
An Efficient CPI Stack Counter Architecture for
Superscalar Processors

Osman Allam Stijn Eyerman Lieven Eeckhout
Ghent University, Belgium

{osman.allam, stijn.eyerman, lieven.eeckhout}@elis.UGent.be

ABSTRACT
Cycles-Per-Instruction (CPI) stacks provide intuitive and insightful
performance information to software developers. Performance bot-
tlenecks are easily identified from CPI stacks, which hint towards
software changes for improving performance.

Computing CPI stacks on contemporary superscalar processors
is non-trivial though because of various overlap effects. Prior work
proposed a CPI counter architecture for computing CPI stacks on
out-of-order processors. The accuracy of the obtained CPI stacks
was evaluated previously, however, the hardware overhead analysis
was not based on a detailed hardware implementation.

In this paper, we implement the previously proposed CPI counter
architecture in hardware and we find that the previous design can
be further optimized. We propose a novel hardware- and power-
efficient CPI counter architecture that reduces chip area by 44%
and power consumption by 47% over the best possible prior de-
sign, while maintaining nearly the same level of performance and
accuracy.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Modeling of computer
architecture; C.4 [Computer Systems Organization]: Performance
of Systems—Modeling Techniques; B.8.2 [Hardware]: Performance
and Reliability—Performance Analysis and Design Aids

General Terms
Design, Performance, Measurement, Experimentation

Keywords
Superscalar processor, CPI stack, Counter architecture

1. INTRODUCTION
A key role of user-visible hardware performance counters is to

provide clear and accurate performance information to the software
developer, who then uses the information to guide software changes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

towards improved performance. An intuitive representation of per-
formance is a cycle stack which breaks up total cycle count to ex-
ecute a unit of work in its cycle components. A cycle stack con-
sists of a base cycle component (number of cycles during which
useful work is done), plus a number of ‘lost’ cycle components
due to miss event handling such as cache misses, branch mispre-
dictions, etc. Dividing a cycle stack by the number of dynamically
executed instructions then yields a so-called Cycles-Per-Instruction
(CPI) stack [3]. The power of a CPI stack is that it visually high-
lights the major performance bottlenecks by the large CPI compo-
nents. For example, a large cache miss component implies that the
workload is cache-intensive: software optimizations that improve
access locality and/or reduce the working set are likely to improve
performance significantly.

Constructing CPI stacks is challenging on contemporary super-
scalar processors. Out-of-order processors are today’s prevalent
superscalar processors in the server and desktop domain (e.g., In-
tel Xeon, AMD Opteron, IBM Power7, etc.) and they are gain-
ing popularity in the embedded space as well (e.g., ARM Cortex
A9). These processors feature superscalar out-of-order execution,
speculative execution, hardware prefetching, ability to service mul-
tiple outstanding memory requests at the same time, non-blocking
caches, etc. All of these features enable out-of-order processors
to achieve high performance by exploiting instruction-level paral-
lelism (ILP) and memory-level parallelism (MLP), the fundamental
reason being able to hide latency through parallel execution. This
ability for hiding latency complicates CPI stack construction: over-
lapping events should not be double-counted.

Prior work by Eyerman et al. [6] proposed a method for comput-
ing accurate and meaningful CPI stacks on superscalar out-of-order
processors. The method was found to be accurate with an average
error around 2.5% and a maximum error of less than 4% compared
to detailed cycle-accurate simulation over a range of standardized
benchmarks; this is substantially more accurate than previously
proposed approaches with average errors around 20% [12]. The
CPI stack construction method relies on a CPI counter architecture
that is to be implemented in hardware. Eyerman et al. described
the CPI counter architecture in a level of detail that is common to
computer architecture papers, however, the evaluation of its hard-
ware complexity was limited to counting the number of storage bits
needed and was not based on a detailed analysis of the actual hard-
ware implementation.

In this paper, we start off from the initial CPI counter architec-
ture designs proposed by Eyerman et al. [6], we implement the
counter architectures in hardware, and we quantify their complex-
ity in terms of performance, area and power consumption. Our
results confirm the statement made by Eyerman et al. that hard-
ware complexity is low, however, we found several opportunities
for further optimizations. In fact, we reduce the complexity of

the CPI counter architecture by reducing the amount of storage
needed and by removing the need for Content-Addressable Mem-
ory (CAM) lookups. This reduces hardware cost by 44% and re-
duces power consumption by 47%, while achieving the same per-
formance. Overall, the counter architecture requires no more than
0.03 mm2 of chip area and consumes 5.8mW at 1GHz in a 90nm
CMOS standard cell chip technology. We also evaluate the impact
of the optimized counter architecture on the accuracy of the result-
ing CPI stacks. For a set of SPEC CPU benchmarks, we found the
error to be within 3% on average. The overall conclusion is that the
proposed CPI counter architecture is feasible to implement in hard-
ware at low cost, low power consumption and high performance
while yielding accurate and insightful CPI stacks.

2. PRIOR WORK
Although the basic idea of a CPI stack is simple, computing ac-

curate CPI stacks on superscalar out-of-order processors is chal-
lenging because of parallel processing of independent operations
and miss events. Eyerman et al. [6] proposed a CPI counter archi-
tecture, which, in contrast to prior practice, was designed in a top-
down fashion from a mechanistic analytical performance model.
This counter architecture was found to be accurate within 2.5%
on average (4% max error) whereas prior practice led to average
errors around 20% [12]. The key difficulty in designing a CPI
counter architecture relates to computing frontend miss penalty cy-
cles: whether a speculative path resolves to a correct path (and
whether the penalty cycles need to be accounted for) is not known
until a branch is executed on a functional unit in the backend of
the pipeline. Hence, we need to keep track of the presumed miss
penalty for each in-flight branch, and only account for the penalty
if the branch was correctly predicted. Eyerman et al. proposed the
FMT and sFMT designs to this end; we refer to [6] for a detailed
description of the (s)FMT.

3. NOVEL COUNTER ARCHITECTURE
The (s)FMT structure is fairly complex: it involves storage to

keep per-entry ROB IDs, timestamps, and local I-cache/TLB coun-
ters. In addition, it also involves Content-Addressable Memory
(CAM) logic, i.e., an array of comparators, to find the entry cor-
responding to a particular mispredicted branch as branches may
be executed out-of-order. CAM logic does not scale well and con-
sumes considerable power. We now propose the FIFO-sFMT which
reduces chip area overhead and power consumption substantially.
The FIFO-sFMT is a FIFO queue that contains branch dispatch
timestamps only. It does not store ROB IDs, nor does it involve
CAM logic. Note that the FIFO-sFMT accounts for cache misses
alike the original (s)FMT designs.

The FIFO-sFMT comes with head and tail pointers. The general
mechanism is that, whenever a branch is dispatched, the timestamp
(current cycle count) is recorded in the FIFO-sFMT entry pointed
to by the tail pointer, after which the tail pointer is incremented.
When a branch commits, the head pointer is incremented. The
FIFO-sFMT also comes with a novel hardware structure, called
the branch miss handler, which consists of a timestamp register,
a branch mispredict bit and a FIFO pointer, see also Figure 1. The
purpose of the branch miss handler is twofold: (1) discarding false-
path branches that have already dispatched, and (2) calculating the
branch misprediction penalty. The branch mispredict bit is set when
a mispredicted branch is resolved, i.e., the branch is executed on a
functional unit and the hardware figures out that the branch was
mispredicted. When committing a mispredicted branch, we com-
pute the branch misprediction penalty, which we describe next.

head

tail

mispredict bit

timestamp

FIFO pointer

branch miss handler

Figure 1: FIFO-sFMT with branch miss handler.

time

branch miss
dispatched

branch miss
resolved

branch miss
committed

1st correct-path
instruction
dispatched

branch miss penalty

Case A

time

branch miss
dispatched

branch miss
resolved

branch miss
committed

1st correct-path
instruction
dispatched

branch miss penalty

Case B

Figure 2: Two possible orderings for committing a mispre-
dicted branch and dispatching correct-path instructions after
branch resolution.

To describe the mechanism of the FIFO-sFMT, we consider two
cases depending on the relative ordering of when the mispredicted
branch commits versus when correct-path instructions are dispatched
after the mispredicted branch was resolved.

Case A: Mispredicted branch commits before correct-path
instructions are dispatched. The first case happens when the mis-
predicted branch is committed before new correct-path instructions
are dispatched, see Figure 2, case A; this is the most frequent case
according to our simulations. Upon the commit of the mispredicted
branch, the FIFO-sFMT head pointer points to the dispatch time of
that branch. We then store this timestamp value in the branch miss
handler’s timestamp register, and we set the tail pointer to the en-
try following the head pointer (thereby discarding the entries con-
taining wrong-path branches). When the first correct-path instruc-
tion after the branch misprediction dispatches, the timestamp in the
branch miss handler is subtracted from the current cycle count to
compute the penalty of the mispredicted branch, and the mispredict
bit in the branch miss handler is cleared.

Case B: Mispredicted branch commits after correct-path in-
structions are dispatched. The second case happens when correct-
path instructions are dispatched before the mispredicted branch is
committed, see Figure 2, case B. This case is detected if the times-
tamp in the branch miss handler is not set (because the branch miss
is not yet committed) when the first correct-path instruction is dis-
patched and the branch mispredict bit is set. We then store the
dispatch time of the first correct-path instruction in the timestamp
of the branch miss handler. We also store the current FIFO-sFMT
tail pointer in the branch miss handler’s FIFO pointer. When the
branch miss eventually commits, we compute the branch penalty
by subtracting the timestamp in the FIFO-sFMT pointed to by the
head pointer (i.e., dispatch time of the branch) from the timestamp

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

FMT sFMT FIFO-sFMT

A
re

a
 (

sq
.

m
ic

ro
n

)

Flip-flops

Combinational logic

Figure 3: Area in square micron for the FMT, sFMT and FIFO-
sFMT.

in the branch miss handler (i.e., dispatch time of the first correct-
path instruction after the mispredicted branch). After committing
the branch miss, the head pointer needs to be moved to the first
correct-path branch, discarding all wrong-path entries. This is done
by copying the branch miss handler’s FIFO pointer into the FIFO-
sFMT tail pointer. Once the penalty is calculated, the mispredict
bit in the branch miss handler is cleared, indicating that the branch
miss penalty is accounted for.

4. EXPERIMENTAL SETUP
As part of the experimental evaluation, we implement the CPI

counter architectures in hardware using VHDL. All experiments
are based on standard cell logic synthesis of the counter archi-
tectures in isolation. We believe that integrating the model in a
full-blown processor and performing physical synthesis would not
affect our conclusions. This is due to the compactness of the de-
sign and its tolerance to global wire delays. We use a 90nm chip
technology from STMicroelectronics — the most advanced tech-
nology we have access to; we assume a suppy voltage of 1V (with
standard threshold voltage), and we quantify power consumption
under typical operating conditions assuming a 1GHz clock fre-
quency. Synthesis is done using Synopsys Design Compiler (ver-
sion C-2009.06-SP3); RTL and GL simulation is done using Men-
tor Graphics ModelSim (version 6.3); and power estimation is done
using Synopsys PrimeTime-PX (version D-2010.06-SP1).

As a second part of the evaluation, we also evaluate the CPI
counter architecture’s accuracy. This is done through microarchi-
tecture analysis using detailed cycle-accurate simulation of a 4-
wide out-of-order processor. We therefore use the SimpleScalar/Alpha
v3.0 simulator [2] along with SPEC CPU2000 benchmarks.

5. RESULTS
We now evaluate the proposed CPI counter architecture through

a detailed analysis of its hardware implementation. We subsequently
evaluate the impact on accuracy of the obtained CPI stacks. We as-
sume 64 entries for all three CPI counter architecture proposals.

5.1 Hardware implementation
We evaluate the CPI counter architecture in terms of area, power

consumption and performance.
Area. Figure 3 quantifies chip area in square micron for the

FMT, sFMT and FIFO-sFMT designs, and breaks down total chip
area in two terms, namely combinatorial logic versus flip-flops. We
observe that the sFMT reduces chip area by 41.6% compared to the
FMT. The biggest gain comes from reducing the number of flip-
flops in the design by getting rid of the local penalty I-cache/TLB

0

2

4

6

8

10

12

14

g
zi

p

b
zi

p
2

g
a

p

p
a

rs
e

r

v
o

rt
e

x

g
zi

p

b
zi

p
2

g
a

p

p
a

rs
e

r

v
o

rt
e

x

g
zi

p

b
zi

p
2

g
a

p

p
a

rs
e

r

v
o

rt
e

x

FMT sFMT FIFO-sFMT

P
o

w
e

r
(m

W
a

tt
)

Leakage power

Switching power

Internal power

Figure 4: Estimated power consumption in mWatt for the
FMT, sFMT and FIFO-sFMT.

counters in the FMT. Combinational logic area savings are achieved
by reducing the readout logic of the FMT as a result of reducing
the bit width of its entries. The FIFO-sFMT reduces chip area by
another 44% over the sFMT. Combinational logic is reduced by
removing CAM logic (comparators). The number of flip-flops is
reduced by getting rid of the ROB IDs. Overall, the FIFO-sFMT is
slightly less than 0.03 mm2.

Note that these numbers assume a standard cell design using
flip-flops. In case of a real processor design, one may use full-
custom design: the FMT and sFMT would involve custom CAM-
like structures, whereas the FIFO-sFMT would be designed using
RAM cells. Clearly, the FIFO-sFMT would involve less design ef-
fort and less chip area than both the FMT and sFMT. Unfortunately,
we could not study custom designs because we do not have access
to RAM macros.

Power consumption. Figure 4 quantifies power consumption.
We show a limited number of benchmarks only because of space
constraints (we obtained similar results for the other benchmarks).
The FIFO-sFMT reduces power consumption by 47% compared to
the sFMT. The reduction comes primarily from removing power-
hungry CAM logic, which results in a substantial reduction in dy-
namic power consumption. Leakage power is reduced due to the
reduction in the amount of logic and flip-flops in the design. It is
further interesting to note that the reduction in power consumption
is larger for the FIFO-sFMT compared to the sFMT than for the
sFMT versus the FMT. The reason is that the difference between
the sFMT and FMT comes from a reduction in the amount of stor-
age, not logic, which leads to a reduction in leakage power; dy-
namic power is affected less. In other words, we remove relatively
inactive circuitry. The FIFO-sFMT on the other hand reduces both
leakage and dynamic power over the sFMT due to, as mentioned
above, reducing both the number of flip-flops and combinatorial
(CAM) logic. The ROB IDs and comparators constitute active cir-
cuitry, which explains the large savings in dynamic power.

Performance. We also evaluated performance of the three CPI
counter architectures. All three architectures achieved the same
performance within 3.3%. The reason is that the critical path in the
design is bounded by the number of entries in the structures, which
is the same for all three designs.

5.2 Microarchitectural evaluation
Next to understanding the area, power and performance impli-

cations of the new CPI counter architecture, it is also important to
evaluate the impact on accuracy for the obtained CPI stack. Fig-
ure 5 shows the maximum CPI component error across all of the

0%

1%

2%

3%

4%

5%

6%
m

ax
 c

om
po

ne
nt

 e
rr

or

FMT

sFMT

FIFO-sFMT

Figure 5: Maximum CPI component error for the FMT, sFMT
and FIFO-sFMT.

benchmarks, for the FMT, sFMT and FIFO-sFMT designs. The
errors are relative to a CPI stack obtained through detailed cycle-
accurate simulation as described in [6]. The average error equals
2.5% and 2.6% for the FMT and sFMT, respectively, with a max-
imum error of 4%. The FIFO-sFMT has an average error of 3.0%
and a maximum error of 5.4%. Although this is a slight decrease in
accuracy, the error is still significantly lower than that of the other
methods discussed in [6], with average errors around 20%.

There are two reasons for the slight increase in error. First, we
assumed only one branch misprediction handler. In case there are
multiple outstanding branch misses, we account the penalty of the
last one only. Adding multiple branch misprediction handlers will
reduce the error compared to the (s)FMT at the cost of involving
more hardware. Second, if a branch misprediction is immediately
followed by an I-cache miss (i.e., the first correct-path instruction
causes an I-cache miss), the FIFO-sFMT will include the instruc-
tion cache miss penalty as part of the branch misprediction penalty.
This can be solved by not incrementing the timer that generates
timestamps if the first correct-path instruction after a branch mis-
prediction results in an I-cache miss. According to our simulations,
this would reduce the average error from 3.0% to 2.9%, hence, one
may conclude this gain in accuracy does not justify the additional
hardware needed.

6. RELATED WORK
A number of proposals have been made for computing CPI stacks

for in-order architectures. For example, the Intel Itanium proces-
sor family provides a rich set of hardware performance counters for
computing CPI stacks [8]. The Digital Continuous Profiling Infras-
tructure (DCPI) [1] is another example of a hardware performance
monitoring tool for an in-order architecture. Computing CPI stacks
for in-order architectures, however, is relatively simple compared
to computing CPI stacks on out-of-order architectures.

The IBM POWER5 microprocessor was the first out-of-order
microprocessor to implement a dedicated counter architecture for
computing CPI stacks [12]. The IBM POWER5 approach, how-
ever, does not accurately compute the I-cache and I-TLB CPI com-
ponents; nor does the IBM POWER5 accurately compute the branch
misprediction penalty [6]. The Intel Pentium 4 [13] does not have
a dedicated counter architecture for computing CPI stacks, but fea-
tures a mechanism for obtaining non-speculative event counts, i.e.,
it does not count miss events along mispredicted control flow paths.
Cycle accounting for the Intel Nehalem processor is described in [10].
Stall cycles are defined as cycles during which no instructions issue
to functional units; further, accounting events to stall cycles is done
using heuristics based on existing performance counters.

7. CONCLUSION
CPI stacks provide valuable and insightful performance infor-

mation to software developers. Computing accurate CPI stacks
on contemporary superscalar processors is non-trivial though be-
cause of various overlap effects. In this paper, we explored the
hardware implementation cost of previously proposed CPI counter
architectures and we proposed a new one, called the FIFO-sFMT,
which reduces chip area and power consumption substantially by
44% and 47%, respectively, compared to the state of the art. The
FIFO-sFMT removes the need for maintaining ROB IDs, thereby
reducing chip area and leakage power, and it eliminates CAM logic,
thereby reducing both chip area and dynamic power substantially.
The FIFO-sFMT achieves these high savings in chip area and power
consumption while maintaining high performance and accuracy.

Acknowledgements
Stijn Eyerman is supported through a postdoctoral fellowship by
the Research Foundation–Flanders (FWO). Additional support is
provided by the FWO projects G.0255.08 and G.0179.10, the UGent-
BOF projects 01J14407 and 01Z04109, and the European Research
Council under the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC Grant agreement no. 259295.

8. REFERENCES
[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.

Henzinger, S. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl. Continuous profiling: Where have all
the cycles gone? ACM Transactions on Computer Systems,
15(4):357–390, Nov. 1997.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure
for computer system modeling. IEEE Computer, 35(2):59–67, Feb.
2002.

[3] P. G. Emma. Understanding some simple processor-performance
limits. IBM Journal of Research and Development, 41(3):215–232,
May 1997.

[4] S. Eyerman and L. Eeckhout. A counter architecture for online
DVFS profitability estimation. IEEE Transactions on Computers,
59(11):1576–1583, Dec. 2010.

[5] S. Eyerman and L. Eeckhout. Probabilistic job symbiosis modeling
for SMT processor scheduling. In ASPLOS, pages 91–102, Mar.
2010.

[6] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A
performance counter architecture for computing accurate CPI
components. In ASPLOS, pages 175–184, Oct. 2006.

[7] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A
mechanistic performance model for superscalar out-of-order
processors. ACM Transactions on Computer Systems (TOCS), 27(2),
May 2009.

[8] Intel. Intel Itanium 2 Processor Reference Manual for Software
Development and Optimization, May 2004. 251110-003.

[9] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E.
Baker. Performance characterization of a quad Pentium Pro SMP
using OLTP workloads. In ISCA, pages 15–26, June 1998.

[10] D. Levinthal. Performance Analysis Guide for Intel Core i7
Processor and Intel Xeon 5500 Processors. Intel, 2009.
http://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf.

[11] Y. Luo, J. Rubio, L. K. John, P. Seshadri, and A. Mericas.
Benchmarking internet servers on superscalar machines. IEEE
Computer, 36(2):34–40, Feb. 2003.

[12] A. Mericas. Performance monitoring on the POWER5
microprocessor. In L. K. John and L. Eeckhout, editors, Performance
Evaluation and Benchmarking, pages 247–266. CRC Press, 2006.

[13] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro,
22(4):72–82, July 2002.

[14] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance
analysis using the MIPS R10000 performance counters. In
Supercomputing, Nov. 1996.

