
Tightly-Coupled Self-Debugging Software Protection

Bert Abrath
Computer Systems Lab

Department of Electronics and
Information Systems

Ghent University
bert.abrath@ugent.be

Bart Coppens
Computer Systems Lab

Department of Electronics and
Information Systems

Ghent University
bart.coppens@ugent.be

Stijn Volckaert
Secure Systems Lab

University of Califoria at Irvine
stijnv@uci.edu

Joris Wijnant
Ghent University

Bjorn De Sutter
Computer Systems Lab

Department of Electronics and
Information Systems

Ghent University
bjorn.desutter@ugent.be

ABSTRACT
Existing anti-debugging protections are relatively weak. In
existing self-debugger approaches, a custom debugger is at-
tached to the main application, of which the control flow
is obfuscated by redirecting it through the debugger. The
coupling between the debugger and the main application is
then quite loose, and not that hard to break by an attacker.
In the tightly-coupled self-debugging technique proposed in
this paper, full code fragments are migrated from the ap-
plication to the debugger, making it harder for the attacker
to reverse-engineer the program and to deconstruct it into
the original unprotected program to attach a debugger or
to collect traces. We evaluate a prototype implementation
on three complex, real-world Android use cases and present
the results of tests conducted by professional penetration
testers.

Keywords
Reverse Engineering; Anti-Debugging; Self-Debugging; Bi-
nary Rewriting

1. INTRODUCTION
Recently, there has been a trend to restrict more and more

debugging capabilities in Android by blocking access to parts
of the ptrace kernel interface. This fits in the broader trend
to give apps as few permissions as possible, and to block
access to generic OS features that typical, benign apps do
not require, in an attempt to block malware from exploiting
those features. In this case, blocking the kernel’s debugging
interface prevents malware from intervening in a running
process’ memory space and I/O.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSPREW ’16, December 05 - 06, 2016, Los Angeles, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4841-6/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3015135.3015142

While this approach is generally sound, one problem is
that its provisioning of security guarantees depends com-
pletely on the run-time environment. In this case, Google’s
targeted environment is that of end users that run an un-
rooted Android OS with the Developer Options disabled,
and that have the legitimate desire to be protected against
malware.

In at least one relevant scenario, however, the run-time en-
vironment can divert from the targeted one. This scenario
is that of man-at-the-end (MATE) attacks. Many mobile
applications embed assets from service providers, software
providers, and content providers. Examples of such assets
are cryptographic keys, algorithms that offer competitive
advantages, and software components that control access to
content and functionality. Vendors need to protect those
assets against malware running on devices of benign users,
but also against reverse engineering and tampering attacks
conducted by malicious users. In many circumstances, such
attacks are not performed on end-user consumer devices, but
on developer boards in labs where the attackers control the
whole environment, incl. the OS. It is then rather trivial for
attackers to run the software on an OS with a re-enabled
ptrace support, which then enables trace collection, live de-
bugging, and other dynamic MATE attacks.

To provide protection against the malicious use of ptrace
or other debugging interfaces in the MATE scenario, we pro-
pose to build the necessary protection into the software to
be protected itself, rather than in the environment. We are
not the first to do so, as many so-called anti-debugging tech-
niques have been presented in the past. A myriad of simple
techniques —most of which are hacks really— consist of dy-
namic checks that a process can execute to query the run-
time environment for signs of active debugging [10, 23, 21,
5]. These techniques do not provide strong protection, how-
ever; many counter-techniques (i.e., debugger hacks) have
been proposed to thwart the checks [18, 4, 11, 21].

Secondly, self-debugging has been proposed [20, 13]. This
technique builds on the fact that all major OSs (Windows,
Linux, Android, OS X, ...) support only one debugger pro-
cess per debuggee process. What’s more, hardware sup-
port for debugging (such as debug registers and hardware
breakpoints) is designed for one debugger only (even though

they might also be useful beyond that limitation). Invest-
ing in the development of effective and efficient OS sup-
port for multiple concurrent debuggers per debuggee is for
the time being considered infeasible. So the strength of a
self-debugger comes from occupying the single available de-
bugger seat with a custom “debugger” that offers no useful
debugging capabilities and that attackers cannot trivially
replace with their own true debugger.

To achieve the latter with self-debugging, control flow
transfers in the application are replaced by exception in-
ducing instructions (typically breakpoint instructions) and
a special-purpose debugger is injected into the original ap-
plication. When the application launches, the self-debugger
is launched as well, and attaches itself to the application.
Whenever an exception is then thrown, the debugger inter-
venes and implements the original control flow transfer by
transferring control to the original continuation point in the
application. When the debugger is detached to make room
for an attacker’s debugger, the application itself lacks the
necessary control flow and can hence no longer be traced or
debugged live.

A major shortcoming of existing self-debugging schemes,
however, is the simplicity of the self-debuggers. In essence,
they implement an obfuscated, but relatively simple inter-
process control flow transfer mechanism, of which the im-
plementation (typically based on simple address translation
table lookups) is completely predetermined by the develop-
ers of the protection tools. This feature, combined with the
fact that only simple binary code patching is performed to
convert individual control flow transfers to breakpoints, im-
plies that it is relatively straightforward for knowledgeable
hackers to inject a debugger-in-the-middle that iteratively
resets each breakpoint to its original instruction, thus it-
eratively reconstructing and deobfuscating the unprotected
program to re-enable standard tracing and live debugging
techniques. Because the injection of breakpoints has left all
other instructions in the program in their exact original lo-
cation, the reconstruction only requires the attacker to flip
some code bytes back to their original values, which can
be determined from the simple input-output relation of the
self-debugger, or even be obtained statically from its address
translation tables.

In this paper, we push the state of the art in self-debugging.
Relying on advanced binary rewriting techniques, we pro-
pose to migrate whole chunks of functionality from the orig-
inal software to the self-debugger. This offers several advan-
tages. First, the input-output behavior of the self-debugger
is no longer pre-determined: Every time the self-debugger
intervenes, it executes different functionality that is not pre-
determined, but that can instead vary as much as function-
ality in protected programs can vary. This makes the protec-
tion much more resilient against automated analysis, deob-
fuscation, and decompilation. Secondly, even if the attacker
can figure out the control flow and the data flow equivalent of
the original program, it becomes much harder for an attacker
to undo the protection and to reconstruct that original pro-
gram. Combined, we believe these two strengths make it
much harder for an attacker to detach the self-debugger
while maintaining a functioning program to be traced or
live-debugged.

The contributions of this paper are the following:

• We present the design of a self-debugger that executes
part of the original program functionality to make it

harder for an attacker to detach the self-debugger and
to deobfuscate the overall control and data flow.

• We present an open-source prototype implementation
and tool support for protecting stand-alone programs
as well as shared libraries.

• We discuss how to engineer the tool support to make
it compatible with other software protections.

• We evaluate the tools and prototype on complex, real-
life security-sensitive use cases, ranging from native li-
braries embedded in Android APKs and invoked with
the JNI interface, to native plugins of the Android
DRM server and the Android media server.

• We discuss the impact on attacker capabilities based
on observations we made when professional penetra-
tion testers were hired to attack the protected use
cases.

The remainder of this paper is structured as follows. In
Section 2, we discuss the overall design and applicability
of our self-debugger approach. Section 3 then discusses the
necessary tool support. In Section 4, a number of implemen-
tation aspects are discussed in more detail, after which a pro-
totype implementation is evaluated in Section 5. Additional
attack vectors are discussed in Section 6, after which Section
7 draws conclusions and briefly discusses future work.

2. OVERALL SELF-DEBUGGER DESIGN
Figure 1 illustrates the basic concepts of our self-debugging

scheme. Our design, prototype implementation, and pre-
sentation in this paper target Linux (and derivatives such
as Android), but to the best of our knowledge, all aspects
of the design are relevant and have direct counterparts on
Windows, BSD variants, and OS X.

On the left of Figure 1, an original, unprotected applica-
tion is depicted, incl. a small control flow graph fragment.
The shown assembly code is (pseudo) ARMv7 code [22].
This unprotected application is converted into a protected
application consisting of two parts: a debuggee that corre-
sponds mostly to the original application as shown in the
middle of the figure, and a debugger as shown on the right.
Apart from some new components injected into the debuggee
and the debugger, the main difference with the original ap-
plication is that the control flow graph fragment has been
migrated from the application into the debugger. Our de-
sign and our current implementation support all single-entry,
multiple-exit code fragments that contain no interprocedural
control flow such as function calls.

The migration of such fragments is more than simple copy-
ing: Memory references such as the LDR instruction need to
be transformed because in the protected application the mi-
grated code executing in the debugger address space needs to
access data that still resides in the debuggee address space.
All relevant components and transformations will be dis-
cussed in more detail in later sections.

At run time, the operation of this protected application is
as follows. First, the debuggee is launched, as if it was the
original application. A newly injected initializer then forks
off a new process for the debugger, in which the debugger’s
initializer immediately attaches to the debuggee process.

When later during the program’s execution the entry point
of the migrated code fragment is reached, one possible flow

adds	r1,r2,r3
beq L2

.L1:
ldr r4,r5[#16]
b	L3			 	

.L2:
sub	r4,r4,#8
b	L4

bkpt
adds	r4,r6,r11
beq L1’

.L1’:
call	read_X
b	L3’				

.L2’:
sub	r7,r3,#8
b	L4’

initializer	

original	application

debuggee debugger

.L3:

.L4:

.L3:

.L4:

mini-debugger

initializer	 finalizer

debugger	loop

memory	support

1

3

2

5

7

4

8

finalizer

6

protected,	self-debugging	application

Figure 1: On the left, the original, unprotected application with a control flow graph fragment. In the
middle, the protected application from which the fragment has been omitted, but with minimal functionality
to launch and kill the debugger component. On the right, the debugger with the migrated fragment and mini-
debugger functionality. Red, numbered edges and points show the control flow in the running, self-debugging
application.

of control in the application follows the red arrows in Fig-
ure 1. In the application/debuggee, the exception inducing
instruction is executed and causes an exception (1). The
debugger is notified of this exception and handles it in its
debugger loop (2). Amongst others, the code in this loop is
responsible for fetching the process state from the debuggee,
looking up the corresponding, migrated code fragment, and
transferring control (3) to the entry point of that fragment.
As stated, in that fragment memory accesses cannot be per-
formed as is. So they are replaced by invocations (4) of
memory support functions (5) that access memory in the
debuggee’s address space. When an exit point (6) is eventu-
ally reached in the migrated code fragment, control is trans-
ferred to the corresponding point in the debugger loop (7),
which updates the state of the debuggee with the data com-
puted in the debugger, and (8) control is transferred back
to the debuggee. For code fragments with multiple exits,
such as the example in the figure, the control can be trans-
ferred back to multiple continuation points in the debuggee.
In this regard, our debugger behaves more complex than
existing self-debuggers, which implement a one-to-one map-
ping between forward and backward control flow transfers
between debuggee and debugger.

Eventually, when the application exits, the embedded fi-
nalizers will perform the necessary detaching operations.

It is important to note that this scheme cannot only be de-
ployed to protect executables (i.e., binaries with a main func-

tion and entry point), but also to protect shared libraries.
Just like executables, libraries can contain initializers and fi-
nalizers that are executed when they are loaded or unloaded
by the OS loader. At that time, all of the necessary forking,
attaching and detaching can be performed as well.

In the remainder of this paper, we will mostly write about
protecting applications, but implicitly, we denote applica-
tions and libraries. The only aspect specific to libraries is
the need for not only proper initialization, but for proper
finalization of the debugger as well. This is necessary be-
cause it is not uncommon for libraries to be loaded and
unloaded multiple times within a single execution of a pro-
gram. For example, repetitive loading and unloading hap-
pens frequently for plug-ins of media players and browsers.
Furthermore, whereas main programs consist of only one
thread when they are launched themselves, at the point in
time where they load and unload libraries, they can already
consist of multiple threads. This complicates the attach-
ing/detaching of debuggers to libraries.

3. TOOL SUPPORT
Figure 2 depicts one possible conceptual tool flow. The

main components are discussed in the following sections.

3.1 Source Code Annotations
A number of options exist for determining the code frag-

ments to be migrated to the debugger. One, depicted in the

annotated	
source	code

object	 code
(with	debug	info)

annotation
extraction
(grep)

annotations	
(line	numbers)

compiler
(llvm,	 gcc)

object	 code
mini	debugger

link-time	
rewriter
(diablo)

protected	
binary	/	binaries

Figure 2: Tool flow of self-debugging support

figure —and also used in our implementation— is to anno-
tate source code with pragmas, comments, or any other form
of annotations that mark the beginning and end of the code
regions to be migrated to the debugger process. A simple
grep suffices to extract annotations and their line numbers,
and to store that information in an annotations file.

Alternative options would be to list the procedures or
source code files to be protected, or to collect traces or pro-
files to select interesting fragments semi-automatically.

In that regard, it is important to note that the fragments
to be migrated to the debugger should not necessarily be
very hot fragments. To achieve a strong attachment be-
tween the debuggee and the debugger, it suffices to raise ex-
ceptions relatively frequently, but this does not need to be
on the hottest code paths. We will discuss good strategies to
select fragments in more detail later in the paper. Obviously,
every raised exception will introduce a significant amount of
overhead (context switch, many ptrace calls, ...), hence it is
important to minimize their number without compromising
the level of protection.

3.2 Standard Compilers and Tools
To deploy our self-debugging approach, any “standard”

compiler can be used: Our technique does not impose any
restrictions on the code generated by the compiler. In our
experimental evaluation, we used both GCC and LLVM, in
which we did not need to adapt or tune the code generation.

One requirement, however, is that the compiler and the
binary utilities (the assembler and linker) provide the link-
time rewriter with sufficiently accurate symbol and reloca-
tion information. This is required to enable reliable, conser-
vative link-time code analyses and transformations to imple-
ment the whole self-debugging scheme, including the migra-
tion and transformation of the selected code fragments. Pro-

viding sufficiently accurate information is certainly within
reach for commonly used tools. ARM’s proprietary compil-
ers, e.g., have done so for a long time by default, and for
the GNU binutils, GCC, and LLVM, very simple patches1

suffice to prevent those tools from performing overly aggres-
sive symbol relaxation and relocation simplification, and to
force them to insert mapping symbols to mark data in code.
These requirements have been documented before, and it
has been shown that they suffice to perform reliable, conser-
vative link-time rewriting of code as complex and unconven-
tional as both CISC (x86) and RISC (ARMv7) versions of
the Linux kernel and C libraries, which are full of manually
written assembly code [25].

A large, generic part of the debugger —the mini-debugger—
can be precompiled with the standard compiler and then
simply linked into the application to be protected. Other
parts, such as the debug loop’s prologues and epilogues for
each of the migrated fragments, are generated by the link-
time rewriter, as they are customized for each fragment.

To allow the link-time rewriter to identify the fragments
that were annotated in the source code, it suffices to pass
it the line number information extracted from the source
code files, and to let the compilers generate object files with
debug information. That debug information then maps all
addresses in the binary code to source line numbers, which
the rewriter can link to the line numbers from the annota-
tions. To the best of our knowledge, all compilers and binary
utilities support the generation of debug information.

3.3 Binaries, Libraries, and Processes
The link-time rewriter has two options to generate a pro-

tected application. A first option is to generate two binaries,
one for the application/debuggee, and one for the debugger.
From a security perspective, this might be preferable, be-
cause the application semantics and its implementation are
then distributed over multiple binaries, which likely makes
it even harder for an attacker to undo the protection, i.e., to
patch the debuggee into the original application. This op-
tion does introduce additional run-time overhead, however,
as the launching of the debugger then also requires loading
the second binary.

The alternative option —that we use in our implemen-
tation— is to embed all debuggee code and all debugger
code into one binary. In that case, simple forking will suf-
fice to launch the debugger. Whether or not, and to what
extent, this eases attacks on the protection provided by self-
debugging is an open research question.

4. IMPLEMENTATION

4.1 Initialization & Finalization
We add an extra initialization routine to a protected bi-

nary. This routine is invoked as soon as the binary has been
loaded (because it is assigned a high priority), after which all
the other routines listed in the .init section of the binary
are executed.

This initialization routine invokes fork(), thus creating
two processes called the parent and child [16]. Once this
routine is finished, the parent process will continue execu-
tion, typically by invoking the next initialization routine.

1Our patches are available at https://github.com/
diablo-rewriter/toolchain-patches.

Two options exist for assigning the debugger and debuggee
roles: After the fork, either the child process attaches to the
parent process, or vice versa. In the former case, the child
becomes the debugger and the parent becomes the debuggee,
in the latter case the roles are obviously reversed.

The former option is highly preferred. The parent process
remains the main application process, and it keeps the same
process ID (PID). This facilitates the continuing execution
or use of all external applications and inter-process commu-
nication channels that rely on the original PID, e.g., because
they were set up before loading a protected library.

This scheme does come with its own problems, however.
With dlopen() and dlclose() [15], shared libraries can be
loaded and unloaded at any moment during the execution
of a program. There is hence the potential problem that a
protected shared library can be unloaded and loaded again
while the originally loaded and forked off debugger has not
yet finished its initialization. This can result in the simulta-
neous existence of two debugger processes, both attempting
(and one failing) to attach to the debuggee. In order to
avoid this situation, we block the execution of the thread
that called dlopen(). So until that time, that thread can-
not invoke dlclose() using the handle it got with dlopen(),
and it cannot pass the handle to another thread either. An
infinite loop in the debuggee’s initialization routine prevents
the loading thread from exiting the initialization routine be-
fore the debugger allows it to proceed.

The initialization routine also installs a finalizer in the
debuggee. This finalizer does not do much. At program exit
(or when the shared library is unloaded) it simply informs
the mini-debugger of this fact by raising a SIGUSR1 signal,
causing the mini-debugger to detach from all the debuggee’s
threads and to shut down the debugger process.

4.2 Multithreading Support
Attaching the debugger is not trivial, in particular in the

case of protected shared libraries. When a library is loaded,
the application might consist of several threads. Only one of
them will execute the debuggee initialization routine during
its call to dlopen(). This is good, as only one fork will be
executed, but it also comes with the downside that only one
thread will enter the infinite loop mentioned in the previous
section. The other threads in the debuggee process will con-
tinue running, and might create new threads at any point
during the execution of the debuggee initialization routine
or of the debugger initialization routine.

To ensure proper protection, the debugger should attach
to every thread in the debuggee process as part of its ini-
tialization. To ensure that the debugger does not miss any
threads created in the debuggee in the meantime, we use the
/proc/[pid]/task directory, which contains an entry for ev-
ery thread in a process [17]. The debugger process attaches
to all the threads by iterating over the entries in this direc-
tory, and by keeping iterating until no new entries are found.
Upon attachment to the thread, which happens by means
of a PTRACE_ATTACH request, the thread is also stopped (and
the debugger is notified of this event by the OS), meaning
that it can no longer spawn new threads from then on. So
for any program that spawns a finite number of threads, the
iterative procedure to attach to all threads is guaranteed to
terminate. Once all threads have been attached to, the infi-
nite loop in the debuggee is ended and its stopped threads
are allowed to continue.

When additional threads are created later during the pro-
gram execution, the debugger is automatically attached to
them by the OS, and it gets a signal such that all the nec-
essary bookkeeping can be performed.

4.3 Control Flow
Transforming the control flow in and out of the migrated

code fragments consists of several parts. We discuss the
raising of exceptions to notify the debugger, the transfer-
ring of the ID that informs the debugger about the frag-
ment it needs to execute, and the customized prologues and
epilogues that are added to every migrated code fragment.

4.3.1 Raising Exceptions
The notification of the debugger can happen through any

instruction that causes an exception to be raised. In our
implementation, we use a software breakpoint (i.e., a BKPT

instruction on ARMv7) for simplicity. Other, less conspicu-
ous exceptions can be used, such as those caused by illegal or
undefined instructions. When such instructions are reach-
able via direct control flow (direct branch or fall-through
path), they can of course easily be detected statically. But
when indirect control flow transfers are used to jump to data
in the code sections, and the data bits correspond to an il-
legal or undefined instruction, static detection can be made
much harder. Likewise, legal instructions that throw excep-
tions only when their operands are “invalid” can be used to
conceal the goal of the instructions. Such instructions in-
clude division by zero, invalid memory accesses (i.e., a seg-
mentation fault), or the dereferencing of an invalid pointer
(resulting in a bus error).

4.3.2 Transferring IDs
We call the thread in the debuggee that raises an exception

the requesting thread, as it is essentially asking the debugger
to execute some code fragment.

The debugger, after being notified about the request by
the OS, needs to figure out which fragment to execute. To
enable this, the debuggee can pass an ID of the fragment in
a number of ways. One option is to simply use the address
of the exception inducing instruction as an ID. Another op-
tion is to pass the ID by placing it in a fixed register right
before raising the exception, or in a fixed memory location.
In our implementation, we used the latter option. As multi-
ple threads in the debuggee can request a different fragment
concurrently, the memory location cannot be a global loca-
tion. Instead, it needs to be thread-local. As each thread
has its own stack, we opted to pass the fragment’s ID via
the top of the stack of the requesting thread.

Depending on the type of instruction used to raise the ex-
ception, other methods can be envisioned as well. For exam-
ple, the dividend operand of a division (by zero) instruction
could be used to pass the ID as well.

Finally, many data obfuscation techniques [5] can be used
to hide the values of the passed IDs, thus complicating the
reverse engineering of the control flow in the original appli-
cation.

4.3.3 Prologues and Epilogues
The debugger loop in the mini-debugger is responsible for

fetching the program state of the debuggee before a fragment
is executed, and for transferring it back after its execution.
Standard ptrace functionality is used to do this: With one

API call, the status of all registers in the debuggee can be
retrieved in a struct in the debugger. Likewise, one API
call suffices to update all registers in the debuggee with the
values in a struct.

For every migrated code fragment, the debug loop also
contains a custom prologue and epilogue to be executed be-
fore and after the code fragment resp. The prologue loads
the necessary values from the struct into the debugger’s reg-
isters, the epilogue writes the necessary values back into the
struct. The prologue is customized in the sense that it only
loads the registers that are actually used in the fragment
(the so-called live-in registers). The epilogue only stores the
values that are live-out (i.e., that will be consumed in the
debuggee) and that can have been updated by the executed
code fragment.

4.4 Memory Accesses
For every load or store operation in a migrated code frag-

ment, an access to the debuggee’s memory is needed. There
exist multiple options to implement such accesses.

The first is to simply use ptrace functionality: The de-
bugger can perform PTRACE_PEEKDATA and PTRACE_POKEDATA

requests to read and write in the debuggee’s address space.
In this case, per word2 to be read or written, a ptrace system
call is needed, which results in a significant overhead. Some
recent Linux versions support wider accesses, but those are
not yet available everywhere, such as on Android.

The second option is to open the /proc/[pid]/mem file
of the debuggee in the debugger, and then simply read or
write in this file. This is easier to implement, and wider
data can be read or written with a single system call, so
often this method is faster. Writing to another process’s
/proc/[pid]/mem is not supported on every version of the
Linux/Android kernels, however, so in our prototype write
requests are still implemented with the first option.

A third option builds on the second one: if the binary-
rewriter can determine which memory pages will be accesses
in a migrated code fragment, the debug loop can actually
copy those pages into the debugger address space using op-
tion 2. The fragment in the debugger then simply executes
regular load and store operations to access the copied pages,
and after the fragment has executed, the updated pages are
copied back to the debuggee. This option can be faster if,
e.g., the code fragment contains a loop to access a buffer
on the stack. Experiments we conducted to compare the
third option with the previous two options revealed that
this technique might be worthwhile for as few as 8 mem-
ory accesses. We did not implement reliable support for it
in our prototype, however: A conservative link-time analy-
sis for determining which pages will be accessed by a code
fragment remains future work at this point.

A fourth potential option is to adapt the debuggee, e.g., by
providing a custom heap memory management library (mal-
loc, free, ...) such that all allocated memory (or at least the
heap) is allocated as shared memory between the debuggee
and the debugger processes. Then the code fragments in
the debugger can access the data directly. Of course, the
fragments still need to be rewritten to include a translation
of addresses between the two address spaces, but likely the
overhead of this option can be much lower than the over-
head of the other options. Implementing this option and
evaluating it remains future work at this point.

2The ptrace word size depends on the processor architecture.

Security-wise, the different options will likely also have a
different impact, in the sense that they will impact the diffi-
culty for an attacker to reverse-engineer the original seman-
tics of the program and to deconstruct the self-debugging
version into an equivalent of the original program. With-
out penetration tests, we are not in a position yet to make
strong statements in any one direction, however.

4.5 Combining self-debugging with other pro-
tections

To provide strong software protection against MATE at-
tacks, one protection technique does typically not suffice.
For example, on top of self-debugging, a good protection
also requires obfuscation to prevent static analysis, and anti-
tampering techniques to prevent all kinds of attacks.

The binary rewriter that implements our self-debugging
approach also applies a number of other protections, incl.

• Control flow obfuscations: the well-known obfusca-
tions of opaque predicates, control flow flattening, and
branch functions [14, 26, 6].

• Code layout randomization: code from all functions is
mingled and the order and layout are randomized.

• Code mobility: a technique in which code fragments
are removed from the static binary and only down-
loaded, as so-called mobile code, into the application
at run time [3].

• Code guards: online and offline implementations of
techniques in which hashes are computed over the code
in the process address space to check that the code has
not been altered.

• Control flow integrity: a lightweight technique in which
return addresses are checked to prevent that internal
functions are invoked from external code.

• Instruction set virtualization: a technique with which
native code is translated to bytecode that is inter-
preted by an embedded virtual machine instead of ex-
ecuted natively.

Combining the self-debugging technique with all those
protections poses no problem in practice. In the link-time
rewriter, it is not difficult to determine a good order to per-
form the transformations for all of the protections, and to
prevent that multiple techniques are deployed on the same
code fragments when those techniques do not compose.

For example, in our prototype implementation3 we do not
yet support mobile code in the debugger. Also, the debug-
ger needs to know the exact continuation points to transfer
control to in the debuggee. But mobile code is relocated to
randomized locations. So at least for the time being, our pro-
totype implementation of self-debugging does not compose,
on the same fragment, with code mobility. Handling all pro-
tections correctly requires some bookkeeping, but nothing
complex.
3The source code of the Diablo link-time rewriter sup-
porting all other protections is available at https://github.
com/diablo-rewriter. The source code annotation extrac-
tor is available at https://github.com/aspire-fp7. The self-
debugger source code and the Diablo support for the in-
jection of the mini-debugger and the auxiliary routines, as
well as for migrating the code fragments is available at
https://github.com/diablo-rewriter/diablo-selfdebugger.

As for the run-time behavior, the techniques compose as
well. Multiple techniques require initializers and finalizers,
but in the debugger process we do not want to execute the
initializers of the other protections, as that debugger pro-
cess should only be a debugger, and not another client for
code mobility or any other technique. To prevent the other
initializers from executing, the self-debugger initializers are
given the highest priority. They are executed first when a
binary or library is loaded, and the debugger initialization
routine implements in fact both the real initializer, as well
as the debug loop. The routine therefore never ends (that
is, as long as the finalizer is not invoked), and hence control
is never transferred to the other initializers that might be
present in the binary.

Finally, we should point out one limitation of our current
design and tool support. As presented, it can only be de-
ployed once in a running process. In other words, with the
design and implementation details presented in the remain-
der of this paper, either the main application or one of the
shared libraries can be protected, but not more. This limi-
tation stems from the fact that in order to protect multiple
libraries (incl. possibly the main program), one debugger
needs to contain, or have at least have access to, the mi-
grated code fragments and all auxiliary code and data of all
protected libraries. The extensions required to our scheme
to support this are future work at this point.

5. EVALUATION

5.1 Evaluation Platform
Our prototype implementation of the self-debugger tar-

gets ARMv7 platforms. Concretely, we targeted and ex-
tensively evaluated the implementation on Linux 3.15 and
(unrooted) Android 4.3+4.4. We also checked whether the
techniques still work on the latest versions of Linux (4.7)
and Android (7.0), and that is indeed the case.

Our testing hardware consist of several developer boards.
For Linux, we used a Panda Board featuring a single-core
Texas Instruments OMAP4 processor, an Arndale Board
featuring a double-core Samsung Exynos processor, and a
Boundary Devices Nitrogen6X/SABRE Lite Board featur-
ing a single-core Freescale i.MX6 processor. The latter board
was also used for the Android versions.

In our tool chain, we used GCC 4.8.1, LLVM 3.4, and
GNU binutils 2.23. We compiled code with the following
flags: -Os -march=armv7-a -marm -mfloat-abi=softfp -

mfpu=neon -msoft-float.

5.2 Use cases
To evaluate the real-world potential of our self-debugging

scheme, we deployed it on three use cases that were devel-
oped independently in three market leader companies The
three use cases were hence developed using different develop-
ment approaches, different software architectures, and even
different build systems. Each use case consists of one or more
shared libraries to provide us with software of sufficient com-
plexity to be representative for real software products and
with embedded, security-sensitive assets representative of
the assets (and corresponding security requirements) in the
companies’ real products. We chose the fragments to mi-
grate from the application into the debugger together with
the application architects and developers, and with security
architects from the companies.

5.2.1 Digital Rights Management
The first use case consists of two plugins, written in C and

C++ at Nagravision S.A., for the Android media framework
and the Android DRM framework. These libraries are nec-
essary to obtain access to encrypted movies and to decrypt
them. A video app programmed in Java is used as a GUI
to access the videos. This app communicates with the me-
diaserver and DRM frameworks of Android, informing the
frameworks of the vendor of which it needs plug-ins. On de-
mand, these frameworks then load the plug-ins. Concretely,
these servers are the mediaserver and drmserver processes
running on Android.

During our experiments and development, we observed
several features that make this use case a perfect stress test
for our protection. First, the mediaserver is multi-threaded,
and creates and kills new threads all the time. Secondly, the
plug-in libraries are loaded and unloaded frequently. Some-
times the unloading is initiated even before the initialization
of the library is finished. Thirdly, as soon as the process
crashes, a new instance is launched. Sometimes this allows
the Java video player to continue functioning undisrupted,
sometimes it does not. This makes debugging the implemen-
tation of our technique even more complex than it already
is for simple applications. Fourthly, the mediaserver and
drmserver are involved in frequent inter-process communi-
cations.

5.2.2 Software License Manager
The second use case is a software license manager that

stores credentials and controls access to licensed content
and functionality, e.g., through time-limited licenses, key-
enabled licenses. This license manager is programmed in C
at SafeNet Germany GmbH (which has since been acquired
by Gemalto S.A.). The library includes the JNI interface,
and is embedded in an Android app. This native library
thus functions as a license manager for a Java application.
In this case, the Java application is relatively simple: It is
a riddle game of which the solutions are protected by the
license manager.

To test our self-debugger technique, this use case is also
interesting. In particular, the library is loaded into An-
droid’s Dalvik execution environment, which features multi-
ple threads (such as for the JIT compiler, garbage collector,
...), and over which we have absolutely no control [2].

Fortunately, a command-line version of the riddle game,
programmed in C is also available. It uses the same li-
brary (except the JNI wrapper). On top of providing an
easier target to debug on our Android developer boards,
this command-line version can also be compiled for Linux.
This way, we could also test our implementation on Linux.

5.2.3 One-time password generator
The third use case is a one-time password generator devel-

oped in C and C++ at Gemalto S.A. In this case, the native
library is responsible for storing and accessing counters and
seed values necessary to generate one-time passwords, and
also for provisioning the original counter and seed values.
This library is again embedded in a Java Android applica-
tion, which in this case simply provides GUI functionality
on top of the functionality in the library.

Table 1 lists a number of features of the three use cases as
an indication of their representativeness of real-world soft-
ware. The number of source code lines includes all the men-

use case developer nr. of src lines included third-party libraries embedded assets
DRM Nagravision S.A. 306.247 OpenSSL keys
software license manager SafeNet Germany GmbH 55.487 libtomcrypt, libtommath keys
OTP generator Gemalto S.A. 360.446 OpenSSL, libcurl seed, counter

Table 1: Feature matrix of the use cases

Transformation Overhead
Control Flow 1.7 ms
Memory Read 3.4 µs
Memory Write 2.3 µs

Table 2: Overhead of our transformations.

tioned third-party libraries that are compiled and statically
linked into the shared libraries to be protected. This static
linking is a security requirement, because dynamic linking
leaks too much symbolic information to attackers. Whereas
the linked-in libraries do not contain any assets, they oper-
ate on assets such as keys, and the flow of control into them
needs to be protected against reverse engineering as well.

5.3 Correctness
We tested the technique for correctness by extensively

testing them, first on toy examples and then on the three
use cases. For the use cases, we tested self-debugging com-
bined with many different combinations of the protections
listed in Section 4.5. After a considerable amount of en-
gineering effort, we reached the status of reliable correct
execution, even in complex situations such as native code
libraries loaded into Google’s Dalvik environment and plug-
ins loaded into the Android DRM and media servers. The
latter server proved to be particularly testing, as described
in Section 5.2.1.

5.4 Execution Overhead
On the use cases, the self-debugging did not introduce

significant overhead. This is due to the nature of the assets
and code fragments protected with the technique, which are
not located on hot code paths.

To get an idea of the actual overhead, we also performed
measurements on micro-benchmarks. Our aim was to mea-
sure the overhead introduced by the transformations we use
on control flow and memory accesses. Each micro-benchmark
migrated a little code fragment to the debugger. For the
memory accesses it was a load from memory or a store to
memory that was executed in a loop (the entire loop be-
ing migrated). For the control flow the migrated code frag-
ment consisted of a single instruction (an ADD instruction),
also contained in a loop. As these transformations only re-
place a single instruction, the original execution time of the
micro-benchmarks is simply that of the respective instruc-
tions (which is on the order of nanoseconds).

We tested these micro-benchmarks on our Linux board
(see Section 5.1), and made sure the loops had sufficiently
high trip counts to make the execution time measurable and
to ensure the execution time of the micro-benchmark was
completely dominated by the transformation we wanted to
benchmark. Table 2 lists the results.

5.5 Security Analysis
We describe four categories of possible vectors of attack

against our technique: circumventing or avoiding the mi-
grated control flow fragments, reverting the binary trans-
formations, attacking the mini-debugger directly, and full
system emulation.

5.5.1 Circumvention & Avoidance
One possible method of attack is to prevent the mini-

debugger ever being invoked. This requires the attackers
finding a path between an entry point of the protected bi-
nary and the area they are interested in, that does not con-
tain any migrated control flow fragment. Attackers can then
disable the mini-debugger, attach their own debugger, and
debug the found path without any consequences. Finding
such a path will be easier in shared libraries. Whereas an
executable possesses a single entry point, shared libraries
usually have multiple.

Even if no unprotected path to an area of interest exists,
attackers can debug this area if they manage to disable the
mini-debugger at the right moment. That is, after the last
migrated fragment but before the area is entered. We will
not go into the question of exactly how one would deduce
from the application’s execution that the right moment for
intervention has arrived. A plethora of side channels might
be used for this.

5.5.2 Reverting the Transformations
If the attacker simply reverts all the transformations that

were applied to migrate control flow fragments, the mini-
debugger can be disabled without problem. We differen-
tiate between memory access transformations and control
flow transformations. Both classes of transformations need
to be reverted for this attack to succeed, but reverting a con-
trol flow transformation requires determining the address to
which control should be transferred. In the current imple-
mentation this can easily be done through static analysis.
For example, when a migrated fragment is invoked one can
simply find the destination address by looking up the frag-
ment ID in a datastrucure (see Section 4.3.2).

5.5.3 Attacking the Mini-Debugger
The mini-debugger itself obviously also forms an attack

surface through which the application can be compromised.
As the child process containing the mini-debugger is not pro-
tected, an attacker can attach a debugger to it and attempt
to observe and manipulate the application through it.

Through observation of the mini-debugger the attacker
can learn more about the control and data flow of migrated
fragments, which can be used in the other attacks discussed
in sections 5.5.1 and 5.5.2.

Instead of attaching their own debugger to the applica-
tion, attackers can also subvert the mini-debugger for their
own purposes. They can attach their own debugger to the
mini-debugger process and subvert its ptrace privileges over
the target application for their own purposes. Using this
indirection, ptrace requests can be inserted into the appli-
cation to one’s heart desire.

Another possibility would be for attackers to develop their
own debugger that incorporates the mini-debugger’s func-
tionality and that augments it with real debugging func-
tionality. The mini-debugger could then be safely disabled
and replaced with this new debugger.

5.5.4 Full System Emulation
Obviously, full system emulation could also be used to

trace and debug our self-debugging applications. To the
best of our knowledge, however, and as confirmed to some
extent by the penetration tests described below, no such
emulators are available for our targeted platform. And of
course analysing and understanding the interaction between
two processes, with all kernel interactions in between, will
be harder than debugging a single program in isolation.

5.6 Penetration Tests
For each of the three Android use cases, professional pen-

etration testers were hired for several weeks to attack the
assets in the code protected with many techniques, as dis-
cussed in Section 4.5.

Whereas all of them tried to use tracing and live-debugging
techniques, within the time frame of the pen tests none of
them succeeded in collecting full traces or attaching debug-
gers for live-debugging of the most interesting code frag-
ments being executed in-situ. The latter of course followed
from the manual selection of migrated code fragments by
the use case developers, which ensured that migrated code
fragments occur on all execution paths to the relevant code
fragments.

The evaluated tools that break on self-debugging libraries
include gdb, valgrind used both as a standalone tracer tool
and as a gdbserver for gdb and IDA Pro, and QEMU [1,
7, 19, 8]. The fact that gdb breaks is not surprising, as it
depends on the ptrace interface to which access is blocked
by the self-debugging technique. Valgrind currently does
not support the BKPT instruction correctly, and it cannot
emulate ptrace calls, so it cannot emulate a self-debugging
program correctly. The QEMU version corresponding to our
Android targets also does not support the BKPT instruction
correctly.

Other tracing tools, such as dtrace [12] and systemtap [9]
were not evaluated because they do not support our An-
droid platform and because they do not support interactive
debugging anyway. Their tracing and debug actions need to
be scripted beforehand.

Some pen testers did succeed, however, in tracing and live-
debugging code out of context. They then loaded a library
into a specially crafted main program that directly invokes
some of the library functions in isolation. In essence, they
were able to create an execution path leading to some of
the interesting internal functions without first executing a
migrated fragment.

6. PRACTICAL CONSIDERATIONS

6.1 Fragment Selection
As explained in Section 2 the decision of what fragments

are to be migrated to the debugger rests with the program-
mer. This is an important decision, as selecting the wrong
fragments will result in a weakened protection, as was al-
ready discussed in the previous section. Therefore the loca-
tion of the selected fragments in the control flow should be

right before and inside all of the code regions an attacker
might be interested in.

The fact that this selection is not straightforward was
clear when the experts chose the fragments to be migrated.
For example, at some point they mistakenly chose to migrate
variable initialization code of which the initial values later
proved to be dead. While their choice still resulted in con-
trol flow being transferred to the debugger, and control flow
hence being obfuscated, an attacker could relatively easily
undo the protection by rewriting the exception inducing in-
struction, thus circumventing many of the challenges that
general code rewriting exhibits.

To hinder the transformations being reverted, a selected
fragment should contain sufficient code, and code that is suf-
ficiently complex. Some examples are control flow internal
to the fragment, memory accesses, and complex computa-
tions.

6.2 Impact On Multithreading
While we did not observe this in our use cases and test

programs, a potential issue with our technique might be that
the debugger process is single-threaded, while the debuggee
process is multi-threaded. Handling all requests to execute
migrated fragments in the debugger might therefore become
a bottleneck. Clearly the solution to this problem is engi-
neering a more complex, multi-threaded mini-debugger.

6.3 OS Limitations
In the current implementation the debugger forks from

the protected application and attaches to it using ptrace.
However, the ptrace interface is quite powerful, and over
the past years a number of protections placing restrictions
on its use have been introduced and adopted by some Linux
distributions. When enabled, these protections can hinder
our technique or even make it impossible to use.

One of the protections introduced is ptrace_scope, which
places restrictions on attaching to another process [27]. In
Ubuntu, e.g., the enabled restriction level allows a process
to attach only to its children [24]. In our case this can still
be overcome however, as we have the ability to execute code
in the protected application: During initialization the ap-
plication can explicitly allow the debugger process to attach
(using prctl(PR_SET_PTRACER, debugger, ...)).

Still, it is possible for Linux distributions to choose higher
restriction levels of ptrace_scope. In that case, our self-
debugger will not work.

7. CONCLUSIONS
In this paper, we proposed to migrate code fragments

from an application to a debugger that serves as an anti-
debugger. This way, we can make attacks on self-debuggers
significantly harder: The semantics of the code in the debug-
ger is not predetermined, and multiple control flow paths are
possible per invocation of the debug loop.

Our open-source prototype implementation works on com-
plex, real-world use cases, as demonstrated by protecting
complex shared Android libraries. We also discussed multi-
ple implementation issues and options.

As for future work, a number of issues remain to be tack-
led. The first issue is circular debugging, in which the de-
buggee of the current protection would not merely serve as
the main application being debugged, but also as a debug-
ger of the other process by which it is being debugged. We

believe that there are no technical issues that make circular
debugging impossible, but a significant engineering effort is
still required. Circular debugging would certainly make cer-
tain attack paths harder, e.g., by requiring the inclusion of
a full emulation step on the attack paths to simply observe
the control flow implemented by the debugger.

The second open issue is the development of support for
protecting multiple libraries that are loaded within the same
application.

A third issue that we wish to investigate in the near future
is the impact of different implementation aspects (such as
ways to transfer and obfuscate fragment IDs) on the effort
required by attackers.

Acknowledgements
Stijn Volckaert contributed to the results presented in this
paper as a PhD student in the Computer Systems Lab at
Ghent University. He thanks the Agency for Innovation by
Science and Technology in Flanders (IWT) for supporting
his research at the time.

Most of the presented results were obtained in the con-
text of the ASPIRE FP7 research project. The ASPIRE
project ran until October 2016 and has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 609734.

8. REFERENCES
[1] F. Bellard. Qemu, a fast and portable dynamic

translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[2] D. Bornstein. Dalvik VM internals. In Google I/O
Developer Conference, volume 23, pages 17–30, 2008.

[3] A. Cabutto, P. Falcarin, B. Abrath, B. Coppens, and
B. D. Sutter. Software protection with code mobility.
In Proceedings of the Second ACM Workshop on
Moving Target Defense, MTD 2015, Denver,
Colorado, USA, October 12, 2015, pages 95–103, 2015.

[4] Carbon Monoxide. Scyllahide.
https://bitbucket.org/NtQuery/scyllahide.

[5] J. N. Christian Collberg. Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Addison-Wesley Professional,
2009.

[6] C. Collberg, C. Thomborson, and D. Low.
Manufacturing cheap, resilient, and stealthy opaque
constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 184–196. ACM, 1998.

[7] G. Developers. GDB: The GNU Project Debugger.
https://www.gnu.org/software/gdb/.

[8] C. Eagle. The IDA pro book: the unofficial guide to
the world’s most popular disassembler. No Starch
Press, 2011.

[9] F. Eigler, V. Prasad, W. Cohen, H. Nguyen, and
M. Hunt. Architecture of systemtap: a Linux
trace/probe tool.
http://sourceware.org/systemtap/archpaper.pdf,
2005.

[10] P. Ferrie. The “ultimate” anti-debugging reference.
http://anti-reversing.com/Downloads/
Anti-Reversing/The Ultimate Anti-Reversing
Reference.pdf, April 2011.

[11] Ferrit. OllyExt 1.8.
https://tuts4you.com/download.php?view.3392.

[12] B. Gregg. DTrace Tools.
http://www.brendangregg.com/dtrace.html.

[13] jean. hack.lu CTF - Challenge 12 WriteUp. Technical
report, Sogeti ESEC Lab, 2010.

[14] C. Linn and S. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
Proceedings of the 10th ACM conference on Computer
and communications security, pages 290–299. ACM,
2003.

[15] Linux Programmer’s Manual. dlopen(3) - Linux man
page.

[16] Linux Programmer’s Manual. fork(2) - Linux manual
page.

[17] Linux Programmer’s Manual. proc(5) - Linux manual
page.

[18] mrexodia. TitanHide.
https://bitbucket.org/mrexodia/titanhide.

[19] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation.
ACM Sigplan notices, 2007.

[20] Pellsson. Starcraft 2 anti-debugging.
http://www.bhfiles.com/files/StarCraft%20II/Wings%
20of%20Liberty%20%28Beta%29/0x1337.org%20-%
20SCII%20Anti-Debug.htm, March 2010.

[21] M. Schallner. Beginners guide to basic linux anti anti
debugging techniques. CodeBreakers Magazine, 2006.

[22] D. Seal. ARM architecture reference manual. Pearson
Education, 2001.

[23] T. Shields. Anti-debugging – a developers view.
Technical report, Veracode, 2009.

[24] Ubuntu Wiki.
SecurityTeam/Roadmap/KernelHardening - Ubuntu
Wiki. https://wiki.ubuntu.com/SecurityTeam/
Roadmap/KernelHardening{\#}ptrace{\ }Protection.

[25] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and
K. De Bosschere. Diablo: a reliable, retargetable and
extensible link-time rewriting framework. In
Proceedings of the Fifth IEEE International
Symposium on Signal Processing and Information
Technology, 2005., pages 7–12. IEEE, 2005.

[26] C. Wang, J. Davidson, J. Hill, and J. Knight.
Protection of software-based survivability mechanisms.
In Dependable Systems and Networks, 2001. DSN
2001. International Conference on, pages 193–202.
IEEE, 2001.

[27] Yama. ptrace scope. https://www.kernel.org/doc/
Documentation/security/Yama.txt.

