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ABSTRACT

Scenario-based design exploits the time-varying execution
behavior of applications by dynamically adapting the sys-
tem on which they run. This is a particularly interesting
design methodology for media applications with soft real-
time constraints such as decoders: frames can be classified
into scenarios based on their decode complexity, and the
system can be configured on a per-scenario basis such that
energy consumption is reduced while still meeting the dead-
lines. At the foundation of scenario-based design lies the
ability to identify scenarios, or recurring modes of opera-
tion with similar run time characteristics. There are two
opposite ends to scenario identification. Some researchers
have proposed techniques that, based on domain knowledge,
identify hardware-independent scenarios in a media input
stream. At the other end, other researchers have proposed
techniques that identify hardware-dependent scenarios in a
(semi-)automated way.

This paper proposes a scenario identification approach
that bridges both opposite ends, and finds hardware-inde-
pendent scenarios in an automated way. It does so by com-
puting execution profiles on a per-frame basis that capture
the application’s code execution patterns. We find that
Edge Vectors (EVs) are more accurate than Basic Block
Vectors (BBVs) at capturing the variation in frame-level de-
code complexity. The complexity of the proposed automated
scenario identification is comparable to existing hardware-
dependent scenario identification approaches, yet the sce-
narios can be used across hardware implementations.
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1. INTRODUCTION

Energy consumption is a major design issue for most of
today’s systems. This is especially the case for battery-
operated devices such as laptops, handheld computers, mo-
bile phones, PDAs, etc. Media applications, such as video
decoders, which are increasingly popular on most of these de-
vices, typically have soft real-time requirements which can
be exploited to save energy. Many researchers have pro-
posed schemes that use dynamic voltage and frequency scal-
ing (DVFS) and dynamic power management (DPM) for re-
ducing energy consumption while still meeting the deadlines
in media applications. DVFS-driven approaches for example
exploit the time-varying decode complexity within a video
stream by scaling down the voltage and frequency level when
decoding a low-complexity frame; high-complexity frames
that need more compute power to meet the deadline, are
decoded at a higher voltage and frequency level.

At the foundation of these energy-efficient media decod-
ing techniques lies the ability to identify so called scenarios,
which group frames with similar decode complexity. Once
the scenario is known that a frame belongs to, the appropri-
ate voltage and frequency level can be installed for timely
decoding the frame at reduced energy consumption.

There are basically two ways to scenario identification. At
the one end of the spectrum, domain knowledge is used to
identify hardware-independent scenarios [7, 8, 9, 16], i.e.,
an expert in the media application of interest identifies key
media input stream characteristics that collectively give an
accurate picture of a frame’s decode complexity. Since the
characteristics are based on the media stream only, they are
independent of the underlying hardware on which the me-
dia stream is to be decoded. For example, counting the
macroblocks and their types leads to an accurate character-
ization of the decode complexity of the H.264 AVC video
decoder [7, 9, 16].

At the other end of the spectrum, hardware-dependent
characterization determines a frame’s decode complexity [4,
5, 6, 10, 11, 15]. This is typically done by comparing the
decode time at a nominal clock frequency and voltage level,
versus the per-frame deadline. A low-complexity frame re-
sults in a small decode time, whereas a high-complexity
frame results in a large decode time. This hardware-dependent
scenario identification approach is typically done in a (semi-
)automated way, either online at run time or offline through
profiling.

The goal of this paper is to explore and bridge the gap
between hardware-independent scenario identification which
requires expert intervention, versus (semi-)automated sce-



nario identification which yields hardware-dependent sce-
narios. In this paper, we combine the best of both worlds
and propose an automated way of identifying hardware-
independent scenarios. The novel method first characterizes
all frames in a media stream database using Basic Block Vec-
tors (BBVs) or Edge Vectors (EVs) which capture the de-
coder’s executed basic blocks and edge counts, respectively,
when decoding the given media stream. These BBVs or EVs
then serve as input to cluster analysis which groups frames
into scenarios. The media streams are annotated with sce-
nario information which is then used at decode time to drive
the DVFS-aware processor.
This paper makes two major contributions.

e We bridge the gap between expert-driven hardware-
independent and automated hardware-dependent sce-
nario identification, and show that we can identify
hardware-independent scenarios in an automated way.
These scenarios are nearly as effective as hardware-
dependent scenarios and expert-driven hardware-inde-
pendent scenarios.

e We show that characterizing frame-level behavior is
more accurately done using edge vectors (EVs) than
using basic block vectors (BBVs). This is an interest-
ing result because prior work in program phase detec-
tion in general-purpose applications [19] found BBVs
to be accurate for tracking the time-varying behav-
ior in general-purpose applications, even at very large
time granularities of hundreds of millions of instruc-
tions. This paper shows that BBVs do not accurately
characterize the frame-level time-varying behavior in
media applications — the reason is that different exe-
cution paths when decoding different macroblock types
in the frame decode loop are lumped together in a BBV
whereas an EV is able to capture these execution path
differences.

2. SCENARIO-BASED DESIGN

There are two major flavors in the current literature of
how to identify scenarios, which we discuss now in great
detail.

2.1 Hardware-independent scenarios

In our prior work [7, 8], we present a scenario approach
for media streams that uses domain knowledge to identify
scenarios. The key idea of our proposal is to exploit the no-
tion of frames with similar decode complexity both within
and across media streams. An offline analysis determines
frames across various media streams in a content provider’s
database that exhibit similar decode complexity, i.e., require
similar compute power and energy consumption at decode
time. This is done by computing a macroblock profile per
frame for all media streams in the database. A macroblock
profile counts the number of macroblocks of a given type in a
frame [9, 16]. The purpose of a macroblock profile is to char-
acterize the decode complexity in a hardware-independent
way, i.e., a macroblock profile is independent of the decoder
as well as the system on which the media stream is to be de-
coded, nevertheless, it provides a good picture of the frame
decode complexity across hardware platforms.

Once macroblock profiles are collected for all media streams
in the database, all frames can be represented as points in a

multidimensional frame space, with one dimension per mac-
roblock type. Cluster analysis [14] is then applied in the
frame space to find groups of frames, called scenarios, based
on their macroblock characteristics. The idea is that frames
belonging to a given scenario show similar macroblock char-
acteristics, and thus will likely represent similar decode com-
plexity. Different scenarios show dissimilar macroblock char-
acteristics, and will likely result in dissimilar decode com-
plexity. Maintaining scenario identifiers can be done using
a scenario database or using a separate scenario stream as-
sociated with each respective media stream [13].

In order to exploit the scenario information at decode
time, the client needs to be profiled which is done by send-
ing scenario representatives to the client. The client then
decodes these scenario representatives and monitors (i) how
long it takes to decode each scenario representative, and (ii)
how much energy is consumed for decoding each scenario
representative. Monitoring the decode time and consumed
energy can be done using user accessible hardware perfor-
mance counters that are available on modern microproces-
sors [12]. Upon decoding a media stream, the client reads
the scenario information per frame, and then sets the appro-
priate voltage level and frequency through DVFS to reduce
energy consumption while still meeting the deadlines [8].

2.2 Hardware-dependent scenarios

Most of the work on exploiting scenarios in media stream
applications propose (semi-)automated scenario identifica-
tion though, see for example [4, 5, 6, 10, 11, 15]. What
all of these proposals have in common is that the scenarios
are hardware-dependent, i.e., they are tied to one particu-
lar hardware platform and cannot be used across hardware
platforms. The scenarios are typically identified by studying
the number of cycles required to decode a frame, and frames
with similar decode times are grouped to form a scenario.
This profiling step can either be done at run time [4, 11, 15],
or through an offline profiling step [5, 6, 10].

2.3 Discussion

An important advantage of hardware-dependent scenarios
over hardware-independent scenarios is that the identifica-
tion of the scenarios requires little or no domain knowledge.
Hardware-dependent scenarios for a novel media decoding
application can be identified automatically with little or no
expert intervention. Approaches in hardware-independent
scenarios on the other hand, require deep understanding of
a novel media decoding application in order to identify the
key frame features that will enable finding scenarios. For
example, in [7, 8], knowledge is required about how a frame
is built up from macroblocks. This is tedious and time-
consuming to do for every media application of interest.

On the flip side, the disadvantage of hardware-dependent
scenarios is that, by definition, scenarios need to be identi-
fied for each hardware platform of interest. For offline sce-
nario identification, this may be very time-consuming in case
multiple hardware platforms need to be supported. Online
scenario identification does not have this disadvantage, how-
ever, identifying scenarios at run time may consume energy
and/or may affect the perceived quality, i.e., it may result in
deadline misses, as there typically is a learning phase during
which scenarios are to be identified.



3. AUTOMATED HARDWARE-
INDEPENDENT SCENARIO DETECTION

The goal of this work is to automate scenario identifica-
tion while not giving up on the hardware-independence. By
doing so, we aim at combining the best of both worlds which
is to identify hardware-independent scenarios in a fully auto-
mated way without requiring domain expert interventions.

As a starting point, we consider a large set of media
streams, and for each of these streams, we collect a per-frame
profile. We consider two types of frame profiles. The first
approach computes a Basic Block Vector (BBV) [18] per
frame. A basic block is a linear sequence of instructions with
one entry and one exit point. A Basic Block Vector (BBV)
is a one-dimensional array with one element per static basic
block in the program binary. Each BBV element captures
how many times its corresponding basic block has been ex-
ecuted.

BBV example. Consider a program that executes the fol-
lowing dynamic basic block sequence ‘ABABACABABACA’,
i.e., the program first executes the instructions in basic block
A, followed by the instructions in basic block B, etc. The
BBV looks as follows: [A, B,C] = [7,4,2], i.e., basic block
‘A’ appears seven times during the dynamic execution, ‘B’
appears 4 times and ‘C’ appears 2 times.

The second approach computes an Edge Vector (EV)
per frame. The edge vector (EV) is a one-dimensional ar-
ray with one element per control flow edge in the program
binary. A control flow edge is a transition (branch or jump)
from one basic block to another basic block in the binary.
Each EV element thus counts how many times its corre-
sponding edge is taken. Edge counts contain more informa-
tion than basic block counts, because the basic block counts
can be derived from the edge counts, but not vice versa.

EV example. Consider the same example as above. The
EV looks as follows: [AB, BA, AC,CA] = [4,4,2,2], i.e., the
transitions between ‘A’ and ‘B’, and ‘B’ and ‘A’ appear 4
times in the dynamic instruction stream, and the transitions
between ‘A’ and ‘C’; and ‘C’ and ‘A’ appear twice.

Scenario identification.

Once the BBVs or EVs are computed, cluster analysis
is applied to group frames into scenarios. Cluster analy-
sis [14] is a data analysis technique that groups n cases, in
our case frames, based on the measurements of p variables,
in our case the BBV or EV elements. There exist two com-
monly used types of clustering techniques, namely linkage
clustering and K-means clustering. We advocate K-means
clustering because it scales better with an increased number
of cases. K-means clustering produces k clusters with the
greatest possible distinction. The algorithm works as fol-
lows. In each iteration, the distance is calculated for each
case to the center of each cluster. Each case is then assigned
to its closest cluster and new cluster centers can be com-
puted. This algorithm is iterated until no more changes are
observed. Once the clustering is done, a representative can
then be selected per scenario.

The end result of the proposed scenario identification me-
thodology is k hardware-independent scenarios. These sce-
narios are identified in a fully automated way: computing
BBVs and EVs, as well as the subsequent cluster analysis
step, are fully automated. In addition, the whole process of
identifying scenarios is not computationally expensive, and

Window ROB/LSQ 32/16

64KB L1 I/D-caches
1MB unified L2

Cache hierarchy

Latencies (L1/L2/MEM) [ L1: 2 cycles; L2: 20 cycles;

MEM: 80ns

Branch predictor hybrid 4K-entry tables,

10 cycle front-end pipeline

Processor width 4-wide

Functional units

4 integer ALUs, 2 memory ports

Table 1: Baseline processor model for this study.

is comparable to the complexity of existing scenario identi-
fication approaches. Collecting the BBVs and EVs can be
done through instrumentation or functional simulation; its
complexity is proportional to the number of media streams
in the content provider database, and their lengths. Cluster
analysis using K-means clustering is efficient as well: it has
a O(kN) time complexity with N the number of frames to
be clustered and k the number of clusters.

Scenario exploitation.

Once the scenarios are identified, we need to annotate the
media streams with scenario information, i.e., for each frame
we need to determine the scenario it belongs to. This is done
by collecting the BBV or EV for each frame, and locate the
frame’s BBV or EV in the scenario space. The scenario most
similar to the BBV or EV — the scenario closest to the BBV
or EV in scenario space — denotes the scenario the frame be-
longs to. The scenario annotation could be done in two ways.
One possibility is that the scenario information is embedded
in the video stream, i.e., the scenario identifier is added to
the frame’s header. This may be a viable solution if the sce-
nario identifier can be encoded in the frame header in such
a way that a non scenario-aware decoder can still decode
scenario-aware media streams. A better and more practical
solution is to maintain the scenario information in a sepa-
rate scenario stream. The scenario stream can then be sent
along with the video stream. The scenario stream solution is
particularly interesting because it nicely fits within the con-
tainer structure that is often used in multimedia streams, see
for example the MP4 container format [13]. The amount of
scenario information that needs to be sent from the content
provider to the client is very limited, in theory no more than
Hogst] per interval with Ns; the number of scenarios. In
practice, this may require an additional byte, or in some im-
plementations, for example in case the scenario information
can be embedded in the already existing frame header for-
mat, communicating scenario information may not require
sending any additional bytes at all.

At the decoder side, the scenario annotation can be used
as for the hardware-independent scenarios described in sec-
tion 2.1: the client is profiled and the client’s optimal decode
frequency and voltage level are determined per scenario; de-
coding a scenario-aware media stream then involves reading
the frame’s scenario and establishing the frame’s optimal
decode frequency and voltage level.

4. EXPERIMENTAL SETUP

Our experiments are done using the H.264 Advanced Video
Coding (AVC) codec [17]. AVC is the new generation com-
pression algorithm for consumer digital video. In our mea-
surements we use version JM6.1 of the reference software of
the JVT/AVC codec [20].
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Figure 1: Similarity matrices for BBV, EV, MB and DT scenario identification.

In our evaluations we use twelve video sequences, each
approximately 10 seconds at a decode rate of 30 fps. The
results presented in this paper are obtained for these video
streams in CIF resolution (352 x 288 pixels per frame). Fur-
ther, we consider content-adaptive variable-length coding
(CAVLC) and a GOP structure consisting of one I frame
followed by 15 P frames.

The performance results presented in this paper as well
as the BBVs and EVs were obtained using detailed cycle-
level processor simulations using the SimpleScalar/Alpha
v3.0 tool set [3]. Microprocessor energy consumption is es-
timated using Wattch v1.02 [1], assuming a 0.18um tech-
nology, 2V supply voltage, 0.5V threshold voltage and ag-
gressive clock gating which shuts off unused parts of the mi-
croarchitecture while accounting for 10% leakage energy con-
sumption. These simulation tools were extended to model
frequency scaling as well as voltage scaling. When applying
both frequency and voltage scaling we vary voltage with fre-
quency based on f ~ W [11] using 100MHz frequency
steps over a range of 200MHz up to 2.7GHz. We also model
the time cost for changing the processor operating frequency:
70 microseconds according to [2]; this inter-scenario switch-
ing cost is much shorter than the inter-frame deadline (30
milliseconds). The baseline processor model used in this
paper is a contemporary 4-wide superscalar microarchitec-
ture, see Table 1 — we target high-performance embedded
systems.

Note that in all of our experiments, we assume a leave-
one-out methodology. This means that when evaluating the
efficacy of a given scenario identification approach for a given
video stream we leave that video stream out of the content
provider’s database for building the scenarios. This reflects
what is to be expected in practice whenever a new video
stream is added to the content provider’s database.

5. EVALUATION

In the evaluation, we consider four ways of identifying
frame-level scenarios:

e BBV-based: A frame is characterized through a Basic
Block Vector (BBV).

e EV-based: An Edge Vector (EV) characterizes a frame.

e MB-based: A Macroblock Profile (MB) characterizes a
frame — this corresponds to domain knowledge based
hardware-independent scenario identification, see Sec-
tion 2.1.

e DT-based: A frame is characterized by computing the
Decode Time on a particular hardware platform —
this corresponds to the (semi-)automated hardware-
dependent scenario identification approach, see Sec-
tion 2.2.

51 Similarity

Before evaluating these four scenario identification ap-
proaches in terms of energy reduction and missed deadlines,
we first evaluate the efficacy of these approaches in terms of
their ability to discern decode complexity differences. For
doing so, we compute a similarity matrix. A similarity ma-
trix is an upper triangular N x N matrix with N the number
of frames in the media stream database. An entry at posi-
tion (z,y) represents the (normalized) Manhattan distance
between frame x and frame y. The distance between two
frames is computed using their respective BBVs, EVs, MBs
or DTs. The gray scale represents the distance between two
frames: black means completely different and white means
no difference.

Figure 1 shows similarity matrices for the four approaches.
These similarity matrices provide insight into how (dis)similar
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ing 32 scenarios.

video streams are in terms of their decode complexity. For
example, the mobile video stream is dissimilar from all other
video streams except for coast guard, foreman and stefan
— see Figure 1(d) which shows black bars (dissimilar de-
code complexity) for mobile with all other video streams ex-
cept for the white/gray squares with coast guard, foreman
and stefan. From Figure 1, we observe that the EV and
MB approaches are much better at discriminating frame de-
code complexity differences than the BBV approach: there
is more contrast in the similarity matrices for the EV and
MB approaches than for the BBV approach, and the EV
and MB similarity matrices resemble the similarity matrix
of the DT approach much better.

The reason why EVs outperform BBVs is that EVs cap-
ture execution path differences resulting from macroblock
differences in the frame decode loop, whereas BBVs aver-
age the various execution path differences. This is an in-
teresting result because BBVs were shown to be accurate
at tracking the time-varying program execution behavior of
general-purpose applications [19], even at the granularity of
hundreds of millions of instructions. For media applications,
with a frame decode loop of on the order of a hundred million
of instructions, however, BBVs seem to be inaccurate.

5.2 Missed deadlines versus energy reduction

We now evaluate the proposed BBV and EV-based sce-
nario identification approaches in terms of missed deadlines
and energy reduction when deployed to a DVFS-aware pro-
cessor system. Figure 2 shows the fraction of missed dead-
lines and the normalized energy consumption as a func-

tion of the number of scenarios, averaged across all media
streams — these graphs show the trade-off between energy
consumption reduction and missed deadlines as a function
of the number of scenarios. Figure 3 shows per-benchmark
results assuming 32 scenarios. We observe that EV and MB
are nearly as effective as DT, whereas BBV is significantly
worse. The BBV approach results in a substantial amount
of deadline misses, and for some media streams, nearly all
frame deadlines are missed. This confirms our earlier finding
that BBVs are unable to capture a frame’s decode complex-
ity. EVs on the other hand, are as effective as MB and
DT when considering a large enough number of scenarios.
For a small number of scenarios, DT performs better, espe-
cially with respect to the number of deadline misses; this
advantage reduces with a increasing number of scenarios.
EV-based scenario identification results in scenarios that are
close to what can be obtained using oracle scenario informa-
tion in which each frame gets decoded at its optimal clock
frequency that minimizes energy consumption while meet-
ing the deadlines. This results in an average 44% reduction
in energy consumption compared to our point of reference
which decodes all media streams at a fixed clock frequency
so that all frames get decoded within their deadlines.

5.3 Resource prediction

In our prior work [7, 8], we also used hardware-independent
MB-based scenarios to predict the required resources, such
as energy consumption, for decoding a media stream at a
given QoS level. Figure 4 shows the prediction error in
predicting the energy consumption using the EV, BBV and
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DT-based approaches and compares their accuracy against
the MB-based approach. The prediction error using EVs
is nearly as accurate as using MBs with an average error
of only 2%. BBVs on the other hand, result in prediction
errors up to 38%.

6. CONCLUSION

A scenario-based design methodology exploits the time-
varying behavior observed in media applications by grouping
input stream frames into scenarios, and by adapting the sys-
tem on a per-scenario basis. By doing so, energy consump-
tion can be reduced while meeting soft real-time constraints.
The current literature describes two basic approaches to sce-
nario identification. At the one end, hardware-independent
scenarios are identified using domain knowledge. At the
other end, hardware-dependent scenarios are identified (semi-
)automatically.

This paper bridged the gap between both ends and pro-
posed Edge Vectors as an accurate way of characterizing the
frame-level decode complexity in a hardware-independent
manner. Basic Block Vectors on the other hand, are unable
to identify execution path differences in the main frame de-
code loop resulting from the variety of macroblock types in
a frame. Scenario identification using Edge Vectors can be
automated so that the scenario-based design methodology
can be easily applied to other media applications of interest.
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