
Matching Control Flow of Program Versions

Vijay Nagarajan, Rajiv Gupta
University of California, Riverside

Xiangyu Zhang
Purdue University

Matias Madou, Bjorn De Sutter
Koen De Bosschere
Ghent University

Abstract

In many application areas, including piracy detection,
software debugging and maintenance, situations arise in
which there is a need for comparing two versions of a pro-
gram that dynamically behave the same even though they
statically appear to be different. Recently dynamic match-
ing [18] was proposed by us which uses execution histories
to automatically produce mappings between instructions in
the two program versions. The mappings then can be used to
understand the correspondence between the two versions by
a user involved in software piracy detection or a comparison
checker involved in debugging of optimized code. However,
if a program’s control flow is substantially altered, which
usually occurs in obfuscation or even manual transforma-
tions, mappings at instruction level are not sufficient to en-
able a good understanding of the correspondence. In this
paper, we present a comprehensive dynamic matching algo-
rithm with the focus on call graph and control flow matching.
Our technique works in the presence of aggressive control
flow transformations (both interprocedural such as function
inlining/outlining and intraprocedural such as control flow
flattening) and produces mappings of interprocedural and
intraprocedural control flow in addition to mapping between
instructions. We evaluated our dynamic matching algorithms
by attempting to match original program with versions that
were subjected to popular obfuscation and control flow al-
tering transformations. Our experimental results show that
the control flow mappings produced are highly accurate and
complete, for the programs considered.

1 Introduction

In many application areas, situations arise in which there
is a need for comparing two versions of a program that dy-
namically behave the same even though they statically appear
to be different. Let us consider applications such as software
piracy detection and debugging of optimized code, in each
of which one program version is created by transforming the
other version. In the first application, code obfuscation trans-
formations may have been performed to hide piracy [3, 15].
In the second application, transformations are applied to gen-

erate an optimized version from the unoptimized version. We
proposed the idea ofdynamic matching[18] recently, which
automatically produces a mapping between subsets of state-
ments from two program versions that are executed for the
same given input. However, our matching technique [18] as-
sumes that the function to function correspondence is known
from the symbolic debugging information, which may not be
true in general, especially for commercial programs and pi-
rated programs. Furthermore, it only produces mappings on
instruction level which greatly diminishes its effectiveness in
matching two program versions whose control flows differ
significantly.

Obfuscation [4] is such a technique that substantially al-
ters a program’s control flow in order to thwart the under-
standing of the program. It can be used by software pirates or
malicious programmers to hide the real identify of a program
[4]. Matching control flow can greatly facilitate the under-
standing of obfuscated programs. Moreover, in obfuscation
transformations, a significant amount of bogus instructions
are intentionally injected in order to further confuse a pro-
gram reader. These bogus instructions incur a lot of false
matches for the matching technique in our prior work[18].
In this case, control flow matching technique proposed in this
paper can deliver more accurate mappings.

In this paper, we present a comprehensive dynamic
matching algorithm that works in the presence of aggressive
control flow altering transformations. We evaluated our dy-
namic matching algorithms by attempting to match the origi-
nal program with versions that were subjected to three exist-
ing obfuscation transformations includingControl flow flat-
tening[15], Static Disassembly Thwarting[10] and insertion
of Binary Opaque Predicates[4] and other control flow alter-
ing transformations including function inlining. Our experi-
mental results show that the control flow mappings produced
are highly accurate and complete.

1.1 Overview of Dynamic Matching

We illustrate the complexities and goals of dynamic
matching using the example in Fig. 1. This example con-
siders a simple program with three functions: Main, B and
C. As we can see in the original version, the functions B and
C are called by Main; additionally B is again called within

Main(){
...
call B()
...
call C()
...

}

function B{
i1: a=b+c;

if(a>2) goto i3;
i2: b=b+1;
i3: a=a+1;

if(b<9) goto i1;
return;

}

function C{
i4: m=n;

call B()
i5: m=m+1

return;
}

function C’{
i4’: m=n;
x1: x=0;
l1: switch(x)
case 0:
i1’: a=b+c;
x2 : x=1;

goto l1;
case 1:
i2’: b=b+1
x3 : x=2;

goto l1;
case 2:
i3’: a=a+1
x4 : x = (b<9) ? 0:3;

goto l1;
case 3:
i5’: m=m+1

return;
}

Main

B C

i1

i2

i3

e1

e2

e3 e4

B’

Main’

C’

function B function B’

i1’

i2’

i3’

e1’

e2’

e3’ e4’

function C function C’

Call B

i4

e5

e6

i4’
e5’

i5

x1

y0

i2’’
y3

y4

y6 y7

y4

y5

x2

i5’

y9

i1’’ i3’’

y1

e6’

x4
y2

y8x3

’

’

’

i1

i2

i3

’

(y4,y7,y8)

Figure 1. Before and After Versions of Code, Call Graphs and C ontrol Flow Graphs.

Table 1. Interprocedural
control flow Matching

Modified Version Original Version

Main’ Main
B’ B
C’ C, B

Table 2. Instruction
matching

Modified Version Original Version

i4’ i4
i1’́, x3 i1
i2’́ i2
i3’́ i3
x1,x2,x4 -
i5’ i5

Table 3. Intraprocedural
control flow matching

Modified Version Original Version

e5’ e5
(y1,y2,y5,y8,y4) e1
(y3,y6,y8,y9) e2
(y4,y7,y8) e4
(y2,y5,y8,y9) e3
e6’ e6

function C. In the transformed version, while Main and B
remain unchanged, C is transformed by inlining the call to
function B. Further, the inlined code isflattenedusing the
obfuscation transformation developed by Wang et al.[15]. If
we look at the two versions we can see that the two pro-
grams appear to be highly dissimilar. Moreover if we have
the mappings between instructions only, it is hard to see that
the two are the same. This is because the control flow struc-
ture of the programs differ greatly and the transformed pro-
gram contains many instructions that have no match in the
original program.

Dynamic matching is a three step process consisting of
interprocedural control flow matching (or call graph match-
ing), instruction matching, and intraprocedural control flow
matching. Each of the above steps uses dynamic informa-
tion collected from program runs and produces a mapping.
Let us illustrate the mappings produced using the example in
Fig. 1. In the first step, the call graphs of the two versions are

matched to produce a mapping as seen in Table. 1. While the
mappings between Main’ and B’ with their respective coun-
terparts are straightforward, the fact that C’ is mapped with
both C and B indicates that B has been inlined within C.

In the second step, instruction matching is performed
within the corresponding functions using the dynamic exe-
cution histories of the instructions. This step is basically the
same as in prior work [18] and is not the main contribution of
this work. Let us assume we have the matches for the instruc-
tions in function C’ as shown in Table 2. Observe that several
instructions (x1, x2, x4) in the transformed program have no
corresponding matches in the original version. Also note that
the instruction i1 in the program has two matches i1’ (correct
match) along with a false match with x3. (which should have
remained unmatched). This scenario is quite common as re-
ported in [18]; we also later confirm in our evaluation that
the instruction matching step though devoid of false nega-
tives includes a non-trivial amount of false positives. Oneof

the advantages of control flow matching is to prune out these
false matches. In the corresponding example we are able to
prune this out by reasoning that there is no direct control flow
edge between i2 and i1 but there is an edge between i2’ and
x3, which means i1 cannot match x3. In the third step, in-
traprocedrual control flow matching is performed. We use
the fact that C’ contains inlined code of B and the fact that
the instructions x1 and x2 are not matched with any instruc-
tions in the original version to produce the mappings given
in Table 3. Finally it should be noted that while the dynamic
matching algorithm proposed in prior work would only have
produced the mappings in Table 2, the dynamic matching
algorithms in this paper will, in addition, generate interpro-
cedural and intraprocedural control flow mappings as seen in
Table 1 and Table 3.

2 Comprehensive Dynamic Matching

In this section, we present a dynamic matching algorithm
that produces comprehensive mappings between two pro-
gram versions including interprocedural and intraprocedural
control flow mappings, in addition to instruction mappings.
Dynamic matching involves the following three steps: Call-
graph matching, instruction matching within the matched
functions and intraprocedural control flow matching.

Dynamic matching hinges on our prior work,Whole Ex-
ecution Trace(WET) [17] , a representation that stores the
comprehensive execution history of a program in a highly
compact form. The following is the set of dynamic informa-
tion from the WET which we utilize in our matching:

• Dynamic Call graph DCG. This is the subset of the
static call graphthat is actuallyexercisedduring an ex-
ecution.

• Dynamic Control flow graph DCFG. This is the sub-
set of thestatic control flow graph. An edge or a node
in the static control flow graph is also a part of DCFG if
the edge or node isexecuted at least once.

• Dependences exercised. For each instruction the set
of all instructions upon which it is dependent is cap-
tured. Thus we form the dynamic data dependence
graph (DDDG).

• Values produced. A stream of results produced by an
instruction during the execution is abstracted into a set
of distinct values along with its frequency.

Each of the matching steps takes two directed graphs as
inputs. In the callgraph matching step, we attempt to match
the DCGs of the two versions; in the instruction matching
step, the DDDGs of the two versions are matched and in the
intraprocedural control flow matching step, the DCFGs of the
two versions are matched. The goal of the matching algo-
rithms is to producematchesbetween these graphs. A match

is essentially a mapping between the nodes (edges) of the
directed graphs. While the callgraph and instruction match-
ing algorithms match functions and instructions, which are
nodes, the intraprocedural matching algorithm matches the
edges of the DCFG. To enable the matching of the above
graphs, we annotate the nodes (edges) of the graphs with dy-
namic information collected. These labels are known assig-
natures. We arrive at the final match relation based on two
behavioral dimensions: the compatibility of labels or signa-
tures and the structural isomorphism of the directed graphs.
Thus, essential to each of the above algorithms are the two
prior steps that first, define the signatures of the node(edges)
and second, define the exact condition in which the two sig-
natures of the nodes(edges) are said to be compatible.

2.1 Callgraph Matching

The aim of theinterprocedural control flowor call graph
matching step is to produce mappings between functions of
the two versions. The mappings are of the following form:
for each function or a set of functions in the transformed ver-
sion we identify a corresponding function or set of functions
in the original version of the program. There are two reasons
for performing interprocedural control flow matching. First,
it indicates what interprocedural transformations were em-
ployed in creating the transformed version from the original
version. Second, it breaks down the overall matching prob-
lem into subproblems such that instruction matching and in-
traprocedural matching can be performed only between cor-
responding functions.

A

B

inlining

A

B

conditional inlining

A

AB’

AB’

B’’

A1’

A2’ A3’

splitting/outlining

Figure 2. Interprocedural transformations

We observe that there are basically two interprocedu-
ral transformations that can change the structure of the call
graph: function inlining and function splitting (outlining). In
the inlining transformation, a call to a function is replaced
by the code of the entire function. Note that inlining can
be conditional as in the second example above. In function
splittingor outlining, one function is split into multiple func-
tions. One of the obfuscation transformations [10] inserts
branch functions into program code and can be viewed as an
instance of function outlining/splitting.

2.1.1 Function Signatures/Labels
To compute the matches, we define thesignatureof a func-
tion as the set of all(distinct value, frequency)pairs produced
by the instructions in that function. Alternatively, the sig-
nature consists of the set of values, each value repeating as
many times as its frequency. Hence themulti-setof the val-
ues produced in a function is considered as its signature. By
multi-set we mean that the set contains repetitions, but the
order of the occurrence does not matter. We believe that this
would serve as a good signature since the repetition informa-
tion of values produced (frequencies) serve as a good reflec-
tor of the inlining and outlining transformations.

Now let us develop the conditions under which two sig-
natures are consideredcompatible. Note that this condition
should be such that it avoids false negatives. In other words,
whenever two functions match, their signatures must match.
One obvious compatibility metric would be set equality, but
clearly this is too strict a metric when obfuscation or op-
timization transformations are applied as these transforma-
tions may change the set of values produced by a function.
We then looked at the subset operator using which, two sig-
natures are said to match, if either of them is the subset of
other. Thus thesMatchoperator which decides whether two
functionsA andB are signature-compatible is defined by:

sMatch(A, B) ≡ B ⊆ A ∨ A ⊆ B

Although this practically ensures that there would not be any
false negatives, intuitively, one would expect a lot of false
positives; a lot of functions that should not eventually match
may be considered signature compatible. This is not really
a problem because we also use the structure of call graph in
addition to signature compatibility.

2.1.2 Algorithm
We now present our call graph matching algorithm. Given
the dynamic call graphs of the two program versions, this
algorithm produces mappings between functions of the two
call graphs. Assume that functionsA andB are the roots
of the call graphs of the two versions. Since they are roots
they are potential matches. If the signatures ofA and B

are compatible according to the definition ofsMatch given
in the preceding section, we add(A, B) to the set of all
matched functions. But since our algorithm accounts for
inlining (and outlining), we should allow for other poten-
tial matches withA and B. Here we make the observa-
tion that if there is indeed a functionF that matches with
A, its signatures should match with the values of functionA,
that have not yet been matched withB. Thus, whenever we
match the signatures of two functions, we update their sig-
natures to computeresidual signaturesto be used in further
matching as follows:sign(A) = sign(A) − sign(B) and
sign(B) = sign(B) − sign(A). Since the functionsA and
B matched , each of the children ofA (referred to asSA)

Match(A,B) {
MatchSet←MatchSet ∪ (A, B);
sign(A) = sign(A) − sign(B);
sign(B) = sign(B) − sign(A);
SA ← children(A);
SB ← children(B);
for each (X ∈ SA, Y ∈ SB) :

sMatch(X, Y) ∧NotMatched(X, Y)
Match(X, Y);

end for
for each X ∈ SA : sMatch(X, B) ∧NotMatched(X, B)

Match(X, B);
end for
for each Y ∈ SB : sMatch(A, Y) ∧NotMatched(A, Y)

Match(A, Y);
end for
for each (X ∈ SA, Y ∈ SB) :

NotMatched(X,−) ∧NotMatched(Y,−)
(P, Q) = Find(X, Y);
Match(P, Q);

end for
}

Find(A,B) {
if sMatch(A, B) return (A, B);
for each M ∈ (A ∪ children(A)) , N ∈ (B ∪ children(B))

if (M, N) 6= (A, B) Find(M, N);
end for
return false;}

Main() {
(A, B) = Find(ROOT, ROOT ′);
Match(A, B);

}

Figure 3. Call Graph Matching Algorithm

potentially can match those ofSB. As shown in step 1 of
Fig. 4, for every functionF ∈ SA, we then use thesignature
compatibilityinformation (thesMatchrelation) to determine
the matching setMatch(F) ⊂ SB.

A BA B

Match Children1. 2. Match Parents

A B

3. Find

X Y

 match in subgraph

Matched

Figure 4. Callgraph matching

After matching the children, we now try to account for
function inlining and function splitting. For exampleA and
its callee may have been inlined inB. As far as inlining is
concerned,SB is could potentially matchA and similarlyB
could potentially match withSA as far as outlining is con-
cerned. Those functions inSB that are additionally signa-
ture compatible withA are thus added to the match set of
A. Similarly functions inSA that are signature compatible
with B are added to the match set ofB. This is shown in
step 2 of Fig 4. Having done all the above matches, now as-
sume that we are left with functionsX ∈ SA andY ∈ SB

which have not yet been matched. Now we attempt to find
a match in the subgraphsGX andGY rooted byX andY

respectively. We traverse the two subgraphs until we find
(P ∈ GX , Q ∈ GY) such thatP andQ match. The main
idea of performing this step is to account actual functions
enclosed in ”wrapper” functions for the purpose of obfusca-
tion. For example in Fig. 5, we observe that the rootR of
the original function does not match with its counterpartX

sinceX is just a wrapper function which in turn calls the
actual matching function. Here it is important to note that
there may be functions present in both the versions that do
not match. Extra functions may have been introduced in the
obfuscated version for the purpose of confusion. Similarly
functions in the original version may have been optimized
away in the optimized version. If this is the case, we will not
find any matches within the subgraphs ofX andY .

We summarize the algorithm in Fig.3. The algorithm ac-
cepts as input the roots of the two call graphs that need to be
matched. It returnsMatchSet, the set of function matches.
We first start by attempting to match the roots of the call-
graphs, as structurally they are potential matches. The call
to function Find accounts for the wrapper functions sce-
nario that we previously discussed. It traverses the subgraphs
rooted at the two nodes it receives as parameters (A andB),
and returns a pair of functions that are signature compatible.
If the two functionsA andB are themselves signature com-
patible it returns them. The functionMatch(A, B), basi-
cally performs the operations when it is known thatA andB

are both structure and signature compatible. First, it recom-
putes the signatures of the functions to account for the match
as discussed earlier. Then it proceeds to try and match the
children ofA andB among themselves. Finally it deals with
unmatched children by calling theFind function. In this al-
gorithm, the functionNotMatched(X, Y) returns true if the
entry (X, Y) is not found in theMatchSet. Furthermore,
NotMatched(X,−) returns true ifX does not belong to
any pair in theMatchSet.

An Example We apply the above algorithm to the example
shown in Fig. 5 and show how the algorithm identifies the
correct matches. First notice that the roots of the two call
graphs do not match.X andY in the second call graph are
dummy functions, whose only purpose is to call the actual
rootR1A

′
1. So whenFind(R, X) is called in the beginning,

it returns(R, R1A
′
1) since this is the first match encountered

in the subgraph (in this case the whole graph) withR and
X as roots. Consequently,Match(R, R1A

′
1) is called and is

hence added into theMatchSet.
Now the children are matched resulting inA and A′2

being matched. Then we proceed to match the children
with the parents. Accordingly,A is matched withR1A

′
1

and R′2 is matched withR. Let us now consider the call
to Match(R, R′2): R hasA as its child butR2′ does not

X

Y

R1A1’

R2’
A2’

C’

DEF’

D

A

C

E F

R

B

Z

B1’ B2’

Figure 5. Example matching

have any child. Further,A is already mapped toR′2’s
parent. Hence there is nothing to do in this call. Similarly
there is nothing to be done in the callMatch(A, R1A

′
1).

Let us consider the callMatch(A, A′2). SinceC and C′

directly match, a call toMatch(C, C′) results. Here it is
interesting to observe that statically matching the structure
of the subgraph withC and C′ as roots will result in a
set of wrong matches (whereD will be matched toZ and
B with DEF ′). On the other hand, using our dynamic
matching algorithm,D (and thenE andF eventually) will
be mapped toDEF ′. But B and Z cannot be matched.
Subsequently,Find(B, Z) is called which returns(B, B′1).
ConsequentlyB andB′2 are matched. Finally note that the
call Match(B, B′2) terminates even though there is a cycle
in the graph. It terminates because all the nodes have been
matched. The finalMatchSet produced is:{(R, R1

A′1), (R, R′2), (A, R1A
′
1), (A, A′2), (C, C′), (D, DEF ′),

(E, DEF ′), (F, DEF ′), (B, B′1), (B, B′2)}.

2.2 Dynamic Instruction Matching

We use the instruction matching algorithm proposed in
our previous work [18]. Each instruction is assigned a signa-
ture based on the values produced by the instruction. Initially
a conservative matching set consisting of pairs of instructions
is produced based on the signature compatibility. Next struc-
tural isomorphism is taken into account driven by the dy-
namic dependence graph information. Spurious matches are
removed giving the final match set. It is possible that some
instructions do not have any matches. Although, the previous
work concerned matching of optimized and unoptimized ver-
sions, we found that the same approach worked well even un-
der the presence of obfuscation transformations. As reported
in the previous work, the final match set, though devoid of
missing matches, contains a small number offalse matches.
The algorithm was designed to avoid missing matches while
producing false matches because when the mapping is pre-
sented to the user, it is easier for the user to detect a spurious
match than it is to identify a missing match.

2.3 Intraprocedural Matching

The goal of the intraprocedural control flow matching is
to generate mappings between edges of the two program ver-

sions. This step relies on solutions produced by the preced-
ing steps, namely call graph matching and instruction match-
ing. Intraprocedural control flow matching is applied to cor-
responding functions identified during call graph matching.
The instruction matching information (i.e., mapping between
instructions and a set of unmapped instructions) is also used
during control flow matching. Given the above information,
next we describe an algorithm to match the control flow of a
pair of corresponding functions. We present the algorithm in
two steps. In the first step we present an intraprocedural con-
trol flow matching algorithm that assumes that there are no
false positives produced in the instruction matching phase.
In the second step we deal with the issue of false positives.

2.3.1 Algorithm

Match(EdgeList, source1, next) {
case next0 :

for each edge{next0, i}
Match(EdgeList ∪ {next0, i}, source1, i);

end for
case next1 :

if ∃ edge{source′

1
, next′

1
}

MatchSet = MatchSet∪
(EdgeList, {source′

1
, next′

1
});

else
if ∃ path : source′

1
, i∗

0
, next′

1

for each path : source′

1
, i∗

0
, next′

1

MatchSet = MatchSet∪
(EdgeList, {source′

1
, i∗

0
, next′

1
});

end for
else

MatchSet = MatchSet ∪ (EdgeList, φ);
endif

end case
}
Main() {

for each edge{a1, b}
Match({a1, b}, a1, b);

end for
}

Figure 6. Intraprocedural Matching Algorithm
Let us consider two functionsF andF ′ from the origi-

nal version and the transformed versions respectively. Let
us consider the situation in which the original version was
optimized aggressively after which obfuscation transforma-
tions were applied, finally yieldingF ′. Because of the ap-
plication of optimization and then obfuscation transforma-
tions, several instructions (and edges) present inF ′ may not
be present inF (due to the effects of obfuscation) and sim-
ilarly several instructions (and edges) present inF may be
absent inF ’ (due to the effects of optimization). The goal of
this algorithm is to find a correspondence between the edges
in the DCFGs of the two versions. In the following algo-
rithm a node denoted with subscript0 (x0) indicates that the
instruction (i.e.,x) does not have a match. If a node is spec-
ified with a subscript1, it means that the instructionx1 has
a matching instruction in the other version. Alsox′1 refers to
the matching instruction in the transformed function that cor-

responds to instructionx1 in the original version. Note that
the above information are obtained from the previous instruc-
tion matching step.The algorithm works by parsing edges in
the original version one by one till a path is formed such
that the initial and final nodes have corresponding matches
in the transformed version, while the nodes in between(if
any) are unmatched. In other words, it parses edges of the
form source1i

∗
0dest1. Then it attempts to find a correspond-

ing sequence of edges fromF ′ matching the above. For in-
traprocedural matching we define the signature of an edge
(or a sequence of edges) to be the source and destination
nodes. The signature compatible edges from the transformed
version are those edges whose source and destination nodes
have matches in the original version. In other words the sig-
nature compatible edges from the transformed version are
the set of paths fromsource′1 to dest′1. But not all such
paths are structurally compatible with the original. Only the
paths fromsource′1 to dest′1 that pass through unmatched
nodes are structurally compatible. Thus the algorithm gen-
erates all possible paths fromsource′1 to dest′1 that in turn
pass through unmatched nodes. This is precisely the required
sequence of edges matching the original.

In the functionmain, all edges of the form(a1, b) are
considered for finding a match. The functionmatchdoes
the actual work of first parsing the input edges into the re-
quired form (source1i

∗
0dest1) and searching for matches in

the transformed version. To enable this we have the source
node, the destination and a list of edges (including the source
edge) that has been encountered till now, as the parameters
for the matchfunction. If the destination (thenextparame-
ter in thematchfunction) turns out to be an unmatched node,
then we continue parsing edges till the destination node hasa
corresponding match. Having parsed the original edges into
the required form, we now proceed to find the corresponding
matching edges in the transformed version. If there indeed
is an edge between the corresponding source (source′1) and
destination (dest′1) nodes (in the transformed version), then
that edge is added to the match set. Otherwise, all paths from
the source to the destination are generated. Out of this, a
subset of paths that only pass through unmatched nodes are
added to the match set.

y3

y7

y4

e1

i3

i1

e3i2

e2

e4

function A

i3’

y6

x2

i1’’ i2’’

y2

function A’

y5

x1

i3’’

y1

(a)Original CFG
(b) Modiefied CFG

e5

e6

Figure 7. Example matching

An Example. Intraprocedural control flow matching is ex-
plained using the example in Fig. 7. In this example, the orig-
inal version itself contains an obfuscation transformation: an
advanced form of opaque predicate transformation in which
nodei3 is duplicated intoi′3 and edgese5 ande6 are added.
An ’opaque’ predicate is added ati2 which some times leads
to the execution ofi′3 and sometimesi3. The software pi-
rate, who manages to uncover this opaque predicate transfor-
mation, himself/herself then adds Wang’s control flow flat-
tening in his modified version. Hence the modified version
does not contain the opaque predicate but additionally the
flattened version of the original. Starting with the nodex1

applying the algorithm, we obtain matches for the sequence
of edges in the modified to the original. For example, con-
sider the sequence(y1y2y3y4). This sequence is basically an
edge between two matched nodes(i′′1 , i′′2). Since the two in-
structions correspond toi1 andi2 of the original, we check
to see if there is an edge between these instruction, resulting
in matching(y1y2y3y4) to e1. Now let us consider the se-
quence(y6y7y3y1). These edges connectsi′′3 andi′′1 . As i′′3
of the modified version matches bothi3 andi′3 of the origi-
nal, the sequence of edges thus match with bothe6 ande4.
Finally let us consider the sequence(y4y5y3y1). These edges
take us fromi′2 to i′1 which in turn map toi2 andi1 respec-
tively. Since neither a direct edge fromi2 to i1 is present,
nor is there a sequence of edges fromi2 to i1 through in-
structions that have no matches in the transformed version,
the sequence(y4y5y3y1) is not matched. In a similar fashion
all other edges are matched.

2.3.2 Dealing with false matches

The above intraprocedural control flow matching algorithm
does not account for false matches produced in the instruc-
tion matching step. The presence of false matches affects

a

c’

a’

b’

b

d

x

Figure 8. False Matches
the above algorithm in two ways. First, the effects of false
instruction matches are carried over to this stage and pro-
duce false edge matches. For example in Fig. 8 instruction
b ∈ V (P) is (correctly) matched withb′, but is also (falsely)
matched withc′. Because of this, the edge(a, b) ∈ E(P)
will also be matched with the edge(a′, c′) in addition to the
correct match,(a′, x, b′). Second, and more importantly, this
may even cause some false negatives in the intraprocedural
control flow matching. In Fig. 8, the instructionx ∈ V (T)
is supposed to be unmatched. This would have enabled the

correct matching of the(a′, x, b′) ∈ T with (a, b) ∈ E(P).
But if x is falsely matched withd (say), then the correct edge
match will not be formed eventually resulting in a false neg-
ative.

We use prioritization of the matching instructions to solve
the problem. During the instruction matching phase, when-
ever a node in the original program matches multiple instruc-
tions in the transformed program, we prioritize the instruc-
tions using the structure of the graphs. Supposea ∈ V (P)
is the original instruction that was matched with the set
C = c1, c2...cn of instructions in the transformed version,
we prioritize eachci by computing theconfidencemeasure
for each one of them. In the following definition of confi-
dence, the expressionreachable(a,b)evaluates to true if b is
reachable from a and the expressionC(a,b)evaluates to true
if a and b are signature compatible.

Definition. (Confidence of the match ofa ∈ V (P) with
ci ∈ V (T))

|v1 : {reachable(a, v1) ∧ (∃v2 : reachable(ci, v2) ∧ C(v1, v2))}|

|v1 : {reachable(a, v1)}|

wherev1 ∈ V (P) andv2 ∈ V (T)

Let us first consider the denominator. It refers to the cardi-
nality of the set of nodes reachable from the nodea in the
original CFG. The numerator refers to the cardinality of the
set of nodes reachable froma, each of which additionally
should be signature-compatible with some nodev2 (of the
transformed CFG) which in turn should be reachable fromci

in the transformed CFG. Intuitively,confidenceof ci is the
measure of the total reachable nodes froma having match-
ing counterparts in the transformed CFG that are reachable
from ci. Having obtained the confidence values for each of
ci we then proceed to sort them and assign each ofci a num-
ber based on its position in the sorted order. Using these
priority values, we can order the matching edges in the in-
traprocedural matching algorithm. Now let us deal with the
second problem. Consider a nodex ∈ V (T). Suppose it is
matched with nodesa1, a2...an (ai ∈ V (P)) with priorities
p1, p2...pn respectively, we compute a confidence metric for
x which is the confidence thatx ∈ T is actually unmatched.
Also note that the lowest of all the priority values amongpi

determines the the best match ofx. Intuitively, higher this
value, higher the confidence that this node is actually un-
matched. Hence we use the least priority value as the mea-
sure of unmatched confidence.

Unmatched.confidence(x) = Min(p1, p2...pn)

We now describe the use of priority values in the intrapro-
cedural control flow matching algorithm. Assume we need
to find the edge(s) in the transformed version correspond-
ing to the edge(a, b) ∈ E(P). Earlier in the description of
intraprocedural-procedural control flow matching algorithm,

we assumed that there were uniquea′ and b′ in the trans-
formed version corresponding to the original. But now there
could be potentially a set of nodesA′ andB′ corresponding
to the original. First we choosea′ ∈ A′ andb′ ∈ B′ in the
order of their priorities in matching the originala andb. This
takes care of the first problem. But there could be be several
paths froma′ to b′. We prioritize the paths froma′ to b′ as
follows. For satisfying the structural compatibility the path
from a′ to b′ should pass through unmatched nodes. We use
theunmatched.confidencevalues of the intervening nodes as
a measure of the path’s confidence. For each path froma′ to
b′ we calculate the confidence of the path as:

ConfidenceofPath(a′xib
′) =

ΣUnmatched.confidence(xi)

|xi|

Intuitively the confidence of a path is greater, if all the inter-
mediate nodes in the path are more likely to be unmatched
nodes. Using the confidence values for each path, the paths
can be prioritized.

3 Experimental Evaluation
To evaluate our matching algorithms, we implemented

some well-known obfuscation transformations in addition to
function inlining and other optimizations into DIABLO , a
binary rewriting tool [5]. All the programs were statically
linked as diablo works on statically linked programs. We
then modified the toollackeyof Valgrind [19] to collect the
dynamic execution histories consisting of values and depen-
dencies exercised. We zeroed out all the values that were
addresses, as the actual values themselves are likely to be
different across executions. The interprocedural transforma-
tions we applied werefunction inliningandstatic disassem-
bly thwarting [10], an obfuscation transformation that can
be thought as a variant of outlining. Before applying the in-
traprocedural obfuscation transformations we applieddead
code elimination, as obfuscation of code that is not executed
can be easily filtered and is not very useful. Finally we ap-
plied theopaque predicates transformation[4] that have a
property that is known at obfuscation time, but which is hard
to discover afterward. The effect of this transformation is
that the control flow of a program can be cluttered with un-
realizable paths.

We evaluate the effectiveness of our matching algorithms
in terms of accuracy and speed. Recall that the first two
transformations, Function Inlining and Static Disassembly
Thwarting, mainly change the interprocedural control flow,
while the last two obfuscate the intraprocedural control flow
of the programs. Thus we experiment with three versions of
programs. First, the original unobfuscated version(u). Sec-
ond, a version in which the first two transformations are ap-
plied to mainly alter the interprocedural control flow(inter).
Finally the third version in which the last two transforma-
tions arealsoapplied in addition to the two used in the pre-
vious version(intra+inter).

3.1 Effects of applied transformations

We evaluated our algorithms using eight C-programs of
the SPECint 2000 suite. For collecting the traces, we ran the
three versions (u,inter,inter+intra) withtestinputs. The effect
of the control-flow altering transformations on the programs
used in this evaluation are summarized in Table 4. For each
version of the benchmark we give the following information:
the static number of functions and instructions, the dynamic
number of instructions and functions calls and the dynamic
number of branch statements. The large variation in the val-
ues across different versions, shows that the transformations
alter the programs aggressively.

Table 4. Effects of the Transformations.

Bench. Functions Instructions Br.(106)
Static Dyn.(106) Static Dyn.(106)

bzip
86 17.6 5105 3760 510
69 19.5 5766 4300 510
69 157 11625 12100 1350

gzip
94 8.21 3660 975 160
86 8.53 3997 1150 160
86 78.8 8368 4350 441

mcf
107 .460 4623 127 27.0
89 3.89 4854 165 27.0
89 23.8 7383 603 60.1

crafty
169 1.73 22588 148 13.6
151 2.83 25355 168 13.6
151 11.3 51872 367 39.8

twolf
220 2.21 18513 223 28.2
180 7.54 20641 280 28.2
180 38.6 49132 816 85.0

parser
244 34.6 17659 1891 367
201 63.1 20390 2205 367
201 315 36813 7456 992

gap
282 10.3 16483 466 71
240 19.2 18801 561 71
240 94.2 31123 1522 251

perl
424 7.6 25574 42.9 6.67
368 12.8 29283 48.1 6.67
368 21.6 51765 167 25.0

3.2 Interprocedural Matching

In this experiment, we match the original callgraph with
the one in which function inlining and static disassembly
thwarting is applied. Accuracy of the matches are measured
using the metrics of false matches and missed matches. It is
important to note that since we had access to the obfuscation
code and the code for performing inlining, we knew the exact
matches. This served as an oracle for evaluating the match-
ing algorithms. The results are summarized in Table 5. As
we see, we do not miss any correct matches in all the bench-
marks and we do not obtain false matches in six out of eight
of the benchmarks. The false matches arose when functions
from the original version were said to be inlined although
they were not. The false matches arose because the signa-
tures of some of the functions were too small. All functions
in the original version were matched, and all but one function
in the transformed version were matched. This corresponds
to thebranch functionadded by the obfuscation transforma-
tion. We also measured the time taken for performing in-
terprocedural matching on a Pentium 4 3GHz machine with

1 GB RAM. As we see the time taken for performing the
match is very small. A maximum of 16 seconds were needed
bybzip.

Table 5. Interprocedural Matching
Bench. False Missed One-Many Time

Matches Matches Matches (secs)

bzip 0 0 18 16
gzip 0 0 9 11
mcf 0 0 8 2
crafty 0 0 16 10
twolf 7 0 48 9
parser 0 0 44 12
gap 0 0 43 9
perl 5 0 57 1

Table 6. Instruction Matching
Bench. Actual Matches(%) Generated Matches(%) Time

Orig. Obfus. Orig. Obfus. secs

bzip 99 56 99 72 251
gzip 100 44 100 63 157
mcf 100 63 100 76 120
crafty 99 43 99 58 186
twolf 99 37 99 51 183
gap 99 55 99 70 212
perl 98 50 98 66 85
parser 100 47 100 68 282
Mean(%) 99 49 99 65 184

3.3 Instruction Matching

Using the function mappings produced, we then proceed
to match the instructions inside the each matched functions.
The first two columns of Table. 6 represent the percent-
age of original and obfuscated instructions that are actually
matched. The actual instruction matches are obtained before-
hand by making the obfuscation tool emit the matching in-
structions. We find that most of the original instructions
(98-100%) are matched. The corresponding value for the
matches generated by our algorithm is the same. In other
words, there are no missed matches. This is not surpris-
ing, since the matching algorithm first forms a conservative
match set based on signature compatibility and then proceeds
to iteratively prune the set using structural information.We
observe that only around 49% of the obfuscated instructions
are actually matched. This is because the rest of them corre-
spond to the additional code added by the obfuscation trans-
formations. Next we see that the corresponding value gener-
ated by our algorithm is 65% (i.e. higher that 49%). This
is because the algorithm is not able to prune all the false
matches due to some instruction signatures being too short
and the dynamic dependence graph structure being too sim-
ple. We also measured the time taken to match the instruc-
tions and it amounts to 3 minutes on the average which is
very reasonable.

3.4 Intraprocedural Matching

In this experiment, we evaluate the effectiveness of in-
traprocedural matching. As we discussed earlier, the output
of this stage is the mapping between the original edges and

Table 7. Intraprocedural Matching
Bench. Actual Without Pr. With Pr.

Matches Missed False Missed False

bzip 278 86 21 12 17
gzip 150 34 5 6 8
mcf 245 61 7 7 8
crafty 189 43 12 5 8
twolf 557 147 29 21 27
gap 238 94 14 13 18
perl 168 52 24 4 10
parser 221 95 16 19 25
Mean(%) 100 29.9 6.2 4.2 5.9

the obfuscated sequence of edges. This algorithm thus emits
a set of mappings of edges between the two versions. But
unlike the previous evaluation, we do not have the actual
mappings between the control flow edges even though we
have the correspondence between instructions and functions.
Therefore the actual correspondences (the oracle data) be-
tween the control flow edges can only be identified by man-
ual inspection. Hence we performed the evaluation of this
algorithm by manually inspecting the control flow graphs.
Since it was too tedious to inspect the control flow matches
within each and every function, we used the following crite-
ria to select one function from each benchmark for this eval-
uation. In particular, we selected a sufficiently large function
for which the number of distinct executed instructions in the
two versions differed the most.

It should be noted that although the mappings arein-
spected manuallyfor evaluation purposes, they aregenerated
automaticallyusing our matching algorithm. We would also
like to note that this procedure mirrors the actual application
of matching algorithms to piracy detection. During piracy
detection a manual inspector is needed to view the control
flow matches generated by our algorithm and use this evi-
dence to decide whether the transformed version is indeed a
pirated one.

As we see in Table. 7, the first column refers to the ac-
tual number of matches that exists between the two versions
found by manual inspection. The next two columns cor-
respond to the application of the interprocedural algorithm
without using prioritization (of Section 2.5.2) and in the pres-
ence of false instruction matches. Next we applied priori-
tization producing the results in the last two columns. In
this process, we consider only the match with the highest
priority, i.e we only choose the path with the highestUn-
matched.Confidenceas the legal match and reject the rest.
We find that this simple heuristic is highly effective and is
able to significantly reduce the missed matches to around 4%
and the false matches to around 6%.

4 Related Work

Static differencing algorithms.An existing class of algo-
rithms that compare two program versions arestatic differ-
encingalgorithms [1, 6, 9, 20, 8]. These algorithms perform
differencing at different levels: while [1, 9] find differences

by comparing control flow graphs, [6] compares input/output
dependences of procedures and [20, 8] work by comparing
source code. These algorithms work with source or interme-
diate code representations of the program versions. In con-
trast our matching algorithms work at binary level and they
match instructions that dynamically behave the same even
though they statically appear to be different.

Differencing dynamic histories.Research has been car-
ried out ondifferencing dynamic historiesof program execu-
tions. The benefits of such algorithms for software mainte-
nance have been recognized. In [12] Reps et al. made use
of path profiles to recognize Y2K bugs in programs. Wilde
[16] has developed a system that enables a programmer to
visualize the changes in the dynamic behavior of a program.
However, in these works dynamic histories of different ex-
ecutions, corresponding to two different inputs, of a single
version of a program are compared. In contrast, our work
considers matching of dynamic histories of two program ver-
sions on the same input.

Comparison checking[7] is a technique that determines
whether erroneous behavior of the optimized version is be-
ing caused by a bug in the original unoptimized version that
was unmasked by optimizing transformations or whether it is
due to a bug that was introduced due to an error in the opti-
mizer. Matching of executed instruction histories can be used
to identify whether the bug is in fact in the original versionor
in the optimization transformation [18]. While the focus of
our work has been to use matching for comparison checking
and software piracy detection, variants of matching have also
been proposed for carrying out impact analysis to assist in
regression testing [11]. There has been work on deobfusca-
tion [13] of the control-flow flattening transformation using
a combination of static and dynamic analysis. While the goal
of the above work is to transform an obfuscated binary into
the original, the goal of our work is to match the executions
of the two versions. Also our techniques are general and not
targeted towards any particular obfuscation transformation.

5 Conclusions

In this paper, we presented a comprehensive dynamic
matching algorithm that works in the presence of aggressive
control flow transformations including interprocedural trans-
formations like function inlining/outlining and and intrapro-
cedural transformations like control flow flattening. Our re-
sults show that our algorithms are able to match the dynamic
execution histories of the original and transformed versions
with a high degree of accuracy and speed, for the benchmarks
considered.

Acknowledgments

We would like to thank the anonymous reviewers for
providing useful comments. This work is supported by
grants from Microsoft and NSF grants CNS-0719791, CNS-
0708199, CNS-0614707 and CCF-0541382.

References
[1] T. Apiwattanapong, A. Orso, M.J. Harrold, “A Differencing Algorithm

for Object-Oriented Programs,”IEEE International Conf. on Automated
Software Engineering, pages 2-13, 2004.

[2] S. Chow, Y. Gu, H. Johnson, V. Zakharov, “An Approach to the Obfus-
cation of Control-Flow of Sequential Computer Programs”,G. Davida
and Y. Frankel, editors, Information Security, ISC 2001, volume 2200
of Lectures Notes in Computer Science (LNCS).

[3] C. Collberg, C. Thomborson, and D. Low, “Breaking Abstractions
and Unstructuring Data Structures,”IEEE International Conference on
Computer Languages, pages 28-38, Chicago, IL, 1998.

[4] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfus-
cating Transformations,”Techreport, The University of Auckland, New
Zealand.1997.

[5] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere,
“Link-Time Optimization of ARM Binaries”,ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for EmbeddedSystems
(LCTES), 2004.

[6] D. Jackson and D.A. Ladd, “Semantic Diff: A Tool for Summarizing
the Effects of Modifications,”IEEE Conference on Software Mainte-
nance, pages 243-252, Nov. 1994.

[7] C. Jaramillo, R. Gupta, and M.L. Soffa, “Comparison Checking: An
Approach to Avoid Debugging of Optimized Code,”7th European Soft-
ware Engineering Conference and ACM SIGSOFT 7th Symposium on
Foundations of Software Engineering, LNCS 1687, Springer Verlag,
pages 268-284, Toulouse, France, September 1999.

[8] R. Komondoor and S. Horwitz, “Semantics-Preserving Procedure Ex-
traction,” 27th ACM SIGPLAN-SIGACT on Principles of Programming
Languages, pages 155-169, 2000.

[9] J. Laski and W. Szermer, “Identification of Program Modifications and
its Applications to Software Maintenance,”IEEE Conference on Soft-
ware Maintenance, pages 282-290, Nov. 1992.

[10] C. Linn and S. Debray, “Obfuscation of Executable Code to Improve
Resistance to Static Disassembly”,Proceedings 10th. ACM Conference
on Computer and Communications Security(CCS 03), Oct 2003.

[11] M.K. Ramanathan, A. Grama, and S. Jagannathan, “Sieve:Automati-
cally Detecting Variations Across Program Versions,”IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2006.

[12] T. Reps, T. Ball, M. Das, and J. Larus, “The Use of ProgramProfiling
for Software Maintenance with Applications to the Year 2000Problem,”
6th European Software Engineering Conference and ACM SIGSOFT
5th Symposium on Foundations of Software Engineering, pages 432-
449, 1997.

[13] S. Udupa, S. Debray, and M. Madou, “Deobfuscation: Reverse Engi-
neering Obfuscated Code”,12th Working Conference on Reverse Engi-
neering, (WCRE), Novemeber 2005.

[14] Z. Wang, K. Pierce, and S. McFarling, “BMAT - A Binary Matching
Tool for Stale Profile Propagation,”The Journal of Instruction Level
Parallelism, 2, May 2000.

[15] C. Wang, J. Davidson, J. hill, and J. Knight, “Protection of Software-
based Survivability Mechanisms,”International Conference of Depend-
able Systems and Networks, pages 193-202, Goteborg, Sweden, July
2001.

[16] N. Wilde, “Faster Reuse and Maintenance Using SoftwareReconnais-
sance,” Technical Report SERC-TR-75F, SERC, Univ. of Florida, CIS
Department, Gainesville, FL, July 1994.

[17] X. Zhang and R. Gupta, “Whole Execution Traces,”IEEE/ACM 37th
International Symposium on Microarchitecture, Portland, Oregan, De-
cember 2004.

[18] X. Zhang and R. Gupta, “Matching Execution Histories ofProgram
Versions”,10th European Software Engineering Conferenceand13th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 197-206, 2005.

[19] http://valgrind.org/

[20] MOSS: http://theory.stanford.edu/ aiken/moss/

