Matching Control Flow of Program Versions

Vijay Nagarajan, Rajiv Gupta Xiangyu Zhang Matias Madou, Bjorn De Sutter
University of California, Riverside Purdue University Koen De Bosschere
Ghent University

Abstract erate an optimized version from the unoptimized version. We
proposed the idea afynamic matchingl 8] recently, which

In many application areas, including piracy detection, automatically produces a mapping between subsets of state-
software debugging and maintenance, situations arise in ments from two program versions that are executed for the
which there is a need for comparing two versions of a pro- same given input. However, our matching technique [18] as-
gram that dynamically behave the same even though theysumes that the function to function correspondence is known
statically appear to be different. Recently dynamic match- from the symbolic debugging information, which may not be
ing [18] was proposed by us which uses execution historiestrue in general, especially for commercial programs and pi-
to automatically produce mappings between instructions in rated programs. Furthermore, it only produces mappings on
the two program versions. The mappings then can be used tanstruction level which greatly diminishes its effectiess in
understand the correspondence between the two versions bgnatching two program versions whose control flows differ
a user involved in software piracy detection or a comparison significantly.
checker involved in debugging of optimized code. However, Obfuscation [4] is such a technique that substantially al-
if a program’s control flow is substantially altered, which ters a program’s control flow in order to thwart the under-
usually occurs in obfuscation or even manual transforma- standing of the program. It can be used by software pirates or
tions, mappings at instruction level are not sufficient te en malicious programmers to hide the real identify of a program
able a good understanding of the correspondence. In this[4]. Matching control flow can greatly facilitate the under-
paper, we present a comprehensive dynamic matching algo-standing of obfuscated programs. Moreover, in obfuscation
rithm with the focus on call graph and control flow matching. transformations, a significant amount of bogus instrustion
Our technique works in the presence of aggressive controlare intentionally injected in order to further confuse a-pro
flow transformations (both interprocedural such as funetio gram reader. These bogus instructions incur a lot of false
inlining/outlining and intraprocedural such as control filo matches for the matching technique in our prior work[18].
flattening) and produces mappings of interprocedural and In this case, control flow matching technique proposed @ thi
intraprocedural control flow in addition to mapping between paper can deliver more accurate mappings.
instructions. We evaluated our dynamic matching algorghm In this paper, we present a comprehensive dynamic
by attempting to match original program with versions that matching algorithm that works in the presence of aggressive
were subjected to popular obfuscation and control flow al- control flow altering transformations. We evaluated our dy-
tering transformations. Our experimental results showt tha namic matching algorithms by attempting to match the origi-
the control flow mappings produced are highly accurate and nal program with versions that were subjected to three-exist

complete, for the programs considered. ing obfuscation transformations includi@pntrol flow flat-
tening[15], Static Disassembly Thwartingg 0] and insertion
1 Introduction of Binary Opaque Predicatdd] and other control flow alter-

ing transformations including function inlining. Our expe

~ Inmany application areas, situations arise in which there eng| results show that the control flow mappings produced
is a need for comparing two versions of a program that dy- 5. highly accurate and complete.

namically behave the same even though they statically appea . . .

to be different. Let us consider applications such as soéwa 11 Overview of Dynamic Matching

piracy detection and debugging of optimized code, in each We illustrate the complexities and goals of dynamic
of which one program version is created by transforming the matching using the example in Fig. 1. This example con-
other version. In the first application, code obfuscatiansr siders a simple program with three functions: Main, B and
formations may have been performed to hide piracy [3, 15]. C. As we can see in the original version, the functions B and
In the second application, transformations are applie@éte g C are called by Main; additionally B is again called within

Mai () {
call B()
call Q)

.

function B{

i 1: a=b+c;
if(a>2) goto i3;
b=b+1;
a=a+l,
i f(b<9) goto il;
return;

i2:
i3:

}

function
i4: nmen;
cal |
mEmel
return;

_ B()
i5:

Figure 1. Before and After Versions of Code, Call Graphs and C

Table 1. Interprocedural
control flow Matching

ain

Bgc

function B

N

function C { function B’

i4: neEn;
x1: x=0;

I 1: switch(x)
case O:
i1
X2 .

a=b+c;
x=1;
goto 11;
case 1:
i2:
X3 :

b=b+1
X=2;
goto 11;
case 2:
i3
x4 .

a=a+l

X = (b<9) ? 0:3;

goto 11;

case 3:
i5: mEM1

return: (y4.y7.y8);

ontrol Flow Graphs.

Table 2.
matching

Instruction Table 3. Intraprocedural

control flow matching

[Modified Version | Original Version |

Modified Version | Original Version |

Modified Version | Original Version | |

Main’ Main i4 i4 e5’ eb
B B i1’ x3 i1 (y1y2,y5,y8y4) | el
C C,B i2 i2 (y3,y6,y8,y9) e2
i3’ i3 (y4,y7,y8) e
X1,X2 x4 B (y2,y5,y8,y9) e3
i5’ i5 e6’ e6

function C. In the transformed version, while Main and B matched to produce a mapping as seen in Table. 1. While the
remain unchanged, C is transformed by inlining the call to mappings between Main’ and B’ with their respective coun-

function B. Further, the inlined code fiattenedusing the

terparts are straightforward, the fact that C' is mappedh wit

obfuscation transformation developed by Wang et al.[1f5]. | both C and B indicates that B has been inlined within C.
we look at the two versions we can see that the two pro-

grams appear to be highly dissimilar. Moreover if we have

In the second step, instruction matching is performed

the mappings between instructions only, it is hard to see tha within the corresponding functions using the dynamic exe-
the two are the same. This is because the control flow struc-cution histories of the instructions. This step is basjctie

ture of the programs differ greatly and the transformed pro- same as in prior work [18] and is not the main contribution of
gram contains many instructions that have no match in thethis work. Let us assume we have the matches for the instruc-

original program.

tions in function C’ as shown in Table 2. Observe that several
instructions (x1, x2, x4) in the transformed program have no

Dynamic matching is a three step process consisting ofcorresponding matches in the original version. Also naaé th
interprocedural control flow matching (or call graph match- the instructionil in the program has two matches il’ (cdrrec

ing), instruction matching, and intraprocedural controwfl

match) along with a false match with x3. (which should have

matching. Each of the above steps uses dynamic informa+femained unmatched). This scenario is quite common as re-
tion collected from program runs and produces a mapping.ported in [18]; we also later confirm in our evaluation that
Let us illustrate the mappings produced using the example inthe instruction matching step though devoid of false nega-
Fig. 1. In the first step, the call graphs of the two versioes ar tives includes a non-trivial amount of false positives. ©@he

the advantages of control flow matching is to prune out theseis essentially a mapping between the nodes (edges) of the
false matches. In the corresponding example we are able talirected graphs. While the callgraph and instruction match
prune this out by reasoning that there is no direct contrad flo ing algorithms match functions and instructions, which are
edge between i2 and il but there is an edge between i2’ anchodes, the intraprocedural matching algorithm matches the
x3, which means i1 cannot match x3. In the third step, in- edges of the DCFG. To enable the matching of the above
traprocedrual control flow matching is performed. We use graphs, we annotate the nodes (edges) of the graphs with dy-
the fact that C’ contains inlined code of B and the fact that namic information collected. These labels are knowsigs

the instructions x1 and x2 are not matched with any instruc- natures We arrive at the final match relation based on two
tions in the original version to produce the mappings given behavioral dimensions: the compatibility of labels or sign

in Table 3. Finally it should be noted that while the dynamic tures and the structural isomorphism of the directed graphs
matching algorithm proposed in prior work would only have Thus, essential to each of the above algorithms are the two
produced the mappings in Table 2, the dynamic matchingprior steps that first, define the signatures of the node@dge
algorithms in this paper will, in addition, generate interp and second, define the exact condition in which the two sig-
cedural and intraprocedural control flow mappings as seen innatures of the nodes(edges) are said to be compatible.

Table 1 and Table 3. 2.1 Callgraph Matching
2 Comprenensive Dynamic Matching The aim of theinterprocedural control flovor call graph

In this section, we present a dynamic matching algorithm matching step is to produce mappings between functions of
that produces comprehensive mappings between two proihe two versions. The mappings are of the following form:
gram versions including interprocedural and intraprocatu for each function or a set of functions in the transformed ver
control flow mappings, in addition to instruction mappings. Sion we identify a corresponding function or set of funcsion
Dynamic matching involves the following three steps: Call- in the original version of the program. There are two reasons
graph matching, instruction matching within the matched for performing interprocedural control flow matching. Eirs
functions and intraprocedural control flow matching. it indicates what interprocedural transformations were em

Dynamic matching hinges on our prior woM/hole Ex- ployed in creating the transformed version from the origina
ecution Trace(WET) [17] , a representation that stores the version. Second, it breaks down the overall matching prob-
comprehensive execution history of a program in a highly lem into subproblems such that instruction matching and in-
compact form. The following is the set of dynamic informa- traprocedural matching can be performed only between cor-

tion from the WET which we utilize in our matching: responding functions.
e Dynamic Call graph DCG. This is the subset of the A
static call graphthat is actuallyexercisedduring an ex- l inlining g
ecution. v SR -
B
¢ Dynamic Control flow graph DCFG. This is the sub- A e AB
set of thestatic control flow graph An edge or a node l °°”d't_'9f‘,"’v".'r”"‘“'”9 l

in the static control flow graph is also a part of DCFG if B B”
the edge or node isxecuted at least once
- splitting/outlining

e Dependences exercised. For each instruction the set A T / :
of all instructions upon which it is dependent is cap- Tl
tured. Thus we form the dynamic data dependence el A2 A3

graph (DDDG).

Figure 2. Interprocedural transformations
e Values produced. A stream of results produced by an

instruction during the execution is abstracted into a set
of distinct values along with its frequency.

We observe that there are basically two interprocedu-
ral transformations that can change the structure of tHe cal
graph: function inlining and function splitting (outlirg. In

Each of the matching steps takes two directed graphs aghe inlining transformation, a call to a function is replaced
inputs. In the callgraph matching step, we attempt to matchby the code of the entire function. Note that inlining can
the DCGs of the two versions; in the instruction matching be conditional as in the second example above. In function
step, the DDDGs of the two versions are matched and in thesplitting or outlining, one function is split into multiple func-
intraprocedural control flow matching step, the DCFGs of the tions. One of the obfuscation transformations [10] inserts
two versions are matched. The goal of the matching algo-branch functions into program code and can be viewed as an
rithms is to producenatchedetween these graphs. A match instance of function outlining/splitting.

2.1.1 Function Signatures/L abels

i R Match(A,B) {

To compute the matches, we define #ignatureof a func- MatchSet « MatchSet U (A, B);
i isti i ign(A) = sign(A) — sign(B);
tionas t_he set qf a(ld_lstmct vaIue,_frequencyjaqs produceq 232(3) - ZZZ(B) - SSZZ(A);
by the instructions in that function. Alternatively, thesi Sa « children(A);
nature consists of the set of values, each value repeating as S5 < children(B); _

. . . oreach (X € S4,Y € Sp):
many times as its frequency. Hence thalti-setof the val- sMatch(X,Y) A NotMatched(X,Y)
ues produced in a function is considered as its signature. By o pateh(X,);
multi-set we mean that the set contains repetitions, but the for each X € S4 : sMatch(X, B) A NotMatched(X, B)
order of the occurrence does not matter. We believe that this md]f‘gr‘”‘fh(x’ B);
would serve as a good signature since the repetition informa foreach Y € Sp : sMatch(A,Y) A NotMatched(A,Y)
tion of values produced (frequencies) serve as a good reflec- o Lateh(4, Y);
tor of the inlining and outlining transformations. for each (X € Sa,Y € Sp) :

i ; iy NotMatched(X, —) A NotMatched(Y, —)
Now let us deyelop the cqndltlons under vyh|ch tV_/(_) sig (P.Q) = and(xl?;);e oriatche

natures are consideredmpatible Note that this condition Match(P, Q);
should be such that it avoids false negatives. In other words end for

. 2 }
whenever two functions match, their signatures must match.

One obvious compatibility metric would be set equality, but Fi”‘i’f(’:*]\?agch% B) return (4, B);

clearly this is too strict a metric when obfuscation or op- for each M € (AU children(A)), N € (B U children(B))
timization transformations are applied as these transierm o M V) # (A4, B) Find(M, N);

tions may change the set of values produced by a function. return false; }

We then looked at the subset operator using which, two sig- Maing {

natures are said to match, if either of them is the subset of (A, B) = Find(ROOT, ROOT");

other. Thus theMatchoperator which decides whether two Match(4, B);

functionsA and B are sighature-compatible is defined by:

sMatch(A,B)= BC AV AC B Figure 3. Call Graph Matching Algorithm

_ i potentially can match those ¢fz. As shown in step 1 of
Although this practically ensures that there would not be an Fig. 4, for every functior¥ € S, we then use thsignature

false negatives, intuitively, one would expect a lot of &ls ompatibilityinformation (thesMatchrelation) to determine
positives; a lot of functions that should not eventuallychat e matching seM atch(F) C Sg.

may be considered signature compatible. This is not really
a problem because we also use the structure of call graph in A B A B
addition to signature compatibility. v { ¢\><¢

2.1.2 Algorithm

We now present our call graph matching algorithm. Given 1. Mateh Children 2 Mateh Parents
the dynamic call graphs of the two program versions, this A B

algorithm produces mappings between functions of the two Matched y‘

call graphs. Assume that functiomsand B are the roots /e

of the call graphs of the two versions. Since they are roots
they are potential matches. If the signaturesdofind B

are compatible according to the definition<gf/ atch given

in the preceding section, we addl, B) to the set of all
matched functions. But since our algorithm accounts for After matching the children, we now try to account for
inlining (and outlining), we should allow for other poten- function inlining and function splitting. For example and

tial matches withA and B. Here we make the observa- its callee may have been inlined . As far as inlining is
tion that if there is indeed a functioh' that matches with concernedSp is could potentially matcki and similarlyB

A, its signatures should match with the values of functign could potentially match wittt 4 as far as outlining is con-
that have not yet been matched with Thus, whenever we cerned. Those functions ifiz that are additionally signa-
match the signatures of two functions, we update their sig-ture compatible withA are thus added to the match set of
natures to computessidual signatureso be used in further A. Similarly functions inS4 that are signature compatible
matching as followssign(A) = sign(A) — sign(B) and with B are added to the match set Bf This is shown in
sign(B) = sign(B) — sign(A). Since the functionst and step 2 of Fig 4. Having done all the above matches, now as-
B matched , each of the children df (referred to asS,) sume that we are left with functions € S4 andY € Sp

3. Findmatch in subgraph
Figure 4. Callgraph matching

which have not yet been matched. Now we attempt to find
a match in the subgraplisy and Gy rooted byX andY
respectively. We traverse the two subgraphs until we find
(P € Gx,Q € Gy) such thatP and@ match. The main
idea of performing this step is to account actual functions
enclosed in "wrapper” functions for the purpose of obfusca-

tion. For example in Fig. 5, we observe that the réobf G
the original function does not match with its counterpsrt PEF \
since X is just a wrapper function which in turn calls the B rf—y

actual matching function. Here it is important to note that
there may be functions present in both the versions that do
not match. Extra functions may have been introduced in the
obfuscated version for the purpose of confusion. Similarly have any child. ~FurtherA is already mapped td?;'s
functions in the original version may have been optimized Parent. Hence there is nothing to do in this call. Similarly
away in the optimized version. If this is the case, we will not there is nothing to be done in the callatch(A, Ry A}).

find any matches within the subgraphs®fandY . Let us consider the calblatch(A, A5). SinceC and C*

We summarize the algorithm in Fig.3. The algorithm ac- directly match, a call td/atch(C, C") results. Here it is
cepts as input the roots of the two call graphs that need to benteresting to observe that statically matching the stmect
matched. It returnd/atchSet, the set of function matches, Of the subgraph withC" and C” as roots will result in a
We first start by attempting to match the roots of the call- Set of wrong matches (whet® will be matched toZ and
graphs, as structurally they are potential matches. THe calB With DEF’). On the other hand, using our dynamic
to function Find accounts for the wrapper functions sce- Matching algorithmD (and thenk and F eventually) will
nario that we previously discussed. It traverses the spingra P& mapped taDEF’. But B and Z cannot be matched.
rooted at the two nodes it receives as parameténdB), Subsequentlyfind(B, Z) is called which return$B, B).
and returns a pair of functions that are signature comgatibl Consequently3 and B; are matched. Finally note that the
If the two functionsA and B are themselves signature com- Call Match(B, B;) terminates even though there is a cycle
patible it returns them. The functioW atch(A, B), basi- in the graph. It. terminates because al! the nodes have been
cally performs the operations when it is known thisand B matched. The final/atchSet produced is{(R, R
are both structure and signature compatible. First, itmeco 41): (B, Ry), (4, R141), (4, 43), (C,C"), (D, DEF"),
putes the signatures of the functions to account for thematc (£ DEF"), (F, DEF"), (B, By), (B, By)}.
as discussed earlier. Then it proceeds to try and match the
children ofA and B among themselves. Finally it deals with 2.2 Dynamic Instruction Matching

Figure 5. Example matching

unmatched children by calling théind function. In this al-

gorithm, the functionVot M atched(X,Y') returns true if the
entry (X,Y) is not found in theMatchSet. Furthermore,
NotMatched(X, —) returns true ifX does not belong to
any pair in theM atchSet.

An Example We apply the above algorithm to the example
shown in Fig. 5 and show how the algorithm identifies the
correct matches. First notice that the roots of the two call
graphs do not matchX andY in the second call graph are
dummy functions, whose only purpose is to call the actual
rootR; A}. So whenFind(R, X) is called in the beginning,
it returns(R, Ry A}) since this is the first match encountered
in the subgraph (in this case the whole graph) witland
X asroots. Consequentlyfatch(R, R1A}) is called and is
hence added into th&latchSet.

Now the children are matched resulting i and A,

being matched. Then we proceed to match the children

with the parents. Accordinglyd is matched withR; A}
and R, is matched withR. Let us now consider the call
to Match(R, R)): R hasA as its child butR2’ does not

We use the instruction matching algorithm proposed in
our previous work [18]. Each instruction is assigned a signa
ture based on the values produced by the instruction. llgitia
a conservative matching set consisting of pairs of insimast
is produced based on the signature compatibility. Nextstru
tural isomorphism is taken into account driven by the dy-
namic dependence graph information. Spurious matches are
removed giving the final match set. It is possible that some
instructions do not have any matches. Although, the previou
work concerned matching of optimized and unoptimized ver-
sions, we found that the same approach worked well even un-
der the presence of obfuscation transformations. As regort
in the previous work, the final match set, though devoid of
missing matches, contains a small numbefatge matches
The algorithm was designed to avoid missing matches while
producing false matches because when the mapping is pre-
sented to the user, it is easier for the user to detect a smurio
match than it is to identify a missing match.

2.3 Intraprocedural Matching

The goal of the intraprocedural control flow matching is
to generate mappings between edges of the two program ver-

sions. This step relies on solutions produced by the preced+esponds to instruction; in the original version. Note that

ing steps, namely call graph matching and instruction match the above information are obtained from the previous irstru
ing. Intraprocedural control flow matching is applied to-cor tion matching step.The algorithm works by parsing edges in
responding functions identified during call graph matching the original version one by one till a path is formed such
The instruction matching information (i.e., mapping betwe that the initial and final nodes have corresponding matches
instructions and a set of unmapped instructions) is alsd use in the transformed version, while the nodes in between(if
during control flow matching. Given the above information, any) are unmatched. In other words, it parses edges of the
next we describe an algorithm to match the control flow of a form source;ijdest,. Then it attempts to find a correspond-
pair of corresponding functions. We present the algorithm i ing sequence of edges froRT matching the above. For in-
two steps. In the first step we present an intraprocedural con traprocedural matching we define the signature of an edge
trol flow matching algorithm that assumes that there are no(or a sequence of edges) to be the source and destination
false positives produced in the instruction matching phase nodes. The signature compatible edges from the transformed
In the second step we deal with the issue of false positives. version are those edges whose source and destination nodes
have matches in the original version. In other words the sig-
nature compatible edges from the transformed version are
the set of paths fromource) to dest;. But not all such
paths are structurally compatible with the original. Orilg t
paths fromsource} to dest} that pass through unmatched
nodes are structurally compatible. Thus the algorithm gen-

2.3.1 Algorithm

Match(EdgeList, sourcer, next) {
casenextg :
for each edge{nexto,i}

Match(EdgeList U {nexto, i}, sourcei, i);
end for
casenexty :
if 3 edge{source’, next]}
MatchSet = MatchSetU
(EdgeList, {source}, next]});
else
if 3 path : sourcel, iy, next]
for each path : sourcel, iy, next]
MatchSet = MatchSetU
(EdgeList, {source}, i, next; });
end for
else
MatchSet = MatchSet U (EdgeList, ¢);
endif
end case

}
Main() {
for each edge{a1, b}
Match({a1, b}, a1,b);
end for

erates all possible paths frospurce] to dest that in turn
pass through unmatched nodes. This is precisely the rejuire
sequence of edges matching the original.

In the functionmain, all edges of the forn{a,,b) are
considered for finding a match. The functiomatchdoes
the actual work of first parsing the input edges into the re-
quired form Gource;ijdest;) and searching for matches in
the transformed version. To enable this we have the source
node, the destination and a list of edges (including thecgour
edge) that has been encountered till now, as the parameters
for the matchfunction. If the destination (theextparame-
ter in thematchfunction) turns out to be an unmatched node,
then we continue parsing edges till the destination nodehas
corresponding match. Having parsed the original edges into

the required form, we now proceed to find the corresponding
matching edges in the transformed version. If there indeed
Figure 6. Intraprocedural Matching Algorithm is an edge between the corresponding sousaerce’) and
Let us consider two functiong and F’ from the origi- destination dest}) nodes (in the transformed version), then
nal version and the transformed versions respectively. Letthat edge is added to the match set. Otherwise, all paths from
us consider the situation in which the original version was the source to the destination are generated. Out of this, a
optimized aggressively after which obfuscation transfmarm subset of paths that only pass through unmatched nodes are
tions were applied, finally yielding”. Because of the ap- added to the match set.
plication of optimization and then obfuscation transforma
tions, several instructions (and edges) preseiit'imay not
be present irf’ (due to the effects of obfuscation) and sim-
ilarly several instructions (and edges) presentimay be
absent inF” (due to the effects of optimization). The goal of
this algorithm is to find a correspondence between the edges
in the DCFGs of the two versions. In the following algo- ‘
rithm a node denoted with subscrip{xz,) indicates that the g
instruction (i.e.;x) does not have a match. If a node is spec- '
ified with a subscript, it means that the instructian, has
a matching instruction in the other version. Algprefers to
the matching instruction in the transformed function theat ¢

function A

(b) Modiefied CFG

(a)Original CFG

Figure 7. Example matching

An Example. Intraprocedural control flow matching is ex- correct matching of théa’, z,0’) € T with (a,b) € E(P).
plained using the example in Fig. 7. In this example, the-orig But if z is falsely matched witll (say), then the correct edge
inal version itself contains an obfuscation transformatan match will not be formed eventually resulting in a false neg-
advanced form of opaque predicate transformation in which ative.

node:3 is duplicated inta; and edges; andeg are added. We use prioritization of the matching instructions to solve
An’opaque’ predicate is addedatwhich some times leads the problem. During the instruction matching phase, when-
to the execution of}; and sometimes;. The software pi- ever anode in the original program matches multiple instruc

rate, who manages to uncover this opaque predicate transfortions in the transformed program, we prioritize the instruc
mation, himself/herself then adds Wang'’s control flow flat- tions using the structure of the graphs. Suppose V(P)
tening in his modified version. Hence the modified version is the original instruction that was matched with the set
does not contain the opaque predicate but additionally theC' = ¢y, ¢5...¢,, of instructions in the transformed version,
flattened version of the original. Starting with the nade we prioritize eache; by computing theconfidencaneasure
applying the algorithm, we obtain matches for the sequencefor each one of them. In the following definition of confi-
of edges in the modified to the original. For example, con- dence, the expressioaachable(a,bevaluates to true if b is
sider the sequendeg: y2ysy4). This sequence is basically an reachable from a and the express@fa,b)evaluates to true

edge between two matched nodé&s 7). Since the two in- if aand b are signature compatible.
structhns corrgspond 1 andi; of the or|_g|nal, we check . Definition. (Confidence of the match aof € V(P) with
to see if there is an edge between these instruction, negulti e € V(T))

in matching(y1y2ysy4) to e;. Now let us consider the se-
quence(ysyrysy1). These edges connecdtsandi. As iy
of the modified version matches bathandij of the origi-
nal, the sequence of edges thus match with lagtande,.
Finally let us consider the sequenggysysyi1). These edges

v1 : {reachable(a,v1) A (vs : reachable(c;,v2) A C(vi,v2))}|
|vy : {reachable(a, v1)}|

wherev; € V(P) andv, € V(T)

take us fromi;, to i} which in turn map ta; andi; respec- Let us first consider the denominator. It refers to the cardi-
tively. Since neither a direct edge fromto 7; is present, nality of the set of nodes reachable from the nade the
nor is there a sequence of edges frérto 1 through in- original CFG. The numerator refers to the cardinality of the

structions that have no matches in the transformed versionget of nodes reachable from each of which additionally
the sequenc@yysysy1) is not matched. In a similar fashion should be signature-compatible with some nedgof the

all other edges are matched. transformed CFG) which in turn should be reachable frpm
. . in the transformed CFG. Intuitivelgonfidenceof ¢; is the
232 Dealing with false matches measure of the total reachable nodes frommaving match-

. . . ing counterparts in the transformed CFG that are reachable
The above intraprocedural control flow matching algorithm . . .
from ¢;. Having obtained the confidence values for each of

does not account for false matches produced in the instruc-

.) ¢; we then proceed to sort them and assign each @ihum-
tion matching step. The presence of false matches affeCtsoer based on its position in the sorted order. Using these

priority values, we can order the matching edges in the in-
traprocedural matching algorithm. Now let us deal with the
second problem. Consider a nades V(T'). Suppose it is
matched with nodeg, , as...a,, (a; € V(P)) with priorities

p1, p2.--Pn, respectively, we compute a confidence metric for
x which is the confidence that € T is actually unmatched.
Also note that the lowest of all the priority values amagng
determines the the best matchaof Intuitively, higher this

Figure 8. False Matches k - . '
. . . value, higher the confidence that this node is actually un-
the above algorithm in two ways. First, the effects of false o
. : . ; matched. Hence we use the least priority value as the mea-
instruction matches are carried over to this stage and pro-

duce false edge matches. For example in Fig. 8 instruction>" = of unmatched confidence.

b € V(P) s (correctly) matched with', butis also (falsely) Unmatched.confidence(z) = Min(pi, p2...pn)

matched with¢’. Because of this, the edde,b) € E(P)

will also be matched with the edde’, ¢’) in addition to the ~ We now describe the use of priority values in the intrapro-
correct match(a’, x,). Second, and more importantly, this cedural control flow matching algorithm. Assume we need
may even cause some false negatives in the intraprocedurab find the edge(s) in the transformed version correspond-
control flow matching. In Fig. 8, the instructiane V(T') ing to the edgéa,b) € E(P). Earlier in the description of

is supposed to be unmatched. This would have enabled théntraprocedural-procedural control flow matching aldurit

we assumed that there were uniqdeand?’ in the trans- 3.1 Effects of applied transformations

formed version corresponding to the original. But now there \we evaluated our algorithms using eight C-programs of
could be potentially a set of nodes and B’ corresponding the SPECint 2000 suite. For collecting the traces, we ran the
to the original. First we choos€ € A" andb’ € B'inthe hree versions (u,inter,inter+intra) witbstinputs. The effect
order of their priorities in matching the origin@kndb. This of the control-flow altering transformations on the progsam
takes care of the first problem. But there could be be several;sed in this evaluation are summarized in Table 4. For each
paths froma’ to b'. We prioritize the paths from’ to b’ as yersion of the benchmark we give the following information:
follows. For satisfying the structural compatibility thath tne static number of functions and instructions, the dyicami
from o’ to b’ should pass through unmatched nodes. We usenymber of instructions and functions calls and the dynamic
theunmatched.confidenwealues of the intervening nodes as nymber of branch statements. The large variation in the val-
a measure of the path’s confidence. For each path#dm s across different versions, shows that the transfoomsti

/ 1 . .
Confidenceof Path(a'z;b') = LUnmatched.con fidence(x;) Table 4. Effects of the Transformations.
x.
| Zl Bench. Functions Instructions Br.(10°)
Intuitively the confidence of a path is greater, if all thesint Static [Dyn.(10%) | Static | Dyn.(10%)

H . H 86 17.6 5105 3760 510
mediate n(_)des in the path are more likely to be unmatched bzip d R e 1300 =10
nodes. Using the confidence values for each path, the paths 69 157 | 11625 12100 1350

[P 94 8.21 3660 975 160

can be prioritized. gzip g6 853 3997 150 T60
. . 86 78.8 8368 4350 441

3 Experimental Evaluation 107 460 | 4623 127 270
. . . mcf 89 389 | 4854 165 27.0

To evaluate our matching algorithms, we implemented 89 738 [7383 503 0.1
some well-known obfuscation transformations in addition t 169 173 [22588 148 13.6

R R) crafty 51 2.83 | 25355 168 36
function inlining and other optimizations intoIBBLO, a 151 113 | 51872 367 39.8
binary rewriting tool [5]. All the programs were statically 220 2.21 | 18513 223 28.2
. . . . twolf 180 7.54 | 20641 280 28.2
linked as diablo works on statically linked programs. We 180 386 | 49132 816 5.0
then modified the todhackeyof Valgrind [19] to collect the 244 34.6 | 17659 1891 367

. . S > parser [201 63.1 | 20390 2205 367
dynamic execution histories consisting of values and depen 201 315 | 36813 7456 997
dencies exercised. We zeroed out all the values that were 282 10.3 | 16483 466 L

. gap 240 19.2 | 18801 561 71
addresses, as the actual values themselves are likely to be 220 9472 1 31123 1522 251
different across executions. The interprocedural transfe 424 76 | 25574 42.9 6.67
. . . C e . . perl 368 12.8 | 29283 48.1 6.67
tions we applied weréunction inliningandstatic disassem- 368 21.6 | 51765 167 25.0

bly thwarting[10], an obfuscation transformation that can

be thought as a variant of outlining. Before applying the in- g o Interprocedural Matching
traprocedural obfuscation transformations we apptiedd In this experiment. we match the original callaraph with
code eliminationas obfuscation of code that is not executed th . ph' hf rLT lini dg . d'g P bl
can be easily filtered and is not very useful. Finally we ap- € one in whict unction inlining and static disassembly
thwarting is applied. Accuracy of the matches are measured

plied theopaque predicates transformatigd] that have a ing th i f fal ich d missed matches. It i
property that is known at obfuscation time, but which is hard using tn€ Metrics ot false malches and missed matches. 1S

to discover afterward. The effect of this transformation is 'MPertantto note that since we had access to the obfuscation

that the control flow of a program can be cluttered with un- code and the.code for performing inlining, we kr_lew the exact
realizable paths. matches. This served as an oracle for evaluating the match-

We evaluate the effectiveness of our matching algorithmsIng algorithms. The .results are summarlzed.m Table 5. As
in terms of accuracy and speed. Recall that the first two we see, we do not miss any correct matches in all the bench-

transformations, Function Inlining and Static Disassgmbl (Tfa't:fest?:r?c\gr?wgr?(gofl'(r)lZt?a:?s];alrizgﬁégh:rzlsne?/Iv);\gztfa];ﬂ?ohr:s
Thwarting, mainly change the interprocedural control flow, j

while the last two obfuscate the intraprocedural contratflo IL%m theereogglna-:-r\,lgr;?sg Vr;e;tecr?:édatrgsbeegggzegeal:]h:légma_
of the programs. Thus we experiment with three versions of yw ' u '9

programs. First, the original unobfuscated versiop Sec- tures of some of the functions were too small. All functions

ond, a version in which the first two transformations are ap- :2 tt?fe ?:;?:gz)lr\/rﬁgs(ﬁl\:\;?gﬁ Tvﬁ?ri%ggg dallﬁmtsocnoer:g;mgr? ds
plied to mainly alter the interprocedural control figimter). to thebranch functioradded by the obfuscétion transforrr)na
Finally the third version in which the last two transforma- y

tions arealsoapplied in addition to the two used in the pre- ?on. Wed als? m?ar?.ured theFf'm?. takznsg)lz perforrr]]_nng Ir:h
vious versior(intra+inter). erprocedural matching on a Pentium z machine wi

1 GB RAM. As we see the time taken for performing the Table 7. Intraprocedural Matching

match is very small. A maximum of 16 seconds were needed ‘ Bench. ‘ Actual | WithoutPr. [WithPr. |
bv bzi Matches | Missed | False | Missed [False |
y p- bzip 278 86 21 12 17
) 9zip 150 34 5 6 8
Table 5. Interprocedural Matching mcf 245 61 7 7 8
Bench. False [Missed [One-Many | Time crafty 189 43 12 5 8
‘ ‘ Matches‘ Matches Matches | (secs) twolf 557 147 29 21 27
mef 0 0 3 2 parser 221 95 16 19 25
crafty o) 6 0 Mean(%) | 100 299 | 62 42 5.9
twolf 7 0 48 9
parser 0 0 44 12)) .
gap 0 0 43 9 the obfuscated sequence of edges. This algorithm thus emits
perl > 0 57 1 a set of mappings of edges between the two versions. But

unlike the previous evaluation, we do not have the actual

Table 6. Instruction Matching mappings between the control flow edges even though we
Bench. [Actual Matches(%)| Generated Matches(%) Time have the correspondence between instructions and fusction

[Orig. T Obfus. [Orig. | Obfus. | secs
o7 pvs = v A Therefore the actual correspondences (the oracle data) be-
97ip 700 44 | 100 63 | 157 tween the control flow edges can only be identified by man-
mof 100 63 | 100 76 | 120 ual inspection. Hence we performed the evaluation of this
crafty 99 43 99 58 | 186 . ; .
twolf 99 37 99 BT | 183 algorithm by manually inspecting the control flow graphs.
gapl 99 55 99 70 | 212 Since it was too tedious to inspect the control flow matches
per 98 50 98 66 85 PN . . .
parser 100 7T 100 e vy|th|n each and every function, we used the foIIowmg crite-
Mean(%) | 99 5 99 65 | 184 ria to select one function from each benchmark for this eval-

uation. In particular, we selected a sufficiently large fiorc
3.3 Instruction Matching for which the number of distinct executed instructions ia th

two versions differed the most.

It should be noted that although the mappings iare
spected manuallfpr evaluation purposes, they agenerated
automaticallyusing our matching algorithm. We would also

Using the function mappings produced, we then proceed
to match the instructions inside the each matched functions
The first two columns of Table. 6 represent the percent-

age of original and obfuscated instructions that are agtual i o 15 note that this procedure mirrors the actual appticat
matched. The actual instruction matches are obtaineddsefor of matching algorithms to piracy detection. During piracy

hand by making the obfuscation tool emit the matching in- yetection a manual inspector is needed to view the control

structions. We find that most of the original instructions ¢\ matches generated by our algorithm and use this evi-
(98-100%) are matched. The corresponding value for thejonce to decide whether the transformed version is indeed a

matches generated by our algorithm is the same. In Otherpirated one.

words, there are no missed matches. This is not surpris- As we see in Table. 7, the first column refers to the ac-

ing, since the matching algorithm first forms a conservative | number of matches that exists between the two versions
match set based on signature compatibility and then praceeds, g by manual inspection. The next two columns cor-

to iteratively prune the set using structural informati(We _ respond to the application of the interprocedural alganith
observe that only around 49% of the obfuscated instructions,ithout using prioritization (of Section 2.5.2) and in theg-

are actually matched. This is because the rest of them COMeance of false instruction matches. Next we applied priori-

spond to the additional code added by the obfuscation transy;, ation producing the results in the last two columns. In

formations. Next we see that th_e corr_esponding value g€neripis process, we consider only the match with the highest
ated by our algorithm is 65% (i.e. higher that 49%). This priority, i.e we only choose the path with the highest-

is because the algorithm is not able to prune all the falsematched.Confidencms the legal match and reject the rest.

matches due to some instruction signatures being too shon;Ne find that this simple heuristic is highly effective and is

and the dynamic dependence graph structure being oo simgyq 14 significantly reduce the missed matches to around 4%
ple. We also measured the time taken to match the instruc-, 4 the false matches to around 6%.

tions and it amounts to 3 minutes on the average which is
very reasonable. 4 Related Work

3.4 Intraprocedural Matching Static differencing algorithmsAn existing class of algo-

In this experiment, we evaluate the effectiveness of in- rithms that compare two program versions static differ-
traprocedural matching. As we discussed earlier, the dutpu encingalgorithms [1, 6, 9, 20, 8]. These algorithms perform
of this stage is the mapping between the original edges andlifferencing at different levels: while [1, 9] find differeas

by comparing control flow graphs, [6] compares input/output References

dependences of procedures and [20, 8] work by comparing[1} T. Apiwattanapong, A. Orso, M.J. Harrold, “A Differemgj Algorithm
source code. These algorithms work with source or interme- for Object-Oriented Programd[EEE International Conf. on Automated
diate code representations of the program versions. In con- Software Engineeringoages 2-13, 2004.

: : : [2] S. Chow, Y. Gu, H. Johnson, V. Zakharov, “An Approach te thbfus-
trast our matChmg algorlthms work at bmary level and they cation of Control-Flow of Sequential Computer Progran@. Davida

match instructions that dynamically behave the same even and Y. Frankel, editors, Information SecuritpC 2001, volume 2200
though they statically appear to be different. of Lectures Notes in Computer Science (LNCS).

Differencing dynamic historiesResearch has been car- [3] C. Collberg, C. Thomborson, and D. Low, “Breaking Abstians
ried out ondifferencing dynamic historiesf program execu- and Unstructuring Data Structure$ZEE International Conference on

. . ° . Computer Languagegages 28-38, Chicago, IL, 1998.
tions. The benefits of such algorithms for software mainte- [4] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of @bf

nance have been recognized. In [12] Reps et al. made use cating Transformations Techreport, The University of Auckland, New
of path profiles to recognize Y2K bugs in programs. Wilde Zealand1997.

] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bbsse,
[16] has developed a system that enables a programmer & “Link-Time Optimization of ARM Binaries” ACM SIGPLAN/SIGBED

visualize the changes in the dyn?-mi(_: behaVior Of aprogram. conference on Languages, Compilers, and Tools for EmbeSigetéms
However, in these works dynamic histories of different ex- (LCTES), 2004.

ecutions, corresponding to two different inputs, of a sngl [6] D. Jackson and D.A. Ladd, "Semantic Diff: A Tool for Sumnzing
version of a program are compared. In contrast, our work the Effects of Modifications,JEEE Conference on Software Mainte-

id tchi fd ic histori f nance pages 243-252, Nov. 1994.
considers matching or dynamic histories ortwo program ver- [7] C. Jaramillo, R. Gupta, and M.L. Soffa, “Comparison Gkiag: An

sions on the same input. Approach to Avoid Debugging of Optimized Cod&th European Soft-
Comparison checkinfj’] is a technique that determines ware Engineering Conference and ACM SIGSOFT 7th Symposium o

whether erroneous behavior of the optimized version is be- E‘;;ggaztg’gszéi igﬁ}’;irsee’E;rg'gfgggggﬁblefslggg_p””ger Verlag,

ing caused by a bug in the original unoptimized version that 8] R. Komondoor and S. Horwitz, “Semantics-Preservingcedure Ex-

was unmasked by optimizing transformations or whetheritis traction,” 27th ACM SIGPLAN-SIGACT on Principles of Programming

due to a bug that was introduced due to an error in the opti- Languagespages 155-169, 2000.

mizer. Matching of executed instruction histories can keus [9] J. Laski and W. Szermer, “Identification of Program Mochfions and

. its Applications to Software MaintenancdEEE Conference on Soft-
to identify whether the bug is in fact in the original versimm Wa,ep,aaimenancﬁpages 282-290 Nov. 1592_

in the optimization transformation [18]. While the focus of [10] c. Linn and S. Debray, “Obfuscation of Executable Comlénprove
our work has been to use matching for comparison checking Resistance to Static Disassembl?foceedings 10th. ACM Conference
and software piracy detection, variants of matching hase al on Computer and Communications Secuf@CS 03), Oct 2003.

; ; ; ot in[11] M.K. Ramanathan, A. Grama, and S. Jagannathan, “Sieutamati-
been pr_oposeq for carrying out impact analySIS to assist in cally Detecting Variations Across Program VersionEEE/ACM Inter-
regression testing [11]. There has been work on deobfusca- national Conference on Automated Software Engineed&E 2006.
tion [13] of the control-flow flattening transformation ugin [12] T. Reps, T. Ball, M. Das, and J. Larus, “The Use of ProgRrofiling
a combination of static and dynamic analysis. While the goal EOLSOﬁwafe Mééin;texance with Applica(t:ion? tothe Yea(; ZGéDOb'g%%O

: . . th European Software Engineering Conference and ACM
of the_a_bove work is to transform_ an obfuscated blnary_lnto 5th Symposium on Foundations of Software Engineerigies 432-
the original, the goal of our work is to match the executions 449, 1997.

of the two versions. Also our techniques are general and nof[13] S. Udupa, S. Debray, and M. Madou, “Deobfuscation: Rev&ngi-

targeted towards any particular obfuscation transforonati neering Obfuscated Codel2th Working Conference on Reverse Engi-
neering (WCRE), Novemeber 2005.
5 Conclusions [14] Z. Wang, K. Pierce, and S. McFarling, “BMAT - A Binary Mating

Tool for Stale Profile PropagationThe Journal of Instruction Level
In this paper, we presented a comprehensive dynamic Parallelism 2, May 2000.
matching algorithm that works in the presence of aggressivel15] C.Wang, J. Davidson, J. hill, and J. Knight, “Protentiof Software-

. . P _ based Survivability Mechanismdyiternational Conference of Depend-
control flow transformations including interproceduralts able Systems and Networksages 193-202, Goteborg, Sweden, July

formations like function inlining/outlining and and infyeo- 2001.

cedural transformations like control flow flattening. Our re [16] N. Wilde, “Faster Reuse and Maintenance Using SoftiReeonnais-
sults show that our algorithms are able to match the dynamic ~ sance,” Technical Report SERC-TR-75F, SERC, Univ. of BriCIS
execution histories of the original and transformed versio Department, Gainesville, FL, July 1994.

. . 17] X.Zbhang and R. Gupta, “Whole Execution Tracd&§EE/ACM 37th
witha hlgh degree of accuracy and speed, forthe benChmarké International Symposium on Microarchitectut@ortland, Oregan, De-

considered. cember 2004.
[18] X. Zhang and R. Gupta, “Matching Execution HistoriesRsbgram
Acknowledgments Versions”, 10th European Software Engineering Confereacel 13th

. . ACM SIGSOFT International Symposium on Foundations ofr&odt
We would like to thank the anonymous reviewers for Engineering pages 197-206, 2005.

providing useful comments. This work is supported by [19] http:/ivalgrind.org/
grants from Microsoft and NSF grants CNS-0719791, CNS- [20] MOSS: http://theory.stanford.edu/ aiken/moss/
0708199, CNS-0614707 and CCF-0541382.

