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Abstract

The calculation of radiological paths is the most important part in statistical positron
emission tomography image reconstruction algorithms. We present a new, faster al-
gorithm which replaces Siddon’s. Further code transformations on this algorithm
prove to be beneficial in a Maximum Likelihood - Expectation Maximization re-
construction algorithm and the result is perfectly suitable for an implementation
that exploits the VISual instruction set from Sun or other modern architectural
extensions providing subword parallelism. The final speed-up achieved with this
new algorithm and its subword parallel implementation is 13. Though smaller data
formats are used in subword parallelism, the resulting images are as good as the
original ones.

1 Introduction

The reconstruction of an image from the data obtained from a tomographic
scan using statistical algorithms requires a measure of the contribution of
the various parts of the body to the radiation received by a sensor pair of
the PET-scanner (Positron Emission Tomography). This measure is obtained
by calculating the radiological path: the line-integral of the local intensity
of radiation in the body along the ray connecting the sensors. During a full
image reconstruction, radiological paths are calculated for millions of rays cor-
responding to different sensors of the scanner, positioned at different angles.
This calculation is the most time-consuming part of image reconstruction algo-
rithms and Maximum Likelihood - Expectation Maximization (ML-EM) [6] in
particular. ML-EM is not the fastest reconstruction technique available today.
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Nevertheless, it is a representative of a whole class of statistical PET-image
reconstruction algorithms. The proposed techniques are valid for each of these.

Known algorithms for this calculation, such as the one Siddon [7] proposed,
can be performed in parallel on multiprocessor machines. Each processor then
calculates a different set of rays. It has been shown that this parallelization is
very efficient [10].

Modern architectures, e.g. SPARCv9 [2] and PA-RISC 2.0 [1], are not only
suited for multiprocessor systems, but nowadays they offer a new form of par-
allelism, namely subword parallelism. In this form, smaller data formats, such
as bytes, are used as subwords that fill one word and on which one instruction is
able to perform the same operations in parallel. While this subword parallelism
was introduced mainly to increase performance in multimedia applications, it
has been used in different domains, such as CRCs (Cyclic Redundancy Check)
and RAID-systems (Redundant Array of Inexpensive Disks) [9].

In this contribution we will show that statistical PET image reconstruction
can significantly benefit from subword parallelism. A new, incremental algo-
rithm is proposed, that replaces Siddon’s algorithm. The fastest version of
our algorithm in the context of PET image reconstruction, where radiologi-
cal paths of parallel rays are calculated, is created using loop and if-then-else
transformations. These transformations are at the same time the basis for
exploiting SIMD (Single Instruction Multiple Data) or subword parallelism.

In the following sections, we will propose this new algorithm and the successive
transformations step by step.

2 Calculation of the Radiological Path

The reconstruction of an image from the data obtained from a tomographic
scan requires a measure of the contribution of the various parts of the body
to the radiation received by a sensor pair. This is done by calculating the
radiological path.

2.1 Definitions

The radiological path is the line-integral of the local intensity of radiation in
the body along the ray connecting the sensors. If we divide the space, in which
the image is to be reconstructed, into pixels, this calculation is equivalent to
finding those pixels crossed by the ray and the distance traveled in every such
pixel. Since this data only depends on the geometry of the scanner, one might
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Fig. 1. Reconstruction domain

try to store it for later reuse. This is infeasible for all but the smallest of
images, due to the sheer magnitude of the data. Therefore it is necessary to
regenerate this data on the fly.

We describe our algorithm for 2D images for the sake of clarity; it is easily
converted to 3D. In what follows we will approximate the image by a rectangle,
its sides parallel to the z and y axes and divided into smaller rectangular
pixels, as shown in Figure 1. Let b = (b,, b,) be the lower left corner of the
rectangle, N; and N, be the number of vertical and horizontal lines resp. in
the grid and d, and d, be the dimensions, in the z and y direction resp., of the
pixels. We shall use indices i, j to refer to individual pixels. The 7 index runs
along the z axis, and the lower left corner pixel has index (0,0). A ray will be
represented by two points: p1 = (pl,, pl,) and p2 = (p2,,p2,). We define the
density of a pixel (i,7) as p(7,7). The distance covered by a ray in the pixel
(4,7) is I(7,7), where (i, j) = 0 for pixels not being crossed. The radiological
path is then defined as

dP1p2 = Zp(laj)l(laj) (1)

Other approaches to approximate the contribution of pixels to the radiation
measured are used, but are less accurate or much slower. Using radiological
paths is a good compromise between speed and accuracy.

2.2 Siddon’s Algorithm

Equation (1) could be evaluated by simply summing for all (7, 7). This would
be unwise, as pointed out by Siddon, since most (i, j) are zero. It is more effi-
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Fig. 2. Calculation of the entry and exit point

cient to evaluate d,,,, by following the path of the ray. We therefore construct
a parameter representation of the ray

p(®) = p1 + a(p2 — p1) (2)

This allows us to determine the distance travelled through a pixel by multi-
plying the a-“distance” with a conversion factor.

In what follows, we shall assume that this is a generic ray, i.e., that it is
neither parallel to the z axis, nor to the y axis. Those rays that are parallel are
easily implemented and form only a small fraction of the execution time of a
complete image reconstruction. Following Siddon, we calculate the entry point
(ot = Qi) and the exit point (o = qupuq,) Of the ray w.r.t. the reconstruction
rectangle (Figure 2). We need the parameter values of the intersections of the
ray with the 2 outer sides perpendicular to the z axis (a,(0) and «,(V;)) and
the y axis (a,(0) and ay(N,)). We have

ba: - pl:c
0= ©)
— —pl,
o, (V) = ot e = Ve 2 4

P2; — plg

and a similar formula for a,,(0) and o, (V).
Then the entry and exit parameters are given by
Cmin = max{min{ax(O), a:v(Nac)}a min{ay(()), ay(Ny)}}a (5)

Qe = min{max{a,(0), o (N;) }, max{oy (0), oy (IVy) } }- (6)



The number, n, of pixel-boundaries crossed, outer limits included, can be
calculated as the sum of the intersections with boundaries perpendicular to
the z and y axes:

n= imam - me +1+ jmam - ]mzn + ]-7 (7)

Here 4,5, and jn are the indices of the first pixel boundary the ray will cross
after entering the rectangle and 4,4, and j,,.. are the last pixel boundary that
is crossed including the border of the rectangle. If pl, < p2,, we find:

(8)

bz Nw_ldz_ men 2w_ 1z - 1w
imm={Nm— +( )dy — Qmin (P22 — pls) — p J

dy

1w mazx 2w_ 1:v _b:c
imaw:{p +a (pd pls) J 9)

The equations for pl, > p2, and for j,,;, and J,,., are similar.

Siddon continues by creating arrays a, and a, of as corresponding to inter-
sections with pixel sides perpendicular to the x and y axes, resp. . These are
merged into one larger array a of ascending values. This array is then used
to calculate the pixels that are being intersected as follows. Two consecutive
values «,,—1 and «,, are taken and the mean value is calculated:

Qi = % (10)
Using this value the pixel’s coordinates (i, j) are given by:

dy

and a similar equation for j. Now we can compute the distance the ray travels
through this pixel

l(l,]) = dconv(am - am—l) (12)

with

dconv = \/(p2x - plw)2 + (p2y - ply)z' (13)

From this the radiological path can be computed.



This approach has two major disadvantages:

e The calculation of the indices of the pixels through which a ray passes is
very complex and time-consuming.
e Four major inner loops are necessary.

So far, we have formulated Siddon’s approach. Now we will propose ours which
is considerably faster and makes an SIMD implementation possible.

2.3 The Incremental Algorithm

Siddon collects information on the whole traversal in arrays and uses these
afterwards to calculate the radiological path. We walk through the image
pixel by pixel and calculate the radiological path immediately as follows.

First we need to calculate the first pixel the ray intersects with. In what
follows, we will suppose that we are dealing with a ray that enters through
a boundary parallel to the z axis i.e. amin = @4(0) or apmin = @z (N,). The
1 pixel index is then given by

) 0, if pl, < p2
Ustart = : ’ (14)
N, — 2, if pl, > p2,

and the j index by

[P1y+amin(529_ply)_byJ , if p]-y < p2y
Jstart = p1y+amm(10?;y_ply)_b-’/ i (15)
[ 2 — 1], if pl, > p2,.

At this point (Figure 3) we have just entered the rectangle, hence o = .
There are two possible next steps, i.e. we cross a boundary perpendicular to
the z axis or one to the y axis. Hence we compute o, and «,, the o parameter
values of these crossovers, as follows

Qi = Qip + dam; (16)
o — [(yl + Cmin(p2y — ply) — by)d, ' — 1-| dy + by — ply (17)
Y p2y - ply
with
dy
= |—2 18
do- ‘plx — P2 ( )
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Fig. 3. Incremental values

if pl, > p2,. Similar equations for pl, < p2, and d,,. The values of d,, and
dq, are the distances measured in o-units from one intersection with a pixel
boundary perpendicular to the = axis and the y axis resp. to another.

We will now assume that the image is stored as an array, b, and that the pixels
(i,7) and (i + 1, ) are stored in adjacent positions in memory. The index w
of a pixel (7, 7) in the array is then:

w=j(N, —1) +1. (19)

In order to perform only one integer addition to calculate the next pixel we
define the following variables:

—1if pl, > p2,
ple >p 20)

Wy = )
1 if p2, > pl,

N, —1if pl, > p2
w, =4 Plv=bey (21)
1— N, if p2, > pl,

Therefore w, and w, are the steps one has to take, in b, when an x boundary
or a y boundary is crossed. The index in the array of the first pixel crossed is
given by

wy, = jstart(Na: - 1) + istart- (22)
All that is left is to specify an iteration scheme that is repeated once for each

new pixel and that calculates the radiological path (starting value d; = 0)
along the way. This is quite simple since we only need to check whether o, < «,



to know which boundary is crossed next. From this information it is easy to
adjust all the variables to allow another iteration:

di =di—1+ (o — a4—1)blwi_q],
Qi = Oy, (23)
Oy, = Oy, | + day,

1

W; = Wi—1 + Wy

\

if oy, , < ag_, and similar adjustments if «,, , > «g, ,. This process is
repeated n (eq. 7) times after which d,,; is multiplied with d..,, (eq. 13)
resulting in the radiological path d,,,,. A new ray can be processed.

Our algorithm is faster mainly because of the simpler index calculations (eq. 23),
since integer addition is the only operation used for this part of the algorithm.
On UltraSPARC-II this is advantageous for at least three reasons, which are
relevant for most CPUs. In order of importance:

(1) The Siddon algorithm uses floating-point to integer conversion. This is
necessary because integer registers are used for indirect memory accesses,
i.e. bjw] in the inner most loop. Because the UltraSPARC-II architec-
ture [4,11] does not provide direct moves from floating-point to integer
registers, this is an extremely time-consuming operation. All moves from
floating-point to integer registers are implemented by store/load pairs.
Forwarding between store buffers and loads is yet to be implemented so
these moves must pass through main memory. Our incremental algorithm
uses this type of conversion once per ray, instead of once per pixel.

(2) The Siddon algorithm uses floating-point arithmetic for index calcula-
tions. All other calculations are floating-point as well. This means they
have to share the limited floating-point resources (ALUs). The index cal-
culations in the inner loop of the incremental algorithm are integer arith-
metic. Since integer resources are available, these calculations do not take
extra time: they are performed in parallel with the floating-point arith-
metic.

(3) Fewer floating-point registers are used, leaving more room for code opti-
mization by the compiler.

(4) The smaller inner loop facilitates loop unfolding.

3 Introducing Subword Parallelism

The algorithm, in its present form, is still not suitable for exploiting subword
parallelism. This can easily be seen in eq. 23, the inner loop of our algorithm.



for each angle in reconstruction do
for each ray at angle do
wnitialize calculation of the radiological path
for each pizel on path do
if (ayi—l < awi—l)
advance up or down (eq. 23)
else
advance sideways (analogue to eq. 23)
fi
od
od
od

Fig. 4. Code structure of one step during iterative image reconstruction in ML-EM

for each angle in reconstruction do
for each 4 parallel rays at angle do
wnitialize RP-calculation 4 rays
for each pizel on paths do
1f —then — else;
1f —then — elseqy
1f —then — elses
1f —then — elsey
od
od
od

Fig. 5. The same functionality as in Figure 4, but the middle loop is unrolled

There are just not enough identical operations on independent data. Therefore
we must attempt to increase the SIMD-opportunities present in the code.

3.1 Code Transformations

In a normal image reconstruction, the radiological path of millions of rays at
various angles will be calculated. To increase the amount of available paral-
lelism, we decided to process four such parallel rays in lock-step. This can
be done because the calculations of the different rays do not interfere. It is
equivalent to loop unrolling and software pipelining the loop over four parallel
rays. This transformation is shown in Figures 4 and 5. It leaves us with one
inner loop, in which each of the four rays advances one pixel per iteration.
The control flow graph (CFG) of this inner loop is shown in Figure 6. Note
that the then- and else-blocks represent only four operations (eq. 23) and
are therefore still not suitable for exploiting subword parallelism.

To concentrate most operations in one basic block, we transformed the



Fig. 6. The code of four parallel rays is executed in lock-step. The first if-test
decides which step the first ray will take, the second if-test, which step the second
ray will take, etc.

original CFG into the one depicted in Figure 7. The if-tests are hoisted,
and as a result, the basic blocks at the right of Figure 7 each perform 1 of the
16 combinations of steps of the 4 rays. In these basic blocks, there are now
four times four operations present. This means we finally have basic blocks
with enough independent but identical operations to start considering SIMD
instructions to speed up the calculations.

Our transformations have an extra benefit; they already result in a major
extra speedup due to improved cache behavior. One can verify in Figure 8
that by processing the four rays in lock-step the spatial locality of the data is
considerably improved.

In general, the proposed transformations can be applied to any loop with
independent operations. In the incremental algorithm this loop corresponds
to the loop over parallel rays.

3.2  Data Transformations

So far, the algorithm uses floating-point numbers to represent the densities
of the image and distances during image traversal. The VISual instruction
set [3,8] on the UltraSPARC, like most architectural multimedia extensions,
on the other hand operates on fixed-point data. We found that we could fit
the densities of the pixels in bytes and the distances in halfwords (16-bit)
without losing much quality in the resulting image. To achieve this, we had
to insert code before and after the inner loops that converts floating-point to
fixed-point and vice versa.
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Fig. 7. The CFG of Figure 6 is transformed by performing all the if-tests in advance
and creating 16 basic block that do the calculations for each of the 16 outcomes of
the tests. An oval which contains the notation then 1,2 and else 3,4 represents
the code equivalent to the then-blocks of ray 1 and 2 and the else-blocks of ray 3
and 4.
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Fig. 8. In part a, 4 rays are calculated in lock-step. The figures indicate the order
in which pixels are accessed for the first time. Most pixel values will be in the cache
before that first access, due to previously accessed pixels. Part b shows the same
figures, without loop unfolding of the code. When ray A is finished, the pixels that
once were loaded into the cache will no longer be present when B needs them.

It was impossible to let the whole program work with fixed-point subwords.
One reason is that the initializing code before the inner loop and calculations
outside the outer loop of the code in Figures 4 and 5 cannot be done on fixed-
point subwords. A second reason is that during one execution of the outer
loop, the data ranges of bytes and halfwords are sufficient, but the ranges
needed in different executions of the outer loop differ so much that we need
to scale the data between each such execution.

While the conversion of the different o's between floating-point and fixed-
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point representations takes place before and after each inner loop, and the
representation of the densities of the image is converted before and after the
outer loop in each approximation step, these conversions have no detrimental
effect on the total execution time.

3.3 Subword Parallelism

Finally, the algorithm is suitable for recoding the inner loops using subword
parallelism. This is done manually, since the compiler at this moment does
not support VIS-instructions. A method with inline assembler templates as
described in [11,3] did not prove successful either. Luckily, only the bottom
basic blocks of Figure 7 have to be reprogrammed this way. Because they all
are very alike, this poses no problem.

The VISual instruction sets provides all the necessary instructions, such as
parallel comparisons, additions and multiplications. We could for example
replace the four successive if-tests with one parallel comparison and a jump-
table that is indexed with the result of the parallel comparison.

Some other architectures do not have all the necessary instructions. The
SIMD-instructions in the TriMedia processor core [5] for example have no
parallel comparison or multiplication, so another approach has to be found
there.

4 Results

Both the original algorithm of Siddon and our incremental versions (sequential
and lock-step) were implemented in C, using the SCO 4.0 optimizing com-
piler for UltraSPARC-II. We performed measurements on a dual 167 MHz
UltraSPARC-II-processor from Sun with 512 Kb cache for each processor and
128 MB of RAM. Both implementations use doubles for floating-point calcu-
lations. No manual optimizations were performed.

We embedded our incremental algorithm and Siddon’s in an existing 2D PET
reconstruction program, emvoz2d. This program is developed by the Medi-
cal Image Processing Group (MIPG), Department of Radiology, University
of Pennsylvania, Philadelphia, Pennsylvania, USA. It uses the ML-EM algo-
rithm, in which radiological path calculation takes about 90% of the time.

The results are shown in Figure 9. Execution time scales with the linear dimen-
sions of the reconstructed image. Any non-linearities arise from cache behavior.
Pentium and PPC604 C-implementations result in about the same speedup,

12
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Fig. 9. Execution time against side dimensions (pixel) of the image.

except for the loop unrolling optimization on Pentiums: these processors do
not have enough registers to profit from loop unrolling. For large images we
achieved a 13-fold speedup. This can be factored in a 4.5-fold speedup from the
incremental algorithm, another 1.6-fold speedup by loop unrolling the C-code
and a final 1.7-fold performance gain by using the VISual instruction set.
The latter is due to more efficient instruction use (SIMD) and better cache
behavior, because of the smaller data format used.

In 3D image reconstruction, two types of reconstruction exist. In the first type
a 3D image consists of several 2D planes. For each plane, a 2D reconstruction
algorithm is used, so the same speed-up is expected. The second type is a full
3D image reconstruction in which voxels are used instead of pixels. For this
approach we expect about the same speed-up, but further measurements are
necessary.

5 Conclusion

We have proposed an incremental algorithm for the calculation of the radio-
logical path, which improves significantly on the performance of the Siddon
algorithm but maintains accuracy. By several transformations we were able
to improve cache performance and could eventually implement the algorithm
in the VISual instruction set on an UltraSPARC. In doing so we achieved a
speedup by a factor of 13.
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