
Why Nothing Matters: The Impact of Zeroing ∗

Xi Yang‡, Stephen M. Blackburn‡, Daniel Frampton‡, Jennifer B. Sartor†, Kathryn S. McKinley∗
‡Australian National University †EPFL ∗Microsoft Research ∗University of Texas at Austin

Abstract
Memory safety defends against inadvertent and malicious
misuse of memory that may compromise program correct-
ness and security. A critical element of memory safety is
zero initialization. The direct cost of zero initialization is
surprisingly high: up to 12.7%, with average costs ranging
from 2.7 to 4.5% on a high performance virtual machine
on IA32 architectures. Zero initialization also incurs indirect
costs due to its memory bandwidth demands and cache dis-
placement effects. Existing virtual machines either: a) mini-
mize direct costs by zeroing in large blocks, or b) minimize
indirect costs by zeroing in the allocation sequence, which
reduces cache displacement and bandwidth. This paper eval-
uates the two widely used zero initialization designs, show-
ing that they make different tradeoffs to achieve very similar
performance.

Our analysis inspires three better designs: (1) bulk ze-
roing with cache-bypassing (non-temporal) instructions to
reduce the direct and indirect zeroing costs simultaneously,
(2) concurrent non-temporal bulk zeroing that exploits par-
allel hardware to move work off the application’s critical
path, and (3) adaptive zeroing, which dynamically chooses
between (1) and (2) based on available hardware paral-
lelism. The new software strategies offer speedups some-
times greater than the direct overhead, improving total per-
formance by 3% on average. Our findings invite additional
optimizations and microarchitectural support.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processors—Memory management (garbage
collection); Optimization; Run-time environments

General Terms Performance, Measurement

Keywords Memory safety, Zero initialization

∗ This work is supported by ARC DP0666059, NSF SHF0910818, NSF
CSR0917191, NSF CCF0811524, NSF CNS0719966, Intel, Google and
Microsoft Research. Any opinions, findings and conclusions expressed
herein are the authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11 October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

1. Introduction
Memory safety is an increasingly important tool for the cor-
rectness and security of modern language implementations.
A key element of memory safety is initializing memory be-
fore giving it to the program. In managed languages, such
as Java, C#, and PHP, the language specifications stipulate
zero initialization. For the same reason, unmanaged native
languages, such as C and C++, have begun to adopt zero
initialization to improve memory safety [26]. We show that
existing approaches of zero initialization are surprisingly ex-
pensive. On three modern IA32 architectures, the direct cost
is around 2.7-4.5% on average and as much as 12.7% of all
cycles, in a high-performance Java Virtual Machine (JVM),
without accounting for indirect costs due to cache displace-
ment and memory bandwidth consumption.

Hardware trends towards chip multiprocessors (CMPs)
are exacerbating these expenses because of their increasing
demands on memory bandwidth [9, 15, 16, 24, 28, 33, 34]
and pressures on shared memory subsystems, such as shared
on-chip caches and memory controllers. For example, Zhao
et al. and Inoue et al. show that the memory bandwidth needs
of both managed and unmanaged languages are a large per-
formance bottleneck on CMPs [16, 34]. Furthermore, energy
is now constraining memory bandwidth [8]. If architects add
processor cores without adding commensurate memory re-
sources (memory bandwidth and shared caches), the over-
head of existing zero initialization techniques is likely to
grow. Although hardware parallelism increases pressure on
the memory system, it offers an optimization opportunity,
such as offloading critical system services that must be done
in a timely manner. To our knowledge, this paper is the first
to explore the zero initialization design space and show that
zero initialization is costly.

Existing zero initialization strategies face two problems:
the direct cost of executing the requisite zeroing instructions
and the indirect cost of memory bandwidth consumption
and cache pollution. The two standard designs in Java Vir-
tual Machines today are bulk zeroing (Jikes RVM and op-
tionally HotSpot) and hot-path zeroing (Azul, HotSpot de-
fault, and J9 [14]). Bulk zeroing attacks the direct cost by
zeroing memory in large chunks and exploiting instruction
level parallelism, loop optimizations, and zeroing a cache
line or more at a time. Bulk zeroing, however, introduces
a significant reuse distance between when the VM zeroes a

cache line and when the application first uses it. This dis-
tance increases cache pollution. Hot-path zeroing injects ze-
roing instructions into the allocation sequence, attacking in-
direct costs by minimizing reuse distance and exploiting the
hardware prefetcher to avoid stalls in modern fetch-on-write
caches. Hot-path zeroing, however, expands and complicates
the performance-critical allocation sequence and reduces op-
portunities for software optimization of the zeroing instruc-
tions. The two designs are thus at poles, addressing either,
but not both, of the direct and indirect costs of zeroing.

Although this cost is significant, very little research ex-
plores zeroing costs or optimizations. We perform a detailed
study in Jikes RVM and confirm the results via a preliminary
implementation in the HotSpot JVM. We use 19 benchmarks
from DaCapo [6], SPECjvm98 [32], and pjbb2005 [3], execut-
ing on three mainstream CMPs: an Intel Core2 Quad Q6600,
an AMD Phenom II X6 1055T, and an Intel Sandy Bridge
Core i7-2600. We measure the allocation rates of real and
microbenchmarks to explore performance limits and costs.
Our analysis reveals opportunities and tradeoffs in zeroing
strategies. We show that an effective hardware prefetcher is
critical to the performance of hot-path zeroing.

We introduce three better solutions. (1) Non-temporal
bulk zeroing targets both direct and indirect costs using
cache-bypassing instructions. (2) Concurrent non-temporal
bulk zeroing targets direct costs by using parallelism to move
zeroing off the application’s critical path. (3) Adaptive zero-
ing chooses between the first two designs based on available
hardware parallelism.

Our zeroing designs take advantage of non-temporal in-
structions and unutilized hardware parallelism to minimize
zeroing costs. We demonstrate that non-temporal stores im-
prove memory throughput and mitigate cache pollution due
to bulk zeroing. Taking advantage of available hardware par-
allelism to move zeroing off the application’s critical path
further reduces the direct cost of zeroing. The best strat-
egy adaptively chooses between concurrent and synchronous
non-temporal bulk zeroing, adjusting based on the availabil-
ity of unused hardware parallelism. The adaptive approach
improves performance by 3.2% on average and up to 9.2%
on the i7-2600. It is most effective on highly allocating,
memory intensive benchmarks, which stress the memory
system the most. Nonetheless, the total number of cycles de-
voted to zero-initialization is often substantial, which sug-
gests that further optimization of zeroing will be useful.

The contributions of this paper are: (1) the first detailed
study of the cost of zero initialization which shows zero ini-
tialization is often expensive on modern processors, (2) a de-
tailed microarchitectural analysis of existing designs which
shows they make different tradeoffs but have very similar
performance, and (3) identification and evaluation of three
new designs. The adaptive design uses non-temporal instruc-
tions and concurrency to provide speedups that sometimes
exceed the direct cost of zero initialization.

2. Background and Related Work
Our work sits at the boundary of programming language
implementation and microarchitecture. This section presents
key background ideas and related work in hardware and
software.

Language design. Managed languages such as Java and
C# have long touted memory safety as a software engineer-
ing and security benefit and native languages, such as C
and C++, are now embracing memory safety using compiler
and library support [26]. Data initialization and pointer dis-
ciplines are the principal techniques for ensuring memory
safety. Pointer safety disciplines protect against unintended
or malicious access to memory by ensuring that the program
accesses only valid references to reachable objects. Pointer
safety is achieved through a combination of language speci-
fication and implementation techniques that enforce pointer
declarations in static or dynamic type systems. The language
specification forbids reference forging, and the implementa-
tion checks array indices, and uses garbage collection rather
than manual freeing to avoid dangling references. The run-
time also zero initializes all data before the program reads
it. This approach is conservative—a program will often ex-
plicitly initialize the data before use as well, rendering the
runtime’s zeroing redundant. Both pointer safety and data
initialization offer software engineering and security bene-
fits, but they increase the number of memory operations.

Memory system design. Meanwhile, the era of chip multi-
processors is increasing pressure on memory performance [9,
15, 16, 24, 28, 33, 34]. Adding hardware parallelism in-
creases computational power, but scaling memory perfor-
mance to keep pace is challenging. Zhao et al. show that
allocation-intensive Java programs create an allocation wall
on modern chip multiprocessors (CMPs) that limits appli-
cation scaling and performance [34]. Studying “partially
scalable” benchmarks, they found a strong correlation be-
tween object allocation rates and memory bus write traffic,
which is quickly saturated and limits scalability. Inoue et al.
show that bandwidth problems are common to more than
just managed languages—highly allocating web server ap-
plications written in native languages also have extremely
high memory bandwidth demands that compromise perfor-
mance on CMPs [16]. More generally, all shared elements
of the memory subsystem, including shared caches, are in-
creasingly subject to contention as hardware parallelism in-
creases, both due to CMPs and simultaneous multithreading.

Memory subsystems on modern processors support in-
tense memory activity when accesses exhibit either: a) a high
degree of locality, or b) no locality whatsoever. A cache hi-
erarchy ensures accesses that exhibit good temporal local-
ity within a cache block have low latency. Modern hardware
prefetchers hide latency when programs exhibit predictable
spatial locality. For accesses lacking temporal locality, non-

temporal streaming instructions go directly to memory with
higher memory throughput and do not displace useful data
in the cache.

Jouppi investigated various cache policies and their ef-
fect on performance [21]. In particular, write-validate of-
fered the best performance — it combines no-fetch-on-write
and write-allocate. This policy requires per-byte valid bits
to partially instantiate cache lines. This policy further moti-
vates zeroing cache lines without reading them from mem-
ory and would improve zeroing performance; however, no
modern caches use it.

Modern caches use a write-back with fetch-on-write se-
mantics [11, 20, 22, 25]. On a write hit, the hardware writes
to and marks the cache line dirty. On a write miss, the hard-
ware first fetches the cache line, and then writes and marks
it as dirty. When the cache line is evicted or is synchronized
with lower-level caches, dirty lines are written back to the
next lower level of the hierarchy. For memory references
that exhibit good temporal locality, write-back caches work
well by reducing write transactions and speeding up mem-
ory references. When temporal locality is poor, this design
limits the memory throughput since, in the worst case, every
write generates a store to memory and a cache line load from
memory, which is useless in the case when the line will not
be read.

ISA support. Some instruction set architectures (ISAs) in-
clude special instructions that initialize the cache without
fetching data from. The PowerPC ISA includes a data cache
block zero (dcbz) instruction that zeros a cache-line directly
without fetching it from memory [30]. The processors de-
signed by Azul [10] have a similar instruction, (CLZ), that di-
rectly zeros a cache line without fetching old memory. The
x86 [18] ISA includes non-temporal cache bypass instruc-
tions for reads and writes that have no temporal locality.

Non-temporal store instruction such as movnti bypass the
cache hierarchy. They send writes directly to memory via a
write combining buffer without a cache access. When used
effectively, they have two benefits: a) they do not displace
other data in the cache, and b) they maximize memory band-
width utilization because, unlike normal stores that can gen-
erate one fetch and one write-back transaction, non-temporal
stores only generate one write transaction.

However, non-temporal stores are expensive when incor-
rectly applied to temporal data. If the target of the write is
currently cached, the hardware must invalidate all cache res-
ident copies of the line, which is costly. Furthermore, if the
program reuses the data soon after the non-temporal write,
an additional bus transaction is required to fetch the data.
Non-temporal stores are weakly ordered, which requires that
the programmer use explicit fences when the semantics re-
quire consistency of writes. Because fences are expensive,
they make non-temporal stores unsuitable for writes that re-
quire fine-grained consistency.

Efficient zeroing. Programming language and OS imple-
mentations highly optimize zeroing, memory copying, and
memory initialization. For example, the standard C library
provides the memset() function to initialize memory. Since
memset() has no semantic knowledge of the reuse distance
between the initialized memory and its next use, it resorts
to a simple heuristic to switch to non-temporal instructions.
For x86 processors, GNU’s C library (glibc) [13] uses non-
temporal stores when the region being zeroed is larger than
the processor’s last level cache. Otherwise it uses standard
writes. The open64 compiler [1] provides a -CG:movnti=N

flag. When it writes to a memory block larger than N KB,
the compiler generates non-temporal store instructions.

Zero initialization strategies. We examined the details
of zero initialization in the open source versions of Ora-
cle HotSpot [23] VM. We extracted further details of the
Azul [10] and IBM J9 [14] JVMs from talks and publica-
tions. Each of these VMs zero initializes memory on the
allocation hot path, minimizing reuse distance between ini-
tialization and first use. Where practical they also selectively
zero only those parts of the objects that are not explicitly ini-
tialized when they are constructed. To save memory band-
width, J9 and Azul VMs use dcbz and CLZ instructions when
targeting PPC and Azul hardware, respectively.

Java’s semantics require that a constructor be executed
immediately after each object is allocated. A constructor in-
cludes arbitrary user code and may include the explicit ini-
tialization of all or part of the object, resulting in a dupli-
cation of effort. If the implicit zeroing and explicit initial-
ization are both statically visible to an optimizing compiler,
the compiler can remove redundant hot-path zeroing. The
opportunities for performance improvement are modest be-
cause hardware efficiently elides redundant writes with good
temporal locality. Correctly implementing this optimization
is difficult because it requires an analysis to guarantee that
all object fields are initialized before either the program or
the garbage collector observes them. The Oracle HotSpot
VM implements such an optimization, but when we mea-
sured it, we found that it provides limited benefit, on aver-
age only 0.4% compared with hot-path zeroing across our
benchmarks. Due to this weak result and the complexity in-
volved in implementing the optimization, we do not consider
it further.

Jikes RVM [4] and, optionally, HotSpot both bulk zero
memory before providing it to the allocator. This approach
forgoes temporal locality between initialization and first
use, but minimizes the direct cost of zeroing by using a
tight loop that can use coarse-grained zeroing instructions
to utilize available memory bandwidth. We found that the
HotSpot implementation of bulk zeroing is extremely naive.
We were able to substantially improve its performance by
using memset() to perform the zeroing.

Benchmark Suite Hea
p

Size

M
B

(6
×

m
in)

To
ta

l A
llo

ca
tio

n

M
B Allo

ca
tio

n
Rat

e

no
rm

ali
ze

d
to

m
ea

n

CPU
Util

iza
tio

n

m
ax

im
um

is
8.

0
M

ul
ti-

th
re

ad
ed

compress SPECjvm98 114 105 0.01 1.00 No
jess SPECjvm98 114 265 1.03 0.99 No

db SPECjvm98 114 74 0.09 1.01 No
javac SPECjvm98 198 175 0.29 1.03 No

mpegaudio SPECjvm98 78 0.21 0.00 1.00 No
mtrt SPECjvm98 120 75 0.43 1.39 Yes
jack SPECjvm98 102 254 0.68 1.00 No
antlr DaCapo MR2 144 217 0.46 1.01 No

avrora DaCapo Bach 300 54 0.03 2.88 Yes
bloat DaCapo MR2 198 1096 0.59 1.02 No

eclipse DaCapo MR2 480 2752 0.31 0.92 Yes
fop DaCapo MR2 240 48 0.10 1.04 No

hsqldb DaCapo MR2 762 118 0.22 0.94 Yes
jython DaCapo Bach 240 1395 0.70 1.05 Yes

luindex DaCapo Bach 132 34 0.09 0.99 Yes
lusearch DaCapo Bach 204 8152 8.24 6.34 Yes

lusearch-fix DaCapo Bach 204 1071 2.57 7.22 Yes
pmd DaCapo Bach 294 385 0.79 2.31 Yes

sunflow DaCapo Bach 324 1832 1.47 7.33 Yes
xalan DaCapo Bach 324 1104 1.92 7.06 Yes

pjbb2005 SPECjbb2005 1200 1930 0.92 4.77 Yes

Table 1. Benchmark characteristics

3. Methodology
Empirical evaluation is used throughout the remainder of
this paper, first to provide motivating analyses, then as part
of a detailed analysis of existing design points, and finally
to analyze our three new designs. So we now present the
software, hardware, and measurement methodologies that
we use.

3.1 Software platform
Benchmarks. Table 1 shows the benchmarks we use, the
heap size we use, the total allocation and allocation rates
of the benchmarks, their CPU utilization and whether the
benchmarks are multi-threaded. The zeroing workload and
CPU utilization of these benchmarks is discussed in Sec-
tion 4. We draw the benchmarks from DaCapo [6] suite,
the SPECjvm98 [32] suite, and pjbb2005 [3]. (A fixed work-
load version of SPECjbb2005 [31] with 8 warehouses that
executes 10,000 transactions per warehouse.) We use bench-
marks from both 2006-10-MR2 and 9.12 Bach releases of
DaCapo to enlarge our suite and because a few 9.12 bench-
marks do not execute on Jikes RVM.

We omit two outliers — mpegaudio and lusearch— from
our figures and averages, but include them grayed-out in ta-
bles, for completeness. The mpegaudio benchmark is a very
small benchmark that performs almost zero allocation while
lusearch allocates at three times the rate of any other. The
lusearch benchmark derives from the 2.4.1 stable release of
Apache Lucene. Investigating the source of its high allo-
cation rate, we found a performance bug in the method
QueryParser.getFieldQuery(), which revision r803664 of
Lucene fixes [29]. The heavily executed getFieldQuery()

method unconditionally allocated a large data structure. In
the fixed version the code only allocates the large data struc-

1 static int[] fresh;
2 public static void initnone() {
3 for (int i=0; i < 1<<26; i++) { // 64 million
4 fresh = new int[8];
5 }
6 }

(a) initnone

1 static int[] fresh;
2 public static void initfresh() {
3 for (int i=0; i < 1<<26; i++) { // 64 million
4 fresh = new int[8];
5

6 // initialize the fresh array
7 for (int j=0; j < 8; j++)
8 fresh[j] = j;
9 }

10 }

(b) initfresh

1 static int[] fresh;
2 static int[] stale;
3 public static void initstale() {
4 stale = new int[8];
5 for (int i=0; i < 1<<26; i++) { // 64 million
6 fresh = new int[8];
7

8 // (re)initialize the stale array
9 for (int j=0; j < 8; j++)

10 stale[j] = j;
11 }
12 }

(c) initstale

Figure 1. Zero initialization locality microbenchmarks

ture if it is unable to reuse an existing one. This fix cuts to-
tal allocation by a factor of eight, speeds the benchmark up
considerably and cuts the allocation rate by over a factor of
three. We patched the DaCapo lusearch benchmark with just
this fix and we call the fixed benchmark lusearch-fix. The pres-
ence of this anomaly for over a year in public releases of a
widely used package suggests that the behavior of lusearch is
of interest and we occasionally call out lusearch as an example
of a highly allocating workload. Our zeroing approaches im-
prove the performance of lusearch by up to 30% on i7-2600,
but we use lusearch-fix in our results.

Microbenchmarks. To better understand the behavior of
zeroing, we use three simple microbenchmarks, illustrated in
Figure 1. The initnone benchmark allocates 64 million arrays,
each of eight integers. In our VM, this array consumes 44
bytes (8×4 bytes plus 12 bytes of header). The initfresh bench-
mark does the same, and then explicitly initializes each 44
byte array immediately after allocation. This benchmark has
good temporal locality and we use it to explore the locality
effects of the zeroing strategies. The third microbenchmark,
initstale, allocates a single array, stale before executing the
tight allocation loop and explicitly (re)initializes stale af-
ter each array is allocated. Explicit initialization of stale

generates very little additional memory traffic, but it adds
computation to the hot loop, which throttles the allocation
rate.

Architecture Core2 Quad Phenom II i7-2600

Model Core2 Quad Q6600 Phenom II X6 1055T Core i7-2600
Technology 65nm 45nm 32nm

Clock 2.4GHz 2.8GHz 3.4GHz
Cores × SMT 4 × 1 6 × 1 4 × 2
L1 D/I Caches 32KB × 4 64KB × 6 32KB × 4

L2 Cache 4MB × 2 512KB × 6 256KB × 4
L3 Cache none 6MB 8MB

Memory 2GB DDR2-800 4GB DDR3-2000 4GB DDR3-1066

Table 2. Hardware platform characteristics

Jikes RVM & MMTk. We use Jikes RVM release 3.1.1+hg
r10392. We also confirm our results via a preliminary im-
plementation in the OpenJDK 1.6.0 Oracle HotSpot Server
JVM (see Sections 5.3 and 6.1). In Jikes RVM, we use the
default production generational immix garbage collector [2].
Generational immix is a stop-the-world collector. It allocates
objects into a nursery using bump-pointer allocation. When
the nursery fills, it copies live objects into a mature mark-
region space. The allocator design consists of a thread-local,
unsynchronized hot-path, and a global, synchronized slow
path [5]. The slow path replenishes each thread’s local buffer
with blocks from a global pool, and when necessary, triggers
garbage collection. Each thread allocates into its local buffer
without any synchronization. By default, Jikes RVM initial-
izes space for fresh allocation by bulk zeroing 32KB blocks
of memory as they are requested by the allocation slow path.
No zero initialization is necessary for mature space alloca-
tion, since copying an object explicitly initializes it.

We use a 32MB fixed size nursery, which performs well
for our benchmarks. We execute with a generous heap size:
6× the minimum required for each individual benchmark,
as reported in the Heap column of Table 1. This heap ar-
rangement produces a regular pattern of nursery collections
and virtually eliminates full heap collections. We repeated
our experiments with a more modest 3× heap and estab-
lished that our findings are robust. In the limit, with a very
small heap, garbage collection costs will dominate any mu-
tator optimizations. The Total Allocation column of Table 1
shows the average volume of objects allocated in the nurs-
ery space using default bulk zeroing. The Allocation Rate
column shows the allocation rate (bytes/execution time) nor-
malized to the mean across all benchmarks on the i7-2600.

To reduce perturbation due to dynamic optimization and
to maximize the performance of the underlying system that
we improve, we use a warmup replay methodology. Be-
fore executing any experiments, we gathered compiler opti-
mization profiles from the 10th iteration of each benchmark.
When we perform an experiment, we execute one complete
iteration of each benchmark without any compiler optimiza-
tions, which loads all the classes and resolves methods. We
next apply the benchmark-specific optimization profile and
perform no subsequent compilation. We then measure and
report the subsequent iteration. This methodology greatly re-
duces non-determinism due to the adaptive optimizing com-
piler and improves underlying performance by about 5%

Core2 Quad!

32KB! 32KB! 32KB! 32KB!

4MB L2! 4MB L2!

system bus!

Core! Core! Core! Core!

Phenom II!

6MB L3!

64KB!

512KB! 256KB!

64KB!

512KB!

64KB!

512KB!

64KB!

512KB!

64KB!

512KB!

64KB!

512KB!

Core! Core! Core! Core! Core! Core!

i7-2600!

32KB! 32KB! 32KB! 32KB!

8MB L3!

256KB! 256KB! 256KB! 256KB!

Core! Core! Core! Core!

T0
!

T1
!

T0
!

T1
!

T0
!

T1
!

T0
!

T1
!

Figure 2. Processor memory system organization

compared the prior replay methodology [7]. We run each
benchmark 20 times (20 invocations) and report the aver-
age. We also report 95% confidence intervals for the average
using Student’s t-distribution.

Operating System. We use Ubuntu 10.04.01 LTS server
distribution running with a 64-bit (x86 64) 2.6.32-24 Linux
kernel.

3.2 Hardware platforms
We use three contemporary IA32 architectures to explore the
performance of zeroing with different technologies, memory
systems, and memory bandwidth provisioning: (1) the Intel
Core2 Quad Q6600 with a classic front-side bus that facili-
tates memory system analysis, (2) a six core AMD Phenom
II X6 1055T, and (3) the recent Intel Sandy Bridge Core i7-
2600 processor. Table 2 summarizes their key characteristics
and Figure 2 illustrates their memory system and CPU orga-
nizations.

The 1066MHz front-side bus (FSB) on the Core2 Quad
processor allows us to conduct a detailed analysis of memory
traffic. Both the i7-2600 and the Phenom II processors have
on-chip memory controllers and make it difficult to measure
the individual contributions of different sources of memory
traffic. For normal memory references, the FSB transfers
data between caches and memory in cache-line sized units
(64 bytes), which means that we can measure the size of
data transferred by counting full cache-line (burst) transac-
tions using performance counters. Two types of memory ref-
erences generate fetch transactions: program cache misses
and prefetching misses generated by the hardware automatic
prefetching unit. The Core2 Quad also provides two control
bits in the IA32_MISC_ENABLE machine state register (MSR)
that disable the hardware prefetcher and adjacent cache line
prefetcher [19], enabling us to analyze the performance im-
pact of hardware prefetching.

4. Motivating Analysis
To motivate our approach, we analyze benchmark character-
istics, the effect of non-temporal instructions on bandwidth
utilization, and the direct cost of zero initialization. Our anal-
ysis shows that some benchmarks have high memory band-
width needs, that non-temporal instructions can use band-
width more effectively, and that the cost of zero initialization
can be high.

 0

 5

 10

 15

 20

Core2 Quad

Phenom II

i7-2600

G
B

/s

Temporal instructions on one core
Temporal instructions on one core (hit last level cache)
Temporal instructions on all cores
Non-temporal instructions on one core
Non-temporal instructions on all cores

(a) Performance of non-temporal vs. caching writes in a tight loop

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8

G
B

/s

Number of threads

Core2 Quad
Phenom II
i7-2600

(b) Memory bandwidth of non-temporal writes as a function of thread count

Figure 3. Performance potential of non-temporal instructions

4.1 CPU Utilization
CPU utilization gives an indication of the potential for con-
tention of shared memory subsystems — if all hardware con-
texts are fully utilized, pressure on the memory subsystem is
likely to be high. We derive CPU utilization based on user
time, system time, and total execution time.

CPUUtilization =
UserTime+SystemTime

ExecutionTime

Because UserTime and SystemTime are aggregated across
threads, CPUUtilization is bounded by N, where N is the
number of available hardware contexts. For example, the
Core2 Quad, Phenom II, and i7-2600 have 4, 6, and 8 hard-
ware contexts, and thus maximum CPUUtilization is 4.0,
6.0 and 8.0 respectively. The CPU Util. column in Table 1
shows CPU utilization for each of the benchmarks on the
i7-2600 (where the maximum is 8.0). Four benchmarks —
lusearch-fix,sunflow, xalan, and pjbb2005 — have relatively high
CPU utilization, which suggests contention for the shared
memory subsystem may be a problem for these.

4.2 Potential benefits of non-temporal instructions.
We perform a limit study to quantify the potential throughput
benefits of non-temporal instructions, when used correctly
on our evaluation machines. We compare non-temporal and
regular write instructions in a tight zeroing loop with one
thread and N threads, where N is the number of available
hardware contexts. By default we use a 32MB buffer per
thread, which is large enough to make store instructions miss
the last level cache. To compare the memory bandwidth of
non-temporal instructions with the memory bandwidth pro-
vided by the last level cache, we also evaluate performance
when using a buffer sized to fit within the shared last level
cache; 4MB, 6MB, and 8MB on Core2 Quad, Phenom II,
and i7-2600 respectively.

Figure 3(a) illustrates that on the Core2 Quad and Phe-
nom II, the throughput increase of non-temporal instructions
(red) over temporal instructions (blue) is 80% and 40% for
a single core, 64% and 68% when using all cores. i7-2600
hardware performs non-temporal write instructions at twice
the rate as temporal store instructions. On the Core2 Quad
and Phenom II, when a regular (temporal) store instruction
hits the last level cache (green bars in Figure 3(a)), the mem-
ory bandwidth provided by the last level cache is higher than
that achieved by non-temporal instructions.

Figure 3(b) shows the memory bandwidth scalability of
non-temporal instructions in the same tight loop, as a func-
tion of the number of hardware threads. None of the ma-
chines exhibit good memory bandwidth scalability in this
setting. The memory bandwidth on the i7-2600 scales by
18% with 2 threads, up to just 20% with 5. The results for
the Phenom II and Core2 Quad are similar to the i7-2600,
although with substantially lower bandwidth.

These results show that: a) non-temporal store instruc-
tions achieve much higher bandwidth than regular stores that
miss the cache, and b) that on each of our processors, non-
temporal stores can saturate the available bandwidth with
less than half the available hardware contexts.

4.3 Direct Cost of Zero Initialization
We measure the direct cost of zero initialization — the num-
ber of cycles consumed by the application while performing
zero initialization. We use bulk zeroing here because hot-
path zero initialization enmeshes zeroing instructions with
the allocation sequence at a fine granularity, which makes
measuring its cost difficult, and the two approaches per-
form very similarly. Hot-path zeroing is on average just 0.3%
faster than bulk zeroing on the i7-2600. For the same reason
we use bulk zeroing as the default comparison point through-
out the rest of the paper.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

m
ean

Z
e
ro

in
g
 c

y
c
le

s

Core2 Quad Phenom II i7-2600

(a) Fraction of total application cycles due to zero initialization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

m
ean

Z
e
ro

e
d
 m

e
m

o
ry

/b
u
s
 t
ra

n
s
.

Core2 Quad

(b) Zero initialization and memory traffic: BytesZeroed / BytesMemoryBusTransferred

Figure 4. The direct cost of zero initialization, in terms of cycles and memory traffic

The direct cost of zero initialization is the CPU time
spent performing zero initialization computed as a fraction
of the total CPU user time (User Time) and system time
(System Time). System Time includes CPU cycles used by the
OS on behalf of the process. This metric does not include
indirect costs such as reduced application locality due to
cache displacement. We sum this metric across all hardware
contexts used by the process. The total includes CPU cycles
due to both the mutator and garbage collection.

DirectZeroingCost =
ZeroingCycles

UserTime+SystemTime

Figure 4(a) reports the fraction of total time spent perform-
ing zero initialization on all three architectures. The same
data is presented numerically in the left half of Table 3. On
the i7-2600, zeroing consumes an average of 2.7% of total
time, and as much as 8.3% for jess. The Phenom II performs
similarly. On the Core2 Quad, which represents more mem-
ory bandwidth constrained platforms, zero initialization cost
increases to 4.5% on average, up to 12.7% for jess and a sur-
prising 51% on the original lusearch (not included in the fig-
ure or averages, but shown in Table 3).

Figure 4(b) presents the bytes zero initialized as a frac-
tion of all memory transferred on the bus, measured by per-
formance counters of bus transactions. These results show
that a large fraction of memory traffic is due to zeroing. The
zero initialization fraction ranges from 10 to 45% for most
benchmarks, with an average of 25%. Only avrora and db in-
cur negligible traffic due to zeroing, and as we will see, show
no sensitivity to the choice of zeroing strategy. The trend to-

wards high allocation rates in managed languages such as
Java, C#, PHP, and JavaScript, suggests that these programs
may be outliers.

5. Existing Zero Initialization Designs
Having presented motivating analysis for zero initialization
design, we now conduct a detailed analysis of the two ex-
isting zero initialization designs before presenting our new
designs in Section 6.

5.1 Hot-path Zeroing
Hot-path zeroing initializes memory for each object upon
allocation, immediately prior to the first use. The allocation
instruction sequence executes frequently, and is often called
the fast or hot path. By default IBM J9, Oracle HotSpot,
and Azul HotSpot use hot-path zeroing. Hot-path zeroing
trades better data locality against a diminished optimization
opportunity. It requires more instructions on the allocation
path and degrades instruction locality.

Allocation is performance-critical in a modern JVM.
To avoid function call overhead and enlarge the optimiza-
tion scope, compilers often inline the allocation hot-path.
Performing zeroing in the hot-path increases the size and
complexity of generated code, which leads to more in-
struction cache pressure. We measured a slight increase in
icache misses of around 6.3% compared to bulk zeroing, and
around 5.3% increase in compilation time on the i7-2600.
On the other hand, hot-path allocation should be friendly to
modern memory systems since it minimizes the reuse dis-
tance between zeroing and first use of an object, and because

Zeroing Direct Cost Hot-path vs. Bulk
(%) of Total Time Improvement (%)

Benchmark C2Q PII i7 C2Q PII i7

compress 0.91±0.00 0.75±0.01 0.47±0.00 -0.25±0.08 -0.37±0.07 -0.47±0.61

jess 12.74±0.18 6.61±0.09 8.29±0.19 8.39±0.26 0.01±0.41 3.54±0.96

db 0.53±0.00 0.47±0.00 0.56±0.00 0.05±0.18 0.15±0.29 0.37±0.84

javac 3.16±0.02 2.12±0.02 2.16±0.02 -0.01±0.27 -1.73±0.34 -0.39±0.79

mpegaudio 0.00±0.00 0.00±0.00 0.00±0.00 -0.06±0.14 -0.76±0.10 -0.03±0.91

mtrt 3.49±0.05 1.85±0.03 2.36±0.04 1.90±0.88 0.13±0.85 -0.25±1.42

jack 8.22±0.04 6.06±0.09 5.41±0.09 2.53±0.18 0.50±0.22 -1.07±1.07

min 0.53 0.47 0.47 -0.25 -1.73 -1.07
max 12.74 6.61 8.29 8.39 0.50 3.54

mean 4.84 2.98 3.21 2.10 -0.22 0.29
geomean 2.15 -0.22 0.30

antlr 5.22±0.04 3.82±0.05 3.68±0.06 0.43±0.11 -0.18±0.13 0.26±2.01

avrora 0.04±0.00 0.11±0.00 0.09±0.00 -8.69±5.03 1.21±0.37 -0.65±0.79

bloat 7.02±0.04 4.72±0.04 4.70±0.05 2.49±0.39 0.93±0.45 2.39±0.90

eclipse 3.83±0.02 2.76±0.02 2.57±0.01 -0.09±1.14 -1.03±6.58 1.87±2.25

fop 1.02±0.01 0.73±0.01 0.71±0.01 -0.58±0.62 1.08±0.53 0.47±1.33

hsqldb 2.71±0.12 1.55±0.07 1.83±0.11 -4.78±1.15 -3.62±1.45 -2.84±3.84

jython 9.29±0.03 6.07±0.05 5.37±0.03 1.65±0.35 0.79±0.56 0.03±0.66

luindex 0.93±0.01 0.70±0.01 0.72±0.01 0.25±0.76 0.34±0.18 -0.13±0.81

lusearch 51.40±0.14 50.59±0.43 31.67±0.13 25.22±0.24 27.73±0.52 20.50±0.72

lusearch-fix 8.46±0.03 6.06±0.10 3.76±0.02 2.76±0.30 0.94±1.08 0.97±0.95

pmd 4.85±0.03 3.17±0.04 2.78±0.03 0.58±0.31 0.88±0.47 0.40±1.07

sunflow 4.47±0.07 2.28±0.11 1.92±0.02 1.18±4.17 1.32±5.54 -0.12±1.49

xalan 5.06±0.02 4.60±0.03 2.57±0.01 1.42±0.26 0.90±3.21 1.79±0.67

min 0.04 0.11 0.09 -8.69 -3.62 -2.84
max 9.29 6.07 5.37 2.76 1.32 2.39

mean 4.41 3.05 2.56 -0.28 0.30 0.37
geomean -0.24 0.30 0.38

pjbb2005 2.82±0.01 1.15±0.02 1.66±0.01 -0.30±2.85 -0.54±1.28 -1.16±0.60

min 0.04 0.11 0.09 -8.69 -3.62 -2.84
max 12.74 6.61 8.29 8.39 1.32 3.54

mean 4.46 2.93 2.72 0.47 0.09 0.26
geomean 0.52 0.10 0.27

Table 3. The direct cost of bulk zeroing (left) and total
execution time for hot-path relative to bulk (right)

the access pattern is regular, it should be amenable to hard-
ware prefetching.

In Jikes RVM we implement a hot-path instruction se-
quence that zeroes objects sixteen bytes at time using an
unrolled loop of four-byte mov instructions. This version per-
forms significantly better than two eight-byte (movq) instruc-
tions or one sixteen-byte (movdq) instruction. We identified
two reasons that the eight-byte instruction performs worse:
1) it requires the use of a register as the source, whereas the
four-byte instruction uses an immediate; and 2) the alloca-
tion sequence only guarantees four-byte alignment, so eight-
byte or sixteen-byte stores may be unaligned, which on the
IA32 is not incorrect, but incurs a performance penalty [17].
When objects are smaller than sixteen bytes, our approach
redundantly zeroes some trailing memory. Since the mini-
mum object size is 8 bytes (the size of a header) and the
average object size is around 28 bytes, redundant zeroing is
not a significant concern.

5.2 Bulk Zeroing
Both Jikes RVM (by default) and HotSpot (with a command
line option) provide bulk zeroing. Bulk zeroing initializes
blocks of free memory to zero prior to returning them to
the memory allocator. Seeking to improve the efficiency of

 0

 0.5

 1

 1.5

 2

 2.5

 3

initfresh

initstale

initnone

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Bulk zeroing
Bulk zeroing (no prefetch)

Hot-path zeroing
Hot-path zeroing (no prefetch)

Figure 5. Execution time of microbenchmarks on Core2
Quad with and without hardware prefetch enabled

zeroing, bulk zeroing performs highly optimized zeroing in
a tight loop with a very small instruction cache footprint.
For example, the zeroing routine straightforwardly utilizes
instructions that zero at a coarse grain — zeroing aligned
double word, quad word, or even a cache line at a time.
Using our microbenchmark below, we dispel the expectation
that the high spatial locality and regular access pattern of
bulk zeroing would lend itself to hardware prefetching. The
principal disadvantage of this design is that as the block size
grows, the average reuse distance between allocation and
data use also grows.

The default implementation in Jikes RVM performs zero
initialization of 32KB blocks using glibc’s memset() func-
tion. As the size of the block is much smaller than the size of
the last level cache on the evaluation machines, the memset()
function uses normal store instructions to perform zeroing.

5.3 Comparison: Hot-Path and Bulk Zeroing
This section presents a detail analysis of the memory system
behavior and total performance of the two existing zero ini-
tialization techniques executing both our microbenchmarks
and real workloads.

Microbenchmark performance. Figure 5 shows the exe-
cution time of the microbenchmarks on Core2 Quad with
and without hardware prefetching. With hardware prefetch-
ing, hot-path zeroing outperforms bulk zeroing in all sce-
narios — by 14%, 13% and 14% for initfresh, initstale, and
initnone respectively. We noted above that one of the down-
sides of hot-path zeroing is the fine-grained enmeshing of
zero instructions that significantly reduces optimization op-
portunities compared to bulk zeroing. In this regard, the mi-
crobenchmark presents a best-case scenario for hot-path ze-
roing. When all allocation and initialization occurs in one
very tight loop, the compiler can optimize it and make it sim-
ilar to the bulk zeroing loop. Both approaches must write the
header, even for initnone and initstale. Since there is no code ad-
vantage and a memory disadvantage for bulk zeroing on the
microbenchmarks, the hot-path zeroing’s 15% performance
advantage is unsurprising.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb

jython
luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Last level program cache misses Total last level cache misses Instruction cache misses

Figure 6. Last level cache misses on the Core2 Quad: hot-path/bulk zeroing

Without prefetching, bulk zeroing has a substantial ad-
vantage over hot-path zeroing: 11%, 6% and 26% for initfresh,
initstale, and initnone respectively. Furthermore, the raw perfor-
mance of bulk zeroing is unaffected whether the prefetcher
is enabled or not, while the performance of hot-path is de-
graded significantly.

Since bulk zeroing writes large continuous chunks se-
quentially in a tight loop, it places high demands on the bus,
throttling the automatic prefetcher. On the other hand, hot-
path zeroing intertwines zeroing instructions with the alloca-
tion sequence and its surrounding context, and thus spreads
the stores out, placing less pressure on the bus, which allows
the hardware prefetcher to be more aggressive and gives the
hardware more time to tolerate the latency. Thus, as Figure 5
shows, hot-path zeroing relies on prefetching to reduce the
direct cost of zero initialization, and without it, performance
suffers noticeably.

Overall performance. The right side of Table 3 shows the
relative performance of hot path zeroing compared to bulk
zeroing on the three architectures. These results show that
hot-path zeroing offers a slim advantage over bulk zero-
ing (0.1% to 0.5%).The benchmark that benefits most from
hot-path zeroing is the fast-allocating jess, with a 3.5% ad-
vantage over bulk-zeroing on the i7-2600. However, most
benchmarks are neutral to this choice. These results con-
trast sharply with the microbenchmark results, highlighting
the fact that the microbenchmarks is a best-case scenario for
hot-path zero initialization.

We optimized HotSpot’s bulk zeroing implementation
and found similar results — hot-path zeroing provides only
0.7% advantage on the i7-2600, rising to 1.1% when com-
bined with HotSpot’s redundant initialization optimization,
which is enabled by default. Summarizing, although hot-
path and bulk zeroing perform remarkably similarly, our
microbenchmark results show that they achieve this perfor-
mance by making very different tradeoffs.

Instruction footprint. When the compiler inlines the al-
location sequence to improve performance, it sprinkles ad-
ditional hot-path zeroing instructions all over the program,
generating a lot of instructions compared to a single out-
of-line loop for bulk zeroing. The Instruction cache misses

bar in Figure 6 shows that this increase degrades instruc-
tion locality. On the Core2 Quad, instruction cache misses
increase by 6.4% for hot-path zeroing compared to bulk ze-
roing. For mtrt, jack, pjbb2005, sunflow and jython, the instruction
cache misses increase by more than 15%. The decrease in
program cache misses in jython of 70% suggests the poten-
tial for a performance win, but poor instruction cache lo-
cality counteracts this potential. The result is a net perfor-
mance degradation due to hot-path zeroing. To understand
the impact of hot-path zeroing on the compiler, we measured
the compilation cost for both schemes. These measurements
reveal a 5.3% increase in compilation time on the i7-2600
for hot-path zeroing. The rest of our experiments eliminate
compilation time to focus on steady-state application perfor-
mance.

Data locality. We divide cache misses into those generated
directly by the program (program cache misses), those gen-
erated by automatic hardware prefetching (prefetching cache
misses). We present total last-level cache misses which in-
clude both program and prefetching misses. The first bar
in Figure 6 shows that hot-path zeroing nearly halves the
number of program misses on the Core2 Quad compared to
bulk zeroing. However, this effect is almost entirely offset
by an increase in prefetch cache misses (not shown), lead-
ing to a modest 3.3% average reduction in total last-level
cache misses. Because hot-path zeroing zeros more slowly,
hardware prefetching has an opportunity to satisfy memory
requests. The penalty of slower zeroing throughput for hot-
path zeroing counteracts its improved temporal locality. Hot-
path zeroing reduces last-level cache misses on the Core2
Quad by 45% on average and by 70% or more for bloat, jack,
jess, and jython, which lead to 2.5%, 2.5%, 8.4% and 1.6% net
speedups, respectively.

Memory performance. We evaluate the memory perfor-
mance of the two existing zero initialization designs in Fig-
ure 7. Figure 7(a) depicts memory bus utilization on the
Core2 Quad, with alternate bars showing bulk zeroing (left,
light) and hot-path zeroing (right, dark). The total number of
transactions is normalized to bulk zeroing, so the left bar in
each pair is always exactly 1.0. When the right bar is lower,
hot-path performs fewer bus transactions. Each bar is broken

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb

jython
luindex

lusearchfix

pmd
sunflow

xalan
pjbb2005

F
ra

c
ti
o
n
 o

f
to

ta
l
tr

a
n
s
a
c
ti
o
n
s

Write transactions
Fetch transactions from program cache misses
Fetch transactions from prefetching cache misses

(a) Bus transaction breakdowns on Core2 Quad: bulk (left, light) and hot-path (right, dark)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb

jython
luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Fetch transactions caused by program cache misses
Fetch transactions caused by prefetching misses

Fetch bus transactions
Bus transactions

(b) Bus transactions relative to bulk zeroing on Core2 Quad

Figure 7. Memory bus utilization: hot-path/bulk zeroing

down into write, program cache misses, and prefetch misses,
all normalized to the total bus transactions for bulk zeroing.
The number of program cache misses (blue) is consistently
lower for hot-path zeroing. On the other hand, the number of
misses due to the hardware prefetcher (red) is consistently
higher for hot-path zeroing, which is consistent with our mi-
crobenchmark results.

Figure 7(b) expresses the same data differently, normal-
izing each metric to the corresponding metric for bulk ze-
roing. Numbers higher than one signify that hot-path ze-
roing increases these memory transactions. The blue and
red bars show fetch (read) transactions due to program and
prefetch misses respectively. The green bar shows all fetch
(read) transactions. The purple bar shows total bus transac-
tions. Figure 7(b) shows that hot-path zeroing and bulk ze-
roing have similar bus transactions: on average a 0.7% dif-
ference (purple). The significant reduction in last level pro-
gram cache misses by hot-path of 45% (blue) is offset by an
increase in prefetch misses of 25% (red). Since on the whole
prefetch misses dominate program misses, the 25% increase
offsets the 45% decrease, resulting in a very small reduction
in fetch transactions (green).

5.4 Zeroing performance in the application context
Having compared the two zero initialization designs in the
previous section, we now look more closely at the perfor-

mance of the zeroing loop, as used by bulk zeroing. On mod-
ern CPUs, zeroing performance is primarily determined by
two factors: the cache hit-rate and the degree of contention
on the shared memory subsystems. We use bulk zeroing to
measure the average number of cycles taken to zero a block
of memory as it executes as part of each benchmark. We
express the result in GB/sec.

ZeroingPer f ormance =
BytesZeroed

ZeroingCycles×CycleTime

Figure 8 shows the zeroing performance in the context of
each benchmark by starting and stopping a timer at the
beginning and end of zeroing. The Core2 Quad, Phenom
II, and i7-2600 bulk zero at around 3, 5, and 8 GB/sec,
respectively. While there exist a few outliers — compress

and db on the high side, and lusearch-fix, sunflow, and xalan

on the low side — Figure 8 shows that on the whole, bulk
zeroing performance is similar in the context of each of these
benchmarks.

Section 4 shows high CPU utilization often corresponds
with high contention of the shared memory subsystem. Re-
lating the CPU Util. column from Table 1 to the zeroing per-
formance data in Figure 8 shows that the high CPU utiliza-
tion benchmarks have the lowest zeroing performance. The
zeroing performance of lusearch-fix is the worst because it has
both a high CPU utilization with a very high allocation rate.

 0

 2

 4

 6

 8

 10

 12

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

m
ean

G
B

/s
Core2 Quad Phenom II i7-2600

Figure 8. Zeroing performance in the application context: Bulk zeroing

sunflow and xalan have lower zeroing performance, especially
on i7-2600, in part due to higher contention on shared mem-
ory subsystems.

5.5 Tradeoffs and trends
In summary, we see a stark tension between: a) hot-path al-
location which reduces data cache pollution, but imposes a
significant direct cost, and b) bulk zeroing which has low di-
rect costs, but suffers significant cache pollution. While hot-
path zeroing has better data cache hit rates, it degrades code
quality and incurs higher direct costs. On the other hand,
the performance of bulk zeroing is a function of memory
bandwidth. Modern machines have increased bandwidth to
a point where bulk zeroing essentially matches hot-path per-
formance. However as future CMPs increase hardware par-
allelism and software generates more parallelism, programs
are likely to contend more for shared memory bandwidth
and caches. The next three sections show how we break this
tradeoff and produce a system that performs better than these
prior approaches.

6. New Zero Initialization Designs
We introduce three new design points: (1) non-temporal bulk
zeroing, (2) concurrent non-temporal bulk zeroing, and (3) a
design which adaptively switches between (1) and (2). To the
best of our knowledge, these approaches are not discussed
in the literature, nor deployed in existing virtual machines.1

Each of these new designs perform better than deployed
designs.

6.1 Non-temporal bulk zeroing
Figure 3(a) and Section 4 showed that non-temporal store in-
structions offer higher effective bandwidth and the potential
to mitigate the direct cost of bulk-zeroing. They can elim-
inate cache displacement side effects, but they are weakly
ordered and must be used carefully—if any extant copies of
the written-to cache line exist, they will be evicted, which
will significantly degrade performance.

1 The G1 garbage collector of HotSpot [12] includes code for a concurrent
zeroing thread (which is described as important for responsiveness). How-
ever this thread is disabled in HotSpot where G1 now exists only as the
mature space in a generational collector [27], not as a full heap collector.

Our non-temporal bulk-zero implementation replaces
memset() with a loop that uses the movntdq quad-word
non-temporal store instruction. The original memset() uses
regular store instructions for regions smaller than the last-
level cache size. This modest change has a significant per-
formance impact. Wide non-temporal instructions speed up
the bulk zeroing rate by guaranteeing aligned memory ac-
cesses and amortizing the cost of zeroing the source register.
This design avoids the alignment pitfalls that make wide in-
structions perform poorly in the hot-path and it avoids cache
pollution that plagues bulk zeroing. This design relies on
effective hardware prefetching to hide miss latencies that
occurs at allocation time when the program first writes or
reads each new object.

Microbenchmark performance. Figure 9 shows the exe-
cution time of the microbenchmarks on Core2 Quad with
and without hardware prefetching. When hardware prefetch-
ing is enabled, non-temporal bulk zeroing outperforms bulk
zeroing by 16% for initfresh and initstale and degrades per-
formance for initnone. When prefetching is disabled, non-
temporal bulk zeroing performs 0.7%. 7.5% and 41% worse
than bulk zeroing for the three microbenchmarks, respec-
tively. These results are very similar to the results for hot-
path zeroing and show a heavy reliance on the hardware
prefetcher. Because non-temporal stores bypass the cache,
the cache miss for a new object will always occur in the al-
location sequence, just as for hot-path zeroing. The signifi-
cant divergence between non-temporal and hot-path zeroing

 0

 0.5

 1

 1.5

 2

 2.5

 3

initfresh

initstale

initnone

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Bulk zeroing
Bulk zeroing (no prefetch)
Hot-path zeroing
Hot-path zeroing (no prefetch)

Non-temporal bulk zeroing
Non-temporal bulk zeroing (no prefetch)
Concurrent zeroing
Concurrent zeroing (no prefetch)

Figure 9. Execution time of microbenchmarks on Core2
Quad with and without hardware prefetch enabled

Zeroing Direct Cost Hot-path vs. Bulk Non-temporal vs. Bulk Concurrent vs. Bulk Adaptive vs. Bulk
(%) of Total Time Improvement (%) Improvement (%) Improvement (%) Improvement (%)

Benchmark C2Q PII i7 C2Q PII i7 C2Q PII i7 C2Q PII i7 C2Q PII i7

compress 0.91±0.00 0.75±0.01 0.47±0.00 -0.25±0.08 -0.37±0.07 -0.47±0.61 0.44±0.08 0.05±0.08 0.27±0.60 0.79±0.08 0.44±0.07 0.41±0.57 0.81±0.07 0.44±0.08 0.19±0.59

jess 12.74±0.18 6.61±0.09 8.29±0.19 8.39±0.26 0.01±0.41 3.54±0.96 6.18±0.33 -0.04±0.29 4.19±1.00 13.92±0.31 7.23±0.24 8.73±0.97 13.95±0.36 7.06±0.29 9.25±1.02

db 0.53±0.00 0.47±0.00 0.56±0.00 0.05±0.18 0.15±0.29 0.37±0.84 0.01±0.17 -0.13±0.24 -0.11±0.82 0.65±0.20 0.45±0.27 0.61±0.89 0.66±0.20 0.41±0.24 0.53±0.76

javac 3.16±0.02 2.12±0.02 2.16±0.02 -0.01±0.27 -1.73±0.34 -0.39±0.79 0.38±0.24 -0.37±0.34 1.07±0.95 3.89±0.48 2.38±0.65 3.21±0.87 3.23±0.50 2.21±0.50 3.23±1.00

mpegaudio 0.00±0.00 0.00±0.00 0.00±0.00 -0.06±0.14 -0.76±0.10 -0.03±0.91 0.03±0.09 0.00±0.06 -0.01±0.76 0.03±0.08 -0.05±0.08 -0.47±0.86 0.04±0.10 -0.03±0.06 -0.68±0.91

mtrt 3.49±0.05 1.85±0.03 2.36±0.04 1.90±0.88 0.13±0.85 -0.25±1.42 1.80±0.96 -0.45±0.94 0.84±1.09 3.80±1.07 1.45±1.00 1.57±2.13 3.57±1.13 1.30±0.96 3.33±1.00

jack 8.22±0.04 6.06±0.09 5.41±0.09 2.53±0.18 0.50±0.22 -1.07±1.07 3.40±0.17 0.13±0.35 3.38±0.98 8.72±0.17 5.64±0.26 6.92±1.04 8.68±0.16 5.47±0.20 6.79±1.02

min 0.53 0.47 0.47 -0.25 -1.73 -1.07 0.01 -0.45 -0.11 0.65 0.44 0.41 0.66 0.41 0.19
max 12.74 6.61 8.29 8.39 0.50 3.54 6.18 0.13 4.19 13.92 7.23 8.73 13.95 7.06 9.25

mean 4.84 2.98 3.21 2.10 -0.22 0.29 2.03 -0.14 1.61 5.29 2.93 3.57 5.15 2.82 3.89
geomean 2.15 -0.22 0.30 2.06 -0.13 1.62 5.41 2.97 3.63 5.28 2.85 3.94

antlr 5.22±0.04 3.82±0.05 3.68±0.06 0.43±0.11 -0.18±0.13 0.26±2.01 1.29±0.12 -0.37±0.15 2.24±1.90 5.09±0.13 3.47±0.14 4.51±1.91 3.56±1.49 3.40±0.16 5.31±1.93

avrora 0.04±0.00 0.11±0.00 0.09±0.00 -8.69±5.03 1.21±0.37 -0.65±0.79 -0.14±4.72 -0.04±0.35 0.47±0.63 -3.43±4.55 -0.62±0.34 -0.38±0.81 -2.53±5.16 -0.44±0.38 0.09±0.56

bloat 7.02±0.04 4.72±0.04 4.70±0.05 2.49±0.39 0.93±0.45 2.39±0.90 2.57±0.47 0.06±0.42 2.66±0.83 6.83±0.43 4.75±0.43 6.00±0.94 6.67±0.46 4.46±0.41 6.17±0.81

eclipse 3.83±0.02 2.76±0.02 2.57±0.01 -0.09±1.14 -1.03±6.58 1.87±2.25 0.15±1.09 2.20±6.60 3.11±2.26 2.31±1.18 3.43±6.00 3.15±2.85 1.33±1.16 1.73±6.14 1.74±3.33

fop 1.02±0.01 0.73±0.01 0.71±0.01 -0.58±0.62 1.08±0.53 0.47±1.33 0.04±0.60 -0.17±0.53 0.54±1.41 0.71±0.56 0.41±0.59 1.64±1.39 0.82±0.53 0.35±0.57 1.27±1.41

hsqldb 2.71±0.12 1.55±0.07 1.83±0.11 -4.78±1.15 -3.62±1.45 -2.84±3.84 -0.65±1.29 -0.29±1.27 4.53±3.62 2.37±0.81 1.32±2.35 3.52±3.82 1.70±1.12 0.42±2.00 5.86±3.66

jython 9.29±0.03 6.07±0.05 5.37±0.03 1.65±0.35 0.79±0.56 0.03±0.66 2.05±0.39 0.40±0.39 2.65±0.67 6.48±0.31 4.76±0.51 4.11±2.17 6.38±0.28 4.71±0.42 5.80±0.82

luindex 0.93±0.01 0.70±0.01 0.72±0.01 0.25±0.76 0.34±0.18 -0.13±0.81 0.72±0.74 0.42±0.20 -0.20±0.82 1.84±0.87 0.99±0.20 0.49±1.01 2.00±0.80 0.84±0.18 -0.12±0.97

lusearch 51.40±0.1450.59±0.4331.67±0.13 25.22±0.2427.73±0.5220.50±0.72 28.35±0.1325.85±0.6628.97±0.82 20.34±6.5918.26±2.8319.67±3.95 28.13±0.1626.65±0.6130.17±0.35

lusearch-fix 8.46±0.03 6.06±0.10 3.76±0.02 2.76±0.30 0.94±1.08 0.97±0.95 3.80±0.20 0.42±1.09 3.27±1.14 -3.53±1.22 -1.78±1.77 0.16±1.29 2.24±0.35 0.06±1.39 3.07±1.09

pmd 4.85±0.03 3.17±0.04 2.78±0.03 0.58±0.31 0.88±0.47 0.40±1.07 0.41±0.34 -0.13±0.46 1.76±1.09 2.07±0.55 1.29±0.59 3.21±1.03 0.80±0.39 1.13±0.52 2.81±0.94

sunflow 4.47±0.07 2.28±0.11 1.92±0.02 1.18±4.17 1.32±5.54 -0.12±1.49 0.40±4.52 1.29±5.16 1.79±1.04 1.47±4.48 -2.22±6.08 1.15±1.25 2.49±3.93 2.72±5.44 2.03±1.17

xalan 5.06±0.02 4.60±0.03 2.57±0.01 1.42±0.26 0.90±3.21 1.79±0.67 3.10±0.30 0.69±2.57 1.97±2.43 1.75±0.31 -1.68±2.81 0.78±1.95 2.81±0.31 0.70±2.85 2.64±0.66

min 0.04 0.11 0.09 -8.69 -3.62 -2.84 -0.65 -0.37 -0.20 -3.53 -2.22 -0.38 -2.53 -0.44 -0.12
max 9.29 6.07 5.37 2.76 1.32 2.39 3.80 2.20 4.53 6.83 4.76 6.00 6.67 4.71 6.17

mean 4.41 3.05 2.56 -0.28 0.30 0.37 1.15 0.37 2.07 2.00 1.18 2.36 2.36 1.67 3.06
geomean -0.24 0.30 0.38 1.16 0.38 2.07 2.05 1.21 2.38 2.38 1.69 3.08

pjbb2005 2.82±0.01 1.15±0.02 1.66±0.01 -0.30±2.85 -0.54±1.28 -1.16±0.60 -2.17±3.20 -1.16±0.88 1.21±0.52 0.92±2.57 0.89±0.89 2.65±0.53 -0.79±3.09 -1.87±2.28 0.46±3.14

min 0.04 0.11 0.09 -8.69 -3.62 -2.84 -0.65 -0.45 -0.20 -3.53 -2.22 -0.38 -2.53 -0.44 -0.12
max 12.74 6.61 8.29 8.39 1.32 3.54 6.18 2.20 4.53 13.92 7.23 8.73 13.95 7.06 9.25

mean 4.46 2.93 2.72 0.47 0.09 0.26 1.25 0.13 1.88 2.98 1.72 2.76 3.07 1.85 3.18
geomean 0.52 0.10 0.27 1.27 0.13 1.89 3.06 1.75 2.79 3.14 1.87 3.22

Table 4. The direct cost of bulk zeroing (left), and total execution time for hot-path (middle) and new zeroing designs (right)
relative to bulk zeroing

is visible for initnone when the hardware prefetcher is enabled:
hot-path outperforms bulk zeroing, but non-temporal bulk
zeroing performs much worse than bulk. For initnone, hot-
path zeros the array in the fast allocation path, then writes
12 bytes to the array header. These extra instructions give
the hardware prefetcher time to prefetch the next cache line,
which helps hot-path zeroing to reduce the direct cost of
zero initialization. However, in the allocation path with non-
temporal bulk zeroing, there are too few instructions to tol-
erate the latency, even with hardware prefetching.

Zeroing performance in the application context. Fig-
ure 11 shows zeroing performance for non-temporal bulk
zeroing, normalized to bulk zeroing in the context of each
application’s workload. We use the same metric and method-
ology as in Figure 8: how fast, on average, does the system
zero a block of memory in the setting of each benchmark?
On the Core2 Quad, Phenom II, and i7-2600, non-temporal
bulk zeroing improves zeroing performance by 41%, 3%,
and 74% on average. Figure 3(a) shows that non-temporal
instructions double the effective bandwidth on the i7-2600,
which is reflected in the 74% improvement. However, on
Core2 Quad and Phenom II, non-temporal bulk zeroing is
not as effective as on i7-2600. The reason is evident in Fig-

ure 3(a) which shows that on these machines, but not the
i7-2600, a temporal instruction that hits the last level cache
(green bar, Figure 3(a)) will outperform a non-temporal in-
struction. As a result, non-temporal bulk zeroing will not
perform well on benchmarks with low cache miss rates on
the Core2 Quad and Phenom II. For example, avrora, which
has the lowest cache miss rate among our benchmarks per-
forms poorly with non-temporal bulk zeroing on the Core2
Quad and Phenom II but performs well on the i7-2600, as
shown in Figure 11.

Overall performance. Table 4 and Figure 14 show the ef-
fect of non-temporal bulk zeroing on total performance nor-
malized to bulk zeroing. On the Core2 Quad, non-temporal
bulk zeroing improves execution time by 1.3% on average
and up to 6.2% for jess. Execution time improvements on
i7-2600 are similar. The average improvement on the Phe-
nom II is a somewhat smaller 0.1%, and consistent with the
modest 3% improvement in zeroing performance.The bene-
fits of non-temporal zeroing come from reducing the direct
cost and the indirect cost by avoiding cache pollution. Fig-
ure 10 shows that total last level cache misses are reduced
by 10% on average, and by as much as 50% on lusearch-fix on
the Core2 Quad.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb

jython
luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Last level program cache misses Total last level cache misses Instruction cache misses

Figure 10. Cache misses for non-temporal bulk zeroing relative to bulk zeroing on the Core2 Quad.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Core2 Quad Phenom II i7-2600

Figure 11. Zeroing performance in application context: Non-temporal bulk zeroing vs. bulk zeroing

Memory performance. Figure 12(a) plots the number of
bus transactions, broken down in the same way as in Fig-
ure 7(a). The left (light) column in each pair shows the com-
position of bus transactions for bulk zeroing, and the right
(dark) column shows the same for non-temporal bulk zero-
ing, normalized to bulk zeroing. Non-temporal writes cause
additional write traffic and increase total memory traffic in
about half of the benchmarks. In Figure 12(a), write trans-
actions increase for non-temporal zeroing, but by negligible
amounts for db and avrora. When the program references a
line in memory, it must instantiate it in the cache. The pro-
gram typically writes to the newly allocated object, which
dirties the cache line, and thus requires a write. Because
non-temporal zeroing explicitly invalidates all resident cache
lines that it writes to, if the program would have reused the
line given a standard write, non-temporal zeroing will re-
sult in a total traffic increase due to this read traffic. Al-
though non-temporal zeroing reduces cache displacement, it
increases the total number of bus transactions in about half
the cases and has the same or fewer bus transactions in the
other half.

Figure 12(b) shows each type of bus transaction normal-
ized to default bulk zeroing. On average, bus transactions
are increased by 16%. For benchmarks with higher zeroing
cost (jython, sunflow, jess, and jack), bus transactions increase
by 40%. As with hot-path zeroing, the transactions for db

and avrora are unaffected by non-temporal zeroing.
Figure 12(b) shows that non-temporal bulk zeroing re-

duces fetches by 11% on average and up to 51% for lusearch-

fix. This reduction occurs because the non-temporal instruc-

tions only generate a write transaction, as opposed to the
temporal stores, which generate a fetch and a write. Because
non-temporal zeroing explicitly evicts each line from the
cache, the first touch to an allocated object forces the proces-
sor to fetch it into the cache. Aggressive memory prefetch-
ing can reduce the latency of the first touch. As shown in
Figure 12(b), the fetches due to prefetching misses increase
by 11% on average, and by as much 70% or more for jess,
jython and sunflow.

HotSpot results. We also experimented with the OpenJDK
1.6.0 Oracle HotSpot Server JVM. Its default is hot-path ze-
roing optimized with software elision of redundant zeroing.
It has the option of switching to bulk zeroing or unoptimized
hot-path zeroing. Examination of their implementation of
bulk zeroing revealed it was naive. We sped it up by replac-
ing the zeroing loop with a simple call to memset().We eval-
uated HotSpot’s hot-path optimization, which avoids redun-
dant initialization, and found that it improves over the reg-
ular hot-path by 0.4%. We then implemented a preliminary
version of non-temporal bulk zeroing. We did not implement
concurrent zeroing because software engineering decisions
in HotSpot made it difficult. Our preliminary implementa-
tion of non-temporal bulk zeroing on average improves per-
formance by a modest 0.7% over hot-path zeroing and we
believe a more complete and mature implementation could
do better. Our preliminary implementation of non-temporal
bulk zeroing offers almost twice the advantage of HotSpot’s
existing hotpath optimization (0.7% v 0.4%), and is substan-
tially simpler. This result suggests that new VMs should be
implementing non-temporal bulk zeroing rather than hotpath

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearchfix

pmd
sunflow

xalan
pjbb2005

F
ra

ct
io

n
 o

f
to

ta
l t

ra
n
sa

ct
io

n
s

Write transactions
Fetch transactions from program cache misses
Fetch transactions from prefetching cache misses

(a) Bus transaction breakdown on the Core2 Quad.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Fetch transactions caused by program cache misses
Fetch transactions caused by prefetching misses

Fetch bus transactions
Bus transactions

(b) Bus transactions relative to bulk zeroing on the Core2 Quad.

Figure 12. Memory bus utilization: Non-temporal bulk zeroing/bulk zeroing

zeroing, and that concurrent and adaptive zeroing will offer
greater benefits. Non-temporal bulk zeroing may even worth
implementing in existing VMs because it combines a small
performance advantage with significantly simpler code in
the allocation sequence, which appears all over the program.

6.2 Concurrent Zeroing
Bulk zeroing attacks the direct cost of zeroing. Non-temporal
bulk zeroing further mitigates the direct cost with signifi-
cantly better zeroing performance and also attacks the indi-
rect cost of zeroing by reducing cache displacement. How-
ever, our benchmarks still spend 3% on average and up to
7.6% (38% if we include lusearch!) of total time performing
zero initialization on the Core2 Quad.

Hardware parallelism creates the opportunity to perform
zeroing concurrently, moving its overhead off of the appli-
cation’s critical path. The mechanics of concurrent zeroing
require some synchronization between the zeroing thread
and the application threads that consume the zeroed mem-
ory. The primary challenge is to ensure that synchronization
does not dominate performance.

Our implementation uses a single zeroing thread. The
JVM wakes up this thread up at the end of each nursery
garbage collection, and it zeroes all of the blocks freed by
the nursery collection with non-temporal instructions. The
zeroing thread maintains a synchronized global cursor that
consumer threads monitor to determine the progress of zero-

ing. The application’s allocation slow path acquires memory
from a global pool one block at a time as usual. However, it
no longer zeros the newly acquired block, but instead busy-
waits on the global zero cursor until the initialing thread has
zeroed the block it will consume. Because the zeroing thread
is typically well ahead of the application threads, the allocat-
ing consumer threads rarely wait.

Microbenchmark performance. Figure 9 shows the exe-
cution time of our microbenchmarks on Core2 Quad with
and without hardware prefetching for our new zeroing de-
signs. When hardware prefetching is enabled, concurrent ze-
roing outperforms bulk zeroing by 25% for initfresh, 24% for
initstale and degrades initnone by 9%. When prefetching is dis-
abled, concurrent zeroing outperforms bulk zeroing by 12%
for initfresh, 4%, for initstale, and degrades initnone by 26%. By
taking work off the critical path, concurrent non-temporal
zeroing outperforms all other designs for both initfresh and
initstale, regardless of whether prefetching is enabled. Simi-
lar to non-temporal bulk zeroing, concurrent zeroing cannot
improve upon bulk or hot-path designs for the initnone mi-
crobenchmark because the high allocation rate with no other
computation does not give enough time for prefetching to be
effective. These results show that concurrent zeroing is very
effective at hiding the direct cost of zeroing, and prefetching
plays an important role in hiding fetch latency after using
non-temporal instructions.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Non-temporal bulk zeroing rate Concurrent zeroing rate

Figure 13. Zeroing performance in the application context: Non-temporal v concurrent on the i7-2600

Zeroing performance in the application context. Fig-
ure 13 compares the zeroing performance of concurrent and
synchronous non-temporal bulk zeroing in the context of
each application. The results are normalized to default bulk
zeroing, so larger is better. For benchmarks with low CPU
utilization (see Table 1), zeroing performance for a single
concurrent thread is slightly worse than synchronous zero-
ing in the application thread. This is because the concurrent
zeroing thread must contend for memory bandwidth with the
application, unlike synchronous zeroing where the (single)
active application thread is blocked waiting on the zeroing
operation. While zeroing performance for concurrent zero-
ing is slightly worse, the availability of idle cores and gener-
ally lower allocation rates mean that the concurrent zeroing
thread can hide zeroing costs, leading to better performance
overall.

In high CPU utilization benchmarks, however, contention
for memory bandwidth is different. With concurrent zeroing,
the single zeroing thread will only contend with application
threads for memory bandwidth in much the same way as for
low CPU utilization benchmarks. When using synchronous
bulk zeroing, however, in addition to contending with ap-
plication threads, zeroing operations from multiple threads
can also contend with each other, resulting in a dramatic re-
duction in overall zeroing performance, as predicted by the
bandwidth scalability results in Figure 3(b). This additional
contention means that zeroing performance for these bench-
marks is higher when using concurrent zeroing.

Overall performance. Table 4 and Figure 14 show the
performance of concurrent non-temporal bulk zeroing. It
improves performance over bulk zeroing by 3.1%, 1.7%,
and 2.8% on average and up to 13.9%, 7.2%, and 8.7% on
the Core2 Quad, Phenom II and i7-2600, respectively. On
the i7-2600, concurrent zeroing improves on 18 out of 19
benchmarks, with the only degradation being 0.4% on avrora.
On the Core2 Quad 17 out of 19 are improved, while on the
Phenom II, 15 out of 19 are improved. These results show
that concurrent zeroing is a very robust and effective design
choice.

Alternative design options. A natural extension of concur-
rent zeroing is to use multiple, parallel zeroing threads to
further utilize parallel hardware and to improve the zeroing

throughput. This design is particularly appealing when the
application is multithreaded and allocates at a sufficiently
high rate that outpaces the zeroing thread (such as the Da-
Capo benchmark lusearch). However, due to the limited scal-
ability of memory bandwidth, parallel zeroing is unlikely
to provide a significant performance improvement, and may
even degrade performance due to a reduction in per-thread
zeroing performance. Parallel concurrent zeroing also re-
quires coordination among zeroing threads. There are two
classic alternatives. First, the space can be statically par-
titioned, with each thread zeroing pre-determined blocks.
This design requires no synchronization among the zeroing
threads, but complicates the implementation of the global
cursor that the application threads must check. Worse yet,
the throughput will be bounded by the slowest thread, which
is problematic when a thread goes to sleep or is otherwise
disrupted. The second alternative is for threads to race to
zero blocks without a pre-determined order, which requires
synchronization among the zeroing threads. This approach
remains susceptible to one of the zeroing threads being in-
terrupted while zeroing a block. Since application progress
may be blocked whenever any thread is interrupted, parallel
zeroing is more susceptible to slow allocation than single-
threaded concurrent zeroing because there are more oppor-
tunities for threads to be blocked. We evaluated this design
and found it to be substantially less effective than the single-
threaded concurrent zeroing that we recommend here.

6.3 Adaptive Zeroing
Although concurrent is an effective design choice, Figure 14
shows that the high CPU utilization benchmarks, such as
lusearch-fix and avrora, have worse performance with a con-
current zeroing thread than with non-temporal bulk zeroing.
The lack of an effective design for parallel zeroing threads
means that these high CPU utilization multi-threaded work-
loads overwhelm concurrent zeroing by competing for par-
allel resources. Because of this problem, we develop a sim-
ple adaptive strategy for use on hardware with good mem-
ory scalability, which conditionally uses either non-temporal
bulk zeroing or concurrent non-temporal bulk zeroing. Our
strategy simply checks at the end of each nursery collection
whether the number of active application threads is less than
the number of available hardware contexts. If it is less, adap-

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Hot-path zeroing Non-temporal bulk zeroing Concurrent zeroing Adaptive zeroing

(a) Core2 Quad

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Hot-path zeroing Non-temporal bulk zeroing Concurrent zeroing Adaptive zeroing

(b) Phenom II

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

compress

jess
db javac

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch-fix

pmd
sunflow

xalan
pjbb2005

geom
ean

N
o
rm

a
liz

e
d
 t
o
 b

u
lk

 z
e
ro

in
g

Hot-path zeroing Non-temporal bulk zeroing Concurrent zeroing Adaptive zeroing

(c) i7-2600

Figure 14. Overall performance relative to bulk zeroing: Execution time for non-temporal bulk, concurrent non-temporal bulk,
and adaptive zeroing

tive zeroing performs concurrent non-temporal bulk zeroing
until the next garbage collection. Otherwise, adaptive zero-
ing performs non-temporal bulk zeroing. This design cus-
tomizes the zeroing policy to the needs of each phase in a
benchmark.

Overall performance. Table 4 and Figure 14 show that
adaptive zeroing is the most effective technique for reducing
the overhead of zero initialization across all benchmarks and
all platforms. For most benchmarks, adaptive zeroing selects
the optimal zeroing approach. The performance of adaptive
zeroing is typically the best and if not it lies between the
two new strategies and is always closest to the best zeroing
approach. Compared to bulk zeroing, adaptive zeroing im-
proves performance by 3.1% on average and up to 14% on
the Core2 Quad, 1.9% on average and up to 7.1% on the Phe-
nom II, and 3.2% on average and up to 9.3% on the i7-2600.

7. Conclusions
This paper shows that zero initialization incurs a significant
overhead on modern processors and provides the first de-
tailed analysis of those overheads. We quantitatively analyze
the direct and indirect overheads of existing zero initializa-
tion designs on mainstream CMPs, and propose new designs.
Unlike prior designs, these new designs exploit both the lan-
guage semantics of zero initialization and the hardware se-
mantics of modern memory systems to reduce both direct
and indirect costs. We also propose an adaptive policy that
dynamically chooses between two new designs to take ad-
vantage of both cache-bypassing instructions and available
hardware parallelism. The result is a substantial reduction in
the overhead due to zero initialization, which leads to an av-
erage improvement of 3.2% over the prior bulk zeroing tech-
nique, across a wide range of benchmarks on the i7-2600.

Our results highlight the importance of counter-intuitively
sacrificing temporal locality to achieve high memory through-
put and minimal cache pollution. We also point in the di-
rection of other optimizations that could further lower the
overhead of providing memory safety. These results also
show an advantage of automatic memory management —
the opportunity to understand the applications memory us-
age accurately and dynamically adapt policies.

In the multicore era, the performance of the system de-
pends more than ever on how the software system and hard-
ware system cooperatively work together to improve the uti-
lization of resources that chip multi-processors provide. The
key to the best designs presented in this paper lies in exploit-
ing a detailed understand of both hardware and software se-
mantics. Our simple adaptive policy shows that customizing
software parallelism to hardware parallelism is useful, and
suggests the investigation of more general mechanisms for a
wider class of VM services and application needs.

References
[1] AMD. Using the x86 Open64 Compiler Suite. Advanced

Micro Devices, 2011. URL http://developer.amd.
com/assets/x86 open64 user guide.pdf.

[2] S. M. Blackburn and K. S. McKinley. Immix: A mark-
region garbage collector with space efficiency, fast collection,
and mutator performance. In Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Languages Design
and Implementation, Tucson, AZ, PLDI ’08, pages 22–32,
2008.

[3] S. M. Blackburn, M. Hirzel, R. Garner, and D. Stefanović.
pjbb2005: The pseudojbb benchmark. URL http:
//users.cecs.anu.edu.au/∼steveb/research/
research-infrastructure/pjbb2005.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
Proceedings of the 2004 ACM SIGMETRICS Conference on
Measurement & Modeling Computer Systems, New York, NY,
SIGMETRICS-Performance ’04, pages 25–36, 2004.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and wa-
ter? High performance garbage collection in Java with MMTk.
In Proceedings of the International Conference on Software
Engineering, Edinburgh, UK, ICSE ’04, pages 137–146, May
2004.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In Pro-
ceedings of the 18th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions, Portland, OR, OOPSLA ’06, pages 169–190, Oct. 2006.

[7] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman,
A. M. Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. Wake Up and Smell the Cof-
fee: Evaluation Methodology for the 21st Century. Communi-
cations of the ACM, 51:83–89, Aug. 2008.

[8] S. Borkar and A. A. Chien. The future of microprocessors.
Communications of the ACM, 54(5):67–77, May 2011.

[9] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth
limitations of future microprocessors. In Proceedings of the
23rd Annual International Symposium on Computer architec-
ture, Philadelphia, PA, ISCA ’96, pages 78–89, 1996.

[10] C. Click. Azul’s experiences with hardware/software co-
design. Keynote at ECOOP ’09, (July 2009), 2009.

[11] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes. Cache hierarchy and memory subsystem of the
AMD Opteron processor. IEEE Micro, 30(2):16 –29, March–
April 2010. ISSN 0272-1732.

[12] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first
garbage collection. In Proceedings of the 4th International
Symposium on Memory Management, Vancouver, BC, ISMM
’04, pages 37–48, 2004.

[13] GNU. GNU C Library. Free Software Foundation, 2011. URL
http://www.gnu.org/software/libc/manual/.

[14] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and
V. Sundaresan. Java just-in-time compiler and virtual machine
improvements for server and middleware applications. In Pro-
ceedings of the 3rd Virtual Machine Research and Technology,
San Jose, CA, VM’04, pages 12–12, 2004.

[15] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Commu-
nist, utilitarian, and capitalist cache policies on CMPs: caches
as a shared resource. In Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Tech-
niques, Seattle, WA, PACT ’06, pages 13–22, 2006.

[16] H. Inoue, H. Komatsu, and T. Nakatani. A study of mem-
ory management for web-based applications on multicore pro-
cessors. In Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Languages Design and Implementa-
tion, Dublin, Ireland, PLDI ’09, pages 386–396, 2009.

[17] Intel. Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual. Intel Corporation, Apr. 2011. Order Number
248966-024.

[18] Intel. Intel 64 and IA-32 Architectures, Software Developer’s
Manual, Volume 2: Instruction Set Reference, A-Z. Intel Cor-
poration, May 2011. Order Number 325383-039US.

[19] Intel. Intel 64 and IA-32 Architectures, Software Developer’s
Manual, Volume 3: Systems Programming Guide. Intel Cor-
poration, May 2011. Order Number 325384-039US.

[20] Intel. MMX Technology Developer’s Guide. Intel Corporation,
Mar. 1996. URL ftp://download.intel.com/ids/
mmx/MMX Manual Tech Developers Guide.pdf.

[21] N. P. Jouppi. Cache write policies and performance. In
Proceedings of the 20th Annual International Symposium on
Computer architecture, San Diego, CA, ISCA ’93, pages 191–
201, 1993.

[22] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd. Power7:
IBM’s next-generation server processor. IEEE Micro, 30(2):
7–15, March–April 2010. ISSN 0272-1732.

[23] P. B. Kessler. Java HotSpot virtual machine. Talk at
FOSDEM-2007, Feb. 2007.

[24] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organiz-
ing the last line of defense before hitting the memory wall
for CMPs. In Proceedings of the 10th International Sympo-
sium on High Performance Computer Architecture, HPCA-10,
pages 176–185, 2004.

[25] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller.
Memory performance and cache coherency effects on an Intel
Nehalem multiprocessor system. In Proceedings of the 18th
International Conference on Parallel Architectures and Com-
pilation Techniques, Raleigh, NC, PACT ’09, pages 261–270,
2009.

[26] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:
automatically correcting memory errors with high probability.
In Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Languages Design and Implementation, San
Diego, CA, PLDI ’07, pages 1–11, 2007.

[27] Oracle Corporation. Java bug 6977804: G1:remove the
zero-filling thread. URL http://bugs.sun.com/view
bug.do?bug id=6977804.

[28] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and Y. Soli-
hin. Scaling the bandwidth wall: Challenges in and avenues
for cmp scaling. In Proceedings of the 36th Annual Inter-
national Symposium on Computer architecture, Austin, TX,
ISCA ’09, pages 371–382, 2009.

[29] Y. Seeley. JIRA issue LUCENE-1800: QueryParser should
use reusable token streams. URL https://issues.
apache.org/jira/browse/LUCENE-1800.

[30] E. Sikha, R. Simpson, C. May, and H. Warren. The PowerPC
Architecture: A Specification for a New Family of RISC Pro-
cessors. Morgan Kaufmann Publishers, 1994.

[31] SPEC. SPECjbb2005 (Java Server Benchmark), Release 1.07.
Standard Performance Evaluation Corporation, 2006. URL
http://www.spec.org/jbb2005.

[32] SPEC. SPECjvm98, Release 1.03. Standard Performance
Evaluation Corporation, Mar. 1999. URL http://www.
spec.org/jvm98.

[33] C. Yu and P. Petrov. Off-chip memory bandwidth minimiza-
tion through cache partitioning for multi-core platforms. In
Proceedings of the 47th Design Automation Conference, DAC
’10, pages 132–137, 2010.

[34] Y. Zhao, J. Shi, K. Zheng, H. Wang, H. Lin, and L. Shao. Allo-
cation wall: A limiting factor of Java applications on emerg-
ing multi-core platforms. In Proceedings of the 21st ACM
SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Orlando, FL, OOPSLA
’09, pages 361–376, 2009.

