
Instruction Set Limitation in Support of
Software Diversity

Bjorn De Sutter!, Bertrand Anckaert, Jens Geiregat, Dominique Chanet, and
Koen De Bosschere

Ghent University, Electronics and Information Systems Department
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

bjorn.desutter@elis.ugent.be

Abstract. This paper proposes a novel technique, called instruction set
limitation, to strengthen the resilience of software diversification against
collusion attacks. Such attacks require a tool to match corresponding
program fragments in different, diversified program versions. The pro-
posed technique limits the types of instructions occurring in a program
to the most frequently occurring types, by replacing the infrequently
used types as much as possible by more frequently used ones. As such,
this technique, when combined with diversification techniques, reduces
the number of easily matched code fragments. The proposed technique
is evaluated against a powerful diversification tool for Intel’s x86 and an
optimized matching process on a number of SPEC 2006 benchmarks.

Key words: diversity, binary rewriting, code fragment matching, software
protection

1 Introduction

Collusion attacks on software involve the comparison of multiple versions of
an application. For example, an attacker can learn how encryption keys are
embedded in an application by comparing two or more versions that embed
different keys. Similarly, an attacker can compare two application versions to
discover how fingerprints are embedded in them. Or an attacker can compare
an application before a security patch has been applied to the same application
after the patch has been applied to discover the vulnerability that was addressed
by the patch, and then use that information to attack unpatched versions.

Attackers also want to distribute their cracks of popular software. These
cracks are nothing more than scripts that automate the attack that was devised
manually by the attacker. Generating these scripts is rather easy: it suffices to
perform a checksum on the application on which the script will be applied to
! The authors want to thank the Fund for Scientific Research - Flanders (FWO), the

Institute for the Promotion of Innovation by Science and Technology in Flanders
(IWT), and Ghent University for their support.

make sure that that application is identical to the one originally cracked, and to
apply the necessary transformations as simple offset-based binary code patches.

In the above scenarios attackers exploit the valid assumption that differ-
ent copies of the software are lexically equivalent where they are semantically
equivalent. So a natural way to defend against these attacks is to break this as-
sumption. The goal of diversification is therefore to make sure that semantically
equivalent code fragments are not lexically equivalent, and that the semantically
equivalent, corresponding code fragments constituting two program versions are
not easily recognized as being corresponding fragments. If diversification is suc-
cessful, more effort will be needed to discover true semantical differences between
program versions (in the form of keys, fingerprints or patched vulnerabilities),
and it will make it much harder to develop an automated script that applies a
crack to all versions of some application.

A defender can start from one single master copy of an application, and
make diversified copies of the master by applying a unique set of transformations
to each copy. These transformations include compiler transformations such as
inlining, code factoring, tail duplication, code motion, instruction rescheduling,
register reallocation, etc. as well as transformations that have been developed
for obfuscating programs, such as control flow flattening, branch functions, and
opaque predicates. For each copy, the transformations can be applied at different
locations, or with different parameters. While none of these transformations
in isolation make it very hard to match corresponding fragments in diversified
programs, the combined application of all these techniques does make it harder.

In this paper, we propose a novel transformation for software diversifica-
tion that will make the matching even harder. Instruction set limitation (ISL)
replaces infrequently occurring types of instructions in programs with more fre-
quently occurring types of instructions. By itself, this transformation does not
make programs more diverse. But by eliminating infrequently occurring instruc-
tions, this technique does limit the number of easier targets for a tool that tries to
match corresponding fragments in diversified program versions. As such, the pro-
posed technique strengthens the resilience of existing diversification techniques
against tools for matching program fragments.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information and related work on program fragment matching, diversify-
ing transformations, and instruction selection. The concept of ISL is discussed in
Section 3, and an algorithm is proposed in Section 4. ISL is evaluated on native
Intel’s x86 code in Section 5, and conclusions are drawn in Section 6.

2 Background

In any of the above attacks against diversified software, an attacker first has to
try to match corresponding code fragments in different software versions. For any
non-trivial program and any non-trivial diversity, automated support is needed
in the form of a tool that generates a list of estimated matches between code
fragments. The accuracy of such a matcher can be described in terms of false

positives and false negatives. These are the fractions of the estimated matches
that are not real matches, and the fraction of the real matches that are not
included in the estimated matches. Any diversification should try to increase
the false positive matching rate and the false negative matching rate. In the
remainder of this section, we briefly introduce the inner workings of matchers,
of diversification tools, and of the role of instruction selection in these tools.

The attack model we will use here is that of an attacker that can observe
a program or a program’s execution in every detail. In this malicious host at-
tack model, the attacker has full control over the host machine(s) running the
software under attack. These might be real machines, or virtual machines, or a
combination of both, that can run, for example, binary instrumentation tools
such as valgrind [1] or Diota [2].

2.1 Code Matching

Attackers are most often only interested in understanding or changing the be-
havior of software. They are not interested in parts of the software that do not
contribute to its behavior. Hence attackers are only interested in the code that
actually gets executed. This implies that attackers can run a program, observe
it, collect data on the executed code, and then use that data in a matching tool.
In other words, the matching tool can be guided by dynamic information. A
formal description of how to construct matchers using dynamic information is
presented in [3]. Here we focus on the fundamental concepts.

Several kinds of information can be used by a matching tool to compare
code fragments such as instructions or basic blocks. The instruction encodings
can be considered, which consist of opcodes and type of operands. Furthermore,
the values of data produced and consumed by instructions can be used. Or the
execution count, i.e. the number of times that an instruction is executed for a
specific input to the program. An excellent base for comparison is also provided
by the first execution count: i.e. the order in which instructions are executed
for the first time. And a matcher can consider the locations at which system
calls occur, together with the arguments passed to the operating system. Using
any combination of these types of information, a matcher can assign confidence
levels to instruction pairs, indicating with what confidence the matcher believes
the pair to be an actual match. The final estimated mapping then consists of all
those pairs of which the confidence level surpasses a certain threshold. Obviously,
when the threshold is increased, fewer false positives will be found, but this will
likely be at the expense of increasing the false negative rate. And vice versa.

None of the above types of matching information take context into account.
Instead they describe local properties of single instructions. On top of that,
control flow and data flow information can be considered. Suppose that we
already have an estimated mapping based on the local information. By observing
a program’s execution, an attacker can reconstruct a dynamic control flow graph
(including only the executed code and executed control transfers), and a dynamic
data dependence graph. The existing mapping can then be refined by taking
into account, for each instruction or basic block in these graphs, how well their

context matches. For example, consider two instructions in two program versions
that the matcher considers as potential matches, albeit at a very low confidence
level. The matcher can then take into account these instructions’ successors and
predecessors in the control flow graph and data flow graph of both program
versions. If the successors and predecessors were previously matched with high
confidence, the matcher can increase the confidence of the match between the
two instructions themselves as well.

There are four mechanisms to combine matchers based on different types
of information: combination, limitation, iteration, and bounding. First, match-
ers can take into account combinations of confidence levels, and use combined
thresholds instead of thresholds on the individual confidence levels. Secondly,
matchers can limit the number of estimated matching pairs per instruction to
a certain upper limit. This limitation heuristic relies on the assumption that an
instruction in one program version usually corresponds to at most a few instruc-
tions in another version. Besides resulting in more accurate results, limitation
can also speed up the matching because smaller sets of possible matching can-
didates will be considered. This is particularly the case in iterative matchers. In
each iteration, an iterative matcher either extends the existing estimated map-
ping by adding new pairs that surpass its confidence level, or it can filters the
existing mapping by throwing out pairs that fall below its confidence threshold.
Finally, bounding can be used to speed up the matching process, and to con-
sider more contextual information of instructions. With bounding, matchers are
first applied to basic blocks instead of instructions. There are much fewer basic
blocks, so matching basic blocks will be a faster process. Furthermore, consid-
ering a fixed number of successor or predecessor basic blocks in the control flow
graphs or data dependency graphs will take into account much more context
than considering the same number of successor or predecessor instructions.

During our research on matching and diversification, we developed the match-
ing system described in Table 1. This system was developed and optimized by
means of an interactive tool that enables easy exploration of the matching system
design space and that shows statistical results on false rates, as well as individual
cases of false matches. A more detailed discussion of all the material discussed in
this section and the components of our prototype system, including the merits
and caveats of different types of matchers, are discussed in detail in [3].

2.2 Diversification

Many program transformations have been developed in compiler research. By
applying them selectively in different places, different versions of an application
can be generated starting from the master program. To implement this, it suffices
to add an additional precondition (i.e., a validity check) for each transformation
that is based on two parameters. One of them will be a user-specified probability
p, which can be different for each type of transformation, and the other will be
a number n generated by a pseudo-random generator. If the generated numbers
are in the interval [0, 1] and the added precondition is n >= p, then p denotes

Iteration Granularity Phase #Matches Classifier Threshold Direction ∆
1 bbl Init 1 Syscalls 0.3
2 bbl Extend 1 Encoding 0.5

Data 0.5
Order 0.5
Freq. 0.5

3 bbl Extend 2 Encoding 0.1
CF 0.1 BOTH 3

4 bbl Filter CF 0.1 UP 3
5 bbl Filter CF 0.1 DOWN 3
6 bbl Filter DF 0.1 UP 3
7 bbl Filter DF 0.1 DOWN 3
8 bbl Extend 2 Data 0.7

DF 0.3 BOTH 3
9 bbl Extend 2 Encoding 0.7

CF 0.3 BOTH 3
10 trans Init 1 Syscalls 0.3
11 trans Extend 1 Encoding 0.5

Data 0.5
Order 0.5
Freq. 0.5

12 trans Extend 2 Encoding 0.1
CF 0.1 BOTH 3

13 trans Extend 2 DATA 0.7
DF 0.3 BOTH 3

14 trans Extend 2 Encoding 0.7
CF 0.3 BOTH 3

15 ins Extend 3 Encoding 0.6
CF 0.1 BOTH 5

16 ins Filter CF 0.1 BOTH 5
17 ins Filter DF 0.1 BOTH 5
18 ins Filter Encoding 0.1
19 ins Filter Data 0.1
20 ins Filter Freq. 0.1
21 ins Extend 1 Encoding 0.1

CF 0.5 BOTH 5

Table 1. Settings of the default matching system: 21 matchers are applied iteratively, some of
which combine difference types of information. The first 9 operate at the basic block level, the next
5 perform the transition from basic blocks to instructions by executing instruction-level matchers
bound by the basic block result. Finally, 7 matching steps are performed at the instruction level,
not bound by the basic block results. All confidence thresholds are for a confidence scale of [0, 1].
For each iteration, the maximum number of selected matches is presented. For the context-aware
matchers, the direction is given in which neighboring nodes are traversed, and the distance, i.e. the
length of that traversal. UP refers to predecessors, DOWN to successors.

the probability with which a transformation will be applied. The diversity is
maximized by maximizing p(1− p), which happens for p = 0.5.

In some cases, more than two alternatives (to transform or not to transform)
are available. For example, code schedulers can generate many different sched-
ules, much more than two per code fragment, and many different types of opaque
predicates can be inserted. In those cases, slightly more complex decision logic
needs to be implemented. Still, they all can be normalized to binary choices.

As some transformations involve the insertion of extra code in a program
or code duplication, applying all transformations with probability 0.5 may slow
down or bloat the program code significantly. To limit the overhead, two ap-
proaches can be taken. First of all, smaller values for p can be used. Secondly,
the application of the transformations that insert overhead in the program can

be limited to certain parts of the program that are determined by profiling the
programs. For example, to limit the code size overhead, one can limit the trans-
formations to those code fragments that are executed for most of the common
(types of) program input. Or to limit the performance overhead, one can limit
the transformations to code that is executed only infrequently.

Finally, one needs to take into account the practicality of selectively applying
transformations as a diversification technique. For example, applied transfor-
mations should likely survive later transformations, rather than being undone.
Furthermore, as recompiling a whole application for each sold copy is not vi-
able, applied transformations should not require an entire recompilation. For
these reasons, we believe that the feasible transformations are limited to com-
piler back-end transformations or to transformations that can be applied in a
post-pass program rewriter, such as a link-time rewriter. Our prototype diversi-
fier is based on the x86 backend of the Diablo link-time rewriting framework [4,
5] that has previously been used for obfuscation [6, 7] and steganography [8].
This prototype diversifier applies the following transformations. Inlining [9], tail
duplication [9] and two-way predicate insertion [10] involve code duplication.
Identical function elimination, basic block factoring and function epilogue fac-
toring [11] all involve the replacement of duplicate code fragments by a single
copy. All of those transformations not only generate diversity, they also break the
assumption that there is a one-to-one mapping between two program versions’
instructions. Thus, they can fool matchers that limit the number of accepted
matches as discussed in Section 2.1. Furthermore, our prototype applies control-
flow flattening [12], branch indirection through branch functions [13], and opaque
predicate insertion [10]. These transformations originate from the field of pro-
gram obfuscation. Fundamentally, they add unrealizable control paths of which
it is hard to recognize their unrealizability. As such, they make the number of
paths in the control flow graph explode, and thus make it much harder for control
flow based matchers. Finally, our prototype implements a number of random-
ized compiler back-end tasks [9]: randomized instruction selection (see the next
section), randomized instruction scheduling, and randomized code layout. The
latter two transformations thwart matchers that rely on fixed static instruction
orders.

2.3 Instruction Selection

Compilers map source code operations onto the operations supported in their
intermediate representation, and then map those operations onto instructions
available in the instruction set architecture (ISA) for which they generate as-
sembly code. During that second step, they often have multiple choices avail-
able, because usually many sequences of instructions are semantically equivalent.
Compilers are deterministic, however, and strive not only for semantic correct-
ness, but also optimal performance and code size, so they typically reuse the
same instructions and instruction patterns a lot. Because some instructions are
more useful than others for more frequently occurring operations, some instruc-
tions will be used much more frequently than others.

This instruction selection and its resulting non-uniform instruction frequency
are important for two reasons. Relying on a tool like a superoptimizer that gen-
erates all possible different, but semantically equivalent code sequences, we can
replace the deterministic behavior of a compiler’s code selection by a randomized
selection to diversify programs, as mentioned in Section 2.2. In our prototype
diversifier, we randomized the instruction selection by selectively replacing single
instructions by alternative single instructions. The alternatives are taken from a
list of equivalent instructions that was produced by a superoptimizer [14].

Secondly, it is important to understand that the non-uniform distribution of
instruction frequencies can be exploited by a matcher. For any matcher based on
instruction encoding, the infrequently occurring instruction types will be easy
targets, as the matcher has to find matches among less candidates than it needs
to do for frequently occurring instructions. As a defense against collusion attacks
and matchers, we hence propose to remove as many of the infrequently occurring
instructions as possible by applying ISL. This will not only make it harder for
instruction encoding based matchers, but it will also do so for matchers based
on control flow and data flow. The latter will happen when single instructions
are replaced by sequences of multiple instructions, as this replacement inserts
new instructions and new data flow. Because of the new instructions, limiting
matchers as discussed in Section 2.1, will also be hampered.

We should note that, to some extent, ISL can undo the diversification ob-
tained through randomized instruction selection. This effect can be limited, how-
ever, by applying the ISL to different instruction types. Consider for example,
the lea (load effective address) instruction in the x86 ISA. This (large) general-
purpose instruction combines a lot of computations, and can be used as an
alternative to many, more specific, shorter instructions during instruction selec-
tion randomization. As the lea instruction occurs frequently, however, it is not
a good candidate for instruction set elimination.

3 Instruction Set Limitation

Figure 1 depicts a histogram for instructions occurring in the bzip2 benchmark.
Some of the infrequently occurring instructions cannot easily be replaced by
other instructions, such as the x86 instructions hlt, cpuid, in, int, iret, lmsw,
out, and smsw. These instructions have very specific semantics for doing IO, for
communicating with the operating system, and for accessing special processor
components. Other instructions, however, can easily be replaced by alternative
instruction sequences that contain only more frequently occurring instructions.

In theory, almost all of the potential candidates can be replaced by more
frequently occurring instructions. The URISC computer’ ISA consists of only
one instruction (subtract and branch conditionally) which corresponds to two
instructions on the x86. However, replacing all instructions is not practically fea-
sible, as it would result in unacceptably slow and large programs. As an example,
just imagine how slow a multiplication implemented by means of subtracts and
conditional jumps would be.

!
"
#
$%
%

&'
(
&

%
!
)

$!
)

*'
+

%
+
**

+
,
,

(
-
.
/0
%

)
-
(
1

)
"
)

!
"
#
2
.
*

3
"
4

+
0
,

,
'
%
4'
&
"
4

(
1
*

!
"
#
2
5
*

(
1
4

!
"
#
(
.

0
"
)

(
+
4

(
'
&%
%
4"
4

0
'
6
,
/#
%
*,

/!
-
*

/0
&

+
,
%

4'
)

(
.
.

%
*&
,

!
"
#
5
0
"
&

!
-
*

(
1
**

4'
)
2

.
(
4

!
"
#
(
5

%
!
)
5

3
%
1
6

(
1
4,
.
(
7

!
"
#
2
.
5

/,
/#

*'
+
#
'

(
1
*, 1
*&

(
&"
(
4"
*

%
!
"
#
.

4,
&(
%

(
&,

8

89

899

8999

89999

899999

Fig. 1. Number of occurrences for each instruction in the bzip2 benchmark.

Instruction Condition Replacement
add overflow and carry flags are dead sub, (sub, push, mov, pop)
call direct call push, jmp
cmovcc jcc, mov, (mov)
dec/inc carry flag is dead sub/add
jcc jcc, (jmp)
leave mov, pop
neg sub, mov, mov
pop/push flags are dead mov, add/sub
ret free register available pop, jmp
sbb jcc, sub, sub
setcc jcc, mov, mov
test and
xchg program is single-threaded mov, mov, mov

Table 2. Candidate instructions for limitation. Instructions between brackets denote
instructions that are not needed in all cases.

On the other hand, ISL should not be limited to infrequently occurring in-
structions. Consider the test instruction in Figure 1. This instruction occurs
about five times more frequently than the and instruction. Still it makes sense
to replace the test instruction by and instructions. Because all test instruc-
tions can be replaced with the and instruction, the final result will be that there
will be six times more and instructions in the program, but not a single test in-
struction anymore. So even by replacing frequently occurring instructions, better
distributions can be obtained to defend against matching tools.

For these reasons, we have selected the 16 instructions from Table 2 as can-
didates for ISL. Their replacements are shown, and the conditions in which the
limitations can be applied. Some limitations can only be applied if condition flags
are dead. This is the case for instructions of which the replacement sets more
flags than the instruction that is replaced. Since the xchg instruction is used for
atomic read-update-write memory accesses, it cannot be replaced by a sequence
of mov instruction in multithreaded programs. On top of the instructions used
in the replacement, additional instructions might be inserted to spill registers,
i.e to free registers that are needed in the replacement code.

4 An Algorithm

Let us define the quality Q of the intruction type distribution of a program p as
the sum of squares of the instruction occurrence frequencies:

Q(p) =
∑

instruction types i

f(i, p) f(i, p). (1)

in which f(i, p) denotes the number of times an instruction type i occurs in
program p.

Then consider the simple case where we want to replace x instructions of type
i by x instructions of type j. This will be profitable for Q(p) if x > f(i, p)−f(j, p).
Since x is by definition positive, this condition is always true if there are less
instructions of type i than of type j. Otherwise, x has to be high enough to
improve the quality of the type distribution.

Let us further define the cost of a program as the number of executed in-
struction is a program. This number can be obtained by profiling a program to
collect basic block execution counts. While the number of executed instructions
is usually not a correct measure of program execution time, it is good enough for
our purpose, and it reduces the complexity of the optimization problem we are
facing considerably.1 This problem consists of optimizing the quality of the in-
struction type distribution given a cost budget, i.e. a maximal allowed increase in
number of executed instructions. Replacing a single instruction I by a sequence
of k other instructions involves a cost of (k − 1) ∗ e(I), in which e(I) is the ex-
ecution frequency of the replaced instruction, which will also be the execution
frequency of the replacements. Please note that k does not only depend in the
type of I but also on its context, as in some cases it might be necessary to insert
spill code to free registers or condition flags. Please also note that we will only
consider instructions I of which e(I) > 0 as observed in the profiling runs. This
follows from the fact that attackers are only interested in code that is actually
executed, and hence we as defenders should also only take those instructions
into account.

The algorithm we propose to solve our optimization problem works as follows.
It is an iterative approach in which each iteration consists of 4 steps:

1. For each instruction type i, sort all its instructions in the program and their
possible replacements in ascending order of replacement cost. Instructions I
with e(i) = 0 are not considered at all.

2. Per instruction type i, compute the smallest set of instructions for which
replacing the whole set results in a positive gain ∆Q in distribution type
quality. Per type i, this set is built greedily by first considering the singleton
set of the first instruction in the ordered list of step 1, and by adding the
next instruction from that ordered list until the set becomes large enough to
have a positive effect ∆Q on Q(p) when all instructions in the set would be
replaced.

1 Modeling execution time correctly for measuring the effects of static code transfor-
mations is practically infeasible.

3. From all such sets for all instruction types i, exclude sets of which the total
replacement cost Cost, i.e. the summation of all the replacement costs of
all instructions in that set, would result in exceeding the global cost budget
(taking the cost of already performed replacements into account).

4. From all remaining sets, take the one with the highest fraction of gain over
cost ∆Q

Cost , and replace all instruction in that set. If there is no remaining set,
the ISL terminates, otherwise it continues with step 1.

The reason why we only consider replacement cost in step 1, and not the
gain in distribution quality is that the gain depends on the order in which re-
placements are made, while cost does not. Computing the gains correctly for all
possible replacement orders is too expensive and not worthwhile.

This algorithm may apply replacements that only have a positive ∆Q because
a single instruction is replaced by multiple instructions. Since such replacements
will always have a higher cost than replacements that do not increase the number
of instructions, this is not problematic. Cheeper replacements will be chosen first
if they are available.

5 Experimental Evaluation

To evaluate the strength of our proposed instruction set elimination as a tech-
nique to fool matching tools, we performed the following experiment. For each
of five SPECint20006 benchmarks, we generated two versions A and B. On each
of them, we applied instruction set limitation with cost budgets of 0%, 10%,
20% and 50%, generating binaries A0, A10, A20, A50, B0, B10, B20, B50. With a
50% budget, the instruction set limitation is allowed to increase the estimated
number of instructions (obtained through profiling) with 50%. For each of these
pairs Ai and Bi, we measured their code size growth compared to A and B, their
execution time increase, and their increase in distribution quality as defined by
equation 1. Furthermore, for all of the program versions pairs, we measured the
false positive rates and false negative rates obtained with the matching system
presented in Table 1. The results are depicted in figures 2 to 7.

As can be seen from Figure 2 a cost budget of 10% already allowed to perform
almost all possible instruction replacements. Only the sjeng benchmark required
a higher budget to perform all possible replacements that help in instruction set
limitation. The resulting code size increases as depicted in Figure 3 have very
similar graph shapes, albeit with slightly lower numerical values. So on average,
the replacement are slightly less than twice as big as the instructions they replace.

The fact that the curves in Figure 4 are monotonically increasing when big
slowdowns are seen (as for libquantum and sjeng) learns us that the cost used
in Section 4 can be used to control the slowdown. And for all benchmarks but
sjeng, the performance penalty is lower than or equal to the budget used. How-
ever, this is more due to lack of replacement opportunities than to the accuracy
of our cost function. Indeed, sjeng shows that our cost function is not an accu-
rate predication of the actual slowdown. New research for better cost functions

0%

1%

2%

3%

4%

5%

6%

0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 2. The fraction of replaced instructions per cost budget.

0%

1%

2%

3%

4%

5%

0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 3. The resulting code size increase.

‐10%

0%

10%

20%

30%

40%

50%

60%

0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 4. Slowdown per cost budget

is hence definitely needed. More research is also needed to understand the slight
performance improvement witnessed for the 0% budget. We believe this to be
a side-effect of the complex interaction between the different diversifying trans-
formations applied by our tool and the ISL, but so far we have not been able to
find the exact reason.2

The influence on the matching capabilities of our matching system described
in Table 1 is depicted in Figures 5 and 6. First, in can be observed that the
false negative rates increase significantly. This means that the matcher finds far
fewer corresponding instruction pairs in the two diversified program versions.

2 Using performance counters, we were able to rule out accidental changes in branch
predictor performance and cache performances.

20%

30%

40%

50%

60%

70%

80%

no ISL 0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 5. False-negative rates of our matcher.

20%

22%

24%

26%

28%

30%

32%

34%

no ISL 0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 6. False-positive rates of our matcher.

0

5,000

10,000

15,000

20,000

25,000

no ISL 0% 10% 20% 50%

bzip2

libquantum

mcf

milc

sjeng

Fig. 7. Computation times (in seconds) required by the matcher

The false negative rates after ISL are roughly between 55% and 70%, while they
were between about 25% and 35% before ISL, with the exception of sjeng, which
already was at 54%. Thus, we can conclude that ISL indeed makes it harder for
a matcher to find corresponding instructions in diversified program versions.
To some extent, this is the result of our matchers in iterations 2, 3, 9, 11, 12,
14, 15, 18 and 21, which rely on instruction types. However, without the these
matchers, the false rates would have been worse when no ISL was applied at all.
Furthermore, the small increment when using a 0% cost budget indicates that
ISL only helps when all, or close to all, replaceable instructions are replaced.

The false positive ratios increase much less than the false negative ratios.
The reason is that our matcher is rather conservative, and will not likely match
instructions of different types. Given that we only change a small fraction of
the instructions in a program, ISL will not make the matcher match much more
instruction. The fact that the false positive rates are not monotonically increasing
results from the complex and unpredictable interaction between the different
iterations in our matching system.

Finally, it is clear from Figure 7 that ISL not only thwarts the matcher to the
extent that it produces much higher false results, it also requires the matcher to
perform much more computations. As a result, it requires up to 72 % more time
to execute our matcher (programmed in non-optimized C#, and executed on a
2.8 GHz P4) after ISL has been applied. This is due to the fact that the sets
of instructions that are compared to each other in the different iterations, are
considerably larger when ISL has been applied. Thus, an attacker not only gets
less useful results from his matching tool, he also needs to wait for them longer.

6 Future Work And Conclusions

This paper proposed instruction set limitation. By itself, this is not a strong
software protection technique, but when it is used in combination with soft-
ware diversification, our experiments have shown that instruction set limitation
succeeds in making it more difficult for an automated matching system to find
corresponding code fragments in diversified software versions. This thwarting
happens at acceptable levels of performance overhead.

Future work includes developing specific attacks against instruction set lim-
itation, and finding techniques to limit instruction sequences rather than in-
dividual instructions. The latter will make it much harder to develop effective
attacks.

References

1. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation. (2007) 89–100

2. Maebe, J., Ronsse, M., De Bosschere, K.: DIOTA: Dynamic Instrumentation,
Optimization and Transformation of Applications. In: Compendium of Workshops
and Tutorials in Conjunction with the 11th International Conference on Parallel
Architectures and Compilation Techniques. (2002) count 11

3. Anckaert, B.: Diversity for Software Protection. PhD thesis, Ghent University
(2008)

4. De Bus, B.: Reliable, Retargetable and Extensivle Link-Time Program Rewriting.
PhD thesis, Ghent University (2005)

5. De Sutter, B., Van Put, L., Chanet, D., De Bus, B., De Bosschere, K.: Link-
time compaction and optimization of ARM executables. Trans. on Embedded
Computing Sys. 6(1) (2007) 5

6. Madou, M., Anckaert, B., De Sutter, B., De Bosschere, K.: Hybrid static-dynamic
attacks against software protection mechanisms. In: Proceedings of the 5th ACM
workshop on Digital Rights Management, ACM Press (2005) 75–82

7. Madou, M., Van Put, L., De Bosschere, K.: Loco: An interactive code
(de)obfuscation tool. In: Proceedings of ACM SIGPLAN 2006 Workshop on Par-
tial Evaluation and Program Manipulation (PEPM ’06). (2006)
http://www.elis.ugent.be/diablo/obfuscation.

8. Anckaert, B., De Sutter, B., Chanet, D., De Bosschere, K.: Steganography for
executables and code transformation signatures. In: Proceedings of the 7th In-
ternational Conference on Information Security and Cryptology. Volume 3506 of
Lecture Notes in Computer Science., Springer-Verlag (2005) 425–439

9. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann
(1997)

10. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th Conference on Principles
of Programming Languages, ACM Press (1998) 184–196

11. De Sutter, B., De Bus, B., De Bosschere, K.: Sifting out the mud: low level
C++ code reuse. In: OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications.
(2002) 275–291

12. Wang, Z., Pierce, K., McFarling, S.: Bmat – a binary matching tools for stale
profile propagation. The Journal of Instruction-Level Parallelism 2 (2000) 1–20

13. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to
static disassembly. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, ACM Press (2003) 290–299

14. Massalin, H.: Superoptimizer: a look at the smallest program. In: Proceedings
of the 2nd International Conference on Architectual Support for Programming
Languages and Operating Systems, IEEE Computer Society Press (1987) 122–126

