling routing is started (sht req from microcontroller). Every module resets
the children vector, deactivates the bypasses and performs a shout request. The
shout routine can commence and the missing M4 will be noticed.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 118 — #150 i
i

i
i

i
i

118 A free-form modular display driver
µ

C
M

1

M
2

M
3

M
4

(a)

µ
C

 M
1

M
1

 µ
C

M
1

 M
2

m
a

in
_

s
ta

te
o

u
t_

c
trl

ch
ild

re
n

a
d

r_
e

n
d

M
2

M
2

 M
1

M
2

 M
3

M
2

 M
4

M
3

 M
2

M
4

 M
2

a
d

r_
re

q
a

d
r_

a
ck

a
d

d
re

ss
sh

t_
re

q
s
h

t_
a

ck
sh

t/sh
t_

e
n

d

(b)

Figure
7.8

–
Exam

ple
of

the
initialization

process
for

the
free-form

m
odular

display
driver,according

to
the

display
configuration

show
n

above.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 119 — #151 i
i

i
i

i
i

7.4 A slightly less simple example 119

µ
C

M
1

M
2

M
3

M
4

M
5

µ
C

M
1

M
2

M
3

M
4

µ
C

M
1

M
2

M
3

M
5

(a
)

a
d
d
re

ss
sh

t_
re

q
sh

t_
a
ck

sh
t/
sh

t_
e
n
d

m
a
in

_
st

a
te

o
u
t_

ct
rl

ch
ild

re
n

M
1

M

2

µ
C

M

1
M

1

µ

C

M
2

M

1
M

2

M

3
M

2

M

4

M
3

M

2

m
a
in

_
st

a
te

m
a
in

_
st

a
te

g
o
n
e

g
o
n
e

M
4

M

2
M

4

M

5

M
2

M
3

M
5

o
u
t_

ct
rl

M
5

M

4

in
_
ct

rl

M
5

M

3

M
3

M

5

a
d
r_

re
q
/a

d
p
t_

re
q

a
d
r_

a
ck

/a
d
p
t_

a
ck

M
5
 a

d
d
e
d

M
4
 r

e
m

o
ve

d
P

o
ll

st
a
rt

e
d

(b
)

Fi
gu

re
7.

9
–

Ex
am

pl
e

of
th

e
dr

iv
er

si
gn

al
s

w
he

n
a

m
od

ul
e

(M
5)

is
ad

de
d

af
te

r
th

e
in

it
ia

liz
at

io
n,

w
he

n
a

m
od

ul
e

(M
4)

is
re

m
ov

ed
,

an
d

du
ri

ng
th

e
po

lli
ng

ro
ut

in
e.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 120 — #152 i
i

i
i

i
i

120 A free-form modular display driver

7.5 Setting up the test environment

I used the LED modules again to test this free-form modular display driver. The
VHDL implementation of Main Control is included in Appendix C. Since there
are a lot more states than in previous drivers, the implementation is quite long.
Some less important or repetitive parts have been excluded.
This time the GUI has changed a bit. The outside looks pretty much the same,
although the option to enter a display size has disappeared. The biggest changes
are in the functionality of the program, since now it also has to process incoming
information from the microcontroller. There are two types of data streams can be
received. One is a stream with addresses of modules that need to be added to the
system. This can either be at the end of the initialization, or when modules are
added after the initialization. The other stream is the result of a polling, where
the addresses from the stream are compared with the existing addresses in the
GUI.

7.6 Some first results

I created some test displays and after turning them on, the configuration was de-
tected correctly. I was also able to add and remove modules without interfering
with the operation of the display itself. The microcontroller was programmed in
such a way that the module shouting the first address would display the num-
ber 0, the second number 1 and so on. This continues also after initialization. In
Figure 7.10 first the top three modules were turned on (Figure 7.10a). After the
initialization, the bottom two modules were turned on (Figure 7.10b). The result-
ing display can be seen in Figure 7.10c. The top three modules have numbers 0,
1 and 2, according to their distance to the microcontroller. Later, the bottom two
modules received numbers 3 and 4.
Figure 7.11 shows that the display still responded as expected after those two
modules were added.
Let’s take a look at the initialization time. In this system we have a bottleneck
situation. While the addresses might be distributed in parallel (just like with
the improved modular display driver), every address needs to be send back to
the microcontroller, which happens serially. The oldest node can only send one
address at a time to the microcontroller. The total initialization time will again
only be dependent on the number of modules in the display. With a bit rate of
1Mbit/s, the display needs on average about 40− 50µs per module to initialize.
There are some variations depending on the exact display configuration. In a
denser connected network (as opposed to, let’s say, one long chain), some things
(like some address requests) can happen in parallel.
Next to the initialization time, the time to complete a polling routine is also im-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 121 — #153 i
i

i
i

i
i

7.6 Some first results 121

(a) (b)

(c)

Figure 7.10 – Images of the GUI and the corresponding display setup for the free-form
modular display driver. First the top three modules are turned on (a), then the lowest two

(b). The result is shown in (c).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 122 — #154 i
i

i
i

i
i

122 A free-form modular display driver

(a) (b)

Figure 7.11 – After the modules were added, the display still works as required.

portant. For larger networks, this time will be about the same as the initialization
time (around 40µs/module), since during the initialization, the shouting of the
addresses overlaps with the distribution of the addresses for the largest time.

7.7 But maybe we could do something more?

With our free-form modular display driver, we already created a lot of freedom.
We can not only create a display as we see fit, but the display configuration is
detected automatically. We can also add and remove modules while the display
is running without interfering with the operation of the display. But, as always,
there are some limitations.
We said that a display of any shape could be created, but this is not entirely true.
We are still limited in creating a flat matrix of modules. If we were to create a
flexible display and used flexible modules (See also Section 10.5) we could create
a lot of problems. With flexible modules you could easily create a display, connect
the modules in such a way that they don’t fit in a flat matrix anymore. Addresses
would be wrong, or worse, two modules could receive the same address. And on
top of that, the address itself would be irrelevant to the location of the module.
Another annoyance is that every module is supposed to be oriented in the same
direction, in order for the correct addresses to be distributed. When creating
square modules that look the same from every direction, why not make it pos-
sible that the modules can be oriented either way? Let them sort it out.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 123 — #155 i
i

i
i

i
i

7.7 But maybe we could do something more? 123

And last but not least, when we’re moving away from the strict matrix formation
and predefined orientation anyway, why limit ourselves to square modules? If
we could use triangular modules, we could create a lot more display shapes,
especially when looking at creating 3D shaped displays.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 124 — #156 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 125 — #157 i
i

i
i

i
i

References

[1] R. Diestel, Graph Theory. Springer-Verlag, 2005.

[2] Wikipedia. Minimum spanning tree. [Online]. Available: http://en.
wikipedia.org/wiki/Minimum spanning tree

[3] J. F. Kurose and K. W. Ross, Computernetwerken, een top-down benadering. Pear-
son, 2003.

[4] P. J. Ashenden, The VHDL Cookbook. University of Adelaide, 1990.

http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Minimum_spanning_tree

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 126 — #158 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 127 — #159 i
i

i
i

i
i

I may not have gone
where I intended to go,

but I think I have ended up
where I needed to be.

Douglas Adams (1952-2001)

8
Improved free-form modular display

driver

8.1 Introduction

In the conclusion of last chapter, some improvements were proposed for the free-
form modular display driver. These improvements are implemented in the driver
described in this chapter. This driver will conveniently be called ‘the improved
free-form modular display driver’. It will make it possible to create displays with
flexible modules, where the modules don’t have to be placed in a matrix pattern,
or to create 3D-shaped displays. There will be even more freedom in display
shapes, since the driver allows the modules to be something other than simple
squares. See Section 8.2 for more details. Previous drivers were, in the end, all
based on the same principle, namely that modules were able to calculate the ad-
dresses for their neighbors. We’ll see that with the improved free-form modular
display driver this will no longer be possible. The new algorithm is built up from
scratch and explained in Section 8.3. After the accustomed example in Section 8.4,
we’ll show some results in Section 8.6.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 128 — #160 i
i

i
i

i
i

128 Improved free-form modular display driver

(a) (b)

Figure 8.1 – Displays that can be used with the improved free-form modular display
driver. The dark edge represents gate 0.

8.2 Requirements

8.2.1 The display

We want to give the display some more options, some more variety in shapes,
in applications. Take Figure 8.1a for example. The modules are used to create a
3D-shaped display. If we were to use the previous driver, a first problem arises:
how do you orient the modules? In a flat matrix there is a clear ‘up’ and ‘down’,
but in this case there isn’t. And since the calculation of the addresses relies on the
fact that every module is directed ‘up’, this could cause problems. It’s obvious
that in such a 3D-shaped display, the address of a module would be dependent
on what it happens to choose as parent node. This is not necessarily a problem,
except when it happens that, and this is not unlikely, two modules would receive
the same address. Even more so for displays where the modules are made flex-
ible. Flexible modular displays could for example be used in clothing. See also
Section 10.5 for more information. The amount of ways that flexible modules can
be connected is so large that it becomes extremely likely that the addressing of
the modules would fail miserably. In other words, if we want to be able to create
such displays, we’ll have to find another way to provide every module with an
address.
Since the addresses won’t be provided from the modules themselves, the orien-
tation of a module in the display won’t be so relevant. Well, as we’ll see, it will be
relevant, but it can be taken care of, as opposed to with the previous drivers. And
since the orientation of the modules can be taken care of, the display could also
work with modules that aren’t square (See Figure 8.1b). Creating a decent dis-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 129 — #161 i
i

i
i

i
i

8.2 Requirements 129

play with triangular modules is simply impossible if every module would need
to be oriented the same way. Being able to use triangular modules creates a whole
new degree of freedom in display shapes. Actually, the algorithm is also valid for
pentagonal, hexagonal, ... modules.
It has probably become clear that, since the addresses are distributed in another
way, the addresses will not be able to be used as an indication of the location
of the modules anymore. We still want to be able to detect the configuration
of the display, so this information will have to be retrieved another way. Also
adding and removing modules after the initialization should remain possible.
The representation of the created display in the GUI will not be an exact replica
of the display, meaning that if a 3D-shaped display is created, the GUI will show
a flat, unfolded representation.

8.2.2 The driver

Most of the requirements for the driver are the same as for the previous driver
(See Section 7.2), but there are some differences. The most important difference is
the fact that the address of a module cannot be determined using the addresses of
the neighbors. A module does not know how the other modules are connected.
The only entity that can have a complete view over the entire display is the mi-
crocontroller. If we want to make displays like these possible, every module will
have to ask the microcontroller personally for an address. At startup there will
be a lot of modules that want an address at the same time, so the algorithm will
have to make sure this happens in a controlled way.
Another big change is that the addresses, now distributed by the microcontroller
itself, hold no information on the location of a module. Other information to de-
termine the display configuration is needed, and this information needs to reach
the microcontroller in a safe way. In previous chapters, some network protocols
were proposed and rejected. The arguments still apply for this driver. But now
the modules can be connected in a more complex network, where the only op-
tion to receive an address is by asking it to the microcontroller. A more complex
protocol may be suitable. An idea would be to base it on the Internet Protocol
(IP). This was not discussed in Chapter 4 because it is entirely situated in the
Network Layer and needs a protocol from the Data Link Layer to operate. With
our network, this would be the Ethernet protocol, where the modules could act
as switches and end-systems at once. Almost any network topology is possible
and routing could be fairly simple. Also, if a node/module would break down,
the system would find a way to recover itself. There is one major, fatal problem.
Ethernet is based on fixed MAC addresses, so we would need another protocol
anyway to provide the modules with a unique address. Again, it is more efficient
to develop our own protocol that is able to do everything at once.
The other requirements remain the same. In order to avoid data loops, the created

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 130 — #162 i
i

i
i

i
i

130 Improved free-form modular display driver

mesh network needs to be transformed to a tree network. And this tree needs to
be completely dynamic. So again, a similar implementation of the Spanning Tree
Protocol can be used. If modules are added or removed after the initialization,
the tree needs to be updated to provide every active module with an address and
data. And of course, the changes need to be noted by the GUI.

8.3 Implementation

Notwithstanding the algorithm will be completely different form previous driver,
the block diagram is exactly the same (See Figure 7.2). The only differences are
found in Main Control. Out Control, Rx and Tx operate mostly in the same way
(See also Section 7.3 and below).

8.3.1 Communication protocol

Since the communication between the modules is a little bit more complex than
with the previous driver, we need to add an extra bit to the command sequences.
Some of the commands resemble those from the free-form modular display
driver, but most of them have a completely different function. They can be found
in Table 8.1. A couple of commands are followed with ‘information’, which will
be used to determine the display configuration. What this information is and
how it is used is explained in the next section.
Whereas the modules using previous driver only needed to communicate with
their neighbors, these modules need to be able to communicate with the micro-
controller itself. This can be organized in following way.
During initialization (see below) all bypasses are still inactive, so a communi-
cation line needs to be set up between a module and the microcontroller. If a
module wants to talk to the microcontroller, it sends a send request (send req)
to its parent node. This node will send a send req to its own parent and so on,
until the request reaches the microcontroller. If the microcontroller is ready to re-
ceive data, it sends a send permit (send ack) to the first node. This will send the
permit to the child that requested it and activates the bypass between its parent
node and concerning child node. This child node will do the same. When the
send permit reaches the module that first requested it, there will be an open path
between that module and the microcontroller. They are now free to communicate
with each other. After the communication all bypasses are deactivated again. If
a module were to receive two send reqs, the later received send ack will go to
the child that requested to send first (or the child with the lowest gate number).
The other child has to wait until the communication is finished. That module
will then again perform a send request, and the following send ack now goes
to the other waiting child node. This process will be called the send routine and is

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 131 — #163 i
i

i
i

i
i

8.3 Implementation 131

Command Info
0000 error Disappearing neighbor
0001 send req Request a send permit
0010 send ack Send permit
0011 send end No more sending is needed
0100 ready Ready to receive new data
0101 adr req1 Preliminary address request + info
0110 adr req2 Complete address request + info
0111 adr ack Send address + address
1000 poll req Polling request
1001 poll ack1 Preliminary polling answer + info
1010 poll ack2 Complete polling answer + info
1011 adpt req Adopt request
1100 adpt ack Adopt permit
1101 param Send parameter data + data
1110 data Send image data + data
1111 reset Completely reset driver

Table 8.1 – Command sequences used by the improved free-form modular display driver.

illustrated in Figure 8.2.

8.3.2 General principles

The main principle remains the same as that from the free-form modular display
driver, namely that the mesh network needs to be transformed to a tree network.
Every module will choose a parent node, and can have 0 to 3 child nodes (using
square modules). The choice of the parent node is based on which adjacent mod-
ule puts its outputs high first. When a module found its parent, it can start initial-
ization. The important vectors like children, in control, out control and
adr end are used and adjusted in the same way as with the free-form modular
display driver, so I will not mention them here (See Section 7.3.3). Another point
is that, while the algorithm itself makes displays from pentagonal and hexagonal
modules possible, the driver is designed for triangular and square modules. This
is because the identification of the different gates was only made two bits long.
For modules with more gates, extra bits are required, some registers and timers
need to be adjusted, and so on. But the algorithm itself wouldn’t change.

Detection of the configuration

We still want to have a display where the display configuration can be detected.
Since the addresses don’t hold any information any longer, we need to derive it

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 132 — #164 i
i

i
i

i
i

132 Improved free-form modular display driver

Send Request Send permit Communication Waiting request

µCµC µC

µC µC µC

µC µC µC

Figure 8.2 – The send routine in the improved free-form modular display driver

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 133 — #165 i
i

i
i

i
i

8.3 Implementation 133

in another way. Before going into the initialization itself, let’s first take a look at
what information is needed to determine the configuration. When I say ‘configu-
ration’ in this context, it actually means two things. Not only do we need to know
where a module is located, but also how it is oriented. If a module is upside down,
the image data that needs to be sent to that module will obviously be different.
Let’s assume we know the orientation and location of every module in the dis-
play, and we want to detect the location and orientation of a new, unknown mod-
ule. The location of this new module can be determined if we knew the address
of the parent node and the gate number this new module is connected to, since
we know the location and orientation of this node. The orientation of the new
module, on the other hand, is known if we know the gate number of the new
module the parent node is connected to. So in short, we need three pieces of in-
formation: the address of the parent node, the child gate number of the parent
and the parent gate number.
It is clear that, opposed to the previous driver, this is a recursive algorithm. Lo-
cation and orientation are only known when the location and orientation of the
parent node is known. For the location and orientation of the first, oldest parent
(directly connected to the microcontroller) only the gate number the microcon-
troller is connected to (parent gate number) is required.

Initialization

The display is turned on and every module will wait for a high input on one
of its gates. As said, the adjacent module that first provides a high input will
be chosen as parent node. When the parent is chosen, the module wants to re-
ceive an address. It performs a preliminary address request (adr req1) to its
parent. This request is followed by the number of the gate the parent is con-
nected to. The parent stores this number in one of the receive buffers (See Rx). It
will now try to perform a complete address request (adr req2) to the microcon-
troller. For this, a connection need to be set up with the microcontroller via the
send routine explained above. The parent node sends a send req and waits for a
send ack from its parent. There is now a free path to the microcontroller to send
an adr req2. This complete address request is followed by some information.
First follows the address of the parent itself (only known by the parent itself),
then the gate number of the requesting child node (also only known by the par-
ent) and finally the gate number the child node sent with its preliminary address
request (parent gate number). This is exactly the information the microcontroller
needs to determine the location and orientation of the address-requesting module
(see above). After the parent node sent this complete address request, it activates
the bypass between the open communication line and the requesting child node.
Everything the microcontroller sends will now be seen by this node. Since the
microcontroller keeps track of every module, it can search for the next available

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 134 — #166 i
i

i
i

i
i

134 Improved free-form modular display driver

address and send it through the communication line directly to the module that
sent the preliminary address request. After seeing the address pass by, the par-
ticipating modules deactivate their bypasses again. From the viewpoint of a new
module, following happens: chooses parent, ask address (adr req1), receive ad-
dress (adr ack) and the necessary information has reached the microcontroller.
This also applies for the module directly connected to the microcontroller. It
chooses the microcontroller as parent and sends a preliminary address request
with the parent gate number, which is the only information needed for this first
module. After a module receives its address, the outputs are driven high, so ad-
jacent, waiting modules can start initializing.
The same problem as with previous driver occurs: how do we know when the
initialization is finished, when can we be sure that there won’t be anymore in-
coming address requests? The solution to this problem is also similar. After
receiving an address, the module waits for incoming address requests, if these
don’t come, this module assumes it has no children and a send end will be sent
to the parent node, indicating that no more address requests will come from this
node. A module that does have children will send a send end when it received
a send end from all of its children. It has the same function as the shouts with
sht end in the free-form modular display driver. If a send end should arrive
from a certain gate, and it doesn’t before a timeout occurs, the adr end vector is
adjusted to be equal to the children vector, so the module can send a send end
anyway. This way the total initialization process doesn’t stall. After sending the
send end command, the module will activate the bypasses between parent and
child nodes (See Out Control). When the microcontroller receives a send end the
initialization is finished, and all bypasses are activated.

Adding modules

This same process can be applied to modules that are added after the initializa-
tion of the display. Just as with the previous driver, a freshly added module is
not connected to the microcontroller yet, but only to its adjacent module(s). After
choosing a parent, its send a preliminary address request together with the parent
gate number. This parent will now try to set up a connection with the microcon-
troller to perform the complete address request. However, since all bypasses are
activated, the send req from the send routine will arrive directly at the micro-
controller. We only have to make sure that the data line isn’t occupied with other
data when sending. Since this is the same situation as with the previous driver,
the solution is the same (See Section 7.3.3). The module will send the send req
in between frames. After receiving the send ack from the microcontroller, the
complete address request is performed (with parent address, child gate number
and parent gate number). The microcontroller sends the next available address
which arrives at the new module. If no other modules are attached, the new
module sends a send end to its parent, which will send a send end to the mi-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 135 — #167 i
i

i
i

i
i

8.3 Implementation 135

crocontroller. The actions of the microcontroller are halted until the send end is
received, so the data line will be clear. After the send end the necessary bypasses
are activated and the new child is added in the tree.

Removing modules

We told that when removing a module, two problems arise. The first being that
the dropping line from a removed child node is forwarded all throughout its
ancestors. The second being that removing a parent node causes its offspring to
stop receiving data.
The solutions are again very similar to those proposed for the previous driver.
Rx will notify Main Control that it suspects that a module has gone missing. This
time we can also use the extra error command (not in Manchester mode, of
course). When the suspected node is a child node, the bypass to this child is
quickly deactivated. When the signal is still low after a couple of bits, the child
node is really gone and the children vector is adjusted. If the input signal rises
again, the missing node is not an own child node and the bypass is activated
again.
Also the problem of the missing parent node is solved in the same way as before.
If the parent node is gone, Main Control performs a full reset. Bypasses are de-
activated and the modules go looking for a high input. When found, an adopt
request (adpt req) is performed to the new parent, which will respond with an
adopt permit (adpt ack). Just as with the previous driver, the tree is rebuilt and
every active module can again receive data.

Keeping the GUI updated

To update the GUI, a polling needs to be done once in a while. If we want to
be able to rebuild the tree at the GUI side, we again need the information that
was sent during initialization. After all, when a parent node has disappeared
and its child nodes changed parents, this has to match the information that is still
in the GUI. A polling request (poll req) is sent by the microcontroller. Upon
receipt, every module deactivates the bypasses and respond by sending a prelim-
inary polling answer (poll ack1) to their parents. A poll ack1 is followed by
the address of the module and the parent gate number. This information is tem-
porarily stored in the parent node. When the parent node is ready, it will send
a complete polling answer to the microcontroller (poll ack2) using the send
routine. The complete polling answer is followed by the address of the parent
node, the child gate number and the information sent by the child itself (address
and parent gate number). With this information, the microcontroller can check
which modules are gone and whether the other modules have changed parent
node or not. When the checking is finished, the microcontroller responds by

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 136 — #168 i
i

i
i

i
i

136 Improved free-form modular display driver

Start bit
det.

Gone

Addr.
avail.

Manch.
decoder

Counter

Decoder
Clock
gen.

Wait

Shift reg.
cmd

C
o

m
m

a
n

d
s

Data in

gone

address available

Wait

Shift reg.
Receive buffer

Command decoder

Figure 8.3 – Block diagram of Rx

sending ready. This ready command is also forwarded to the child that per-
formed the poll ack1, just like the adr ack during initialization. After receiv-
ing the ready command, a module can process the poll ack1s from its child
nodes. When no poll ack1s are received, the module sends a send end. The
other modules send a send end when every of its child nodes sent a send end.
Polling is finished when send end reaches the microcontroller.

8.3.3 Rx, Tx and Out Control

Rx, Out Control and Tx have the same functionality here then in the previous
driver. Only Rx differs a little bit. Since the preliminary address requests and
polling answers are accompanied with some data, this data needs to be able to
be stored per gate. The maximum of data is 8 bits (address) plus 2 bits (gate
number), so a shift register of 10 bits suffices. The commands are now four bits
long, so the Command decoder will have 17 outputs (16 commands + 1 ‘command
received’ signal). The Gone block also hasn’t changed, except that now the error
command can be used to detect missing modules.

8.3.4 Main Control

The state machine for the improved free-form modular display driver is shown in
Figure 8.4. There are now 16 states (See 8.2). The dotted lines show what happens
if a wrong command is received or if a timeout occurs. The fall-back state here is
either S3 where the commands from the child nodes are processed, or S0/SA if

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 137 — #169 i
i

i
i

i
i

8.3 Implementation 137

S2

S4

S5

S7

S9

SB

SE

S1

S3

S6

S8

SA

SC

SD

S0

SF
2

1

3

4

5

6

7

8

9

10

11

12
13

24

14

17
15

16

18
19

20

21

22

23

25

26

Info # Info
1 Address available 14 send adpt ack
2 Prel. address request sent 15 Parent node gone
3 Address received 16 Parent was gone
4 Command received 17 Adopt request sent
5 Send request sent 18 Start poll
6 Command was adr req1 19 Prel. polling answer sent
7 Compl. address request sent 20 ready received
8 Command was send req 21 Command was poll ack1
9 Send permit sent 22 Compl. polling answer sent

10 adr req2 passed 23 poll ack2 passed
11 All children sent send end 24 No own new child nodes
12 send end sent 25 adr ack from µC
13 Command received 26 No own new child nodes

Figure 8.4 – The state machine of the improved free-form modular display driver

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 138 — #170 i
i

i
i

i
i

138 Improved free-form modular display driver

you sent a preliminary address request or polling answer.

State Info
S0 Begin state
S1 Send preliminary address request or adopt request
S2 Receive/pass address
S3 Receive command
S4 Send send request
S5 Receive send permit
S6 Send complete address request
S7 Send send permit
S8 Pass complete address request/polling answer
S9 Send send end
SA Send preliminary polling answer
SB Send complete polling answer
SC Receive adpt ack
SD Send adpt ack
SE Receive/pass ready
SF Normal operation

Table 8.2 – The states from the state register in the improved free-form modular display
driver explained

As always, we start in state S0 when the display is turned on, or after a full reset.
The parent node is chosen, and we move to state S1 to send a preliminary ad-
dress request (adr req1) or an adopt request (adpt req) depending of whether
we’re here after startup or after losing our parent node. In case of the latter, the
adpt ack is received in state SC, after which we can go to the final state SF. In
the other case, state S2 is used to receive our address (adr ack). If anything were
to go wrong in the reception of either adpt ack or adr ack, we return to state
S0, so the adpt req or adr req1 can be sent again. State S2 will also be used to
let an address pass (See below). If the address is correctly received, the outputs
are driven high.
State S3 is used to receive commands from the child nodes. These can be prelim-
inary address requests, send requests (send req), preliminary polling answers
(poll ack1) or send ends. After receiving the address in state S2, we arrive in
state S3 to process the incoming address requests. If, after a while, no adr req1s
are received, we go to state S9 to send send end and end in the final state SF. If
adr req1s do arrive, the children vector is adjusted accordingly and in state
S4 the send request is sent. We wait for the send permit (send ack) in state
S5. After the receipt, we have a direct communication line with the microcon-
troller. If the send ack is not received (wrong command or timeout), we go back
to state S3. If we were in state S5 because of, for example, an adr req1 from

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 139 — #171 i
i

i
i

i
i

8.3 Implementation 139

a child node, this child node will resend the adr req1 after the timeout, so we
have to be in state S3 to be able to process this. If we are in state S5, on the other
hand, because of a send req of one of the child nodes (an offspring node wants
an address), this child node will also go back to state S3, waiting for the resend-
ing of the adr req1 of that offspring node. This child node will then resend the
send req. Again, we need to be in S3 to be able to process this.
Where we go from state S5 depends on the command that was received in state
S3 (adr req1, poll ack1 or send req). Logically, the first commands that
we’ll see in state S3 will be the adr req1s, from child nodes that want an ad-
dress. If this command was received, a complete address request (adr req2) is
performed in state S6. After this request, the bypass to the child node that per-
formed the preliminary address request is activated. When the microcontroller
answers, it is directly forwarded to this child node. The receiving (more like
passing through) of the address occurs in state S2, the same state were the own
address was received. Afterwards, the bypass is deactivated again and in state
S3 the next commands are processed. Also when something goes wrong during
the address receipt, we should go back to state S3 since the child that needed the
address will eventually ask it again.
In state S3 the other received adr req1s are processed in the (S3, S4, S5, S6,
S2)-loop. After a while other commands will start to poor in. Either send ends
from child nodes that noticed they don’t have child nodes of their own to which
the adr end vector is adjusted, or send reqs from child nodes that have other
child nodes asking for an address (or child nodes that received a send req them-
selves). These offspring nodes will perform a send req in order to be able to do
the complete address request. If a send req is received, a send req is sent in
state S4 and a send ack is received in state S5, just as before. Only now we go
to state S7 to send a send ack to the child node. The bypass between parent
and concerning child are activated to provide for the open communication line.
State S8 is used to let the adr req2 pass. Again, if something goes wrong, we
return to state S3. Since an address request was performed, the microcontroller
will respond with an address. We can let it pass in state S2. After the address has
passed, all bypasses are deactivated again. We run through the (S3, S4, S5, S7, S8,
S2)-loop until all offspring nodes have an address. At that time, the send ends
will start coming in. If the send end is received from every child, we send one of
our own in state S9. After that we can go to the final state SF, where the bypasses
are activated and where we enter normal operation.
The polling routine follows a similar pattern. If a poll req is received in state
SF, the bypasses are deactivated and the preliminary polling answer is sent in
state SA. In state SE, we wait for the ready command from the microcon-
troller. If this command is not (or wrongly) received, the poll ack1 is resent
(cfr. adr req1). In S3 the incoming poll ack1s are processed. If none are re-
ceived, send end is sent in S9. After a poll ack1, we send a send req in state

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 140 — #172 i
i

i
i

i
i

140 Improved free-form modular display driver

S4 and receive the send ack in state S5. This time we follow the path to state
SB, where the complete polling answer (poll ack2) is sent. The bypass to the
child is opened to let the ready command pass in state SE. Back in S3 the other
poll ack1s are processed in the (S3, S4, S5, SB, SE)-loop. As during the ini-
tialization, send reqs will start to come in after a while, these will be processed
in the (S3, S4, S5, S7, S8, SE)-loop. The same loop from the initialization, only
now we have to wait for the ready command instead of the adr ack. When the
entire offspring has answered the polling request, every child will have sent the
send end. We send our own send end in state S9 and finish in state SF.
The reason why the ready command is used is twofold. First of all, checking
and updating the module info in the microcontroller might take some time, so
you don’t want to send the following send req to quickly after the poll ack2.
It’s safer if the microcontroller indicates when it is ready to receive new data.
But secondly, a module can receive multiple poll ack1s, but can only process
one at a time. The others have to wait. If a child node would not have to wait
for a ready command after sending the poll ack1, it would start processing
its own received poll ack1s and start to send a send req. This would get
lost, because its parent hasn’t even processed the poll ack1 it sent yet. So the
ready command doesn’t only mean that the microcontroller is ready, but that
your parent node is also ready processing your polling answer.
Some other things can happen in the SF state. When a new child arrives, it can
either send an adopt request or an address request. The adpt req is answered
with an adpt ack in state SD. For the address request, we have to send the
complete address request to the microcontroller, so the (S3, S4, S5, S6, S2)-loop is
needed. We only have to make sure that, while sending the send req in state S4,
the data line is free, since this request will go directly to the microcontroller. The
adding of the new module is finished with a send end.
Another thing that we need to be aware of is that, after the initialization, we do
not always have to participate in the communication. If there is a new offspring
node, which is not an own child node, we will receive a send req in state SF, this
command will be processed in state S3. This send reqwill already be forwarded
to the microcontroller, so coming from state S3, we cannot send a send req our-
selves in state S4. Same goes for the send ack from the microcontroller. This
will be forwarded through the bypass, so we’ll have to skip state S7. After state
S8 and S2, we’re back in S3. Normally we would send a send end before going
to SF, but since we have no own new child nodes, we’ll have to skip that. If the
new module is not an offspring node, we will only see what the microcontroller
sends. This is a send ack, which can be simply ignored, and an adr ack for
which we’ll go to state S2 to let it pass. As usual, we’ll arrive in state S3 after-
wards, but since there are no commands waiting and we have no new own child
nodes, we’ll go directly to state SF. Any other command from the parent or child
nodes will be ignored.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 141 — #173 i
i

i
i

i
i

8.4 Another example 141

8.4 Another example

Figure 8.5 and 8.6 show some relevant signals during the initialization of the dis-
play from Figure 8.5a, the addition of module M3 and removal of module M2.
The mux sel x-signals are the selection signals for the output multiplexers, ex-
plained in Section 7.3.7. A summary is given in Table 8.3.

sel value
00 default
01 Command/Tx
10 data int
11 data ext

Table 8.3 – Output sources

In this display, M4 is connected to the microcontroller, so when the display is
turned on, this module performs a preliminary address request ([adr req1 +
gate]) to the microcontroller, which responds with an address (adr ack). After
M4 put its outputs high, both M1 and M5 send [adr req1 + gate]. First M1
is served (lower gate number). M4 sends a send req and the microcontroller
responds with send ack. M4 then performs the complete address request for M1
([adr req2 + address + gate + gate]). M4 opens the bypass towards
M1. M1 is connected to gate 1, so mux sel 1 is set to 2 (= data int = data
from parent node). When the microcontroller sends the address, M1 receives it
immediately. The same process is done for module M5.
In the mean while, M1 has already put its outputs high, so M2 can perform the
preliminary address request. M1 can send a send req to M4, but has to wait
since M4 is busy with providing M5 with an address. As soon as this is finished,
M4 continues the send req to the microcontroller. After the send ack from the
microcontroller, the send ack is sent to M1 and the corresponding bypasses are
activated. The multiplexer for gate 0 (microcontroller) is set to 3 (= data ext =
data from child node), the multiplexer for gate 1 (M1) is set to 1 (data int). M1
can now communicate with the microcontroller. The complete address request
is sent and the returning address is directly forwarded to M2. Since module M5
also has a child node (M6), the same process is repeated for M5. A connection
between M5 and the microcontroller is established, and M6 receives the address.
By that time module M2 has realized that it has no child nodes and has sent a
send end to which M1 does the same. A little bit later M6 and consequently M5
send the send end command. M4 now knows the initialization is finished and
sends the send end to the microcontroller. All bypasses are activated (‘3’ for the
parent gate, ‘2’ for the child gates).
Figure 8.6 shows what happens when a new module (M3) is added. M3 performs

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 142 — #174 i
i

i
i

i
i

142 Improved free-form modular display driver

µ
C

M
4

M
2

M
1

M
5

M
6

(a)

µ
C

 M
4

m
a
in

_
sta

te
c
h
ild

re
n

a
d
r_

e
n
d

m
u
x_

s
e
l_

0
m

u
x
_
s
e
l_

1
m

u
x
_
s
e
l_

2
m

u
x
_
se

l_
3

M
4
 µ

C
M

4
 M

1
M

4
 M

5
M

1
 M

2
M

1
 M

4
M

2
 M

1
M

5
 M

4
M

5
 M

6
M

6
 M

5

M
4

a
d
r_

re
q
1

a
d
r_

re
q
2

a
d
r_

a
c
k

s
e
n
d
_
re

q

se
n
d
_
a
ck

s
e
n
d
_
e
n
d

a
d
d
re

ss

g
a
te

(b)

Figure
8.5

–
Exam

ple
of

the
initialization

process
for

the
im

proved
free-form

m
odular

display
driver,

according
to

the
display

configuration
show

n
above.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 143 — #175 i
i

i
i

i
i

8.4 Another example 143

µ
C

M
4

M
2

M
1

M
5

M
6

µ
C

M
4

M
2

M
1

M
5

M
6

µ
C

M
4

M
3

M
1

M
5

M
6

M
3

(a
)

µ
C

M

4

M
4

µ

C
M

4

M

1
M

4

M

5
M

1

M

2
M

1

M

4

M
2

M

1

M
5

M

4
M

5

M

6
M

6

M

5

M
2

M

3

M
3

M

2
M

3

M

6

M
6

M

3

m
a
in

_
st

a
te

m
a
in

_
st

a
te

m
a
in

_
st

a
te

M
3
 a

d
d
e
d

M
2
 r

e
m

o
ve

d
P

o
ll

st
a
rt

e
d

M
4

M
2

M
3

a
d
r_

re
q
1
/a

d
p
t_

re
q
/p

o
ll_

a
ck

1

a
d
r_

re
q
2
/-

/p
o
ll_

a
ck

2

a
d
r_

a
c
k/

a
d
p
t_

a
ck

/r
e
a
d
y

se
n
d
_
re

q

se
n
d
_
a
ck

se
n
d
_
e
n
d

a
d
d
re

s
s

g
a
te

(b
)

Fi
gu

re
8.

6
–

Ex
am

pl
e

of
th

e
dr

iv
er

si
gn

al
s

w
he

n
a

m
od

ul
e

(M
3)

is
ad

de
d

af
te

r
th

e
in

it
ia

liz
at

io
n,

w
he

n
a

m
od

ul
e

(M
2)

is
re

m
ov

ed
,

an
d

du
ri

ng
th

e
po

lli
ng

ro
ut

in
e.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 144 — #176 i
i

i
i

i
i

144 Improved free-form modular display driver

the preliminary address request to M2. Before sending send req to the micro-
controller, M2 has to wait a bit to check if the data line is free. The send req is
directly forwarded to the microcontroller and the responded send ack is seen
by every module. Same goes for the complete address request and returned ad-
dress. While M4 does not participate in this process it still has to follow it (see
main state of M4). After the send end, module M3 is included in the tree.
A little bit later, M2, the parent node of M3 is removed. After the removal is de-
tected, M3 goes back to the first state and asks M6 for an adoption (adpt req).
M6 accepts (adpt ack) and M3 again has a connection to the microcontroller.
Just in time for the polling request. All bypasses are closed and every module
performs the preliminary polling answer ([poll ack1 + address + gate]).
M4 is served first, being sent the ready command. It will now process the
poll ack1s of its child nodes. After the send ack from the microcontroller,
it sends the complete polling answer ([poll ack2 + address + address +
gate + gate]) with one address and gate sent by M1. The ready command
is now directly forwarded to M1. Same goes for M5. Since M1 has no child
nodes anymore, it sends the send end command. Later, M6 and finally M3 will
have answered the polling, using M4 (and M5) as bypass. The poll is ended with
send end.

8.5 Setting up the test environment

Also this final driver was implemented in VHDL. The code for Main Control can
be found in Appendix D. Again, this is not the complete code. Some repetitive
parts have been left out.
The GUI needed some extra functionality. First of all, we needed to implement
the algorithm to determine the display configuration (or check the configuration
after a poll) based on the information sent by the modules, both for square and
triangular modules. We did not really create triangular modules, but since the
driver is able to deal with them, so should the GUI.
While the created display does not have to be limited to a flat matrix of modules,
if seemed sufficient that the display representation in the GUI was. The GUI will
simply reflect how the modules are connected to each other (See Figure 8.7). In
some occasions this can cause an ‘overlap’ of two or more modules, though. This
is solved by creating different ‘levels’ in the representation. The button on the
right lets you skip between the levels. So, each module can be assigned coordi-
nates. The x and y coordinate represent the location on screen, the z coordinate
the level it should be drawn in (See Figure 8.8). The dark arrows point to the
parent node, the lighter arrows indicate where there is a level change. The dark
bar on each module shows the gate 0.
After the initialization is finished, the microcontroller sends one data stream with

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 145 — #177 i
i

i
i

i
i

8.5 Setting up the test environment 145

(a)

(b)

Figure 8.7 – Flat representation of a display configuration with square modules

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 146 — #178 i
i

i
i

i
i

146 Improved free-form modular display driver

(a)

(b) level 0

(c) level 1

Figure 8.8 – Flat representation of a display configuration with triangular modules with
overlap.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 147 — #179 i
i

i
i

i
i

8.6 Some first results 147

for each module the address (1 byte), the address of the parent node (1 byte) and
1 byte with the gate numbers (parent gate and child gate of the parent node).
The microcontroller sends the information of the modules in the order of the ad-
dresses (as organized in the microcontroller memory). After an initialization, this
will also be the natural order of the modules (first parent node, then child node).
This is important to know, since as we told, the algorithm to determine the con-
figuration is a recursive one. You cannot process a module if you don’t have the
information of its parent node. After a normal polling, however it’s possible that
a module was removed and that the tree has been rebuilt. The location of the
modules in the microcontroller will not change, so the natural order of the mod-
ules might be scrambled. When a new module is added, the microcontroller will
only send the information for this one module.
The processing of the information stream starts with the first module, which will
always be the oldest parent node. From its parent gate number its orientation
can be derived. In the case of square modules there are only four possible orien-
tations. With triangular modules, however, there can be 6 possible orientations.
The parent address and child gate number of the parent node will of course be
irrelevant here. The next module will probably be one of its child nodes. Based
on the orientation of the parent node and the supplied gate numbers, the orien-
tation and coordinates can be derived. For each of the successive modules, the
parent node is searched in the already processed modules and the orientation and
coordinates are derived. If the coordinates are already used, the z coordinate is
incremented. If the parent node is not yet processed, the module is moved to the
end of the row, to be processed later. Following this procedure, every module
will have received an orientation and coordinates after a while. The display can
be drawn at this point.

8.6 Some first results

Let’s take a look at how this driver works in real life. Figure 8.9a shows the
display configuration when it was turned on. Figure 8.9b shows what display
configuration was detected. Note that the modules here were not created to be
connected in any orientation. The voltage supply and ground are supplied by
the same flatcables as the data signals. Connecting the flatcable to another gate
would create shorts. When a module is only connected to one other module, two
orientations are possible. This was tested and proven to be working. But during
these tests here only the ‘up’ orientation is used.
After the initialization, a new module was added, which was correctly detected
and represented in the GUI (See Figure 8.10). The arrows in the GUI indicate that
the new module chose the upper module as its parent (obviously because there
was no connection made to the left module). Finally, we removed the upper

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 148 — #180 i
i

i
i

i
i

148 Improved free-form modular display driver

(a) (b)

Figure 8.9 – Display was turned on looking like (a), the GUI (b) shows the corresponding
representation

right module. Figure 8.10b tells us that this is the parent node of the lower right
module, so the tree will have to be rebuilt. After the polling (which happens once
per second) the GUI shows Figure 8.11b. You can see that the concerned module
has changed parent node.
The initialization time (and polling time) for this driver will be highly dependent
on both the number of modules and the exact display configuration. Using the
free-form modular display driver, a lot of things could happen in parallel during
the shout routine. A node could shout its address at the same time some ancestor
nodes shout theirs. So there were only small variations on the initialization time.
With this driver, this is not always the case. Every module needs to establish a
connection with the microcontroller separately (send routine) and only after that,
an address is received so the possible child nodes can start asking for addresses.
In the previous driver, the addresses could still be distributed in a tree branch
even if the shout routine was halted there.
The worst possible scenario is when all modules are connected in one long chain.
Nothing can happen in parallel. Every module has to wait until its parent has
gone through the send routine. And this send routine will progressively grow
longer and longer since there will always be an extra send req/send ack to
be sent. The best case scenario is when we have a full tree structure, where every
module has multiple child nodes. In this case, some things can happen in parallel.
A lot of send reqs can already be sent while the microcontroller is communicat-
ing with another module. Luckily for us, a random display configuration will be
closer to the best case scenario. A module will always connect to the first module
that is ready, so a more evenly distributed tree will be created.
Figure 8.12a shows the simulation results for the initialization times (in µs) for
the best and worst case scenarios. The data rate is 1Mbit/s. Figure 8.12b shows

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 149 — #181 i
i

i
i

i
i

8.6 Some first results 149

(a) (b)

Figure 8.10 – After adding a module (a), the GUI (b) shows the corresponding representa-
tion

(a) (b)

Figure 8.11 – After removing a parent node (a), the GUI (b) shows the corresponding
representation

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 150 — #182 i
i

i
i

i
i

150 Improved free-form modular display driver

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35

T
im

e
 (

u
s)

Modules

Worst
Best

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30 35

T
im

e
 (

u
s/

m
o

d
)

Modules

Worst
Best

(b)

Figure 8.12 – Simulation results of the initialization times (a) (in µs) for the best and worst
case scenarios. (b) shows the average initialization time per module (in µs.)

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 151 — #183 i
i

i
i

i
i

8.7 This is the end, isn’t it? 151

modules Best case (ms) Worst case (ms)
4 0.24 0.29
8 0.49 0.76

16 0.97 2.25
32 1.95 7.42
64 3.89 26.52

128 7.79 99.72
255 15.52 383.27

Table 8.4 – Extrapolation of the simulation results

how that reflects on the average initialization time per module.
In the worst case scenario, every module has to wait for the previous one to be fin-
ished. Therefor, the average initialization time per module is linearly dependent
on the total amount of modules. In the best case scenario, the send routine can
happen completely in parallel. While the microcontroller communicates with one
module, the other modules have the time to partially set up the communication
line. Also, the amount of send acks to be sent is limited to the amount of levels
in the tree. The initialization time per module is almost constant (about 60µs).
This time will still slowly rise, because the amount of levels is increased with the
amount of modules. But the extra send ack time will be divided among the to-
tal amount of modules in that level, and even with a full display of 255 modules,
there are only 6 levels. The problem with this is that, when extrapolating the
data from Figure 8.12, the worst case scenario provides very long initialization
times for very large displays. Table 8.4 gives an overview. While a display of 255
modules with the best case scenario needs about 16ms to initialize, the worst case
scenario needs 383ms. During the initialization this is not really a problem, but
the same thing occurs during the poll. The time needed will be about the same
(375ms), so if you want one or two polls per second, there is not much time left
to send the actual image data. Luckily the used data rate is not yet very high. If
you want to use a large display, the data rate will have to be augmented a lot.

8.7 This is the end, isn’t it?

Yes. With this improved free-form modular display driver you can connect the
modules any way you like, add and remove modules when you like. They will
find a way to get an address and the configuration will be detected. The ability
to use other shapes of modules gives a lot of additional freedom. There prob-
ably isn’t a lot that can be added that could create more freedom in the dis-
play shapes. Some additions could make the system itself somewhat more user
friendly, though.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 152 — #184 i
i

i
i

i
i

152 Improved free-form modular display driver

Maybe the modules could communicate wireless with each other. But we would
have to make sure that the different gates don’t interfere which each other. This
could also complicate the configuration detection. Or maybe the modules are
connected to each other with wires, but there is a wireless connection to the mi-
crocontroller. The building of the tree will need to be revised, there will have to
be a way to determine the ‘oldest ancestor’. Another interesting option would
be to be able to determine the physical orientation of the module (with respect to
gravity), to better represent the display configuration. This would require some
extra components on the modules, such as accelerometers, gyroscopes and mag-
netometers if we want to incorporate the earth’s magnetic field in the calculation.
We could also try to implement some sort of collision detection in the drivers (col-
lisions on the data line, that is, not physical collisions). This would enable several
modules being added at the same time, in different places, after the initialization.
But most of this added functionality would probably be outweighed by the extra
cost of providing them.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 153 — #185 i
i

i
i

i
i

References

[1] P. J. Ashenden, The VHDL Cookbook. University of Adelaide, 1990.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 154 — #186 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 155 — #187 i
i

i
i

i
i

In theory, there is no difference
between theory and practice.

But in practice, there is.

Yogi Berra (1925 -)

9
Design and Layout of the FrIIDoM

Driver

9.1 Introduction

After implementing and rigorously testing the designs, it is now time to poor
them into an ASIC. The aim is to create a device that can drive a module without
any other components. This is not possible with an FPGA. It at least needs a
programming device because of its volatility. Above that, the outputs of an FPGA
cannot be used to drive a LED display. In itself there is no reason not to use a
different display technology, but keeping in mind that we want to create our own
modules, a LED display is preferred because of its ease in creating and driving.
Section 9.2 gives the overview of the driver. The subsequent sections will each
elaborate on one specific aspect. Section 9.6 will also provide some insight on the
VHDL-to-ASIC design flow.

9.2 Four drivers in one chip

‘FrIIDoM’ is an acronym that stands for, with some poetic license, Four really
Interesting Intelligent Drivers for Displays out of Modules. As the name im-
plies, the four (really interesting) drivers from previous chapters are integrated
in this one chip. The schematics and layout of the FrIIDoM driver are shown

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 156 — #188 i
i

i
i

i
i

156 Design and Layout of the FrIIDoM Driver

in Figure 9.1 and Figure 9.2 respectively. The layout is about 12.5mm2 in size.
The design was made in the C35 CMOS technology from AMS. The reason for
this choice is the simple fact that, for this technology, there were very good tools
available for the synthesis of VHDL to layout (See 9.6). The four distinct blocks
are the four drivers. On the top, there are the eight current sources, on the bottom
(and one on the side) are the eight row switches (see below). The extra logic, clock
generator and Power-On Reset reside between the two left drivers.
Since we want to be able to test every driver separately, the drivers are com-
pletely independent and can be selected using the selection inputs on the chip
(SEL(0:1)). As was clear from previous chapters, the drivers differ strongly in
complexity. This is reflected in the size of the drivers. The small ones are the
first and improved modular display driver (top left and bottom right corner re-
spectively). In the bottom left and top right corner lie the regular and improved
free-form modular display driver.
There is only one set of inputs and outputs for all four drivers. Multiplexers are
used to guide the inputs to the selected driver. Same goes for the outputs. To be
able to test and check as much as possible, a lot of extra signals are outputted: the
control signals for the row and column electrodes, the state of the state machine
in Main Control and the two last parameter bytes (the first two bytes are used in
each driver internally). The (de)multiplexers that accomplish this are placed in
between the drivers.
At that same location there is also an on-chip clock generator, providing the se-
lected driver with a 20MHz or 10MHz clock signal. Close to it lies the Power-On-
Reset, which generates a reset signal for all drivers when the chip is turned on.
This makes sure that all registers are set to a known state.
To be able to test each digital driver for structural errors, scan chains are inserted
(SE, SI, SO). See Section 9.6.1 for more information.
Last but not least there is the part that will drive the actual LED display. As you
remember from Figure 5.18 in Chapter 5, we need two things. Current sources at
column electrodes and switches at the row electrodes. The current sources can be
found at the very top of the FrIIDoM driver, while the switches are found at the
bottom. Each current source is designed to source up to 50mA, so the switches
need to withstand 400mA. To minimize the influence on each other, the analog
and digital parts have separate supply and ground lines.
The input and output pads are predefined AMS cells. All input pads have the
needed pull down resistor. With the FPGA design, these had to be added exter-
nally. The digital output pads are able to source 16mA for signals that have to
leave the board (communication signals), and 8mA for signals that stay on the
board (test signals). The analog input/output pads are able to withstand only
100mA. This is enough for the current source outputs, but for each switch, sev-
eral pads need to be combined.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 157 — #189 i
i

i
i

i
i

9.2 Four drivers in one chip 157

D
ri
v
e

r
0

D
ri
ve

r
1

D
ri
ve

r
2

D
ri
ve

r
3

(S
E

,
S

I)
S

O

(S
E

,
S

I)
S

O

(S
E

,
S

I)
S

O

(S
E

,
S

I)
S

O

C
lo

c
k

g
e

n
e

ra
to

r

P
o

w
e

r-
O

n
R

e
se

t

cl
k

(0
:3

)

M
A

N
C

H

S
E

L
(0

:1
)

D
A

T
A

IN
(0

:3
)

V
D

D
R

E
S

E
T

C
L

K
2

X
C

L
K

E
X

T
C

L
K

M - I :3 (0 3DE UX [DATA N(0)] :)

R
o

w
s
w

itc
h

e
s

C
u

rr
e

n
t

so
u

rc
e

s

 DA O :3) ()MUX - [TA UT(0] 0:3

MUX - CO) (:) [L(0:7] 0 3

U 0M X - [ROW(:7)](0:3)

UX - [PARAM(0:15)](0:3)M

 - IN T 3 3MUX [MA STA E(0:)](2:)

D
A

T
A

O
U

T
(0

:3
)

M
A

IN
S

T
A

T
E

(0
:3

)

C
O

L
_

O
U

T
(0

:7
)

R
O

W
(0

:7
)

P
A

R
A

M
(0

:1
5

)

C
O

L
(0

:7
)

R
O

W
_

O
U

T
(0

:7
)

Fi
gu

re
9.

1
–

Sc
he

m
at

ic
of

th
e

Fr
II

D
oM

dr
iv

er

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 158 — #190 i
i

i
i

i
i

158 Design and Layout of the FrIIDoM Driver

Figure 9.2 – The layout of the FrIIDoM driver. The four distinct blocks are the four drivers
(left to right, top to bottom: driver 0, driver 3, driver 2, driver 1). On top and at the bottom

you can see the 8 current sources and 8 switches respectively.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 159 — #191 i
i

i
i

i
i

9.3 On-chip clock generator 159

CLK2X

CLKEXT

CLK2X

CLKEXT

R0

R1

C0

C1

V0

V1

CLK

CLK2X
CLKEXT SEL(0:1)

clkout

clk(0:3)

10 MHz

20 MHz

Figure 9.3 – Schematic of the clock generator

9.3 On-chip clock generator

The schematic of the clock generator is shown in Figure 9.3. There are some op-
tions that can be set. The most important option is the used clock frequency. As
with the FPGA implementation, the driver is designed to work with a clock of
20MHz. However, when Manchester code is used during communication the
needed bandwidth doubles (See Chapter 5). This is not so much of a problem for
the driver itself, but the used microcontroller would have problems with the in-
creased bandwidth. For this reason, the clock frequency can be lowered to 10MHz
by pulling the CLK2X pin of the chip low. This way, the microcontroller can op-
erate at the same speed when Manchester code is used. Since size wasn’t really

Device Parameters
R0 100kΩ
R1 97kΩ
C0 740fF
C1 345fF

Table 9.1 – Component parameters of the clock generator

an issue (the final size of the chip is entirely determined by the drivers, current
sources and switches), I opted to create two independent clock generators so they

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 160 — #192 i
i

i
i

i
i

160 Design and Layout of the FrIIDoM Driver

could be fine tuned for each frequency separately. But even then, there can be
still a lot of variance on the produced clock frequency. The design parameter
datasheet of AMS tells us that the final frequency can vary up to about 24%. This
is the reason why Manchester coding is introduced.
At the heart of each generator resides a Schmitt-trigger. The schematics are shown
in Figure 9.4 and Table 9.2 specifies the used transistor dimensions. With these
dimensions, the threshold voltages of the Schmitt trigger to 2V and 1V. The tris-
tate buffer is a standard AMS C35 cell (dimensions of the output stage are men-
tioned in Table 9.2). Transistor Tn,3 will make sure that, with a high EN signal,
the Schmitt trigger produces a low output.

X Y

EN

EN

Tp,0

Tp,1 Tp,2

Tn,0

Tn,1

Tn,2

Tn,3

Figure 9.4 – Schematic of the Schmitt trigger

Device Parameters
Tp,(0,1,2) W = 0.8µm,L = 0.35µm
Tn,(0,1,2) W = 0.5µm,L = 0.35µm

Tn,3 W = 1.0µm,L = 0.35µm
Tp,bu f W = 3.2µm,L = 0.35µm
Tn,bu f W = 2.0µm,L = 0.35µm

Table 9.2 – Component parameters of the Schmitt trigger

If the clock frequency would deviate too much from the desired frequency, and
even the Manchester coding can’t help out, there is also an option to use an exter-
nal clock. Each driver has it’s own clock and will only be clocked when selected.
Figure 9.5 shows some simulation results. The CLK2X signal high starting from
1µs.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 161 — #193 i
i

i
i

i
i

9.3 On-chip clock generator 161

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2

V
o

lt
ag

e
(V

)

Time (us)

clkout
V0
V1

Figure 9.5 – Simulation results of the clock generator.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 162 — #194 i
i

i
i

i
i

162 Design and Layout of the FrIIDoM Driver

9.4 Power-On Reset

The POR circuit generates a reset pulse (active high) when the chip is turned on.
This makes sure that the drivers are in a known state at start-up. The POR should
work irrespective to the slew rate of the rising supply voltage. Figure 9.6 shows
the used schematic.

VDD

R0

R1

C0

RESET

Tp,0

Tp,1

Tn,0

D0

POR
VC

B A

Figure 9.6 – Schematic of the POR

Device Parameters
Tp,0 W = 0.8µm, L = 1.0µm
Tn,0 W = 0.5µm, L = 1.0µm
Tp,1 W = 0.8µm, L = 0.35µm
R0 3.2MΩ
R1 250kΩ
C0 12pF

Table 9.3 – Component parameters of the POR

Part A makes sure that a pulse of at least 60µs is generated if the supply voltage
raises very quickly (<10µs/3.3V). For slower rising supply voltages, the pulse
will be expanded. However, when the slew rate is too low (>200µs/3.3V), the
voltage over the capacitor (VC) rises too quickly in respect to the voltage supply.
VC already reaches the threshold voltage of the Schmitt-trigger at VDD = 650mV
so the POR isn’t generated at all (See Figure 9.7).
Part B in Figure 9.3 takes care of that by ‘delaying’ the supply voltage for the
capacitor. Transistor Tp,1 will only present the voltage supply to C when it has

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 163 — #195 i
i

i
i

i
i

9.4 Power-On Reset 163

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

V
o

lt
ag

e
(V

)

Time (us)

POR
VDD

VC

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

V
o

lt
ag

e
(V

)

Time (us)

POR
VDD

VC

(b)

Figure 9.7 – The POR isn’t generated correctly if the supply voltage slew rate is too low.
Rise time of (a) is 150µs, rise time of (b) is 250µs.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 164 — #196 i
i

i
i

i
i

164 Design and Layout of the FrIIDoM Driver

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000

V
o

lt
ag

e
(V

)

Time (us)

POR
VDD

VC

Figure 9.8 – With the extra circuitry, the POR is correctly generated for both fast and slow
rising supplies.

already reached about 2.7V. This way VC remains well below the threshold volt-
age of the Schmitt-trigger in the beginning, and a POR is generated. Part B has
no effect on fast rising supplies. Figure 9.8 shows the generated reset as a result
of a fast rising VDD and a slow rising VDD starting at 750µs.
Diode D0 ensures that C can be quickly discharged when VDD drops. Severe but
short power glitches that could result in putting the device in an unknown state
are responded with a reset pulse. The POR can also be activated externally by
pulling the RESET pin of the device high.

9.5 LED drivers

As said in Section 9.2, we need current sources and switches to drive a LED dis-
play. The current sources will force current in the column electrodes according to
the received image data. The switches connected to the row electrodes are used
to select the row the data is meant for.
Since the driver is to be able to drive a whole range of LED displays, we made the
current source adjustable. With 8 bits, sent with the parameter data, the current
can be adjusted from 0 to 50mA. FrIIDoM is designed to drive a 8× 8 display,
so the switches at the row electrodes should be able to cope with currents up to

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 165 — #197 i
i

i
i

i
i

9.5 LED drivers 165

Device Parameters
Tp,re f W = 8.0µm, L = 2.0µm
Tp,0 W = 8.0µm, L = 2.0µm
Tp,1 W = 16.0µm, L = 2.0µm
Tp,2 W = 32.0µm, L = 2.0µm
Tp,3 W = 64.0µm, L = 2.0µm
Tp,4 W = 128.0µm, L = 2.0µm
Tp,5 W = 256.0µm, L = 2.0µm
Tp,6 W = 512.0µm, L = 2.0µm
Tp,7 W = 1024.0µm, L = 2.0µm

Tp,(8−23) W = 3.2µm, L = 0.35µm
R 5.25kΩ

Table 9.4 – Component parameters of the current source

400mA.

9.5.1 8-bit adjustable current source

The schematic of the current source can be found in Figure 9.9. It is basically a
group of current mirrors where the current through transistor Tp,re f is mirrored
to transistors Tp,(0−7). Each column electrode has one of these. Assuming that the
channel ratio W

L of Tp,re f is N, Table 9.4 tells us that Tp,(0−7) have ratios N, 2N,

4N, ... 128N. If the current through Tp,re f = Ire f =
VDD−Vth,pmos

R , the respective
currents generated through TP,(0−7) will be Ire f , 2Ire f , 4Ire f , ... 128Ire f .
The gates of Tp,(0−7) can be controlled by the programming bits Bi, turning them
on and off. This way we can create a programmable current Iprog given by Equa-
tion 9.1, ranging from 0Ire f to 255Ire f = Imax. Iprog can of course be turned off
according to the data bits for that particular column.

Iprog = Ire f

7

∑
i=0

Bi2i =
VDD −Vth,pmos

R

7

∑
i=0

Bi2i
�� ��9.1

In our case, where we want Imax to be about 50mA, Ire f needs to be set to 196µA,
resulting in the resistor value from Table 9.4.
The aim is to be able to drive different types of LEDs that require different driv-
ing currents. Since these different LEDs can (and will) have different threshold
voltages, we don’t want the driving current to change too much when an other
LED is used. The threshold voltage of a LED affects the VDS voltage of the driving
transistors, which affects the current through channel length modulation [1]. With λ
the channel-length modulation parameter, the drain current ID (in active mode)

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 166 — #198 i
i

i
i

i
i

166 Design and Layout of the FrIIDoM Driver

P
A

R
A

M
(0

)
P

A
R

A
M

(1
)

P
A

R
A

M
(2

)
P

A
R

A
M

(7
)

C
O

L
(i)

C
O

L
(i)

C
O

L
(i)

C
O

L
(i)

IO
U

T
R

T
p
,re

f
T

p
,0

T
p
,1

T
p
,2

T
p
,3

T
p
,4

T
p
,5

T
p
,6

T
p
,7

T
p
,8

T
p
,1

0
T

p
,1

2
T

p
,2

2

T
p
,9

T
p
,11

T
p
,1

3
T

p
,2

3

Figure
9.9

–
Schem

atic
ofthe

currentsource

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 167 — #199 i
i

i
i

i
i

9.5 LED drivers 167

-10

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

C
u

rr
e
n

t
(m

A
)

Time (us)

Iout
kolom(i)

Figure 9.10 – Simulation results of the current source

is given by

ID = Kn
W
L

(VGS −Vth)
2 (1 + λVDS)

�� ��9.2

Kn is a technology specific parameter and VGS and Vth are the gate-source volt-
age and threshold voltage of the MOSFET respectively. λ is usually taken to be
inversely proportional to the channel length L, so for short channels, it becomes
difficult reaching the 50mA if the threshold voltage of the LEDs increases. For
this reason, a channel length of 2µm was used instead of the minimal length.
This way we can still reach about 45mA if the threshold voltage is 2V, where for
a channel length of 1µm (with the same channel ratio W

L), Imax would already
be limited to 37mA. Figure 9.10 depicts the simulation results. The current is in-
creased gradually, showing a linear incline. The current is switched off when the
data bit is zero. Speed is not really an issue here, because the current sources
need to be turned on and off at the refresh rate times the number of rows, which
is in the order of milliseconds. Another thing to take in consideration is how to
layout this current source. We’re dealing with fairly large transistors and these
transistors need to be matched as good as possible. The layout can be seen in
Figure 9.11. The transistors have a fingered structure with a base width of 8µm.
Tp,re f is found in the very center and the rest of the driving transistors have their
fingers intertwined to provide a close matching. To further improve transistor
matching, dummy transistors are placed on the sides, top and bottom[2].

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 168 — #200 i
i

i
i

i
i

168 Design and Layout of the FrIIDoM Driver

Figure 9.11 – Layout of the current source

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 169 — #201 i
i

i
i

i
i

9.6 From VHDL code to ASIC layout 169

The current towards the column electrode will be maximal 50mA. Since the bond-
pads can withstand up to 100mA, this poses no problem. We just have to limit
the output resistance by making the metal path as wide as possible. This pro-
duces a series resistance of only 100mΩ [3]. If all current sources are working at
full capacity, however, 400mA will be drawn from the voltage supply. We need 4
bondpads to provide this current. There are two supply bondpads on each side
of the chip to minimize the average distance of the current sources to those pads
(See Figure 9.1). The supply line itself is composed of two interconnected metal
layers in parallel, resulting in an average resistance of only 85mΩ.

9.5.2 Switch

The switches at the row electrodes are just very large n-type MOSFETs, with some
extra buffers to drive the large gate. An NMOS with a channel with a minimal
length and a width of 1600µm is able to sink the needed 400mA [3]. As said,
each bondpad can only withstand 100mA, so for each switch, four bondpads are
needed. The connections to the bondpads are made as wide as possible and again
two parallel metal layers are used to minimize the series resistance, reducing it
to 20mΩ. Luckily, only one of the switches can be turned on at a time, so the
ground line also only needs to guide 400mA (Even if multiple switches would be
activated, there is only 400mA generated, so evidently only 400mA needs to flow
away). The layout of the row switch is depicted in Figure 9.12.

9.6 From VHDL code to ASIC layout

A final task that needs to be done is to transform the VHDL code that was created
in the previous four chapters, into an ASIC layout. Luckily for us, this does not
have to happen manually. There are some powerful CAD tools to help us with
that. Figure 9.13 gives an overview over the work flow. After the VHDL-code is
tested and shown to be free of functional errors, it can be converted to a gate-level
netlist (e.g. with Synopsys Design Vision). This is where the behavioral model in
VHDL is translated to a schematic using basic logical elements (AND, OR, NOT,
etc.) and memory elements. This is also the place where the scan chain will be
inserted for the Design For Testability (DFT), which will be explained later on (See
Section 9.6.1) [4]. Which basic blocks are available, which blocks that will be used
and the properties of these blocks are technology dependent, so the generated
netlist will only be applicable to that specific technology.
After the creation of the netlist, the blocks need to be placed and routed. AMS
already provides full layouts of those blocks, so this can also be done without
manual intervention (See Section 9.6.2) [5].

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 170 — #202 i
i

i
i

i
i

170 Design and Layout of the FrIIDoM Driver

Figure 9.12 – Layout of the row switch

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 171 — #203 i
i

i
i

i
i

9.6 From VHDL code to ASIC layout 171

VHDL/
Verilog

Synthesis
(Design Vision)

Gate-Level
Netlist

Place & Route
(Encounter)

Routed
Design

Scan Chain
Insertion

Figure 9.13 – The VHLD-to-ASIC workflow

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 172 — #204 i
i

i
i

i
i

172 Design and Layout of the FrIIDoM Driver

9.6.1 Gate-Level Netlist and DFT

Besides functional errors, an ASIC can also fail because of manufacturing or struc-
tural errors, errors that occur during the processing of the layout mask or silicon
wafer itself. For example the output of a flip-flop or AND gate is stuck to a fixed
value. Notwithstanding the functional simulation was completely correct, this
(obviously unforeseen) error will impede the eventual functionality. Of course it
is always possible that a functional error slips through the cracks of the simula-
tions, so it is important to know if the error is caused by a functional error (which
means revising the code) or a structural error (which means revising the layout
or using another ASIC). This is where DFT comes in.
DFT or Design For Testability is a design technique that adds certain testability
features to the design [6]. The aim is not to determine if the functionality of the
design is correct, but merely if the created circuit matches the gate-level netlist.
Are all building blocks present? Are they functioning properly? Are they con-
nected the way they should? The problem is that there are a massive amount of
building blocks, heavily interconnected, and that the only test points available
are the inputs and outputs of the chip. To make the nodes deep in the design
more accessible, scan chains are inserted.

Scan chain insertion

To see how this works, take a look at Figure 9.14. During the creation of the gate-
level netlist, there are memory (sequential) elements produced, connected to each
other through a logic ‘cloud’. We can make those sequential elements accessible
by inserting a multiplexer in them. The input of the flip-flop can now be the
output from the logic ‘cloud’ or the output of the previous flip-flop in the chain.
If the scan mode is enabled, the flip-flops become one big shift register in which
data sequence can be shifted.
There are several ways to insert a scan chain. If every flip-flop is connected to the
chain, we have a full scan design, which makes it easier to generate the test pat-
terns (See below). In a partial scan design, some of the flip-flops are not connected
to the chain. A multiple scan design has several parallel scan chains [7].

Detecting the faults

Now how can this inserted scan chain help us to detect structural errors in the
design? The basic procedure goes as follows (See also Figure 9.15). Shift a scan
sequence in the scan chain (SI) to force the design into a known state (with the
scan chain enabled (SE)). Then clock your system once (in normal mode, with the
scan chain disabled). The scan chain is now filled with the results of the values of
the previous state that went through the logic cloud. We can now shift the results

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 173 — #205 i
i

i
i

i
i

9.6 From VHDL code to ASIC layout 173

Logic

Logic

Data In

Data In

Data Out

Data Out

Clock

Clock

Scan In Scan Out

Scan Enable

D Q D Q D Q

D QD QD Q

Figure 9.14 – Example of scan chain insertion. Flip-flops are replaced with flip-flops with
an internal multiplexer.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 174 — #206 i
i

i
i

i
i

174 Design and Layout of the FrIIDoM Driver

SI

PI

clk

SE

Measure PO

SO

Scan
load/unload

Capture
Scan

load/unload

Figure 9.15 – A typical tester cycle in a full scan design.

out of the scan chain (SO) to look at them. To have more information from one
scan sequence, there are also inputs (PI) forced before the clocking of the system,
to see how the outputs (PO) change. In short:

1. Shift in scan sequence (load/unload scan)

2. Force inputs, measure outputs (capture)

3. Clock the system

4. Shift in next sequence while previous sequence is shifted out (load/unload
scan)

5. Repeat from item 2.

The measured results can then be compared with the expected results, calculated
from the netlist. Of course it is not enough to simply choose random test pat-
terns for the scan sequence and input vector. If you want to be able to detect
as much faults as possible, these patterns need to be intelligently created. This
is done with an Automatic Test Pattern Generation (ATPG) tool (e.g. Synopsys
TetraMax). This tool will create those patterns and calculate the fault coverage,
the percentage of faults that can be detected using those test patterns. Some faults
are intrinsically undetectable (e.g. if there is a fault on the enable of a tristate gate,
the output of that gate is unknown), other faults are detectable, yet the ATPG tool
hasn’t found the pattern that could find it.
The tester cycle described above is only valid for full-scan designs. In partial-
scan designs, where not all flip-flops are connected to the scan-chain, there are
multiple captures needed per load/unload scan sequence. This allows the data to
propagate to the non-scan elements. This sequential ATPG is a lot more compli-
cated than the combinational ATPG described above.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 175 — #207 i
i

i
i

i
i

9.6 From VHDL code to ASIC layout 175

(a) (b)

Figure 9.16 – (a) shows the empty floorplan with added power lines. (b) shows the floor-
plan after the standard cells are inserted

9.6.2 Place and Route

After the generated gate-level netlist is simulated again to check if none of the
functionality got lost in translation, it can be read into a Place&Route tool to build
the actual layout. The tool that was used here is SoC Encounter 7.1. Several op-
tions can be set. You start with an empty floorplan, the size of which is dependent
on the read design and how ‘dense’ you plan to make your layout, how much of
the floorplans surface will actually be used for functioning cells. In a highly inter-
connected design, you might want to choose a lesser density, to provide room for
routing. Afterwards, the power lines are added (See Figure 9.16a). The standard
cells of the AMS library all have the same height and fit perfectly between the
alternating power and ground strips. The power strips can be terminated with
capacitors on each side.
The standard cells can now be placed (See Figure 9.16b). The cells are already
positioned with the routing in mind. The locations of the outputs of the chip are
based on their driving cells, so if you want to give your outputs a fixed position,
this needs to be done before the standard cells are placed.
When the cells are placed, the design can be routed. This happens in a couple
of stages. First the clock tree is routed, after which a timing analysis is done.
When the clock tree is fully optimized, the open spaces between functional cells
are filled with filler cells. These cells have no functionality. They simply form a
connection between matching layers (e.g. n-well) of the functioning cells. Now
the design is ready for the final routing. See Figure 9.17a for the result and Fig-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 176 — #208 i
i

i
i

i
i

176 Design and Layout of the FrIIDoM Driver

(a) (b)

Figure 9.17 – (a) shows the layout after final routing. (b) shows a close-up.

ure 9.17b for a closup.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 177 — #209 i
i

i
i

i
i

References

[1] D. Johns and K. Martin, Analog Integrated Circuit Design. Wiley, 1997.

[2] A. Hastings, The Art of Analog Layout. Pearson, 2004.

[3] AMS C35 CMOS Process Parameters, Austria Microsystems, 2008.

[4] A. Miczo, Digital Logic Testing and Simulation. Wiley, 2003.

[5] E. Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD Tools.
Pearson, 2010.

[6] Wikipedia. Design For Test. [Online]. Available: http://en.wikipedia.org/
wiki/Design For Test

[7] Wikipedia. Scan chain. [Online]. Available: http://en.wikipedia.org/wiki/
Scan chain

[8] V. De Gezelle, “Design of a Switching xDSL Line Driver in a Submicron High
Voltage Technology,” Ph.D. dissertation, Ghent University, 2009.

[9] W. Hendrix, “Design of Low-Power High Voltage Driver Chips for Bi-Stable
LCD’s,” Ph.D. dissertation, Ghent University, 2006.

[10] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, a De-
sign Perspective. Pearson, 2003.

http://en.wikipedia.org/wiki/Design_For_Test
http://en.wikipedia.org/wiki/Design_For_Test
http://en.wikipedia.org/wiki/Scan_chain
http://en.wikipedia.org/wiki/Scan_chain

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 178 — #210 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 179 — #211 i
i

i
i

i
i

A common mistake that people make when try-
ing to design something completely foolproof
is to underestimate the ingenuity of complete
fools.

Douglas Adams (1952-2001)

10
Results and Applications

10.1 Introduction

Of course, designing the chip is not the end. We still have to check how the cre-
ated driver operates in real life. In this chapter we will discuss the results of the
measurements on the FrIIDoM driver. We start by elaborating on the test envi-
ronment (Section 10.2), followed by the actual measurement results (Section 10.3).
First we’ll have a look at some general properties of the FrIIDoM driver, then
we’ll check each driver in detail.
In Section 10.5 we talk about some of the applications of the drivers. It also shows
some of the first attempts in creating a flexible display.

10.2 Setting up the (final) test environment

10.2.1 Design of the test boards

A couple of different test boards have been created. Besides the traditional mod-
ule and accompanying controller board, there is now also a specific test board.
This test board will be used to test the current sources and row switches of the
FrIIDoM driver. It can also be used to test the functionality of the chip and can, if
necessary, be used to test the driver using the inserted scan chains.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 180 — #212 i
i

i
i

i
i

180 Results and Applications

Figure 10.1 – FrIIDoM Test board

FrIIDoM Test board

The test board can be seen in Figure 10.1. It has room for both the Dallas
DS89C420 microcontroller (or the newer, pin compatible DS89C450) and the
FrIIDoM driver. The microcontroller can be programmed in system using the
USB interface with the FTDI chip (FT232RL) which provides the translation to
RS-232. Through this setup, the microcontroller can communicate with the PC.
Since the microcontroller works with 5V and FrIIDoM with 3.3V, we need the
proper conversion. This is done with the MM74HC541 buffer which can be used
with a wide variety of supply voltages (2-6V). Supplied with 3.3V, the 5V input
from the microcontroller is outputted as a 3.3V signal. For the conversion from
3.3V to 5V, the MM74HCT541 buffer is used. This buffer can only be supplied
with 5V, but the inputs are TTL compatible, meaning that the high level of the
3.3V devices is high enough to be used with this buffer.
Most of the control signals for the driver are directly controlled by the mi-
crocontroller: SE(0:3) to enable the scan chain, CLKEXT to select the exter-
nal clock, CLK2X to select the clock frequency, SEL(0:1) to select the driver,
DATAIN(0:3) to control all input gates, RESET, MANCH to enable Manchester
coding and SI, the scan input of every scan chain. The external clock can be
either a crystal oscillator (20MHz) or a microcontroller output, selectable by one
of the switches on the board.
To test the current sources, each column output gets a small resistor (22Ω) to the
ground. We do not want to take a resistor that is too large, where the voltage drop
along the resistor would be too great, causing the internal current mirrors to stop

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 181 — #213 i
i

i
i

i
i

10.2 Setting up the (final) test environment 181

FrIIDoM

0-500 Ohm

12 Ohm

1 Ohm

5V

Figure 10.2 – Test structure for the row switches.

functioning properly. The voltage drop over the suitable LEDs will also be about
1-2 Volts.
The row switches need to be checked if they can bear the full 400mA. For this,
the test structure in Figure 10.2 is used. The potentiometer, connected to the 5V
supply line, has a resistance ranging from 0Ω to 500Ω. It is connected to a 12Ω re-
sistor, which in its turn is connected to 8 parallel 1Ω resistors, one for each switch.
In normal circumstances, only one switch will be activated at a time. If the poten-
tiometer has full resistance, a current of 9.7mA will flow. With a zero resistance
potentiometer, about 385mA will flow. The reason for doing it this way, instead of
only using 8 12Ω resistors in parallel besides the potentiometer is because of the
fact that if, for some reason, two switches would be active at the same time, the
maximum current would become about 800mA. Since the internal ground line is
calculated for only 400mA, this could cause some serious damage. Two switches
can become active at the same time due to a functional error, or maybe during
DFT testing. In any case, the current can also be completely disabled using one
of the switches on board.
The pins on top provide easy access to the digital outputs of the FrIIDoM driver.

FrIIDoM Module

One of the LED module boards is shown in Figure 10.3. The main components are
of course the FrIIDoM driver and the LED display. Again, to simplify assembly,
the option was made to use a simple 5×7 LED display.
Switches allow to choose between the on chip and external clock (20MHz oscilla-
tor), and between the general reset (originating from the controller board, for all
modules) and a local reset (push button). To connect or disconnect the module
from the system, a power switch can be used, cutting the power to the module.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 182 — #214 i
i

i
i

i
i

182 Results and Applications

gate 3

Figure 10.3 – A FrIIDoM LED module

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 183 — #215 i
i

i
i

i
i

10.2 Setting up the (final) test environment 183

Figure 10.4 – The FrIIDoM controller

Another option is to use the switch that disconnects all outputs with one throw
(idem ditto for the inputs). In some modules, the local reset push button has been
replaced with a switch, to provide another way to deactivate the module. During
a reset, all outputs are pulled low. The outputs and inputs are then connected to
either the ground, or an open net (using the internal pull down resistors).
The connections towards the surrounding modules are configured in such a way
that every side of a module can be connected to every side of another module
without causing shorts. This way the full functionality of the last driver can also
be tested.

FrIIDoM Controller

The controller board that will act as an interface between the modular system and
the PC is printed in Figure 10.4. It doesn’t differ much from the controller board
described in Section 5.5.
Again the Dallas microcontroller (DS89C420/450) is used, programmable in
system through USB, with external memory (AT29C010 with the DM74LS373N
latch) available. As opposed to the controller board in Section 5.5, the 5V to
3.3V conversion (and back) happens on this board, with the same buffers as the
FrIIDoM test board (MM74HC541 and MM74HCT541). Since these buffers don’t
have pull down resistors, a 10kΩ resistor is added at the DATAIN input.
Buttons allow for some input for the microcontroller and include a reset button
for the entire display. A switch enables (disables) the buffers, which will connect

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 184 — #216 i
i

i
i

i
i

184 Results and Applications

Figure 10.5 – GUI for the FrIIDoM driver.

(disconnect) the controller from the modular system.

10.2.2 Design of the GUI

Just a small note on the designed GUI, since it is basically the same program used
during the test phase of the individual drivers. Figure 10.5 shows the interface.
The main difference is that now there is one program for the four drivers, in-
stead of one for each individually. The same goes for the microcontroller code.
The program allows to choose between the four drivers and will enable/disable
some components according to the choice. For example the module shape (tri-
angle vs. rectangle) will only become available when the Improved Free-From
Modular Display Driver is selected. Further, the display size ((Improved) Mod-
ular Display Driver) and module size can be chosen. You can now also indicate
that Manchester code has to be used. The available display parameters are the
refresh rate and the desired LED current.
The green bars on the modules in the display area indicate how the modules are
oriented (gate 0), which will only be of real importance using the final driver. The

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 185 — #217 i
i

i
i

i
i

10.3 Measurement results 185

location of the parent node and transitions to lower or higher levels will also be
shown (See Section 8.5 for more details).

10.3 Measurement results

In the first few paragraphs, we’ll have a look at the general properties of the
FrIIDoM driver. This includes the performance of the current sources, the row
switches and on-chip clocks. Since the Manchester (de)coder and Sequencer is
the same in all four drivers, it will also be discussed here.
The last four paragraphs focus on the performance of the four drivers separately.
Measurements were done using a Tektronix Logic Analyzer, designed to measure
digital data. Instead of showing the exact voltage of the data signal, a logic an-
alyzer will translate the signal to logic bit values to create a clear digital signal.
Just as a reminder, data is sent with LSB first.

10.3.1 8-bit adjustable current sources

The 8-bit adjustable current sources were designed to generate up to 50mA (See
Section 9.5). One byte of the parameter data sent to the modules controls the
current source. They were tested on the test board by rapidly sending parameter
data with an increasing current control byte. This should result in a linearly in-
creasing current. As said in previous section, the currents were measured over a
22Ω resistor.
The results are shown in Figure 10.6. As you can see, the required 50mA is
reached nicely. Note that the rate that the parameters are sent is much higher
than the frame rate (and thus much higher than what would be needed for an
actual display application). Figure 10.6 also shows the control signals for that
current source. It is set to drive all but one lines high in an 8-row display. This
shows how the current sources respond when being turned completely on or off.

Figure 10.7 shows how this affects the LED display. The LEDs are driven with
20mA, 10mA, 5mA and 2mA. The higher currents are not tested on those LEDs,
because they can only withstand 25mA.

10.3.2 400 mA row switches

The switches were designed to be able to withstand a current up to 400mA (8×
50mA) (Section 9.5). This was tested by controlling the current that flows through
the switches with a potentiometer. This way a current range from about 10mA
up to 370mA could be reached.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 186 — #218 i
i

i
i

i
i

186 Results and Applications

-10
 0

 10
 20
 30
 40
 50
 60

 0 5 10 15 20 25 30 35 40 45

Time (ms)

C
u

rr
en

t
(m

A
)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

V
o

lt
ag

e
(V

)

Figure 10.6 – The outputs of a current source with the corresponding control signal.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 187 — #219 i
i

i
i

i
i

10.3 Measurement results 187

(a) (b)

(c) (d)

Figure 10.7 – A module with all LEDs on. LEDs are driven with 20mA (a), 10mA (b), 5mA
(c) and 2mA (d).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 188 — #220 i
i

i
i

i
i

188 Results and Applications

Figure 10.8 shows the results of the measurements on the row switches. The
potentiometer was set to create a current of about 100mA (Figure 10.8a), 200mA
(Figure 10.8b) and the maximum 370mA (Figure 10.8c).
The switches (and the chip as a whole) don’t seem to have much difficulty sinking
the current.

10.3.3 Clocks and Manchester (de)coding

There are two on-chip clocks, one is set to 10MHz, the other to 20MHz (See Sec-
tion 9.3). The 20MHz clock was to be used during normal communication, the
10MHz clock could be used if the communication happened with Manchester
coding. As said, Manchester coding doubles the required bandwidth which is
too much for the used microcontroller. The clocks are not directly outputted, but
we can measure them indirectly, though, by looking at the data outputs of the
drivers.
The 20MHz clock was measured by looking at the data output of the first modu-
lar display driver during initialization. This driver will send an 8-bit long address
(plus one start bit) after receiving his own address (irrespective of whether this
address was received correctly). So at a bit rate of 1MHz, we should see a 9µs long
sequence. Every bit lasts 20 base clock cycles. The measured sequences where
always slightly below 9µs, meaning that the designed frequency was slightly un-
derestimated. Of the 20 available FrIIDoM drivers, the average frequency was
20.95 MHz with a standard deviation of 0.39MHz (See Figure 10.9 for the distri-
bution).
The 10MHz clock was measured in a similar way. Since this clock is used when
sending with Manchester coding, there are enough transitions in the data sig-
nal to derive the clock frequency. Again, the measured bit times where slightly
smaller than expected, indicating an underestimation of the clock frequency.
Over the 20 drivers, the average clock frequency was 10.80MHz with a standard
deviation of 0.16MHz (See Figure 10.9 for the distribution).
The 1MHz deviation on the 20MHz clock proves to be too large for regular com-
munication. Using the first modular display driver, for example, the address
might be received correctly, but the image and parameter data are scrambled.
The initialization of the more complicated drivers fails altogether. Things im-
prove when we invoke the Manchester coding. Notwithstanding there is also a
1MHz deviation on the 10MHz, it is possible to communicate. See Figure 10.10
for an example. It shows the initialization process of a display of two modules
using the free-form modular display driver. To refresh your memory: using this
driver, the first module asks an address to the microcontroller, which will send
an address (000 + 0x00). Then the second module asks the first module for
an address, which replies by sending 000 + 0x10. After that the addresses are
being shouted to the microcontroller.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 189 — #221 i
i

i
i

i
i

10.3 Measurement results 189

-20

 0

 20

 40

 60

 80

 100

 120

-5 0 5 10 15 20 25 30 35 40 45 50

C
u

rr
e
n

t
(m

A
)

Time (ms)

Iin

(a)

-50

 0

 50

 100

 150

 200

 250

-5 0 5 10 15 20 25 30 35 40 45 50

C
u

rr
e
n

t
(m

A
)

Time (ms)

Iin

(b)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

-5 0 5 10 15 20 25 30 35 40 45 50

C
u

rr
e
n

t
(m

A
)

Time (ms)

Iin

(c)

Figure 10.8 – The performance of the row switches when having to sink 100mA (a), 200mA
(b) and 370mA (c)

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 190 — #222 i
i

i
i

i
i

190 Results and Applications

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

F
re

q
u

en
cy

 (
M

H
z)

Driver number

10MHz (measured)
20MHz (measured)

10Mhz (average)
20Mhz (average)

Figure 10.9 – Distribution of the on-chip clock. 20MHz and 10MHz

 0 50 100 150 200

time (us)

M2 - M1

M1 - M2

M1 - uC

uC - M1

Figure 10.10 – The initialization process of a display of two modules with the free-form
modular display driver using Manchester code.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 191 — #223 i
i

i
i

i
i

10.3 Measurement results 191

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

A
b

so
lu

te
 d

ev
ia

n
ce

 (
%

)

Expected refresh rate (fps)

Figure 10.11 – Expected and measured refresh rates

Although communication using Manchester code works for most drivers, there
still can be a lot of miscommunication, as well as between the drivers mutually
as between the drivers and the microcontroller. For this reason, it was opted to
use the external clock for the functional testing of the drivers.

10.3.4 Refresh rates

Since we’re using the external clock from now on, the measured refresh rates
should be very close to the desired refresh rates. Figure 10.11 confirms this as-
sumption. In the GUI refresh rates of 10 fps, 20 fps, 30 fps, · · · , 80 fps were
requested and the resulting refresh rates were measured. These matched the de-
sired rates with a precision of about 0.4%

10.3.5 Modular Display Driver

Using the first modular display driver, each module receives an address from
the previous module and sends the next address to the following module. After
the module sent the address, the internal bypass activates (See Chapter 5). The
modules are connected in a bus network.
Figure 10.12a shows the measured signals of the initialization process of a sim-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 192 — #224 i
i

i
i

i
i

192 Results and Applications

-20 -10 0 10 20 30 40 50

time (us)

M2out

M1out

uCout

(a)

-10 0 10 20 30 40 50 60 70

time (us)

M2out

M1out

uCout

(b)

Figure 10.12 – The initialization process in a display of two modules, using the first mod-
ular display driver (a). After the initialization, the bypass is activated (b)

ple display of two modules. The microcontroller sends address 0x00, module 1
sends 0x01 to module 2, which outputs address 0x02. Figure 10.12b indicates
that after the initialization, the bypass is activated. The data that is sent from the
microcontroller, is immediately seen by both modules.
The driver was also tested on the display in Figure 10.13. The bus structure can
be clearly seen. Also note that the modules in the middle row are upside down.
Figure 10.13a shows the display before initialization. After the initialization is
completed successfully, the microcontroller will already send default parameters
(refresh rate: 60 fps, display size: 7× 5, current: 20mA) and default data. In this
case, the default data for each module will be the address of that module. So, after
a successful initialization process, every module should display its own address.
This is shown in Figure 10.13b.
We can now use the GUI to draw images and send it to the display. First the
display size has to be selected (in this case it’s a 3 × 3 display). The GUI will
calculate which data belongs to which module and will take into account that
some modules (the modules in the odd rows) are upside down. You can see
some examples in Figure 10.14.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 193 — #225 i
i

i
i

i
i

10.3 Measurement results 193

(a)

(b)

Figure 10.13 – A larger display with the first modular display driver. Before initialization
(a) and after initialization (b).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 194 — #226 i
i

i
i

i
i

194 Results and Applications

(a)

(b)

Figure 10.14 – The image drawn in the GUI is represented correctly on the display.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 195 — #227 i
i

i
i

i
i

10.3 Measurement results 195

-10 0 10 20 30 40

time (us)

M2out,3

M2out,2

M2out,1

M2in,0

M1out,3

M1out,2

M1out,1

uCout

Figure 10.15 – The initialization process of a display of two modules using the improved
modular display driver.

10.3.6 Improved Modular Display Driver

The improved modular display driver resembles the previous driver a lot. The
modules are now ordered in a mesh network. Every module receives an ad-
dress from another module, but instead of sending the next address to just one
other module, it sends the corresponding addresses to the three other outputs
(See Chapter 6). Addresses are made up of a row and column number: (row,
column).
In Figure 10.15 you can see the measured initialization signals in a display of two
modules (next to each other). The microcontroller sends address 0x00 to the first
module. This will output address 0x0F to the gate above (row−1, column), 0x10
to the right gate (row, column +1) and 0x01 to the gate below (row+1, column).
Since the second module is located at the right gate, it will receive address 0x10
and send address 0x1F upwards, 0x20 to the right and 0x11 downwards.
For a bigger example, you can look at Figure 10.16. The display before initializa-
tion (Figure 10.16a) shows the mesh network with possible data loops (well, one,
in this case), and the fact that not every module needs to be present in this 3× 4
display. After a successful initialization, the microcontroller will again send de-
fault parameter and data values. The default parameters are the same as before.
After the default data is sent, the first three modules in the first column will dis-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 196 — #228 i
i

i
i

i
i

196 Results and Applications

play the numbers 0-2, the first three in the seconds column will display 3-6, etc.
And only the numbers 0-9 are used. Figure 10.16b gives the result of a completed
initialization on our display.
Again, the GUI was brought in to draw some images and display them. In this
case, we have to select a 3× 4 display. Not all modules are present in this display
and both the GUI as the microcontroller are unaware of this. So they will both
process data for modules that aren’t there. But the modules that are there, will re-
ceive their data irrespective of the missing modules. Figure 10.17 shows a couple
of examples.

10.3.7 Free-Form Modular Display Driver

We proceed to the more complex drivers. Using the free-form modular display
driver, every module will find another module from which it will request an ad-
dress. When this address is received, it is ready to hand out addresses itself. The
received addresses are shouted to the microcontroller according to the shout rou-
tine explained in Chapter 7. This way, the microcontroller knows which modules
are present. Modules can be added and removed without interfering with the
display operation.
We can again look at an example of a small display of two modules (connected
in the same way as before). The measured initialization signals are shown in Fig-
ure 10.18a. The microcontroller comes online (high output) and the first module
asks an address. The second module will ask an address when the first module
indicates it is ready (high output). Then the modules start the shout routine. The
first module shouts its address to the microcontroller (request, permit, shout),
the second module shouts the address to the first module (request, permit, shout
end), which in its turn will shout it to the microcontroller (request, permit, shout
end).
Figure 10.18b shows the similar procedure during polling. After the poll request
from the microcontroller (seen by both modules at the same time), the shout rou-
tine is initiated and both addresses are correctly sent to the microcontroller.
Notwithstanding the modules can receive and remember their addresses cor-
rectly (during the polling, they respond with their given addresses), there seems
to be a problem with comparing this address with the addresses sent in an im-
age data stream. It appears that the modules have some issues recognizing their
own address. The module with address 0x00 will also respond to data for mod-
ule 0x01, 0x10, 0x02 and 0x20 for example (but not to address 0xF0), while
module 0x01 will not respond at all to its own address. These problems did not
occur in the simulations (on behavioral VHDL code or on the generated gate-level
netlist, see Section 9.6) or even in the FPGA implementations. Furthermore, the
VHDL block that takes care of receiving image data and checking the addresses
is the same in all four drivers, which seem to be working there. So it must be a

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 197 — #229 i
i

i
i

i
i

10.3 Measurement results 197

(a)

(b)

Figure 10.16 – A larger display using the improved modular display driver. Before initial-
ization (a) and after initialization (b).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 198 — #230 i
i

i
i

i
i

198 Results and Applications

(a)

(b)

Figure 10.17 – Examples of how the improved modular display driver performs on a larger
display, controlled by the GUI.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 199 — #231 i
i

i
i

i
i

10.3 Measurement results 199

 0 20 40 60 80 100 120

time (us)

M2 - M1

M1 - M2

M1 - uC

uC - M1

(a)

-10 0 10 20 30 40 50 60 70 80

time (us)

M2 - M1

M1 - M2

M1 - uC

uC - M1

(b)

Figure 10.18 – Initialization signals (a) and polling signals (b) of a display of two modules
using the free-form modular display driver.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 200 — #232 i
i

i
i

i
i

200 Results and Applications

layout related problem.
Initially, this problem can have a number of causes. There could be an error in
the netlist-to-layout conversion itself. While this is highly unlikely (hopefully),
it is still a possibility. But no errors are detected when LVS-check is performed
(i.e. checking if the layout matches the designed circuit). Another possible cause
is that one of the concerning logic gates encounters a too large fan-out. The logic
gate is for example not strong enough to pull its output up in time. If this were the
case, the problem should be solved when driving the chip at a lower frequency
(giving the gates more time to pull up their output). When using oscillators of
10MHz (half of the designed frequency), the problem is still present. So unless
there is a very large fan-out problem (frequency needs to be reduced even more),
this is not the cause. Also the problem of crosstalk is a possibility. The free-form
modular display driver is physically a lot larger than previous drivers, so it is
possible that two tracks are close together for a long distance. Sharp transitions
on one track can influence the data on the adjacent track. In any case, if there were
to make a redesign, this is something to be looked at (See following section).
As said, the addresses are received and remembered correctly, which means that
this driver still has the capability to detect the display shape. This process is il-
lustrated in Figure 10.19. We start out with a blank canvas (Figure 10.19a). All
modules are already connected, but they can be turned on and off individually.
The yellow overlay shows which modules will participate in the initialization
process. Figure 10.19b illustrates the result after the initialization is started. The
active modules are recognized correctly. The red lines indicate how the tree struc-
ture is created, how the data will flow. The next modules are ready to be activated
(yellow overlay). Figure 10.19c shows the result, modules added after the initial-
ization is finished are recognized and added in the tree structure.
A last property that needs to be checked is how the display behaves when a mod-
ule is removed. If we remove module (0,1) (top right), modules (1,1), (1,2), (2,1)
and (2,0) will lose their path to the microcontroller. When the display was first
turned on, they were dependent on (0,1) (Figure 10.19b), so they will need to find
another path, which will be available through module (1,0). You can see how the
display managed this in Figure 10.20. Since the used addresses have all reached
the microcontroller successfully, the affected modules have found their new path
and the tree structure has been adjusted.

10.3.8 Improved Free-Form Modular Display Driver

The last driver is the improved free-form modular display driver. During the
initialization process, each module will now have to request an address directly
from the microcontroller. This is done by setting up a connection between the
module and the microcontroller by going through the send routine, discussed in
Chapter 8. In order for the microcontroller to know how the modules are con-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 201 — #233 i
i

i
i

i
i

10.3 Measurement results 201

(a)

(b)

(c)

Figure 10.19 – Initialization process using the free-form modular display driver. The yel-
low overlay shows which modules will be turned on next. The red lines represent the

created tree structure.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 202 — #234 i
i

i
i

i
i

202 Results and Applications

Figure 10.20 – After module (1,1) was removed, the affected modules have been rerouted
and all the used addresses found their way to the microcontroller

nected, it needs to know (for each module) the address of the parent node, the
child gate number of the parent node and the parent gate of the module. Mod-
ules can be added and removed, without interfering with the display operation.
Figure 10.21a shows the measured initialization process in a display of two mod-
ules (again connected as before). The microcontroller indicates that it is ready to
send an address (high output) and the first module asks an address (preliminary
address request, with parent gate number). After the receipt (address 0x00) it
is ready to provide a connection to the microcontroller (high output). The sec-
ond module performs the preliminary address request, to which the first module
will try to perform a complete address (with parent address, child gate number
and parent gate number) request by going through the send routine. In this case,
there are no more modules between the that module and the microcontroller, so
the send routine only consists of one send request and one send permit. After
the complete address request, the address is directly sent through to the second
module. Initialization is ended by a ‘send end’ command of both modules.
In Figure 10.21b you can see the polling procedure for that same display. After
the poll request of the microcontroller, both modules respond at the same time
with a preliminary polling answer (including own address and parent gate num-
ber). After the microcontroller sent the ‘ready’ command to the first module, after
processing its polling answer, the first module will go through the send routine
in order to send the complete polling answer (with parent address, own address,
parent gate number and child gate number) of the second module. Polling is
ended with a ‘send end’ command of both modules.
This driver was also tested on a larger display. Figure 10.22 illustrates this.
This driver makes it possible to connect the modules in any orientation. In
Figure 10.22a you can see that some modules are upside down and others are
sideways. In Chapter 8 I said that this driver could be used to create 3D shaped
displays, and could also be used with triangular modules. This is still the case, of

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 203 — #235 i
i

i
i

i
i

10.3 Measurement results 203

 0 50 100 150 200

time (us)

M2 - M1

M1 - M2

M1 - uC

uC - M1

(a)

 0 20 40 60 80 100 120 140 160

time (us)

M2 - M1

M1 - M2

M1 - uC

uC - M1

(b)

Figure 10.21 – Initialization signals (a) and polling signals (b) of a display of two modules,
using the improved free-form modular display driver

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 204 — #236 i
i

i
i

i
i

204 Results and Applications

course, but isn’t tested explicitly, because of practical issues. Being that I didn’t
create triangular modules and that the modules I did create aren’t built to be
physically stacked. However, the protocols aren’t dependent on this, so if this
driver works correctly on the display in Figure 10.22a, it will also work on the
other possible display structures.
We start the initialization procedure with only one module active. Figure 10.22b
shows the result. The module is recognized and shown in the GUI. This module
is orientated upright, which is indicated with the green bar at the left side of the
module in the GUI. After a successful initialization, the microcontroller sends the
default parameters and a default image. This time, this default image is again
the address of the module. Since the microcontroller hands out addresses as they
are requested, this will also be the order in which the modules are initialized.
The blue arrow in the GUI indicates where the parent node is located, where the
module gets its data from.
Figure 10.22c shows the result of turning the next two modules on. You can see
that the orientation is also detected correctly. Module 1 is sideways (green bar at
the bottom) and module 2 is upside down (green bar at the right). Figure 10.22d
depicts the final result, when all modules are turned on. All the modules and
their orientation have been detected correctly.
We can now use the generated display in the GUI to draw an image. Figure 10.23
shows an example and the result on the display. It shows that there has been
taken account of the orientation of the modules.
In Figure 10.24 you can see what happens if we remove module 2 (lower left
corner). As you can see in Figure 10.22d, this module is the parent node of module
5 (lower right corner), so the latter will have to reroute in order to receive any
data. Figure 10.24a shows the result after the removal. Module 2 has gone and
module 5 now receives data from module 4. The blue arrow indicating its parent
node is now pointed upwards. All active modules can still receive data, as proven
by Figure 10.24b.

10.4 Future design considerations

The FrIIDoM driver was tested and proven to be working for the greater part.
However, there are some issues that need to be addressed if we would want to
make another version of this driver. These changes might improve the perfor-
mance of the driver and increase the overall robustness.

10.4.1 Issues in the free-form modular display driver

The biggest issue encountered was during the testing of the free-form modular
display driver. While the addresses were received correctly, the modules did not

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 205 — #237 i
i

i
i

i
i

10.4 Future design considerations 205

(a)

(b)

(c)

(d)

Figure 10.22 – Initialization process using the improved free-form display driver. The
yellow overlay indicates which modules will be turned on next. The tree structure can be

derived from the blue arrows in the GUI.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 206 — #238 i
i

i
i

i
i

206 Results and Applications

Figure 10.23 – After all modules have been initialized, the GUI is used to draw an image
and display it.

(a)

(b)

Figure 10.24 – If a module is removed, it is detected by the system. The affected modules
will reroute so they can still receive data.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 207 — #239 i
i

i
i

i
i

10.4 Future design considerations 207

succeed in recognizing their addresses in a data stream. As said, this is an issue
that only occurs in the FrIIDoM driver (all drivers react the same way), but not in
any previous simulations and tests. The problem must be layout related.
In Section 9.6 of previous chapter, I explained the concept of DFT, where scan
chains are inserted in the digital logic in order to pinpoint structural errors in
the layout. This method could be used to locate the differences between the gate-
level netlist and the generated layout, and why these discrepancies have occurred
(e.g. large fan-out, long parallel tracks). With this knowledge, the relevant part of
the layout may be manually redesigned. Or, if it is a more general problem, the
layout may be regenerated with adjusted settings.

10.4.2 Improvements on the Physical Layer

The FrIIDoM driver could also be improved on the Physical Layer of its pro-
tocol. I’m referring to the 7 layer OSI model, discussed in Chapter 4. In the
Physical Layer, I include the communication itself, including possible Manch-
ester (de)coding. The command use, address assignation, etc. belong to the Data
Link Layer.
The problem in the Physical Layer is that in a real-life system, where modules are
being connected and disconnected, there could be a lot of noise on the data line,
because of drivers behaving unexpectedly when powered on or off. Switches,
used to connect and disconnect signals can cause ground bounces. While the
drivers try their best to filter out short glitches, longer irregularities (e.g. while
connecting a module) are more difficult to eradicate. Glitches are recognized as
commands or data sequences and problems occur.
A solution could be to provide the data sequences with longer fixed preambles
instead of the lonely start bit. The chance that one of the glitches matches the
preamble is quite small (depending of the size of the preamble of course). Same
goes for the Manchester decoding. While it is shown to be working in previ-
ous section, there is still some miscommunication. A fixed preamble on each data
package (e.g. 01010101) can help the Manchester decoder estimate the clock fre-
quency of the sending device (module or microcontroller) and adjust its counters
(used for decoding) accordingly.

10.4.3 Clock adjustments

From previous section, we know that the created clock frequencies are slightly
higher than anticipated. We can use this knowledge to adjust the design to better
match the desired frequencies.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 208 — #240 i
i

i
i

i
i

208 Results and Applications

10.5 Significance and applications

10.5.1 Increasing the multiplexability in passive-matrix displays

As said in Section 5.1, the main goal of the first modular display driver was to
increase the multiplexability (and thus the number of rows) of passive-matrix
displays. We’ve shown that by dividing a passive-matrix display in modules
with independent row electrodes, the number of rows can be increased because
the limitation is now only dependent on the number of rows in a module, not on
the display as a whole. But there might be some other perks.

10.5.2 Advantages for the ChLCD

We still know from Chapter 2 that ChLCD is a bistable display. Low voltages
don’t affect the state a pixel is in. Using the conventional minimal-swing driv-
ing scheme (See Section 5.5.1) pixels on the non-selected rows remain completely
unaffected by the driving signals for the selected row. Because of this, multiplex-
ability is not an issue for ChLCD, or any other display with these properties. It
seems that a modular display driver would be completely useless here. There are
some other benefits, though.
Driving a ChLCD is very slow. Every line takes about 10-20ms to drive. If we
want to create a higher resolution display, the frame times can become very large.
If we were to divide the display into areas that can update the display in parallel,
the total frame time could be greatly reduced. As you probably already guessed,
this is where the modular display driver can come in. The modules are indepen-
dent, so they can drive their own part of the display all at the same time. The
refresh rate can be increased to the maximum refresh rate of a single module.
But there’s another advantage for bistable displays. Bistable displays do not re-
quire power to keep the image on their screen, which makes them highly wanted
in low-power applications. With a modular display, each module can be updated
separately. If you want a new image on the screen that is only different from the
previous image in a couple of places, only the changed modules need an update.
This can further reduce the power consumption in those displays.

10.5.3 Advantages for a LED display

A passive-matrix LED display (See Section 5.5.2) is not limited in multiplexability
in the traditional way (i.e. Alt & Pleshko). LEDs on a non-selected row are not
affected by the signals on the columns, because no current can flow through them.
They are, however, limited in another way. When the current through a LED
stops, the LED is immediately turned off. This means that a LED (or a row of
LEDs) is only emitting light when this row is selected. The rest of the frame time,

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 209 — #241 i
i

i
i

i
i

10.5 Significance and applications 209

these LEDs will be off. Due to our persistence of vision [1] this light will seam
to be smeared out over the entire frame time, but the apparent light output will
depend on the fraction of the time the LEDs are on (line time) in respect to the
total frame time. The more rows in a display, the smaller this fraction is. So, if
we impose a certain light output (i.e. a certain contrast), the number of rows is
limited. This limitation can also be resolved by building a passive-matrix LED
display from independent modules.

10.5.4 Creating a passive-matrix PDLC display

One of the liquid crystals that looked useful for creating a flexible e-paper is
PDLC (See Chapter 2). In its reflective state, it produces a nice milky-white light.
Incident light reflects of the many droplets and is diffusely scattered back. When
the backplane of the display is a black light absorber, the transmissive state of
the display produces a black pixel. You could also use a mirror as backplane.
This would cause the white pixels to be even more white (more light is reflected
back). Yet a pixel in the transmissive state would appear to be black, because of
the shadows cast by the surrounding white pixels. Of course this will only work
if there aren’t any large black areas necessary. But if the e-paper simply needs to
display text, it should work.
Another advantage is that a PDLC display is very easy to create (See below) and
fairly easy to make flexible. Also, while the exact electro-optical characteristics
are dependent on the thickness of the LC in the display, once the display is cre-
ated, it can be pushed and bent without changing these characteristics too much.
Compare this with a regular LC display (e.g. the LCD screen from your PC)
where the image is deformed when you push your finger on the screen.
With these things in mind, we tried to create a PDLC display. The components
that were used are PN393 as the pre-polymer and TL213 as the LC. Both are sup-
plied by Merck [2]. We created a solution of 20%wt PN393 and 80%wt TL213.
This (liquid) solution will, when cured with UV-light, become the PDLC. Since
UV-light cures the PDLC, all actions need to take place in a yellow, UV-free room
in the clean room.
A first test consisted of creating a PDLC display with glass carriers. The glass
carriers were covered in a ITO (Indium Tin Oxide) coating. ITO is used to create
a thin, flexible, transparent and electrically conductive film. Spacers (in our case
spheres with 10µm diameter) were placed on one of the carriers. Next, a droplet
of the LC solution is placed on the other carrier. Placing the first carrier (with the
spacers at the bottom) on top of the second carrier, creates a display with a fixed
width of 10µm. It is now ready to be cured. Curing parameters (curing intensity,
curing time) can influence the electro-optical characteristics of the PDLC [2, 3]. A
greater curing intensity will cause the LC droplets to be smaller. Smaller droplets
will scatter the incident light more, but will also need a higher voltage to become

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 210 — #242 i
i

i
i

i
i

210 Results and Applications

transparent. We used the Hg lamp as the UV source and cured the PDLC for 180s
at an intensity of 12, 5mW/cm3. The result is shown in Figure 10.25 (top). In the
figure you see the display in its reflective state, when no voltage is applied (left),
and in its transparent state, when 10V is applied (The difference between the
on and off state are not very clear. The sample is not completely placed against
the black background, letting light through from the back). The same procedure
was performed, but now with flexible PET (PolyEthylene Terephthalate) carriers
(Figure 10.25 (bottom)).
The next step was to create a display with more pixels. To do this the ITO on the
PET carriers was lithographically etched and patterned to create row and column
electrodes. See Figure 10.26 for the results. By applying voltages to the electrodes,
we were able to turn a specific pixel on. From Chapter 2 we know that the mul-
tiplexablity is dependent on the maximal voltage were the pixel is considered
off (VOFF) and the minimal voltage were the pixel is considered on (VON). With
our created display, VOFF = 2.2V and VON = 7.0V. Using Equation 2.2 we real-
ize that this display isn’t multiplexible at all. In literature, displays were created
with a multiplexability of 3-4 lines [4]. This can be further improved to about 7
lines by using Multi-Line Adressing (MLA). So, technically it would be possible
to create e-paper from PDLC using a modular approach. To create a somewhat
higher resolution display, however, (which is kinda needed to create acceptable
e-paper) too much modules would be required. We chose not to pursue this path
and focus our energy to the intelligence of the modular display drivers itself.

10.5.5 Free-form displays

While the modular approach can increase the multiplexability in passive matrix
systems, the final drivers are capable of a lot more. In Chapter 3 we briefly dis-
cussed some systems dealing with irregular, out of the (rectangular) box, dis-
plays. The systems described in this book might as well be added to that list.
The variety of display shapes possible with the first driver (Chapter 5) is quite
limited, due to the fact that it has only one input and output gate. After all, cre-
ating a free-form display wasn’t the intention for that driver. The second driver
(Chapter 6) performs a lot better in that aspect. With its four input/output gates,
a lot more different displays can be created. The shapes are still limited to a flat
matrix of modules. The third driver (Chapter 7) won’t allow any more display
configurations than the second driver does since every module still has four in-
put/output gates and the addresses are calculated the same way. However, the
interface with the user is simplified (automatic configuration detection) and the
display can be changed while it is running, which offers a different type of free-
dom. The fourth and last driver (Chapter 8) again provides an extra level in the
variety of display shapes. Not only can the modules be connected in any way
possible, the modules themselves can have a different shape.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 211 — #243 i
i

i
i

i
i

10.5 Significance and applications 211

(a) (b)

(c) (d)

Figure 10.25 – A PDLC display with glass carriers (top) and PET carriers (bottom) in their
reflective state (left) and its transparent state (right).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 212 — #244 i
i

i
i

i
i

212 Results and Applications

(a) (b)

Figure 10.26 – A passive-matrix PDLC display with PET carriers, with all pixels off
(VOFF = 2.2V) (left) and with one pixel on (VON = 7.0V) (right).

10.5.6 Using flexible modules

A whole new range of possibilities emerges when the modules are made flexi-
ble or even stretchable. This way, it becomes even more easy to create displays
of even more irregular shapes. These modules could, for example, be used in
clothing. The user takes a couple of modules and sews them together to create a
display that fits the garment. To accomplish these flexible modules, it is of course
necessary that the drivers themselves are flexible.
The Interuniversity MicroElectronics Center (IMEC), together with the Ghent
University, has developed a new concept for packaging ultra-thin chips: the
ultra-thin chip package (UTCP) [5]. The UTCP is based on the embedding of
ultra-thin chips (normal sized chips can be polished to a thickness of 15 µm) in
polyimide (PI). The total package is about 50-60 µm thick. This is so thin that the
whole package is flexible. To give a bit of a feeling of such an UTCP, the process
flow is shown in Figure 10.27. The base substrate is a uniform PI layer, applied
on a rigid carrier. Next, a 30 µm photodefinable polyimide (PD PI) layer is spin
coated. After exposing the PD PI with a mask, the unexposed regions are etched
away by the developer, defining the cavities in the PD PI layer. After cure of
the PD PI, adhesive is added and the ultra-thin chip is placed and fixed in the
cavity. The chip and the adhesive are filling the cavity. Next, the top polyimide is
applied, via openings are laser drilled and the metal layer (TiW/Cu) is sputtered.
As vias with diameters down to 35 µm are realized using a tripled YAG laser,
chips with contact pitches down to 100 µm can be used. After patterning of the
metal layer the flat package can be released from the carrier.
The final result is depicted in Figure 10.28. The UTCP is bendable with a cur-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 213 — #245 i
i

i
i

i
i

10.5 Significance and applications 213

(a) PI placed on a rigid layer (b) Application of a 30 µm thick PD PI layer

(c) Illumination of the PD layer (with mask) (d) Development of the PD layer

(e) Dispense of adhesive (f) Placement of the ultra-thin die (face up)

(g) Application of the top PI layer and laser
drilling of the vias

(h) Metalization, lithography and release
from carrier

Figure 10.27 – The UTCP process flow

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 214 — #246 i
i

i
i

i
i

214 Results and Applications

(a) (b)

Figure 10.28 – Final result of the UTPC process. The whole package is bendable

vature of about 5 mm, without damaging the silicon chip or the adhesive layer.
This new concept of packaging ultra-thin chips gives us some great advantages.
The most important advantage is that the whole package is very thin and flexi-
ble. When these chips are placed on the back of a (flexible) display, they will not
interfere with the overall thickness or flexibility. Also, with the UTCP, you can
embed several chips without having to deal with the Known Good Die problem.
We can test the chips before embedding them, increasing the yield of the whole
system. Since there is a fan-out created on the chip package, there is no need for
a very fine pitch on the PCB or Flexible Printed Circuit (FCB).

10.5.7 Outside the display world

While the drivers were primarily designed for controlling a display, the protocols
are fairly general and could very well be used for applications outside the realm
of displays. A system that consists of several independent modules may find its
use here.
One particular system that comes to mind is the modular robot. A modular robot
is built up by identical, movable modules that can be connected in several ways.
Examples are the PolyBot from PARC [6] (Figure 10.29a), M-TRAN from AIST
Japan [7] (Figure 10.29b), the CKBot developed at UPenn [8] (Figure 10.29c) and
the SuperBot from the University of Southern California [9] (Figure 10.29d). The
modules in these robots are independent from each other, but still have to work
together to make the robot work as a whole. With these modules, the robot is
(self-)reconfigurable, (self-)upgradeable, etc.
Most of these modular robots use a network protocol that is based on fixed ad-
dressing [8], some don’t use addressing at all, like the SuperBot. The actions of a

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 215 — #247 i
i

i
i

i
i

10.5 Significance and applications 215

(a) (b)

(c) (d)

Figure 10.29 – Examples of modular robots. The PolyBot (a), the M-TRAN (b), the CKBot
(c) and the SuperBot (d).

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 216 — #248 i
i

i
i

i
i

216 Results and Applications

certain module is dependent on the actions of the adjacent module [10]. However,
it is clear that systems like that may find a benefit in one of the created protocols.
Especially the last protocol, where the configuration of the modules can be de-
tected, and the modules can be connected either way. With cube-like modules
there would be six gates instead of the four used in the display modules, but the
algorithms could stay the same.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 217 — #249 i
i

i
i

i
i

References

[1] Wikipedia. Persistance of vision. [Online]. Available: http://en.wikipedia.
org/wiki/Persistence of vision

[2] F. Bruyneel, “Introduction of Color in Reflective PDLC and PNLC Microdis-
plays,” Ph.D. dissertation, Ghent University, 2002.

[3] P. Nolan, E. Jolliffe, and D. Coates, “Film-formation parameters affecting the
electro-optic properties of PDLC films,” in Proceedings of the SPIE, vol. 2408,
1995, pp. 2–13.

[4] G. Spruce and R. D. Pringle, “Polymer dispersed liquid crystal (PDLC)
films,” Electronics & Communication Engineering Journal, vol. 4, no. 2, pp. 91–
100, April 1992.

[5] W. Christiaens, “Active and Passive Component Integration in Polyimide
Interconnection Substrates,” Ph.D. dissertation, Ghent University, 2009.

[6] M. Yim, D. Duff, and K. Roufas, “PolyBot: a Modular Reconfigurable
Robot,” in Proceedings of the 2000 IEEE International Conference on Robotics
and Automation, 2000, pp. 514–520.

[7] A. Kamikura, S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji,
“Self-Reconfigurable Modular Robot,” in Proceedings of the 2001 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2001, pp. 606–612.

[8] M. Park, “Configuration Recognition, Communication Fault Tolerance and
Self-reassembly for the CKBot,” Ph.D. dissertation, University of Pennsylva-
nia, 2009.

[9] B. Salemi, M. Moll, and W.-M. Shen, “SUPERBOT: A Deployable, Multi-
Functional, and Modular Self-Reconfigurable Robotic System,” in Proceed-
ings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2006, pp. 3636–3641.

[10] W.-M. Shen, B. Salemi, and P. Will, “Hormones for self-reconfigurable
robots,” in Interbational Conference on Intelligent Autonomous Systems (IAS-6),
2000, pp. 918–925.

http://en.wikipedia.org/wiki/Persistence_of_vision
http://en.wikipedia.org/wiki/Persistence_of_vision

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 218 — #250 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 219 — #251 i
i

i
i

i
i

A witty saying proves nothing.

Voltaire (1694-1778)

11
Conclusion and Future Prospects

11.1 Main achievements

The main goal of this Ph.D. was to create a couple of intelligent drivers that could
automate the configuration in modular displays. Modular displays can be used
to increase the multiplexability (affecting contrast, resolution and brightness) in
passive matrix displays or to create free-form displays. This can go from simple
scalable displays to full 3D-shaped displays, as explained in Chapter 3.
In this work, four such drivers were presented. Chapter 5 explains the first modu-
lar display driver. This driver enables a modular display system, where the mod-
ules are connected in a bus network, to be configured automatically. All modules
receive a unique address that can be used to send module-specific data.
The improved modular display driver is discussed in Chapter 6. This driver controls
a modular system connected in a mesh network. This provides more freedom in
the displays that can be created, but we must take care to prevent possible data
loops.
In Chapter 7 we go a little bit further with the free-form modular display driver.
While the modular systems that can be created with this driver remain the same,
there is a lot of added functionality. The modular system is now clearly defined in
a hierarchical, dynamical tree structure, created at start-up. The shape of the cre-
ated display is detected and can be represented in a user interface. Modules can
be added and removed when the display is running, without interfering with the

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 220 — #252 i
i

i
i

i
i

220 Conclusion and Future Prospects

Chapter 5 Chapter 6 Chapter 7 Chapter 8
Increase multiplexability Yes Yes Yes Yes
Free-Form Display No Yes Yes Yes
Configuration detection No No Yes Yes
Complex display shapes No No No Yes
Initialization speed Fast Fast Fair Slow

Table 11.1 – Overview of the properties of the created drivers.

operation of the display. The changes are detected, the GUI and the tree structure
are updated.
The improved free-from modular display driver from Chapter 8 offers the same func-
tionality, but there is again an increase in freedom of displays that can be cre-
ated. Modules can be connected in any way possible. When the modular system
is no longer fixed to a flat matrix of modules, the possibility emerges to create
3D-shaped displays. The driver also enables the use of triangular modules, fur-
ther increasing the freedom of creation. Table 11.1 sums up the properties of the
created drivers. The functionality of all four drivers have been implemented in
VHDL and tested with modules equipped with an FPGA. After the successful
tests, it was time to transform these drivers in one chip.
Chapter 9 elaborates on the creation of the FrIIDoM driver. This one driver in-
cludes the four drivers discussed above and is designed to drive an 8× 8 passive
matrix LED display. It has its own 8-bit adjustable current source (up to 50mA),
row switches (up to 400mA), on-chip clock and power-on reset. The measure-
ment results on this driver are presented in Chapter 10. Except for the address
recognition problems of the free-form modular display driver, the four drivers
seem to be working as they should. Also the current sources and switches proved
to be functioning properly.

11.2 Future work

The first steps that should be taken if work was continued on these drivers is to
eliminate the error in the free-form modular display driver, so that addresses in
the data stream are correctly recognized. There is also room for improvement on
the physical layer of the protocol, ensuring more robust communication. Maybe it
could also be interesting to take a look at some other chip technologies. Since the
LED drivers of the FrIIDoM chip have to source a fairly large current, a BiCMOS
(Bipolar CMOS, where CMOS and bipolar junction transistor are both present)
technology may result in a smaller and maybe cheaper chip.
Furthermore, there might be some other ideas to work out. We could take a look
at implementing collision detection, further improving the communication qual-

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 221 — #253 i
i

i
i

i
i

11.2 Future work 221

ity. The modules and microcontroller could communicate through a wireless con-
nection, which would need some adjustments to the used protocols. Including a
gyroscope and magnetometer in the modules can make it possible to detect their
physical orientation to create a real-life representation in the GUI.
As of now, the display has to consist of identical modules: all square, triangu-
lar, pentagonal, . . . modules. It is possible to let the module detect its own shape
(number of active gates) and send this information to the microcontroller, allow-
ing the modular display to consist of modules of different shapes and even fur-
ther increase the range of possible displays.
On the side of increasing the multiplexability, research could be done on the im-
plementation of Multi-Line Addressing (Chapter 3).
Using this modular display system with bistable displays, the power efficiency
can be increased. With some adjustments to the protocols, it can be even further
increased when a specific low-power sleep state is introduced when the display
nor the modules need to be active. When the image on the display needs to be
changed, only the relevant modules need to wake up.
As said in Section 10.5.7, these protocols could find their way outside the display
world as well. According to the application in mind, further improvements and
extensions can be made. In the case of the modular robot, it could be interesting if
every module can communicate with every other module (e.g. to separate ‘legs’
that have to be coordinated). For this, an extra protocol layer, the network layer,
could be added, where every module acts as a router and is aware of its entire
offspring.
As you can see, these protocols can form the basis of a lot more, and a lot more
complex protocols, both inside and outside the display world.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 222 — #254 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 223 — #255 i
i

i
i

i
i

A
VHDL implementation of Main

Control (1)

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.numeric_std.all;
4

5 entity main_ctrl_1_mdd is
6 -- Clock signals are not really clock signals,
7 -- but ’enables’ for the registers.
8 port(
9 clk: in std_logic;
10 data_in: in std_logic;
11 rec_clk: in std_logic;
12 start_bit: in std_logic;
13

14 address: in std_logic_vector(7 downto 0);
15

16 data_rec: in std_logic;
17 Dp: in std_logic;
18

19 -- number of rows
20 param_in: in std_logic_vector(2 downto 0);
21

22 POR: in std_logic;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 224 — #256 i
i

i
i

i
i

224 VHDL implementation of Main Control (1)

23 rst: in std_logic;
24

25 -- pulse, loads the address in Tx
26 load_out: out std_logic;
27 Tx_ena: out std_logic;
28

29 -- enables for reading address, param and data registers.
30 adr_ena: out std_logic;
31 param_ena: out std_logic;
32 data_ena: out std_logic;
33

34 -- Sequencer control
35 SC: out std_logic;
36

37 reset: out std_logic;
38 reset_hrd: out std_logic
39);
40 end main_ctrl_1_mdd;
41

42 architecture main_ctrl_1_mdd of main_ctrl_1_mdd is
43 -- selects the clock that will be counted
44 signal clk_sel: std_logic;
45 -- 0 = rec_clk
46 -- 1 = bit ena
47 -- the clock that will be counted
48 signal count_clk: std_logic;
49 signal count: integer range 10 downto 0;
50 -- enables the bit clockfor sending
51 signal bit_clk_ena: std_logic;
52 signal bit_ena: std_logic;
53

54 signal main_state: std_logic_vector(1 downto 0);
55

56 signal load: std_logic;
57 signal load_2: std_logic;
58

59 -- bypass control
60 signal BC: std_logic;
61

62 signal adr_read: std_logic;
63 signal param_read: std_logic;
64 signal data_read: std_logic;
65 signal address_check: std_logic;
66 signal rec_addr: std_logic_vector (7 downto 0);
67

68 signal reset_P: std_logic;
69 signal reset_dp_int: std_logic;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 225 — #257 i
i

i
i

i
i

225

70 signal reset_hrd_int: std_logic;
71

72 begin
73

74 reset <= reset_dp_int or reset_P or reset_hrd_int;
75 reset_hrd <= reset_hrd_int;
76 reset_hrd_int <= POR;
77

78 count_clk <= rec_clk when clk_sel=’0’ else bit_ena;
79 Tx_ena <= bit_ena;
80

81 adr_ena <= adr_read and rec_clk;
82

83 --generates the load-pulse for Tx
84 load_2 <= load when rising_edge(clk);
85 load_out <= load and not(load_2);
86

87 ------------ State Machine -->>>>>>>>>>---
88 process(clk)
89 begin
90 if (rising_edge(clk)) then
91 if (rst = ’1’) then
92 main_state <= "00";
93

94 adr_read <= ’0’;
95 bit_clk_ena <= ’0’;
96

97 BC <= ’0’;
98 SC <= ’0’;
99

100 clk_sel <= ’0’;
101 load <= ’0’;
102 count <= 0;
103

104 reset_P <= ’0’;
105 else
106 case main_state is
107 when "00" => -- begin state -------- S0 ---
108 if (start_bit = ’1’) then
109 main_state <= "01";
110 end if;
111 when "01" => -- receive address ---- S1 ---
112 if (count = 8) then
113 count <= 0;
114 adr_read <= ’0’;
115 main_state <= "10";
116 reset_P <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 226 — #258 i
i

i
i

i
i

226 VHDL implementation of Main Control (1)

117 else
118 clk_sel <= ’0’;
119 adr_read <= ’1’;
120 if (count_clk = ’1’) then
121 count <= count + 1;
122 end if;
123 end if;
124 when "10" => -- send address ------- S2 ---
125 reset_P <= ’0’;
126 if (count = 10) then
127 count <= 0;
128 load <= ’0’;
129 bit_clk_ena <= ’0’;
130 main_state <= "11";
131 else
132 load <= ’1’;
133 bit_clk_ena <= ’1’;
134 clk_sel <= ’1’;
135 if (count_clk = ’1’) then
136 count <= count + 1;
137 end if;
138 end if;
139 when "11" => -- normal operation --- S3 ---
140 -- Activate bypass and Sequencer
141 BC <= ’1’;
142 SC <= ’1’;
143 when others =>
144 main_state <= "11";
145 end case;
146 end if;
147 end if;
148 end process;
149 ---<<<<<<<<< Stage Machine ---------------
150 ------------ Data/Param ---->>>>>>>>>>>---
151 -- If enabled (*_read), read param or image with the decoder

clk ena
152 param_ena <= param_read and rec_clk;
153 data_ena <= data_read and rec_clk;
154

155 process(clk)
156 variable count: integer range 64 downto 0;
157 begin
158 if (rising_edge(clk)) then
159 if (rst = ’1’) then
160 count := 0;
161 reset_dp_int <= ’0’;
162 param_read <= ’0’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 227 — #259 i
i

i
i

i
i

227

163 data_read <= ’0’;
164 address_check <= ’0’;
165 rec_addr <= (others => ’0’);
166 elsif ((data_rec and BC) = ’1’) then
167 if (Dp = ’1’) then
168 -- Incoming image data
169 if (address_check = ’1’) then
170 -- Check address and if match (data_read = 1), read

data
171 -- Otherwise, just count data.
172 if (count = 8*(8-to_integer(unsigned(param_in))))

then
173 data_read <= ’0’;
174 reset_dp_int <= ’1’;
175 else
176 if (rec_addr = address) then
177 data_read <= ’1’;
178 end if;
179 if (rec_clk = ’1’) then
180 count := count + 1;
181 end if;
182 end if;
183 else
184 -- Receive address
185 if (count = 8) then
186 address_check <= ’1’;
187 count := 0;
188 else
189 if (rec_clk = ’1’) then
190 rec_addr(7) <= data_in;
191 for i in 0 to 6 loop
192 rec_addr(i)<=rec_addr(i+1);
193 end loop;
194 count := count + 1;
195 end if;
196 end if;
197 end if;
198 elsif (Dp = ’0’) then
199 -- Incoming parameter data
200 if (count = 32) then
201 param_read <= ’0’;
202 reset_dp_int <= ’1’;
203 else
204 param_read <= ’1’;
205 if (rec_clk = ’1’) then
206 count := count + 1;
207 end if;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 228 — #260 i
i

i
i

i
i

228 VHDL implementation of Main Control (1)

208 end if;
209 end if;
210 else
211 address_check <= ’0’;
212 reset_dp_int <= ’0’;
213 count := 0;
214 end if;
215 end if;
216 end process;
217 ---<<<<<<<<< Data/Param ------------------
218 ------------ Bit_clk ------->>>>>>>>>>>---
219 -- Used when sending, will eventually enable Tx
220 process(clk)
221 variable count: integer range 19 downto 0;
222 begin
223 if (rising_edge(clk)) then
224 if (rst = ’1’) then
225 bit_ena <= ’0’;
226 count := 0;
227 elsif (bit_clk_ena = ’1’) then
228 if (count = 19) then
229 bit_ena <= ’1’;
230 count := 0;
231 else
232 bit_ena <= ’0’;
233 count := count + 1;
234 end if;
235 else
236 bit_ena <= ’0’;
237 count := 0;
238 end if;
239 end if;
240 end process;
241 ---<<<<<<<<< Bit_clk ---------------------
242 end main_ctrl_1_mdd;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 229 — #261 i
i

i
i

i
i

B
VHDL implementation of Main

Control (2)

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.numeric_std.all;
4

5 entity main_ctrl_2_mdd is
6 port(
7 clk: in std_logic;
8 data_in: in std_logic;
9 rec_clk: in std_logic;
10 start_bit: in std_logic_vector(3 downto 0);
11

12 address: in std_logic_vector(7 downto 0);
13

14 data_rec: in std_logic;
15 Dp: in std_logic;
16

17 param_in: in std_logic_vector(2 downto 0);
18

19 POR: in std_logic;
20 rst: in std_logic;
21

22 -- Data from Parent node

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 230 — #262 i
i

i
i

i
i

230 VHDL implementation of Main Control (2)

23 data_int: out std_logic;
24 -- controls output gates
25 out_ctrl: out std_logic_vector(3 downto 0);
26 -- controls input gate
27 in_ctrl: out std_logic_vector(1 downto 0);
28

29 -- pulse, loads the address in Tx
30 load_out: out std_logic;
31 Tx_ena: out std_logic;
32

33 -- enables for reading address, param and data registers.
34 adr_ena: out std_logic;
35 param_ena: out std_logic;
36 data_ena: out std_logic;
37

38 -- Sequencer control
39 SC: out std_logic;
40

41 reset: out std_logic;
42 reset_hrd: out std_logic
43);
44 end main_ctrl_2_mdd;
45

46 architecture main_ctrl_2_mdd of main_ctrl_2_mdd is
47 -- selects the clock that will be counted
48 signal clk_sel: std_logic;
49 -- 0 = rec_clk
50 -- 1 = bit ena
51 signal count_clk: std_logic;
52 signal count: integer range 10 downto 0;
53

54 signal bit_clk_ena: std_logic;
55 signal bit_ena: std_logic;
56

57 signal main_state: std_logic_vector(1 downto 0);
58 signal out_ctrl_int: std_logic_vector(3 downto 0);
59 signal load: std_logic ;
60 signal load_2: std_logic ;
61

62 signal BC: std_logic;
63

64 signal adr_read: std_logic;
65 signal param_read: std_logic;
66 signal data_read: std_logic;
67 signal address_check: std_logic;
68 signal rec_addr: std_logic_vector (7 downto 0);
69

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 231 — #263 i
i

i
i

i
i

231

70 signal reset_P: std_logic;
71 signal reset_dp_int: std_logic;
72 signal reset_hrd_int: std_logic;
73

74 begin
75

76 reset <= reset_dp_int or reset_P or reset_hrd_int;
77 reset_hrd <= reset_hrd_int;
78 reset_hrd_int <= POR ;
79

80 out_ctrl <= out_ctrl_int;
81 data_int <= data_in;
82

83 count_clk <= rec_clk when clk_sel=’0’ else bit_ena;
84 Tx_ena <= bit_ena;
85

86 adr_ena <= adr_read and rec_clk;
87

88 load_2 <= load when rising_edge(clk);
89 load_out <= load and not(load_2);
90

91 ------------ State Machine -->>>>>>>>>>---
92 process(clk)
93 begin
94 if (rising_edge(clk)) then
95 if (rst=’1’) then
96 in_ctrl <= "00";
97 out_ctrl_int <= "1111";
98 main_state <= "00";
99

100 adr_read <= ’0’;
101 bit_clk_ena <= ’0’;
102

103 BC <= ’0’;
104 SC <= ’0’;
105

106 clk_sel <= ’0’;
107 load <= ’0’;
108 count <= 0;
109

110 reset_P <= ’0’;
111 else
112 case main_state is
113 when "00" => -- begin state -------- S0 ---
114 -- Choose Parent node
115 if (start_bit(0)=’1’) then
116 in_ctrl <= "00";

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 232 — #264 i
i

i
i

i
i

232 VHDL implementation of Main Control (2)

117 main_state <= "01";
118 elsif (start_bit(1)=’1’) then
119 in_ctrl <= "01";
120 main_state <= "01";
121 elsif (start_bit(2)=’1’) then
122 in_ctrl <= "10";
123 main_state <= "01";
124 elsif (start_bit(3)=’1’) then
125 in_ctrl <= "11";
126 main_state <= "01";
127 end if;
128 when "01" => -- receive address ---- S1 ---
129 -- adjust out_ctrl on incoming star tbits
130 out_ctrl_int <= out_ctrl_int and not(start_bit);
131 -- receive address
132 if (count = 8) then
133 count <= 0;
134 adr_read <= ’0’;
135 main_state <= "10";
136 reset_P <= ’1’;
137 else
138 clk_sel <= ’0’;
139 adr_read <= ’1’;
140 if (count_clk = ’1’) then
141 count <= count + 1;
142 end if;
143 end if;
144 when "10" => -- send address ------- S2 ---
145 reset_P <= ’0’;
146 if (count = 10) then
147 count <= 0;
148 load <= ’0’;
149 bit_clk_ena <= ’0’;
150 main_state <= "11";
151 else
152 load <= ’1’;
153 bit_clk_ena <= ’1’;
154 clk_sel <= ’1’;
155 if (count_clk = ’1’) then
156 count <= count + 1;
157 end if;
158 end if;
159 when "11" => -- normal operation --- S3 ---
160 -- Activate bypass and Sequencer
161 BC <= ’1’;
162 SC <= ’1’;
163 when others =>

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 233 — #265 i
i

i
i

i
i

233

164 main_state <= "11";
165 end case;
166 end if;
167 end if;
168 end process;
169 ---<<<<<<<<< Stage Machine ---------------
170 ------------ Data/Param ---->>>>>>>>>>>---
171 param_ena <= param_read and rec_clk;
172 data_ena <= data_read and rec_clk;
173

174 process(clk)
175 variable count: integer range 64 downto 0;
176 begin
177 -- See Appendix A
178 end process;
179 ---<<<<<<<<< Data/Param ------------------
180 ------------ Bit_clk ------->>>>>>>>>>>---
181 process(clk)
182 variable count: integer range 19 downto 0;--:= 0;
183 begin
184 -- See Appendix A
185 end process;
186 ---<<<<<<<<< Bit_clk ---------------------
187 end main_ctrl_2_mdd;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 234 — #266 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 235 — #267 i
i

i
i

i
i

C
VHDL implementation of Main

Control (3)

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.numeric_std.all;
4

5 entity main_ctrl_3_mdd is
6 port(
7 clk: in std_logic;
8 data_in: in std_logic_vector(3 downto 0);
9 rec_clk: in std_logic_vector(3 downto 0);
10 --address available
11 adr_av: in std_logic_vector(3 downto 0);
12

13 -- own address
14 address: in std_logic_vector(7 downto 0);
15 -- address to be shouted
16 sht_address: in std_logic_vector(7 downto 0);
17

18 -- command received
19 cmd_rec: in std_logic_vector(3 downto 0);
20 -- when Rx detects missing module
21 gone: in std_logic_vector(3 downto 0);
22 -- address request received

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 236 — #268 i
i

i
i

i
i

236 VHDL implementation of Main Control (3)

23 adr_req: in std_logic_vector(3 downto 0);
24 -- address received
25 adr_ack: in std_logic_vector(3 downto 0);
26 -- shout request received
27 sht_req: in std_logic_vector(3 downto 0);
28 -- shout acknowledgement received
29 sht_ack: in std_logic_vector(3 downto 0);
30 -- shout received
31 sht: in std_logic_vector(3 downto 0);
32 -- shout end received
33 sht_end: in std_logic_vector(3 downto 0);
34 param: in std_logic_vector(3 downto 0);
35 data: in std_logic_vector(3 downto 0);
36

37 param_in: in std_logic_vector(2 downto 0);
38

39 POR: in std_logic;
40 rst: in std_logic;
41

42 -- data from parent node
43 data_int: out std_logic;
44 -- shout data
45 data_sht: out std_logic;
46 -- data for child nodes
47 data_ext: out std_logic;
48

49 -- enables for registers
50 -- (address, shout address, data)
51 adr_ena: out std_logic;
52 sht_adr_ena: out std_logic;
53 param_ena: out std_logic;
54 data_ena: out std_logic;
55

56 SC: out std_logic;
57

58 -- Output buffer (for Tx)
59 Tx_buf: out std_logic_vector(10 downto 0);
60 -- cmd: Tx(2 downto 0)
61 -- adres: Tx(10 downto 3)
62 load_out: out std_logic;
63 Tx_ena: out std_logic;
64 --
65 default_out: out std_logic;
66

67 -- control signals for the output multiplexers
68 mux_out_sel_0: out std_logic_vector(1 downto 0);
69 mux_out_sel_1: out std_logic_vector(1 downto 0);

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 237 — #269 i
i

i
i

i
i

237

70 mux_out_sel_2: out std_logic_vector(1 downto 0);
71 mux_out_sel_3: out std_logic_vector(1 downto 0);
72

73 -- reset Rx or Tx
74 reset_Rx: out std_logic_vector(3 downto 0);
75 reset_Tx: out std_logic;
76

77 -- reset after data
78 reset_dp: out std_logic;
79 -- reset after parent gone
80 reset_fll: out std_logic;
81 reset_hrd: out std_logic;
82

83 main_state_out: out std_logic_vector(3 downto 0)
84);
85 end main_ctrl_3_mdd;
86

87 architecture main_ctrl_3_mdd of main_ctrl_3_mdd is
88

89 component wacht_mdd
90 generic (COUNT: integer := 1);
91 -- When ’start’ is high, ’wacht_mdd’ (re)starts counting.
92 -- When COUNT is reached, ’eind’ becomes high and
93 -- remains high until reset or start = 0.
94 port(
95 -- ...
96);
97 end component;
98 signal start_timeout: std_logic;
99 signal eind_timeout: std_logic;
100

101 -- signal declarations
102 -- ...
103 -- all signals can come from either the Parent,
104 -- or a Child:
105 -- <signal>_P, <signal>_C
106 -- ...
107 -- controls the output multiplexers
108 -- for children and parent
109 type out_sel is array(3 downto 0) of std_logic_vector(1 downto 0)

;
110 signal mux_P: std_logic_vector(1 downto 0);
111 signal mux_C: out_sel;
112 -- 00: default output
113 -- 01: cmd/Tx
114 -- 10: data_int
115 -- 11: data_ext

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 238 — #270 i
i

i
i

i
i

238 VHDL implementation of Main Control (3)

116 -- ...
117

118 begin
119

120 ------------ State Machine -->>>>>>>>>>---
121 main_state_out <= main_state;
122 ----- signals -----
123 wacht_timeout: wacht_mdd
124 generic map(COUNT => 262144)
125 port map(
126 -- timeout is started with start_timeout. runs for 13ms
127);
128 with clk_sel select
129 count_clk <= rec_clk(0) when "100",
130 rec_clk(1) when "101",
131 rec_clk(2) when "110",
132 rec_clk(3) when "111",
133 rec_clk_P when "000",
134 bit_ena when others;
135

136 load_2 <= load when rising_edge(clk);
137 load_out <= load and not(load_2);
138

139 Tx_ena <= bit_ena and snd_ena;
140 default_out <= adr_rec;
141 data_ext <= (not(out_ctrl(0)) or data_in(0)) and (not(out_ctrl

(1)) or data_in(1)) and (not(out_ctrl(2)) or data_in(2)) and
(not(out_ctrl(3)) or data_in(3));

142

143 with gate_no select
144 data_sht <= data_in(0) when "00",
145 data_in(1) when "01",
146 data_in(2) when "10",
147 data_in(3) when "11",
148 data_in(0) when others;
149

150 -- according to in_control, distinction
151 -- between child and parent signals are made
152 with in_ctrl select
153 -- rec_clk_P vs rec_clk_C
154 rec_clk_P <= rec_clk(0) when "00",
155 rec_clk(1) when "01",
156 rec_clk(2) when "10",
157 rec_clk(3) when "11",
158 rec_clk(0) when others;
159 rec_clk_C(0) <= rec_clk(0) when in_ctrl/="00" else ’0’;
160 rec_clk_C(1) <= rec_clk(1) when in_ctrl/="01" else ’0’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 239 — #271 i
i

i
i

i
i

239

161 rec_clk_C(2) <= rec_clk(2) when in_ctrl/="10" else ’0’;
162 rec_clk_C(3) <= rec_clk(3) when in_ctrl/="11" else ’0’;
163

164 -- analogous:
165 with in_ctrl select
166 -- data_int_int vs data_in_C
167 data_int <= data_int_int;
168 -- cmd_rec_P vs cmd_rec_C
169 -- gone_P vs gone_C
170 -- adr_req_P vs adr_req_C
171 -- adr_ack_P vs adr_ack_C
172 -- sht_req_P vs sht_req_C
173 -- sht_ack_P vs sht_ack_C
174 -- sht_P vs sht_C
175 -- sht_end_P vs sht_end_C
176 -- data_P vs data_C
177 -- param_P vs param_C
178

179 adr_ena <= adr_read and rec_clk_P;
180 param_ena <= param_read and rec_clk_P;
181 data_ena <= data_read and rec_clk_P;
182 sht_adr_ena <= sht_adr_read and count_clk;
183

184 mux_out_sel_0 <= mux_P when in_ctrl = "00" else mux_C(0);
185 mux_out_sel_1 <= mux_P when in_ctrl = "01" else mux_C(1);
186 mux_out_sel_2 <= mux_P when in_ctrl = "10" else mux_C(2);
187 mux_out_sel_3 <= mux_P when in_ctrl = "11" else mux_C(3);
188

189 reset_Rx(0) <= (reset_P or reset_dp_int or reset_fll_int or
reset_hrd_int) when in_ctrl = "00" else (reset_C(0) or
reset_fll_int or reset_hrd_int);

190 reset_Rx(1) <= ...
191 reset_Rx(2) <= ...
192 reset_Rx(3) <= ...
193

194 reset_Tx <= reset_Tx_int or reset_fll_int or reset_hrd_int;
195

196 reset_dp <= reset_dp_int or reset_fll_int or reset_hrd_int;
197 reset_fll <= reset_fll_int or reset_hrd_int;
198 reset_hrd <= reset_hrd_int;
199 reset_hrd_int <= POR ;
200

201 process(clk)
202 begin
203 if (rising_edge(clk)) then
204 if (rst = ’1’) then
205 -- reset every signal to 0.

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 240 — #272 i
i

i
i

i
i

240 VHDL implementation of Main Control (3)

206 else
207 case main_state is
208 when "0000" => -- begin state ------ S0 ---
209 if (reset_fll_int = ’0’) then
210 if (adr_av(0)=’1’) then
211 in_ctrl <= "00";
212 main_state <= "0001";
213 elsif (adr_av(1)=’1’) then
214 in_ctrl <= "01";
215 main_state <= "0001";
216 elsif (adr_av(2)=’1’) then
217 in_ctrl <= "10";
218 main_state <= "0001";
219 elsif (adr_av(3)=’1’) then
220 in_ctrl <= "11";
221 main_state <= "0001";
222 end if;
223 else
224 -- wait for the reset
225 reset_fll_int <= ’0’;
226 end if;
227 when "0001" => -- send adr_req ----- S1 ---
228 if (count >= 5) then
229 count <= 0;
230 load <= ’0’;
231 bit_clk_ena <= ’0’;
232 snd_ena <= ’0’;
233 mux_P <= "00";
234

235 reset_Tx_int <= ’1’;
236 start_timeout <= ’1’;
237

238 main_state <= "0010";
239 else
240 if (parent_gone = ’1’) then
241 -- send adpt_req
242 Tx_buf(2 downto 0) <= "111";
243 Tx_buf(10 downto 3) <= (others => ’0’);
244 else
245 -- send adr_req
246 Tx_buf(2 downto 0) <= "001";
247 Tx_buf(10 downto 3) <= (others => ’0’);
248 end if;
249 load <= ’1’;
250 bit_clk_ena <= ’1’;
251 clk_sel <= "001"; -- choose bit_clk
252 snd_ena <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 241 — #273 i
i

i
i

i
i

241

253 mux_P <= "01";
254 if (count_clk=’1’) then
255 count <= count + 1;
256 end if;
257 end if;
258 when "0010" => -- receive address -- S2 ---
259 reset_Tx_int <= ’0’;
260 if (((cmd_rec_P and not(BC)) or cmd_rec_C(to_integer(

unsigned(gate_no)))) = ’1’) then
261 -- receive own address, or address from child node
262 start_timeout <= ’0’;
263 if (count >=8 or parent_gone = ’1’) then
264 count <= 0;
265 adr_read <= ’0’;
266 sht_adr_read <= ’0’;
267 bit_clk_ena <= ’0’;
268 reset_P <= ’1’ and (cmd_rec_P and not(BC));
269 reset_C(to_integer(unsigned(gate_no))) <= ’1’ and

cmd_rec_C(to_integer(unsigned(gate_no)));
270 if (((adr_ack_P and not(adr_rec)) or ((sht_C(

to_integer(unsigned(gate_no))) or sht_end_C(
to_integer(unsigned(gate_no)))) and adr_rec))
= ’1’) then

271 adr_rec <= ’1’; -- own address is received
272 if (parent_gone = ’1’) then
273 main_state <= "1111"; -- to final state
274 elsif (sht_self = ’0’) then
275 main_state <= "0011"; -- receive address

requests
276 elsif (children = children_tmp) then -- passing

address
277 main_state <= "1111"; -- to final state
278 else -- continue shout routine
279 main_state <= "0101"; -- receive sht_req
280 end if;
281 else -- wrong command
282 if (adr_rec = ’0’) then -- no own address
283 reset_fll_int <= ’1’;
284 main_state <= "0000"; -- start over
285 else
286 main_state <= "1000"; -- receive sht_req
287 end if;
288 end if;
289 else
290 if (adr_rec = ’0’ and adr_ack_P=’1’) then --

address from parent
291 adr_read <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 242 — #274 i
i

i
i

i
i

242 VHDL implementation of Main Control (3)

292 clk_sel <= "000"; -- Parent clock
293 start_shtreq <= not(BC);
294 -- If the bypasses are already active (BC =

1)
295 -- module cannot shout an address
296 -- without checking the data line
297 -- See state S5
298 elsif (adr_rec = ’1’ and (sht(to_integer(unsigned

(gate_no))) or sht_end(to_integer(unsigned(
gate_no))))=’1’) then -- address from child

299 adr_end(to_integer(unsigned(gate_no))) <=
sht_end(to_integer(unsigned(gate_no)));

300 sht_adr_read <= ’1’;
301 clk_sel <= ’1’ & gate_no;
302 start_shtreq <= not(BC);
303 else -- wrong command
304 bit_clk_ena <= ’1’;
305 clk_sel <= "001";
306 end if;
307 if (count_clk=’1’) then
308 count <= count + 1;
309 end if;
310 end if;
311 elsif (eind_timeout = ’1’) then -- time out
312 start_timeout <= ’0’;
313 if (adr_rec = ’0’) then -- no own address
314 reset_fll_int <= ’1’;
315 main_state <= "0000"; -- start over
316 else
317 main_state <= "1000"; -- receive sht_req
318 end if;
319 end if;
320 when "0011" => -- receive adr_req/adpt_req - S3
321 reset_Tx_int <= ’0’;
322 reset_P <= ’0’;
323 if (count >= 20) then -- adr_req time out
324 count <= 0;
325 bit_clk_ena <= ’0’;
326 main_state <= "0101"; -- start sht_req
327 else
328 if (cmd_rec_C/="0000") then
329 count <= 0;
330 bit_clk_ena <= ’0’;
331 if ((adr_req_C or adpt_req_C)/="0000") then
332 main_state <= "0100"; -- send adr_ack
333 if ((adr_req_C(0) or adpt_req_C(0))=’1’) then
334 children_tmp(0)<=’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 243 — #275 i
i

i
i

i
i

243

335 gate_no <= "00";
336 reset_C(0) <= ’1’;
337 adpt_req <= adpt_req_C(0);
338 elsif ((adr_req_C(1) or adpt_req_C(1))=’1’)

then
339 children_tmp(1)<=’1’;
340 gate_no <= "01";
341 reset_C(1) <= ’1’;
342 adpt_req <= adpt_req_C(1);
343 elsif ((adr_req_C(2) or adpt_req_C(2))=’1’)

then
344 children_tmp(2)<=’1’;
345 gate_no <= "10";
346 reset_C(2) <= ’1’;
347 adpt_req <= adpt_req_C(2);
348 elsif ((adr_req_C(3) or adpt_req_C(3))=’1’)

then
349 children_tmp(3)<=’1’;
350 gate_no <= "11";
351 reset_C(3) <= ’1’;
352 adpt_req <= adpt_req_C(3);
353 end if;
354 end if;
355 elsif (children_tmp = "0000") then
356 -- no children => start adr_req timer
357 reset_C <= "0000";
358 bit_clk_ena <= ’1’;
359 clk_sel <= "001";
360 if (count_clk = ’1’) then
361 count <= count + 1;
362 end if;
363 else -- all adr_reqs are processed
364 reset_C <= "0000";
365 main_state <= "0101";
366 end if;
367 end if;
368 when "0100" => -- send adr_ack ----- S4 ---
369 reset_C <="0000";
370 if (count >=13 or (adpt_req=’1’ and count >= 7)) then
371 count <= 0;
372 load <= ’0’;
373 bit_clk_ena <= ’0’;
374 snd_ena <= ’0’;
375 mux_C(to_integer(unsigned(gate_no))) <= "00";
376

377 reset_Tx_int <= ’1’;
378

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 244 — #276 i
i

i
i

i
i

244 VHDL implementation of Main Control (3)

379 if (adpt_req = ’1’) then
380 main_state <= "1111";
381 adr_end(to_integer(unsigned(gate_no)))<=’1’;
382 children <= children_tmp;
383 adpt_req <=’0’;
384 elsif (sht_self = ’0’) then
385 main_state <= "0011"; -- back to adr_reqs
386 else
387 main_state <= "1000"; -- receive sht_req
388 end if;
389 else
390 Tx_buf(2 downto 0) <= "000";
391 if (adpt_req = ’1’) then
392 Tx_buf(10 downto 3) <= (others => ’1’);
393 else -- calculate address
394 case gate_no is
395 when "00" =>
396 Tx_buf(10 downto 3) <=std_logic_vector(

unsigned(address(7 downto 4))- 1) &
address(3 downto 0);

397 when "01" =>
398 Tx_buf(10 downto 3) <=address(7 downto 4) &

std_logic_vector(unsigned(address(3 downto
0))- 1);

399 when "10" =>
400 Tx_buf(10 downto 3) <=std_logic_vector(

unsigned(address(7 downto 4))+ 1) &
address(3 downto 0);

401 when "11" =>
402 Tx_buf(10 downto 3) <=address(7 downto 4) &

std_logic_vector(unsigned(address(3 downto
0))+ 1);

403 when others =>
404 Tx_buf(10 downto 3) <=std_logic_vector(

unsigned(address(7 downto 4))- 1) &
address(3 downto 0);

405 end case;
406 end if;
407 load <= ’1’;
408 bit_clk_ena <= ’1’;
409 clk_sel <= "001";
410 snd_ena <= ’1’;
411 mux_C(to_integer(unsigned(gate_no))) <= "01";
412 if (count_clk=’1’) then
413 count <= count + 1;
414 end if;
415 end if;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 245 — #277 i
i

i
i

i
i

245

416 when "0101" => -- send sht_req ----- S5 ---
417 reset_P <= ’0’;
418 reset_C <= "0000";
419 if (start_shtreq = ’1’) then
420 if (count >= 5) then
421 count <= 0;
422 load <= ’0’;
423 bit_clk_ena <= ’0’;
424 snd_ena <= ’0’;
425 mux_P <= "00";
426

427 reset_Tx_int <= ’1’;
428 start_timeout <= ’1’;
429

430 main_state <= "0110";
431 else
432 Tx_buf(2 downto 0) <= "010";
433 Tx_buf(10 downto 3) <= (others => ’1’);
434 load <= ’1’;
435 bit_clk_ena <= ’1’;
436 clk_sel <= "001";
437 snd_ena <= ’1’;
438 mux_P <= "01";
439 if (count_clk=’1’) then
440 count <= count + 1;
441 end if;
442 end if;
443 else
444 if (count>=10) then
445 count <= 0;
446 bit_clk_ena <= ’0’;
447 start_shtreq <= ’1’;
448 else
449 if (cmd_rec_P = ’0’) then
450 bit_clk_ena <= ’1’;
451 clk_sel <= "001";
452 if (count_clk = ’1’) then
453 count <= count +1;
454 end if;
455 else
456 count <= 0;
457 bit_clk_ena <= ’0’;
458 end if;
459 end if;
460 end if;
461 when "0110" => -- receive sht_ack -- S6 ---
462 reset_Tx_int <= ’0’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 246 — #278 i
i

i
i

i
i

246 VHDL implementation of Main Control (3)

463 if (cmd_rec_P=’1’) then
464 start_timeout <= ’0’;
465 reset_P <= ’1’;
466 if (sht_ack_P = ’1’) then
467 main_state <= "0111"; -- shout
468 children_tmp <= children_tmp or sht_req_C;
469 -- adjust the child nodes during polling
470 else -- wrong command
471 main_state <= "0101"; -- send sht_req
472 end if;
473 elsif (eind_timeout = ’1’) then -- timeout
474 start_timeout <= ’0’;
475 main_state <= "0101"; -- send sht_req
476 end if;
477 when "0111" => -- send sht/sht_end - S7 ---
478 reset_P <= ’0’;
479 if (count >= 13) then
480 count <= 0;
481 load <= ’0’;
482 bit_clk_ena <= ’0’;
483 snd_ena <= ’0’;
484 mux_P <= "00";
485 sht_self <= ’1’;
486

487 reset_Tx_int <= ’1’;
488 if ((children_tmp xor adr_end) = "0000") then
489 -- all child nodes used sht_end
490 main_state <= "1111";
491 children <= children_tmp;
492 else -- back to receive sht_req
493 main_state <= "1000";
494 start_timeout <= ’1’;
495 end if;
496 else
497 if ((children_tmp xor adr_end) = "0000") then
498 Tx_buf(2 downto 0) <= "101"; --sht_end
499 else
500 Tx_buf(2 downto 0) <= "100"; --sht
501 end if;
502 if (sht_self = ’1’) then
503 -- shout child address
504 Tx_buf(10 downto 3) <= sht_address;
505 else
506 -- shout own address
507 Tx_buf(10 downto 3) <= address;
508 end if;
509 load <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 247 — #279 i
i

i
i

i
i

247

510 bit_clk_ena <= ’1’;
511 clk_sel <= "001";
512 snd_ena <= ’1’;
513 mux_P <= "01";
514 if (count_clk=’1’) then
515 count <= count + 1;
516 end if;
517 end if;
518 when "1000" => -- receive sht_reqs - S8 ---
519 reset_Tx_int <= ’0’;
520 reset_P <= ’0’;
521 if (cmd_rec_C/="0000") then
522 start_timeout <= ’0’;
523 if (sht_req_C/="0000") then
524 if (children = children_tmp) then
525 -- no own new child, let it pass
526 main_state <= "1111";
527 else
528 main_state <= "1001"; -- send sht_ack
529 end if;
530 if (sht_req_C(0)=’1’) then
531 children_tmp(0)<=’1’;
532 gate_no <= "00";
533 reset_C(0) <= ’1’;
534 elsif (sht_req_C(1)=’1’) then
535 children_tmp(1)<=’1’;
536 gate_no <= "01";
537 reset_C(1) <= ’1’;
538 elsif (sht_req_C(2)=’1’) then
539 children_tmp(2)<=’1’;
540 gate_no <= "10";
541 reset_C(2) <= ’1’;
542 elsif (sht_req_C(3)=’1’) then
543 children_tmp(3)<=’1’;
544 gate_no <= "11";
545 reset_C(3) <= ’1’;
546 end if;
547 else -- wrong command
548 reset_C <= cmd_rec_C;
549 end if;
550 elsif (eind_timeout = ’1’) then -- timeout
551 start_timeout <= ’0’;
552 -- reshout last address using sht_end
553 children_tmp <= adr_end;
554 start_shtreq <= ’0’;
555 main_state <= "0101";
556 else

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 248 — #280 i
i

i
i

i
i

248 VHDL implementation of Main Control (3)

557 reset_C <= "0000";
558 start_timeout <= ’1’;
559 end if;
560 when "1001" => -- send sht_ack ----- S9 ---
561 reset_C <= "0000";
562 if (count >= 5) then
563 count <= 0;
564 load <= ’0’;
565 bit_clk_ena <= ’0’;
566 snd_ena <= ’0’;
567 mux_C(to_integer(unsigned(gate_no))) <= "00";
568

569 reset_Tx_int <= ’1’;
570 main_state <= "0010";
571 start_timeout <= ’1’;
572 else
573 Tx_buf(2 downto 0) <= "011";
574 Tx_buf(10 downto 3) <= (others => ’1’);
575 load <= ’1’;
576 bit_clk_ena <= ’1’;
577 clk_sel <= "001";
578 snd_ena <= ’1’;
579 mux_C(to_integer(unsigned(gate_no))) <= "01";
580 if (count_clk=’1’) then
581 count <= count + 1;
582 end if;
583 end if;
584 when "1111" => -- normal operation - SF ---
585 if (gone_P = ’1’) then
586 parent_gone <= ’1’;
587

588 start_shtreq <= ’1’;
589 out_ctrl <= "0000";
590 children <= "0000";
591 children_tmp <= "0000";
592 adr_end <= "0000";
593 BC <= ’0’;
594 SC <= ’0’;
595 adr_rec <= ’0’;
596 mux_P <= "00";
597 mux_C <= (others => "00");
598 bit_clk_ena <= ’1’;
599 clk_sel <= "001";
600 -- Wait a little bit befor resetting and
601 -- sending adpt_req. Surrounding modules
602 -- will see the dropping line as a command
603 if (count_clk = ’1’) then

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 249 — #281 i
i

i
i

i
i

249

604 if (count >= 10) then
605 reset_fll_int <= ’1’; -- full reset
606 main_state <= "0000";
607 bit_clk_ena <= ’0’;
608 count <= 0;
609 else
610 count <= count + 1;
611 end if;
612 end if;
613 elsif (gone_C /= "0000") then
614 -- A child or other offspring node is gone.
615 bit_clk_ena <= ’1’;
616 clk_sel <= "001";
617 if (count_clk = ’1’) then
618 -- don’t close bypass to early
619 if (count = 0) then
620 -- close bypass
621 out_ctrl <= out_ctrl and not(gone_C);
622 count <= count + 1;
623 elsif (count >= 4) then
624 -- check data line after a couple of bits
625 children <= children and (data_in or not(gone_C

));
626 out_ctrl <= children and (data_in or not(gone_C

));
627 adr_end <= children and (data_in or not(gone_C)

);
628 reset_C <= gone_C;
629 count <= 0;
630 bit_clk_ena <= ’0’;
631 else
632 count <= count + 1;
633 end if;
634 end if;
635 elsif (sht_req_P = ’1’) then -- polling
636 sht_self <= ’0’; -- shout own address first
637 start_shtreq <= ’1’;
638 BC <= ’0’;
639 children_tmp <= "0000";
640 children <= "0000";
641 adr_end <= "0000";
642 out_ctrl <= "0000";
643 bit_clk_ena <= ’1’;
644 clk_sel <= "001";
645 if (count_clk = ’1’) then
646 mux_C <= (others => "00");
647 main_state <= "0101"; -- send sht_req

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 250 — #282 i
i

i
i

i
i

250 VHDL implementation of Main Control (3)

648 reset_P <= ’1’;
649 bit_clk_ena <= ’0’;
650 end if;
651 elsif ((adr_req_C or adpt_req_C)/="0000") then -- new

/adopt child
652 children_tmp <= children;
653 main_state <= "0011";
654 elsif ((sht_C or sht_end_C)/="0000" and reset_C = "

0000") then
655 -- some offspring node shouts address
656 children_tmp <= children;
657 main_state <= "0010"; -- pass address
658 elsif (cmd_rec_P = ’1’ and (data_P or param_P)=’0’)

then
659 -- ignore all other commands from parent node
660 reset_P <= ’1’;
661 elsif (not(cmd_rec_C="0000")) then
662 -- ignore all other commands from child node
663 reset_C <= cmd_rec_C;
664 else -- control signals during normal operation
665 parent_gone <= ’0’;
666 BC <= ’1’;
667 SC <= ’1’;
668 out_ctrl <= children;
669 mux_P <= "11"; -- data_ext
670 for i in 0 to 3 loop
671 if (children(i)=’1’) then
672 mux_C(i) <= "10"; -- data_int
673 else
674 mux_C(i) <= "00"; -- default
675 end if;
676 reset_Tx_int <= ’0’;
677 reset_P <= ’0’;
678 reset_C <= "0000";
679 end loop;
680 end if;
681 when others =>
682 main_state <= "1000";
683 end case;
684 end if;
685 end if;
686 end process;
687 ---<<<<<<<<< Stage Machine ---------------
688 ------------ Data/Param ---->>>>>>>>>>>---
689 -- See Appendix A
690 ---<<<<<<<<< Data/Param ------------------
691 ------------ Bit_clk ------->>>>>>>>>>>---

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 251 — #283 i
i

i
i

i
i

251

692 -- See Appendix A
693 ---<<<<<<<<< Bit_clk ---------------------
694 end main_ctrl_3_mdd;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 252 — #284 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 253 — #285 i
i

i
i

i
i

D
VHDL implementation of Main

Control (4)

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.all;
3 use IEEE.numeric_std.all;
4

5 entity main_ctrl_4_mdd is
6 port(
7 clk: in std_logic;
8 data_in: in std_logic_vector(3 downto 0);
9 rec_clk: in std_logic_vector(3 downto 0);
10 adr_av: in std_logic_vector(3 downto 0);
11

12 address: in std_logic_vector(7 downto 0);
13

14 -- command received
15 cmd_rec: in std_logic_vector(3 downto 0);
16 -- Rx detects missing modul
17 gone: in std_logic_vector(3 downto 0);
18 -- commands
19 send_req: in std_logic_vector(3 downto 0);
20 send_ack: in std_logic_vector(3 downto 0);
21 send_end: in std_logic_vector(3 downto 0);
22 ready: in std_logic_vector(3 downto 0);

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 254 — #286 i
i

i
i

i
i

254 VHDL implementation of Main Control (4)

23 adr_req1: in std_logic_vector(3 downto 0);
24 adr_req2: in std_logic_vector(3 downto 0);
25 adr_ack: in std_logic_vector(3 downto 0);
26 poll_req: in std_logic_vector(3 downto 0);
27 poll_ack1: in std_logic_vector(3 downto 0);
28 poll_ack2: in std_logic_vector(3 downto 0);
29 adpt_req: in std_logic_vector(3 downto 0);
30 adpt_ack: in std_logic_vector(3 downto 0);
31 param: in std_logic_vector(3 downto 0);
32 data: in std_logic_vector(3 downto 0);
33 reset: in std_logic_vector(3 downto 0);
34

35 param_in: in std_logic_vector(2 downto 0);
36 -- Rx receive buffers
37 rec_buf_0: in std_logic_vector(9 downto 0);
38 rec_buf_1: in std_logic_vector(9 downto 0);
39 rec_buf_2: in std_logic_vector(9 downto 0);
40 rec_buf_3: in std_logic_vector(9 downto 0);
41

42 POR: in std_logic;
43 rst: in std_logic;
44

45 data_int: out std_logic;
46 data_ext: out std_logic;
47

48 adr_ena: out std_logic;
49 param_ena: out std_logic;
50 data_ena: out std_logic;
51

52 SC: out std_logic;
53

54 Tx_buf: out std_logic_vector(23 downto 0);
55 -- cmd: Tx_buf(23 downto 20)
56 -- [parentgate: Tx_buf(19 downto 18)]
57 -- [address: Tx_buf(19 downto 12)]
58 -- Childgate: Tx_buf(11 downto 10)
59 -- receivebuffer: Tc_buf(9 downto 0)
60 load_out: out std_logic;
61 Tx_ena: out std_logic;
62 default_out: out std_logic;
63

64 mux_out_sel_0: out std_logic_vector(1 downto 0);
65 mux_out_sel_1: out std_logic_vector(1 downto 0);
66 mux_out_sel_2: out std_logic_vector(1 downto 0);
67 mux_out_sel_3: out std_logic_vector(1 downto 0);
68

69 reset_Rx: out std_logic_vector(3 downto 0);

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 255 — #287 i
i

i
i

i
i

255

70 reset_Tx: out std_logic;
71

72 reset_dp: out std_logic;
73 reset_fll: out std_logic;
74 reset_hrd: out std_logic;
75

76 main_state_out: out std_logic_vector (3 downto 0)
77);
78 end main_ctrl_4_mdd;
79

80 architecture main_ctrl_4_mdd of main_ctrl_4_mdd is
81

82 component wacht_mdd
83 generic (COUNT: integer := 1);
84 -- When ’start’ is high, ’wacht_mdd’ (re)starts counting.
85 -- When COUNT is reached, ’eind’ becomes high and
86 -- remains high until reset or start = 0.
87 port(
88 -- ...
89);
90 end component;
91 signal start_timeout: std_logic;--:=’0’;
92 signal eind_timeout: std_logic;--:=’0’;
93

94 -- signal declarations
95 -- ...
96 -- all signals can come from either the Parent,
97 -- or a Child:
98 -- <signal>_P, <signal>_C
99 -- ...
100 -- controls the output multiplexers
101 -- for children and parent
102 type out_sel is array(3 downto 0) of std_logic_vector(1 downto 0)

;
103 signal mux_P: std_logic_vector(1 downto 0);
104 signal mux_C: out_sel;
105 -- 00: default output
106 -- 01: cmd/Tx
107 -- 10: data_int
108 -- 11: data_ext
109 -- ...
110

111 begin
112

113 main_state_out <= main_state;
114 ------------ State Machine -->>>>>>>>>>---
115 --- signals ---

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 256 — #288 i
i

i
i

i
i

256 VHDL implementation of Main Control (4)

116 wacht_timeout: wacht_mdd
117 generic map(COUNT => 262144) -- +- 13ms
118 port map(
119 -- timeout is started with start_timeout. runs for 13ms
120);
121

122 -- according to in_control, distinction
123 -- between child and parent signals are made
124 -- ...
125

126 with gate_no select
127 rec_buf <= rec_buf_0 when "00",
128 rec_buf_1 when "01",
129 rec_buf_2 when "10",
130 rec_buf_3 when "11",
131 rec_buf_0 when others;
132

133 -- ...
134

135 process(clk)
136 begin
137 if (rising_edge(clk)) then
138 if (rst = ’1’) then
139 -- reset signals ...
140 else
141 case main_state is
142 when "0000" => -- begin state ----- S0 ---
143 if (reset_fll_int = ’0’) then
144 if (adr_av(0)=’1’) then
145 in_ctrl <= "00";
146 main_state <= "0001";
147 elsif (adr_av(1)=’1’) then
148 in_ctrl <= "01";
149 main_state <= "0001";
150 elsif (adr_av(2)=’1’) then
151 in_ctrl <= "10";
152 main_state <= "0001";
153 elsif (adr_av(3)=’1’) then
154 in_ctrl <= "11";
155 main_state <= "0001";
156 end if;
157 else
158 -- wait for the reset
159 reset_fll_int <= ’0’;
160 end if;
161 when "0001" => -- adr_req1/adpt_req S1 ---
162 reset_P <= ’0’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 257 — #289 i
i

i
i

i
i

257

163 if (count >= 8) then
164 count <= 0;
165 bit_clk_ena <= ’0’;
166 snd_ena <= ’0’;
167 mux_P <= "00";
168 reset_Tx_int <= ’1’;
169 load <= ’0’;
170

171 if (parent_gone = ’1’) then
172 main_state <= "1100";
173 else
174 main_state <= "0010";
175 end if;
176

177 start_timeout <= ’1’;
178 else
179 if (parent_gone = ’1’) then -- adpt_req
180 Tx_buf(23 downto 20) <= "1101";
181 Tx_buf(19 downto 0) <= (others => ’0’);
182 else -- adr_req1
183 Tx_buf(23 downto 20) <= "1010";
184 Tx_buf(19 downto 18) <= (18=>in_ctrl(1), 19=>

in_ctrl(0));
185 Tx_buf(17 downto 0) <= (others => ’0’);
186 end if;
187 load <= ’1’;
188 bit_clk_ena <= ’1’;
189 clk_sel <= "001";
190 snd_ena <= ’1’;
191 mux_P <= "01";
192 if (count_clk=’1’) then
193 count <= count + 1;
194 end if;
195 end if;
196 when "0010" => -- receive address - S2 ---
197 reset_Tx_int <= ’0’;
198 reset_C <= "0000";
199 if (cmd_rec_P=’1’) then
200 start_timeout <= ’0’;
201 if (adr_ack_P=’1’) then
202 if (adr_rec = ’0’) then
203 if (count >= 8) then
204 adr_read <= ’0’;
205 reset_P <= ’1’;
206 count <= 0;
207

208 adr_rec <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 258 — #290 i
i

i
i

i
i

258 VHDL implementation of Main Control (4)

209

210 main_state <= "0011";
211 else
212 adr_read <= ’1’;
213 clk_sel <= "000";
214 if (count_clk=’1’) then
215 count <= count + 1;
216 end if;
217 end if;
218 else -- if adr_rec = ’1’
219 if (count >= 9) then
220 -- address must be bypassed competely
221 reset_P <= ’1’;
222 count <= 0;
223

224 -- deactivate bypass
225 mux_C(to_integer(unsigned(gate_no)))<= "00";
226 main_state <= "0011";
227 else
228 clk_sel <= "000";
229 if (count_clk =’1’) then
230 count <= count + 1;
231 end if;
232 end if;
233 end if;
234 else -- wrong command
235 if (count >= 9) then
236 mux_C(to_integer(unsigned(gate_no))) <= "00";
237 count <= 0;
238 if (adr_rec = ’0’) then
239 reset_fll_int <= ’1’;
240 main_state <= "0000"; -- S0
241 else
242 main_state <= "0011"; -- S3
243 reset_P <= ’1’;
244 end if;
245 else
246 clk_sel <= "000";
247 if (count_clk=’1’) then
248 count <= count + 1;
249 end if;
250 end if;
251 end if;
252 elsif (eind_timeout = ’1’) then
253 start_timeout <= ’0’;
254 mux_C(to_integer(unsigned(gate_no))) <= "00";
255 if (adr_rec = ’0’) then

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 259 — #291 i
i

i
i

i
i

259

256 reset_fll_int <= ’1’;
257 main_state <= "0000"; -- S0
258 else
259 main_state <= "0011"; -- S3
260 end if;
261 end if;
262 when "0011" => -- receive cmd ----- S3 ---
263 reset_P <= ’0’;
264 if (count >= 20) then
265 -- adr_req1 timeout
266 count <= 0;
267 bit_clk_ena <= ’0’;
268 main_state <= "1001";
269 else
270 if (not(cmd_rec_C="0000")) then
271 -- command received
272 start_timeout <= ’0’;
273 count <= 0;
274 bit_clk_ena <=’0’;
275 reset_C <= "0000";
276 if (not((adr_req1_C or send_req_C or poll_ack1_C)

="0000")) then
277 start_sendreq <= not(BC);
278 main_state <= "0100";
279 if ((adr_req1_C(0) or send_req_C(0) or

poll_ack1_C(0)) = ’1’) then
280 children_tmp <= children_tmp or "0001";
281 gate_no <= "00";
282 elsif ((adr_req1_C(1) or send_req_C(1) or

poll_ack1_C(1)) = ’1’) then
283 children_tmp <= children_tmp or "0010";
284 gate_no <= "01";
285 elsif ((adr_req1_C(2) or send_req_C(2) or

poll_ack1_C(2)) = ’1’) then
286 children_tmp <= children_tmp or "0100";
287 gate_no <= "10";
288 elsif ((adr_req1_C(3) or send_req_C(3) or

poll_ack1_C(3)) = ’1’) then
289 children_tmp <= children_tmp or "1000";
290 gate_no <= "11";
291 end if;
292 elsif (not(send_end_C="0000")) then
293 -- send_req is placed here so all adr_reqs are

processed first
294 adr_end <= adr_end or send_end_C;
295 reset_C <= send_end_C;
296 else -- wrong command

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 260 — #292 i
i

i
i

i
i

260 VHDL implementation of Main Control (4)

297 reset_C <= cmd_rec_C;
298 end if;
299 elsif (children_tmp = "0000" and BC = ’0’) then
300 -- start adr_req timeout
301 bit_clk_ena <= ’1’;
302 clk_sel <= "001";
303 if (count_clk = ’1’) then
304 count <= count + 1;
305 end if;
306 else
307 reset_C <= "0000";
308 if ((adr_end xor children_tmp)="0000") then
309 start_timeout <= ’0’;
310 if (children = children_tmp) then
311 -- no own new child nodes
312 main_state <= "1111"; -- SF
313 else
314 main_state <= "1001"; -- S9
315 end if;
316 else -- send_end timeout
317 start_timeout <= ’1’;
318 if (eind_timeout = ’1’) then
319 start_timeout <= ’0’;
320 children_tmp <= adr_end;
321 end if;
322 end if;
323 end if;
324 end if;
325 when "0100" => -- send send_req --- S4 ---
326 reset_P <= ’0’;
327 if (start_sendreq=’1’) then
328 if (count >= 6) then
329 count <= 0;
330 bit_clk_ena <= ’0’;
331 mux_P <= "00";
332 snd_ena <= ’0’;
333 reset_Tx_int <= ’1’;
334 load <= ’0’;
335 main_state <= "0101";
336

337 start_timeout <= ’1’;
338 else
339 Tx_buf(23 downto 20)<= "1000";
340 Tx_buf(19 downto 0)<= (others => ’1’);
341 load <= ’1’;
342 bit_clk_ena <= ’1’;
343 clk_sel <= "001";

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 261 — #293 i
i

i
i

i
i

261

344 snd_ena <= ’1’;
345 mux_P <= "01";
346 if (count_clk =’1’) then
347 count <= count + 1;
348 end if;
349 end if;
350 else
351 -- check data line
352 if (children = children_tmp) then
353 -- no send_req if no own new child nodes
354 main_state <= "0101"; -- S5
355 start_timeout <= ’1’;
356 else
357 if (count>=10) then
358 count <= 0;
359 bit_clk_ena <= ’0’;
360 start_sendreq <= ’1’;
361 else
362 if (cmd_rec_P = ’0’) then
363 bit_clk_ena <= ’1’;
364 clk_sel <= "001";
365 if (count_clk = ’1’) then
366 count <= count +1;
367 end if;
368 else
369 count <= 0;
370 bit_clk_ena <= ’0’;
371 end if;
372 end if;
373 end if;
374 end if;
375 when "0101" => -- receive send_ack S5 ---
376 reset_Tx_int <= ’0’;
377 if (cmd_rec_P=’1’) then
378 reset_P <= ’1’;
379 if (send_ack_P=’1’) then
380 if (adr_req1(to_integer(unsigned(gate_no)))=’1’)

then
381 main_state <= "0110"; -- send adr_req2
382 reset_C(to_integer(unsigned(gate_no))) <= ’1’;
383 start_timeout <= ’0’;
384 elsif (poll_ack1(to_integer(unsigned(gate_no)))

=’1’) then
385 main_state <= "1011"; -- send poll_ack2
386 reset_C(to_integer(unsigned(gate_no))) <= ’1’;
387 start_timeout <= ’0’;
388 elsif (send_req(to_integer(unsigned(gate_no)))

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 262 — #294 i
i

i
i

i
i

262 VHDL implementation of Main Control (4)

=’1’) then
389 if (children = children_tmp) then
390 -- no own new children
391 main_state <= "1000";
392 start_timeout <= ’1’;
393 else
394 start_timeout <= ’0’;
395 main_state <= "0111"; -- send send_ack
396 end if;
397 reset_C(to_integer(unsigned(gate_no))) <= ’1’;
398 end if;
399 else -- wrong command
400 start_timeout <= ’0’;
401 main_state <= "0011"; -- S3
402 end if;
403 elsif (eind_timeout = ’1’) then
404 if (reset_C /= "0000") then
405 start_timeout <= ’0’;
406 reset_C <= "0000";
407 main_state <= "0011";
408 else
409 reset_C <= "1111" xor send_end_C;
410 end if;
411 end if;
412 when "0110" => -- send adr_req2 --- S6 ---
413 reset_P <= ’0’;
414 reset_C <= "0000";
415 if (count >= 21) then
416 count <= 0;
417 bit_clk_ena <= ’0’;
418 snd_ena <= ’0’;
419 mux_P <= "00";
420 reset_Tx_int <= ’1’;
421 load <= ’0’;
422 main_state <= "0010";
423 -- activate bypass
424 mux_C(to_integer(unsigned(gate_no))) <= "10";
425

426 start_timeout <= ’1’;
427 else
428 Tx_buf(23 downto 20)<= "0110";
429 Tx_buf(19 downto 12)<= address;
430 Tx_buf(11 downto 10)<= (11=> gate_no(0), 10=>

gate_no(1));
431 Tx_buf(9 downto 8) <= rec_buf(9 downto 8);
432 Tx_buf(7 downto 0)<= (others => ’1’);
433 load <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 263 — #295 i
i

i
i

i
i

263

434 bit_clk_ena <= ’1’;
435 clk_sel <= "001";
436 if (count = 3) then
437 snd_ena <= ’1’;
438 end if;
439 mux_P <= "01";
440 if (count_clk=’1’) then
441 count <= count + 1;
442 end if;
443 end if;
444 when "0111" => -- send send_ack --- S7 ---
445 reset_P <= ’0’;
446 reset_C <= "0000";
447 if (count >= 6) then
448 count <= 0;
449 load <= ’0’;
450 bit_clk_ena <= ’0’;
451 snd_ena <= ’0’;
452 -- activate bypass
453 mux_C(to_integer(unsigned(gate_no))) <= "10";
454 out_ctrl(to_integer(unsigned(gate_no)))<=’1’;
455 mux_P <= "11";
456 reset_Tx_int <= ’1’;
457

458 main_state <= "1000";
459 start_timeout <= ’1’;
460 else
461 Tx_buf(23 downto 20)<= "0100";
462 TX_buf(19 downto 0)<= (others => ’1’);
463 load <= ’1’;
464 bit_clk_ena <= ’1’;
465 clk_sel <= "001";
466 snd_ena <= ’1’;
467 mux_C(to_integer(unsigned(gate_no))) <= "01";
468 if (count_clk=’1’) then
469 count <= count + 1;
470 end if;
471 end if;
472 when "1000" => --pass adr_req2/poll_ack2 S8
473 reset_P <= ’0’;
474 reset_Tx_int <= ’0’;
475 if (not(reset_C="0000")) then
476 reset_C <= "0000";
477 elsif (cmd_rec_C(to_integer(unsigned(gate_no)))=’1’)

then
478 start_timeout <= ’0’;
479 if ((polling=’0’ and count>=13) or (polling=’1’ and

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 264 — #296 i
i

i
i

i
i

264 VHDL implementation of Main Control (4)

count>=21)) then
480 count <= 0;
481 reset_C <= (adr_req2_C or poll_ack2_C);
482 -- deactivate bypass
483 out_ctrl(to_integer(unsigned(gate_no)))<=’0’;
484 mux_P <= "00";
485 if (not((poll_ack2_C or adr_req2_C)="0000")) then
486 if (polling = ’1’) then
487 main_state <= "1110"; -- SE
488 else
489 main_state <= "0010"; -- S2
490 end if;
491 start_timeout <= ’1’;
492 else -- wrong command
493 -- deactivate bypass
494 mux_C(to_integer(unsigned(gate_no))) <= "00";
495 main_state <= "0011";
496 end if;
497 else
498 clk_sel <= "1" & gate_no;
499 if (count_clk=’1’) then
500 count <= count +1;
501 end if;
502 end if;
503 elsif (eind_timeout = ’1’) then
504 start_timeout <= ’0’;
505 -- activate bypass
506 out_ctrl(to_integer(unsigned(gate_no)))<=’0’;
507 mux_C(to_integer(unsigned(gate_no))) <= "00";
508 main_state <= "0011";
509 end if;
510 when "1001" => -- send send_end --- S9 ---
511 if (count >= 6) then
512 count <= 0;
513 bit_clk_ena <= ’0’;
514 snd_ena <= ’0’;
515 reset_Tx_int <= ’1’;
516 load <= ’0’;
517 main_state <= "1111";
518 polling <= ’0’;
519 children <= children_tmp;
520 BC <= ’1’;
521 SC <= ’1’;
522 else
523 Tx_buf(23 downto 20)<= "1100";
524 Tx_buf(19 downto 0)<= (others => ’1’);
525 load <= ’1’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 265 — #297 i
i

i
i

i
i

265

526 bit_clk_ena <= ’1’;
527 clk_sel <= "001";
528 snd_ena <= ’1’;
529 mux_P <= "01";
530 if (count_clk=’1’) then
531 count <= count + 1;
532 end if;
533 end if;
534 when "1010" => -- send poll_ack1 -- SA ---
535 reset_P <= ’0’;
536 if (count >= 16) then
537 count <= 0;
538 load <= ’0’;
539 bit_clk_ena <= ’0’;
540 snd_ena <= ’0’;
541 mux_P <= "00";
542 main_state <= "1110"; -- SE
543 reset_Tx_int <= ’1’;
544

545 start_timeout <= ’1’;
546 else
547 Tx_buf(23 downto 20) <= "1001";
548 Tx_buf(19 downto 12) <= address;
549 Tx_buf(11 downto 10) <= (11 => in_ctrl(0), 10=>

in_ctrl(1));
550 Tx_buf(9 downto 0) <= (others => ’1’);
551 load <= ’1’;
552 bit_clk_ena <= ’1’;
553 clk_sel <= "001";
554 snd_ena <= ’1’;
555 mux_P <= "01";
556 if (count_clk = ’1’) then
557 count <= count + 1;
558 end if;
559 end if;
560 when "1011" => -- send poll_ack2 -- SB ---
561 reset_P <= ’0’;
562 reset_C <= "0000";
563 if (count >= 29) then
564 count <= 0;
565 load <= ’0’;
566 bit_clk_ena <= ’0’;
567 snd_ena <= ’0’;
568 mux_P <= "00";
569 reset_Tx_int <= ’1’;
570 -- activate bypass
571 mux_C(to_integer(unsigned(gate_no))) <= "10";

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 266 — #298 i
i

i
i

i
i

266 VHDL implementation of Main Control (4)

572 start_timeout <= ’1’;
573 main_state <= "1110";
574 else
575 Tx_buf(23 downto 20) <= "0101";
576 Tx_buf(19 downto 12) <= address;
577 Tx_buf(11 downto 4) <= rec_buf(9 downto 2);
578 Tx_buf(3 downto 2) <= (3 => gate_no(0), 2 =>

gate_no(1));
579 TX_buf(1 downto 0) <= rec_buf(1 downto 0);
580 load <= ’1’;
581 bit_clk_ena <= ’1’;
582 clk_sel <= "001";
583 if (count = 3) then
584 snd_ena <= ’1’;
585 end if;
586 mux_P <= "01"; --Tx
587 if (count_clk = ’1’) then
588 count <= count + 1;
589 end if;
590 end if;
591 when "1100" => -- receive adpt_ack SC ---
592 reset_Tx_int <= ’0’;
593 if (cmd_rec_P = ’1’) then
594 start_timeout <= ’0’;
595 if (adpt_ack_P = ’1’) then
596 parent_gone <= ’0’;
597 BC <= ’1’;
598 SC <= ’1’;
599 adr_rec <= ’1’;
600

601 reset_P <= ’1’;
602 main_state <= "1111";
603 else -- wrong command
604 reset_fll_int <= ’1’;
605 main_state <= "0000";
606 end if;
607 elsif (eind_timeout = ’1’) then
608 start_timeout <= ’0’;
609 reset_fll_int <= ’1’;
610 main_state <= "0000";
611 end if;
612 when "1101" => -- send adpt_ack --- SD ---
613 if (count >= 7) then
614 count <= 0;
615 load <= ’0’;
616 bit_clk_ena <= ’0’;
617 snd_ena <= ’0’;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 267 — #299 i
i

i
i

i
i

267

618 reset_C <= "0000";
619 reset_Tx_int <= ’1’;
620 main_state <= "1111";
621 else
622 Tx_buf(23 downto 20) <= "0011";
623 Tx_buf(19 downto 0) <= (others => ’1’);
624 load <= ’1’;
625 bit_clk_ena <= ’1’;
626 clk_sel <= "001";
627 snd_ena <= ’1’;
628 for i in 0 to 3 loop
629 if (adpt_req_C(i)=’1’) then
630 mux_C(i) <= "01"; -- Tx
631 end if;
632 end loop;
633 if (count_clk = ’1’) then
634 count <= count + 1;
635 end if;
636 -- adjust chldren vector
637 children <= children or adpt_req_C;
638 adr_end <= children or adpt_req_C;
639 reset_C <= adpt_req_C;
640 end if;
641 when "1110" => -- receive ready --- SE ---
642 reset_Tx_int <= ’0’;
643 reset_C <= "0000";
644 if (cmd_rec_P = ’1’) then
645 start_timeout <= ’0’;
646 clk_sel <= "001";
647 if (count_clk = ’1’) then
648 bit_clk_ena <= ’0’;
649 -- deactivate bypass
650 mux_C(to_integer(unsigned(gate_no))) <= "00";
651 reset_P <= ’1’;
652 if (ready_P = ’1’) then
653 ready_rec <= ’1’;
654 main_state <= "0011";
655 else -- wrong command
656 -- deactivate bypass
657 mux_C(to_integer(unsigned(gate_no))) <= "00";
658 if (ready_rec = ’1’) then
659 main_state <= "0011";
660 else
661 main_state <= "1010";
662 end if;
663 end if;
664 else

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 268 — #300 i
i

i
i

i
i

268 VHDL implementation of Main Control (4)

665 bit_clk_ena <= ’1’;
666 end if;
667 elsif (eind_timeout = ’1’) then
668 start_timeout <= ’0’;
669 -- deactivate bypass
670 mux_C(to_integer(unsigned(gate_no))) <= "00";
671 if (ready_rec = ’1’) then
672 main_state <= "0011";
673 else
674 main_state <= "1010";
675 end if;
676 end if;
677 when "1111" => -- normal operation SF ---
678 if (gone_P = ’1’) then
679 parent_gone <= ’1’;
680

681 out_ctrl <= "0000";
682 children <= "0000";
683 children_tmp <= "0000";
684 BC <= ’0’;
685 SC <= ’0’;
686 adr_rec <= ’0’;
687 mux_P <= "00";
688 mux_C <= (others => "00");
689 bit_clk_ena <= ’1’;
690 clk_sel <= "001";
691 if (count_clk = ’1’) then
692 if (count >= 10) then
693 reset_fll_int <= ’1’;
694 main_state <= "0000";
695 bit_clk_ena <= ’0’;
696 count <= 0;
697 else
698 count <= count + 1;
699 end if;
700 end if;
701 elsif (not(gone_C="0000")) then
702 bit_clk_ena <= ’1’;
703 clk_sel <= "001";
704 if (count_clk = ’1’) then
705 if (count = 0) then
706 out_ctrl <= out_ctrl and not(gone_C);
707 count <= count + 1;
708 elsif (count >= 4) then
709 children <= children and (data_in or not(gone_C

));
710 out_ctrl <= children and (data_in or not(gone_C

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 269 — #301 i
i

i
i

i
i

269

));
711 adr_end <= children and (data_in or not(gone_C)

);
712 reset_C <= gone_C;
713 count <= 0;
714 bit_clk_ena <= ’0’;
715 else
716 count <= count + 1;
717 end if;
718 end if;
719 elsif (not(adr_req1_C="0000") or not(send_req_C="0000

") or not(send_end_C="0000")) then
720 children_tmp <= children;
721 main_state <= "0011";
722 elsif (not(adpt_req_C="0000")) then
723 main_state <= "1101";
724 elsif(send_ack_P=’1’) then
725 reset_P <=’1’;
726 elsif (adr_ack_P =’1’) then
727 children_tmp <= children;
728 main_state <= "0010";
729 elsif (poll_req_P = ’1’) then
730 polling <= ’1’;
731 ready_rec <= ’0’;
732 BC <= ’0’;
733 children <= "0000";
734 children_tmp <= "0000";
735 adr_end <= "0000";
736 out_ctrl <= "0000";
737 bit_clk_ena <= ’1’;
738 clk_sel <= "001";
739 if (count_clk = ’1’) then
740 mux_C <= (others => "00");
741 main_state <= "1010";
742 reset_P <= ’1’;
743 bit_clk_ena <= ’0’;
744 end if;
745 elsif (cmd_rec_P = ’1’ and (data_P or param_P)=’0’)

then
746 reset_P <= ’1’;
747 elsif (not(cmd_rec_C="0000")) then
748 reset_C <= cmd_rec_C;
749 else
750 out_ctrl <= children;
751 -- data_ext for parent
752 mux_P <= "11";
753 for i in 0 to 3 loop

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 270 — #302 i
i

i
i

i
i

270 VHDL implementation of Main Control (4)

754 -- data_int for children
755 if (children(i)=’1’) then
756 mux_C(i) <= "10";
757 else
758 mux_C(i) <= "00";
759 end if;
760 end loop;
761 bit_clk_ena <= ’0’;
762 reset_Tx_int <= ’0’;
763 reset_P <= ’0’;
764 reset_C <= "0000";
765 end if;
766 when others => -- tja
767 end case;
768 end if;
769 end if;
770 end process;
771 ---<<<<<<<<< Stage Machine ---------------
772

773 ------------ Data/Param ---->>>>>>>>>>>---
774 -- See Appendix A
775 ---<<<<<<<<< Data/Param ------------------
776 ------------ Bit_clk ------->>>>>>>>>>>---
777 -- See Appendix A
778 ---<<<<<<<<< Bit_clk ---------------------
779 end main_ctrl_4_mdd;

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 271 — #303 i
i

i
i

i
i

i
i

“PB˙PhD” — 2011/2/4 — 10:52 — page 272 — #304 i
i

i
i

i
i

	Dankwoord
	List of Tables
	List of Figures
	Samenvatting
	Summary
	List of Abbreviations
	Introduction
	The search for an intelligent modular display system
	Publications

	It's all about displays
	Introduction
	Display technologies
	Cathode Ray Tube
	Plasma Display Panel
	LEDs and OLEDs
	Liquid Crystal Displays
	Some other display technologies

	Transmissive, emissive, reflective?
	Driving the display: active and passive matrix driving
	Something about e-paper

	Modular Displays
	Introduction
	Solving the issues with passive matrix driving
	Limitation of multiplexability
	Reduction of brightness

	Creating free-form displays
	Tiled displays
	Transformable LED
	CurveLED
	FlyFire

	Two birds, one stone: modular displays
	What is it exactly?
	What can they solve?

	Network and Communication Protocols
	Introduction
	OSI 7 layer model
	Protocols
	I2C
	RS-232
	SPI
	USB
	Ethernet

	A first modular display driver
	Introduction
	Requirements
	The display
	The driver

	Implementation
	Communication protocol
	General principles
	Rx and Tx
	Main Control
	Sequencer

	A simple example
	Setting up the test environment
	Driving a ChLCD
	Driving a LED display

	Some first results
	Results from the ChLCD
	Results from the LED display

	Can we do better?

	Improved modular display driver
	Introduction
	Requirements
	The display
	The driver

	Implementation
	General principles
	Rx and Tx
	Main Control

	A simple example
	Setting up the test environment
	Some first results
	Is there still room for improvement?

	A free-form modular display driver
	Introduction
	Requirements
	The display
	The driver

	Implementation
	A little terminology
	Communication protocol
	General principles
	Rx
	Tx
	Out Control
	Output multiplexers
	Main Control

	A slightly less simple example
	Setting up the test environment
	Some first results
	But maybe we could do something more?

	Improved free-form modular display driver
	Introduction
	Requirements
	The display
	The driver

	Implementation
	Communication protocol
	General principles
	Rx, Tx and Out Control
	Main Control

	Another example
	Setting up the test environment
	Some first results
	This is the end, isn't it?

	Design and Layout of the FrIIDoM Driver
	Introduction
	Four drivers in one chip
	On-chip clock generator
	Power-On Reset
	LED drivers
	8-bit adjustable current source
	Switch

	From VHDL code to ASIC layout
	Gate-Level Netlist and DFT
	Place and Route

	Results and Applications
	Introduction
	Setting up the (final) test environment
	Design of the test boards
	Design of the GUI

	Measurement results
	8-bit adjustable current sources
	400 mA row switches
	Clocks and Manchester (de)coding
	Refresh rates
	Modular Display Driver
	Improved Modular Display Driver
	Free-Form Modular Display Driver
	Improved Free-Form Modular Display Driver

	Future design considerations
	Issues in the free-form modular display driver
	Improvements on the Physical Layer
	Clock adjustments

	Significance and applications
	Increasing the multiplexability in passive-matrix displays
	Advantages for the ChLCD
	Advantages for a LED display
	Creating a passive-matrix PDLC display
	Free-form displays
	Using flexible modules
	Outside the display world

	Conclusion and Future Prospects
	Main achievements
	Future work

	VHDL implementation of Main Control (1)
	VHDL implementation of Main Control (2)
	VHDL implementation of Main Control (3)
	VHDL implementation of Main Control (4)

