
Interval Simulation:
Raising the Level of Abstraction in Architectural Simulati on

Davy Genbrugge Stijn Eyerman Lieven Eeckhout
Ghent University, Belgium

Abstract

Detailed architectural simulators suffer from a long de-
velopment cycle and extremely long evaluation times. This
longstanding problem is further exacerbated in the multi-
core processor era. Existing solutions address the simula-
tion problem by either sampling the simulated instruction
stream or by mapping the simulation models on FPGAs;
these approaches achieve substantial simulation speedups
while simulating performance in a cycle-accurate manner.

This paper proposes interval simulation which takes a
completely different approach: interval simulation raises
the level of abstraction and replaces the core-level cycle-
accurate simulation model by a mechanistic analytical
model. The analytical model estimates core-level perfor-
mance by analyzing intervals, or the timing between two
miss events (branch mispredictions and TLB/cache misses);
the miss events are determined through simulation of the
memory hierarchy, cache coherence protocol, interconnec-
tion network and branch predictor. By raising the level of
abstraction, interval simulation reduces both development
time and evaluation time.

Our experimental results using the SPEC CPU2000 and
PARSEC benchmark suites and the M5 multi-core simula-
tor, show good accuracy up to eight cores (average error
of 4.6% and max error of 11% for the multi-threaded full-
system workloads), while achieving a one order of magni-
tude simulation speedup compared to cycle-accurate simu-
lation. Moreover, interval simulation is easy to implement:
our implementation of the mechanistic analytical model in-
curs only one thousand lines of code. Its high accuracy, fast
simulation speed and ease-of-use make interval simulation
a useful complement to the architect’s toolbox for exploring
system-level and high-level micro-architecture trade-offs.

1 Introduction

Architectural simulation is an invaluable tool in a com-
puter architect’s toolbox for evaluating design trade-offs
and novel research ideas. However, architectural simula-
tion faces two major limitations. First, it is extremely time-
consuming: simulating an industry-standard benchmark for
a single microprocessor design point easily takes a couple

days or weeks to run to completion, even on today’s fastest
machines and simulators. Culling a large design space
through architectural simulation of complete benchmark ex-
ecutions thus simply is infeasible. While this is already true
for single-core processor simulation, the current trend to-
wards multi-core processors only exacerbates the problem.
As the number of cores on a multi-core processor increases,
simulation speed has become a major concern in computer
architecture research and development. Second, developing
an architectural simulator is tedious, costly and very time-
consuming. Architectural simulators typically model the
microprocessor in a cycle-accurate way, however, this level
of detail is not always appropriate, nor is it called for. For
example, early in the design process when the design space
is being explored and the high-level microarchitecture is be-
ing defined, too much detail only gets in the way. Or, when
studying trade-offs in the memory hierarchy, cache coher-
ence protocol or interconnection network of a multi-core
processor, cycle-accurate core-level simulation may not be
needed.

Researchers and computer designers are well aware of
the multi-core simulation problem and have been propos-
ing various fast simulation methodologies, such as sampled
simulation [1, 8, 30, 32] and hardware-accelerated simula-
tion using FPGAs [4, 26, 27, 31]. Although these method-
ologies increase simulation speed and have their place in the
architect’s toolbox, they model the multi-core processorsat
a high level of detail which impacts development time and
which may not be needed for many practical research and
development studies.

This paper takes a completely different approach and
aims at raising the level of abstraction in architectural simu-
lation. The key challenge in raising the level of abstraction
in multi-core simulation is how to cope with the tight per-
formance entanglement between co-executing threads. Co-
executing threads affect each other’s performance through
inter-thread synchronization and cache coherence, as well
as through shared resources such as on-chip caches, on-
chip interconnection network, off-chip bandwidth and main
memory. Changes in the microarchitecture may change
which parts of the threads execute together. This change, in
its turn, may lead to different thread interleavings and dif-
ferent conflict behavior in the shared resources, which may

lead to different relative progress rates for the co-executing
threads. This tight performance entanglement between co-
executing threads and the microarchitecture makes it hard
to raise the level of abstraction in multi-core simulation.

This paper presentsinterval simulation, a novel, fast,
accurate and easy-to-implement (multi-core) simulation
paradigm. Interval simulation reduces both simulation time
and simulator development complexity. Interval simula-
tion raises the level of abstraction in the individual cores
compared to detailed simulation: a mechanistic analytical
model [11] drives the timing simulation of the individual
cores without the detailed tracking of individual instructions
through the cores’ pipeline stages. The basis for the model
is that miss events (branch mispredictions, cache and TLB
misses) divide the smooth streaming of instructions through
the pipeline into so called intervals. Branch predictor, mem-
ory hierarchy, cache coherence and interconnection network
simulators determine the miss events; the analytical model
derives the timing for each interval. The cooperation be-
tween the mechanistic analytical model and the miss event
simulators enables the modeling of the tight performance
entanglement between co-executing threads on multi-core
processors.

Using both (multi-programmed) SPEC CPU2000 work-
loads as well as the multi-threaded PARSEC benchmark
suite, and the M5 full-system simulator, we evaluate ac-
curacy and simulation speed compared to detailed cycle-
level simulation. In terms of simulation speed, we attain a
one order of magnitude improvement compared to detailed
simulation. The error with respect to detailed simulation
is 5.9% on average for the single-threaded SPEC CPU2000
benchmarks (max error of 16%); for the multi-threaded full-
system PARSEC benchmarks, the average error is 4.6%
across single-, dual-, quad- and eight-core processor config-
urations (max error of 11%). In addition, we demonstrate
that interval simulation yields similar performance trends
and design decisions in practical research studies when trad-
ing off the number of processor cores versus cache space
versus memory bandwidth. Finally, the analytical core-level
timing models simplify multi-core simulation development
substantially. Our version of the interval simulator con-
tains approximately 1K lines of C code to implement the
analytical model. This is a dramatic reduction in complex-
ity compared to the M5 out-of-order core simulator which
comprises approximately 28K lines of code.

The goal of interval simulation is not to replace detailed
cycle-by-cycle simulation. Instead, we view interval sim-
ulation as a useful complement that offers high simulation
speed and short simulator development time at slightly less
accuracy. Interval simulation is envisioned as a fast sim-
ulation technique to quickly explore the design space of
multi-core processor architectures and make high-level mi-
croarchitecture and system-level trade-offs; detailed cycle-
accurate simulation can then be used to explore a region of
interest.

The key contribution of this paper is to combine core-

branch misprediction

interval 2

long-latency load miss

t

d
is

p
a

tc
h

 r
a

te

interval 3interval 1

L1 I-cache miss

Figure 1. Interval analysis analyzes perfor-
mance on an interval basis determined by
disruptive miss events.

level analytical models with detailed simulation to accel-
erate multi-core simulation. The challenge for doing so is
to predict the timing for each individual instruction, not just
average performance across all instructions as is done in an-
alytical modeling [11] — estimating the timing per individ-
ual instruction is required in order to accurately model syn-
chronization, cache coherence, conflict behavior in shared
resources, etc. Besides this major contribution, the paper
also contributes to interval modeling in a number of sig-
nificant ways: (i) it models overlapping miss events (e.g.,
I-cache misses and branch mispredictions overlapped by
long-latency loads) — a second-order effect — prior work
on the other hand focused on first-order effects (isolated
miss events and overlapping long-latency loads) and did not
model overlap effects between I-cache misses and branch
mispredictions versus long-latency load misses; (ii) it mod-
els serializing instructions and runs full-system code; (iii) it
proposes the ‘old window approach’ to estimate the branch
resolution time, window drain time and effective dispatch
rate during simulation — prior work estimates the criti-
cal path length through an offline profiling step; and (iv)
it models multi-threaded execution including inter-thread
synchronization and cache coherence.

2 Interval Analysis

Interval simulation builds on a recently developed mech-
anistic analytical performance model, interval analysis [11],
which we briefly revisit here. With interval analysis, execu-
tion time is partitioned into discrete intervals by disruptive
miss events such as cache misses, TLB misses and branch
mispredictions. The basis for the model is that an out-of-
order processor is designed to smoothly stream instructions
through its various pipelines and functional units. Under
optimal conditions (no miss events), the processor sustains
a level of performance more-or-less equal to its pipeline
front-enddispatch width — we refer to dispatch as the point
of entering the instructions from the front-end pipeline into
the reorder buffer and issue queues.

The interval behavior is illustrated in Figure 1, which
shows the number of dispatched instructions on the vertical
axis versus time on the horizontal axis. By dividing exe-
cution time into intervals, one can analyze the performance
behavior of the intervals individually. In particular, onecan,
based on the type of interval (the miss event that termi-

nates it), describe and determine the performance penalty
per miss event:

• For anI-cache miss (or I-TLB miss), the penalty equals
the miss delay, i.e., the time to access the next level in
the memory hierarchy.

• For abranch misprediction, the penalty equals the time
between the mispredicted branch being dispatched and
new instructions along the correct control flow path be-
ing dispatched. This penalty includes the branch reso-
lution time plus the front-end pipeline depth.

• Upon along-latency load miss, i.e., a last-level L2 D-
cache load miss or a D-TLB load miss, the proces-
sor back-end will stall because of the reorder buffer
(ROB), issue queue, or rename registers getting ex-
hausted. As a result, dispatch will stall. When the
miss returns from memory, instructions at the ROB
head will be committed, and new instructions will en-
ter the ROB. The penalty for a long-latency D-cache
miss thus equals the time between dispatch stalling
upon a full ROB and the miss returning from mem-
ory. This penalty can be approximated by the mem-
ory access latency. In case multiple independent long-
latency load misses make it into the ROB simultane-
ously, both will overlap their execution, thereby expos-
ing memory-level parallelism (MLP) [5], provided that
a sufficient number of outstanding long-latency loads
are supported by the hardware. The penalty of multiple
overlapping long-latency loads thus equals the penalty
for an isolated long-latency load. In case of dependent
long-latency loads, their penalties serialize.

• Chains of dependent instructions, L1 data cache misses
and long-latency functional unit instructions (divide,
multiply, etc.), or store instructions, may cause a re-
source (e.g., reorder buffer, issue queue, physical reg-
ister file, write buffer, etc.) to fill up. Aresource stall
as a result of it may (eventually) stall dispatch. The
penalty or the number of cycles where dispatch stalls
due to a resource stall are attributed to the instruction
at the ROB head, i.e., the instruction blocking commit
and thereby stalling dispatch.

3 Multi-core Interval Simulation

3.1 Framework overview and basic idea

The multi-core interval simulation paradigm is drawn
schematically in Figure 2. A functional simulator supplies
instructions to the multi-core interval simulator which uses
interval analysis for driving the timing of the individual
cores. The miss events are handled by branch predictor and
memory hierarchy simulators. The branch predictor simu-
lator models the branch predictors in the individual cores
and is invoked upon the execution of a branch instruction.
The branch predictor simulator returns whether or not a

mechanistic
multi-core
simulator

functional
simulator

memory hierarchy
simulator

branch predictor
simulator

windowold window

headhead tail tail

core 1

...

core 1

core n

...

if (I-cache miss)
core_sim_time += miss_latency;

if (branch misprediction)
core_sim_time += branch_resolution_time +

frontend_pipeline_depth;
if (long-latency load) {

core_sim_time += miss_latency;
scan all insns in window and resolve independent miss events;

}
if (serializing insn)

core_sim_time += window_drain_time;

Figure 2. Schematic view of the multi-core in-
terval simulation framework.

branch is correctly predicted by the branch predictor. The
memory hierarchy simulator models the entire memory hi-
erarchy. This includes cache coherence, private (per-core)
caches and TLBs, as well as the shared last-level caches, in-
terconnection network, off-chip bandwidth and main mem-
ory. The memory hierarchy simulator is invoked for each
I-cache/TLB or D-cache/TLB access and returns the (miss)
latency.

The multi-core interval simulator models the timing for
the individual cores. The simulator maintains a ‘window’
of instructions for each simulated core, see Figure 2. This
window of instructions corresponds to the reorder buffer of
a superscalar out-of-order processor, and is used to deter-
mine miss events that are overlapped by long-latency load
misses. The functional simulator feeds instructions into this
window at the window tail. Core-level progress (i.e., tim-
ing simulation) is derived by considering the instruction at
the window head. In case of an I-cache miss, we increase
the core simulated time by the miss latency. In case of a
branch misprediction, we increase the core simulated time
by the branch resolution time plus the front-end pipeline
depth. In case of a long-latency load (i.e., a last-level cache
miss or cache coherence miss), we add the miss latency to
the core simulated time, and we scan the window for in-
dependent miss events (cache/TLB misses and branch mis-
predictions) that are overlapped by the long-latency load —
second-order effects. For a serializing instruction, we add
the window drain time to the simulated core time. If none
of the above cases applies, we dispatch instructions at the
effective dispatch rate. Having determined the impact of
the instruction at the window head on the core’s progress,

we remove the instruction from the window and feed it into
the so called ‘old window’. The old window is used to de-
rive the dependence chains of instructions and their impact
on the branch resolution time, window drain time, and the
effective dispatch rate in the absence of miss events, as we
explain in detail in the following section.

3.2 Detailed algorithm

We refer to the high-level pseudocode given in Figure 3
for a more detailed description of multi-core interval simu-
lation. The interval simulator iterates across all cores inthe
multi-core processor (line 2), and proceeds with the simu-
lation as long as there are instructions to be simulated (line
3); if not, the simulator quits (line 71).

Multi-core simulated time versus per-core simulated
time. The interval simulator simulates cycle per cycle,
and keeps track of the multi-core simulated time as well as
the per-core simulated time. The multi-core simulated time
is incremented every cycle (line 74). The per-core simulated
time is adjusted depending on the progress of the individual
core, e.g., in case of a miss event, the per-core simulated
time is augmented by the appropriate penalty. Only in case
the per-core simulated time equals the multi-core simulated
time, we need to simulate the cycle for the given core (line
6). In case the per-core simulated time is larger than the
multi-core simulated time (which can happen because of
miss events as we will describe next), we do not need to
simulate the cycle for the given core. This could be viewed
as event-driven simulation at the core level.

Instruction dispatch. As long as the core has dispatched
fewer instructions than theeffective dispatch rate in the
given cycle, we continue simulating instructions (line 7).
(We will describe how we compute the effective dispatch
rate later.) The core-level simulation then considers the
instruction at the window head (line 9) and determines its
(potential) miss penalty (lines 11 to 59). We increment the
number of dispatched instructions (line 62), remove the in-
struction from the window, and insert the instruction in the
old window (lines 64). We subsequently enter a new in-
struction in the window at the tail pointer (line 65).

Miss events. We access the I-cache and I-TLB (line 13).
If this instruction is an I-cache miss or an I-TLB miss, we
add the miss latency to the per-core simulated time (line 15).
(We will explain the purpose of lines 12 and 16 later.)

The timing impact of a branch misprediction is fairly
similar to an I-cache/TLB miss. We access the branch pre-
dictor (line 22). If the branch is mispredicted (line 23),
we add the branch penalty to the per-core simulated time.
The branch penalty is computed as the sum of the branch
resolution time and front-end pipeline depth (lines 24-25).
We will explain how we estimate the branch resolution time

later; the front-end pipeline depth is a microarchitecturepa-
rameter and is known.

For stores and non-overlapped loads (line 31), we access
the memory hierarchy (i.e., caches, TLBs, and main mem-
ory, including the cache coherence protocol) (line 32). In
case of a long-latency load, we incur a miss penalty (i.e.,
the miss latency) which is added to the per-core simulated
time (line 50).

Serializing instructions cause the core to drain the win-
dow prior to their execution. Therefore, upon a serializing
instruction, we increase the per-core simulated time with
the penalty for emptying the old instruction window (lines
56–59).

Overlapping miss events. A long-latency load may hide
latencies by other subsequent (independent) miss events —
second-order effects. We therefore consider all instructions
in the window from head to tail (line 35) upon a long-
latency load and consider four cases (lines 35–49).

We access the I-cache and I-TLB for each instruction in
the window past the long-latency load (line 36). We mark
the instruction meaning that the I-cache/TLB access (a po-
tential I-cache/TLB miss) is hidden by the long-latency load
— this is done through theI overlapped variable. This
means that the I-cache/TLB access has occurred and should
not incur any additional penalty when it appears at the win-
dow head (line 12). In other words, the I-cache/TLB ac-
cess/miss is hidden underneath the long-latency load.

We follow the same procedure for branches and loads if
the branch/load is independent of the long-latency load (see
lines 38–41 and 43–45, respectively). Independence means
that there are no direct or indirect dependences (through
registers or memory) between the branch/load and the long-
latency load, and there appears no memory barrier between
the two loads in the dynamic instruction stream. A branch
or load that depends on a long-latency load serializes with
the long-latency load and therefore does not get executed
underneath the long-latency load.

In case we reach a serializing instruction while scanning
the window upon a long-latency load, we break out of the
loop and stop scanning the window (line 47). The serializ-
ing instruction causes the window to be drained.

Branch resolution time, window drain time and effec-
tive dispatch rate. An important component in interval
simulation is to estimate the critical path length in the old
window. The critical path length is used for computing (i)
the branch resolution time, (ii) the window drain time upon
a serializing instruction, and (iii) the effective dispatch rate.
For computing the critical path length, we consider a data
flow model that computes the earliest possible issue time for
each instruction in the old window given its dependences
and execution latency. This is done as follows. For each in-
struction in the old window, we keep track of its execution
latency (including the L1 D-cache miss latency), its issue

1: while (1) {
2: | for (i = 0; i < num_cores; i++) {
3: | | if (there are more insns to be simulated) {
4: | | |
5: | | | insns_dispatched = 0;
6: | | | while ((core_sim_time [i] == multi_core_sim_time) &&
7: | | | | (insns_dispatched < eff_dispatch_rate(i)) {
8: | | | |
9: | | | | consider insn at window head;

10: | | | |
11: | | | | /* handle I-cache and I-TLB */
12: | | | | if (!I_overlapped) {
13: | | | | | miss_latency = Icache_and_ITLB_access();
14: | | | | | if (Icache_or_ITLB_miss) {
15: | | | | | core_sim_time [i] += miss_latency;
16: | | | | | empty_old_window();
17: | | | | | }
18: | | | | }
19: | | | |
20: | | | | /* handle branch prediction */
21: | | | | if (branch && !br_overlapped) {
22: | | | | | branch_predictor_access();
23: | | | | | if (branch_misprediction) {
24: | | | | | core_sim_time [i] += branch_resolution_time() +
25: | | | | | frontend_pipeline_depth;
26: | | | | | empty_old_window();
27: | | | | | }
28: | | | | }
29: | | | |
30: | | | | /* handle loads and stores */
31: | | | | if (store || (load && !D_overlapped)) {
32: | | | | | miss_latency = Dcache_and_DTLB_access();
33: | | | | |
34: | | | | | if (long_latency_load) {
35: | | | | | | for (all insns in window from head to tail) {
36: | | | | | | | I_overlapped = 1; I_cache_and_ITLB_access();
37: | | | | | | |
38: | | | | | | | if (branch && independent of long-latency load) {
39: | | | | | | | br_overlapped = 1; branch_predictor_access();
40: | | | | | | | if (branch_misprediction) break;
41: | | | | | | | }
42: | | | | | | |
43: | | | | | | | if (load && independent of long-latency load) {
44: | | | | | | | D_overlapped = 1; Dcache_and_DTLB_access();
45: | | | | | | | }
46: | | | | | | |
47: | | | | | | | if (serializing instruction) break;
48: | | | | | | |
49: | | | | | | }
50: | | | | | | core_sim_time [i] += miss_latency;
51: | | | | | | empty_old_window();
52: | | | | | }
53: | | | | }
54: | | | |
55: | | | | /* handle serializing instructions */
56: | | | | if (serializing instruction) {
57: | | | | core_sim_time [i] += empty_window_latency();
58: | | | | empty_old_window();
59: | | | | }
60: | | | |
61: | | | | /* dispatch insn */
62: | | | | insns_dispatched++;
63: | | | |
64: | | | | advance_window_head_pointer_and_insert_insn_in_old_window();
65: | | | | enter_new_insn_at_window_tail_pointer_and_advance_tail_pointer();
66: | | | }
67: | | | if (core_sim_time [i] == multi_core_sim_time)
68: | | | core_sim_time [i]++;
69: | | }
70: | | else {
71: | | finish_simulation();
72: | | }
73: | }
74: | multi_core_sim_time++;
75: }

Figure 3. High-level pseudocode for multi-core interval si mulation.

time, and its output dependences, i.e., the register(s) that it
writes or the cache line that it writes in case of a store. For
each instruction that is inserted at the old window tail, we
compute its issue time as the maximum issue time of the
instructions that it depends upon plus the instruction’s exe-
cution time. We also keep track of the old window’s ‘head
time’ and ‘tail time’. The new tail time is computed as the
maximum of the previous tail time and the issue time of the
newly inserted instruction; similarly, the new head time is
the maximum of the previous head time and the issue time
of the removed instruction. We then approximate the length
of the critical path in the old window as the tail time minus
the head time. This is an approximation of the real critical
path in the old window. However, computing the real crit-
ical path would require walking the old window for every
newly inserted instruction, which is time-consuming and
which is why we use the above approximation. We found
the approximation to be accurate for our purpose, as we will
demonstrate in the evaluation section.

Once we have computed the critical path length, we can
compute the maximum possible execution rate through the
old window. Using Little’s Law, we compute the execu-
tion rate as window size divided by the critical path length.
This reflects the fact that the out-of-order processor cannot
process instructions faster than dictated by the critical path
length. The effective dispatch rate then equals the minimum
of this execution rate and the designed dispatch width. The
branch resolution time is computed as the longest chain of
dependent instructions (including their execution latencies)
leading to the mispredicted branch, starting from the head
pointer in the old window. The window drain time is com-
puted as the maximum of (i) the number of instructions in
the old window divided by the processor’s dispatch width,
and (ii) the length of the critical execution path in the old
window.

Interval length effect. Interval length (the number of in-
structions between two subsequent miss events) has a sig-
nificant impact on overall performance. In particular for
a mispredicted branch, a short interval implies a short de-
pendence path to the branch (i.e., short branch resolution
time); a long interval on the other hand implies a longer
branch resolution time. A similar effect occurs for serializ-
ing instructions: a serializing instruction causes the instruc-
tion window to be drained. Window drain time is correlated
with the interval length prior to the serializing instruction,
i.e., the completely filled window takes longer to drain than
a partially filled window. In order to model the dependence
of interval length on the branch resolution time and window
drain time, we empty the old window upon a miss event (see
lines 16, 26, 30 and 58).

Functional-first simulation. Our current implementation
of interval simulation employs a functional-first simulation
approach. This means that the functional simulator gener-

Processor core
ROB 256 entries
issue queue 128 entries
load-store queue 128 entries
store buffer 64 entries
processor width decode, dispatch and commit 4 wide

issue 6 wide
fetch 8 wide

functional units 4 integer, 4 load/store and 4 floating-point
functional unit latencies load (2), mul (3), fp (4), div (20)
fetch queue 16 entries
front-end pipeline depth 7 stages
branch predictor 12Kbit local predictor, 32-entry RAS,

8-way set-assoc 2K-entry BTB
Memory subsystem

L1 I-cache 32KB 4-way set-assoc 64B line size
L1 D-cache 32KB 4-way set-assoc 64B line size
L2 cache unified, 4MB 8-way set-assoc 64B line size,

12 cycles access latency
coherence protocol MOESI
main memory 150 cycle access time
memory bandwidth 10.6GB/s peak bandwidth

Table 1. Baseline processor core model as-
sumed in our experimental setup; simulated
CMP architectures share the L2 cache.

ates a dynamic instruction stream, including user-level and
system-level code, that is subsequently fed into the timing
simulator. This implies that interval simulation does not
simulate along mispredicted paths, and may lead to different
thread interleavings than what may happen in real systems.
A more accurate approach is to build a timing-directed sim-
ulator in which the timing simulator directs the functional
simulator along mispredicted paths and determines thread
interleavings. This could be done by having the functional
simulator operate at the window head rather than at the win-
dow tail as is currently done. Unfortunately, timing-directed
simulators are more difficult to develop because it requires
checkpoint-and-rollback capability in the functional simu-
lator and because it more tightly couples the functional sim-
ulator with the timing simulator. In our current implemen-
tation we opted for functional-first simulation because of its
ease of development — this is a trade-off in development
time, evaluation time and accuracy — and our evaluation
shows good accuracy against the cycle-accurate M5 sim-
ulator. We plan on implementing timing-directed interval
simulation as part of our future work.

4 Experimental Setup

Benchmarks. We use two benchmark suites, namely
SPEC CPU2000 and PARSEC. We use all of the SPEC
CPU2000 benchmarks with the reference inputs in our ex-
perimental setup. The binaries of the CPU2000 benchmarks
were taken from the SimpleScalar website; these binaries
were compiled for Alpha using aggressive compiler opti-
mizations. We considered 100M simulation points as deter-

(a) Effective dispatch rate (b) I-cache/TLB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
b
z
ip

2
c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k
tw

o
lf

v
o
rt

e
x

v
p
r

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c
fm

a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im
w

u
p
w

is

IP
C

detailed simulation interval simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

b
z
ip

2
c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k
tw

o
lf

v
o
rt

e
x

v
p
r

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c
fm

a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im
w

u
p
w

is

IP
C

detailed simulation interval simulation

(c) Branch prediction (d) L2 cache

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

b
z
ip

2
c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k
tw

o
lf

v
o
rt

e
x

v
p
r

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c
fm

a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im
w

u
p
w

is

IP
C

detailed simulation interval simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

b
z
ip

2
c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k
tw

o
lf

v
o
rt

e
x

v
p
r

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c
fm

a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im
w

u
p
w

is

IP
C

detailed simulation interval simulation

Figure 4. Evaluating interval simulation in a step-by-step manner: evaluating the modeling accuracy
of the (a) effective dispatch rate, (b) I-cache/TLB, (c) bra nch prediction and (d) L2 cache.

mined by SimPoint [28] in all of our experiments in order
to limit overall cycle-accurate simulation time — this is ex-
actly the problem tackled by interval simulation. In addition
to the single-threaded user-level SPEC CPU benchmarks,
we also use the multi-threaded PARSEC benchmarks [2]
which spend a substantial fraction of their execution time in
system code. We use 9 of the 13 PARSEC benchmarks that
run on our simulator with the small input set and run each
benchmark to completion; the number of dynamically ex-
ecuted instructions per benchmark varies between 500M to
13B instructions. The PARSEC benchmarks were compiled
using the GNU C compiler for Alpha; we use aggressive
optimization, including-O3, loop unrolling and software
prefetching.

Simulator. We use the M5 simulator [3] in all of our
experiments; M5 was previously validated against real
Compaq Alpha machines. The SPEC CPU benchmarks
are run in user-level simulation mode, and the PARSEC
benchmarks are run in full-system simulation mode (Linux
2.6.8.1).

Simulated processor configuration. Our baseline core
microarchitecture is a 4-wide superscalar out-of-order core,
see Table 1. When simulating a muti-core processor, we
assume that all cores share the L2 cache as well as the off-

chip bandwidth for accessing main memory, and we assume
a MOESI cache coherence protocol. We run up to 8 cores;
physical memory constraints limited us from running larger
multi-core processor configurations.

5 Evaluation

We now evaluate interval simulation in terms of accu-
racy and simulation speed. Accuracy is evaluated through
a number of experiments, and we consider single-threaded
workloads, multi-program workloads, multi-threaded work-
loads, and a performance trend case study.

5.1 Single-threaded workloads

We first consider single-threaded workloads running on
a single-core processor, and evaluate interval simulationin
a step-by-step manner in order to understand where the er-
ror sources are. For doing so, we consider the following
experiments; each experiment evaluates a particular aspect
of interval simulation:

• Effective dispatch rate: We consider the branch pre-
dictor to be perfect (i.e., all branch predictions are cor-
rect), as well as the I-cache/TLB and L2 cache (i.e.,
all cache accesses are hits). The L1 D-cache is non-
perfect. This setup aims at evaluating the accuracy of
the modeling of the effective dispatch rate.

• I-cache/TLB: The branch predictor is perfect as well as
the L1 and L2 D-cache and D-TLB. The I-cache and
I-TLB are non-perfect.

• Branch prediction: All caches are assumed to be per-
fect. The only non-perfect structure is the branch pre-
dictor.

• L2 cache: The L1 I-cache is assumed to be perfect as
well as the branch predictor. The L1 D-cache and L2
cache are non-perfect.

Figure 4 compares the IPC measured through detailed
simulation versus the IPC estimated through interval sim-
ulation for each of the above four experiments. Fig-
ure 4(a) and (b) shows that the effective dispatch rate and
I-cache/TLB behavior is modeled accurately: the average
error for both experiments is 1.8%. We observe slightly
higher errors for the branch prediction and L2 cache mod-
eling with average errors of 3.8% and 4.6%, respectively,
see Figure 4(c) and (d). The difficulty in predicting the
impact of branch mispredictions on performance is due to
estimating the branch resolution time. The branch resolu-
tion time is the number of cycles between the mispredicted
branch being dispatched and the branch being resolved. In-
terval simulation however approximates the branch resolu-
tion time by the critical path leading to the mispredicted
branch in the old window. This is an overestimation of the
penalty if the critical path is partially executed by the time
the mispredicted branch enters the instruction window, or
is an underestimation if critical path execution gets slowed
down because of resource contention. With respect to esti-
mating the performance impact of L2 cache misses, inter-
val simulation tends to overestimate the penalty due to L2
misses. Interval simulation basically assumes there are no
instructions dispatched underneath the L2 miss, however,
the processor may be dispatching instructions while the L2
miss is being resolved.

Putting everything together, the average error for the
single-threaded benchmarks equals 5.9%, see Figure 5; the
maximum is bounded to 15.5%. The largest errors are due
to estimating the branch prediction penalty (vpr, applu,
art), and the L2 cache/TLB miss penalty (equake, facerec,
fma3d andlucas).

5.2 Multi-program workloads

The next step in our evaluation considers multi-program
workloads, i.e., multiple single-threaded workloads co-
execute on a multi-core processor in which each core ex-
ecutes one single-threaded workload. We evaluate a large
set of both homogeneous and heterogeneous multi-program
workloads, and report a subset in Figure 6 due to space con-
straints. The multi-program workloads that we are report
are homogeneous workloads — multiple copies of the same
benchmark run concurrently — generated frommcf, art,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

b
z
ip

2
c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k
tw

o
lf

v
o
rt

e
x

v
p
r

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c
fm

a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im
w

u
p
w

is

IP
C

detailed simulation interval simulation

Figure 5. Evaluating the accuracy of interval
simulation for the single-threaded SPEC CPU
benchmarks.

twolf, gcc andswim, and represent a diverse and interest-
ing subset. We report system throughput (STP), a system-
oriented performance metric, and average normalized job
turnaround time (ANTT), a user-oriented performance met-
ric [10]. The average error observed across all homoge-
neous and heterogeneous workloads equals 3.8% and 4.2%
for STP and ANTT, respectively; the maximum error is 16%
(ANTT for art). The important observation from Figure 6
is that interval simulation tracks performance trends very
accurately. For example, we observe that STP improves
with 2 copies ofmcf, however, for 4 and 8 copies, STP de-
creases and ANTT increases substantially due to L2 cache
sharing. We observe a similar trend forart and 8 copies.
Also, system throughput improves as we increase the num-
ber of copies forgcc, while ANTT is not affected signifi-
cantly. Fortwolf on the other hand, ANTT increases as the
number of copies is increased. These graphs show that in-
terval simulation is capable of modeling conflict behavior
in shared caches accurately.

5.3 Multi-threaded workloads

We now consider the multi-threaded PARSEC bench-
marks; these benchmarks incur inter-thread synchroniza-
tion and cache coherence effects, and are run in full-system
mode, i.e., the performance results include OS code. Fig-
ure 7 shows normalized execution time as a function of
the number of cores that the multi-threaded workload runs
on. The average error when comparing the estimated execu-
tion time obtained through interval simulation versus cycle-
accurate simulation is 4.6%: the error is below 6% for most
benchmarks, except forfluidanimate (11%). The impor-
tant observation is that interval analysis estimates the per-
formance trend with the number of cores accurately. For
example forvips, interval simulation accurately tracks that
performance does not improve with an increasing number
of cores. The fact that performance does not scale with the
number of cores is due to load imbalance and poor synchro-
nization behavior. For the other benchmarks, performance
improves with an increasing number of cores. Interval sim-

(a) STP (b) ANTT

0

1

2

3

4

5

6

7

8

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

gcc mcf twolf art swim

S
T

P

detailed simulation

interval simulation

0

2

4

6

8

10

12

14

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

gcc mcf twolf art swim

A
N

T
T

detailed simulation

interval simulation

Figure 6. Evaluating the accuracy of interval simulation fo r multi-program SPEC CPU workloads in
terms of STP (left) and ANTT (right) as a function of the numbe r of cores.

0

0.2

0.4

0.6

0.8

1

1.2

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

1
c
o
re

2
c
o
re

s

4
c
o
re

s

8
c
o
re

s

blackscholes bodytrack canneal dedup fluidanimate streamcluster swaptions vips x264

n
o
rm

a
liz

e
d

e
x
e
c
u
ti
o
n

ti
m

e

detailed simulation interval simulation

Figure 7. Evaluating the accuracy of interval simulation fo r the multi-threaded full-system PARSEC
workloads as a function of the number of cores. Performance n umbers are normalized to detailed
cycle-accurate single-core simulation.

ulation tracks this trend accurately, inspite of the absolute
error, even forfluidanimate.

5.4 Performance trend case study

We now consider a case study to illustrate the applica-
bility of interval simulation in a practical research study.
Our case study considers a performance trade-off as a result
of 3D stacking [19], and compares two processor architec-
tures. Our first processor architecture is a dual-core pro-
cessor with a 4MB L2 cache that is connected to external
DRAM through a 16-byte wide memory bus; our second
processor architecture is a quad-core processor that is con-
nected to 3D stacked DRAM through a 128-byte memory
bus and which does not have an L2 cache. External DRAM
is assumed to have a 150-cycle access latency; 3D-stacked
DRAM is assumed to have a 125-cycle access latency. The
important observation from Figure 8 is that interval simula-
tion leads to the same conclusions as detailed cycle-accurate
simulation. The quad-core processor leads to better perfor-
mance for a number of benchmarks, such asbodytrack, flu-
idanimate andswaptions; these benchmarks benefit from
increased compute power and/or memory bandwidth. For

other benchmarks on the other hand, cache space is more
important than processing power and memory bandwidth,
and hence, the dual-core processor outperforms the quad-
core processor, seecanneal, vips and x264. This case
study illustrates that interval simulation leads to the same
conclusions in practical high-level microarchitecture design
trade-offs.

5.5 Simulation speed

Interval simulation is substantially faster than detailed
cycle-level simulation, see Figures 9 and 10, which show
the simulation speedup through interval simulation com-
pared to detailed simulation for the multi-program work-
loads and multi-threaded workloads, respectively. The sim-
ulation speedup is a factor 8 to 9× for the multi-threaded
workloads, and up to 15× for the multi-program workloads.

6 Related Work

Detailed cycle-level simulation. Architects in industry
and academia rely heavily on cycle-level (and in some cases

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

2

cores

+ L2

4

cores

+ 3D

blackscholes bodytrack canneal dedup fluidanimate streamcluster swaptions vips x264

n
o
rm

a
liz

e
d

e
x
e
c
u
ti
o
n

ti
m

e
detailed simulation interval simulation

Figure 8. Evaluating interval simulation in a practical des ign trade-off: a dual-core processor with
4MB L2 and external DRAM versus a quad-core processor with 3D -stacked DRAM and no L2 cache.
Performance numbers are normalized to detailed simulation of the dual-core processor configura-
tion.

0

5

10

15

20

25

30

35

b
z
ip

2
c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k
tw

o
lf

v
o
rt

e
x

v
p
r

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c
fm

a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im
w

u
p
w

is
a
v
e
ra

g
e

s
im

u
la

ti
o
n

s
p
e
e
d
u
p

single-core dual-core quad-core eight-core

Figure 9. Simulation speedup compared to
detailed cycle-accurate simulation for SPEC
CPU2000.

0

2

4

6

8

10

12

14

16

b
la

c
k
s
h
o
le

s

b
o
d
y
tr

a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

fl
u
id

a
n
im

a
te

s
tr

e
a
m

c
lu

s
te

r

s
w

a
p
ti
o
n
s

v
ip

s

x
2
6
4

a
v
g

s
im

u
la

ti
o
n

s
p
e
e
d
u
p

single-core dual-core quad-core eight-core

Figure 10. Simulation speedup compared to
detailed cycle-accurate simulation for PAR-
SEC.

true cycle-accurate) simulators. The limitation of cycle-
level simulation is that it is very time-consuming. Industry
single-core simulators typically run at a speed of 1KHz to
10KHz; academic simulators typically run at tens to hun-
dreds of KIPS [4]. Multi-core processor simulators exacer-

bate the problem even further because they have to simulate
multiple cores, and have to model inter-core communication
(e.g., cache coherence traffic) as well as resource contention
in shared resources. In addition, the development effort
and time of detailed simulators is a concern. For these rea-
sons, it is not uncommon that architects make simplifying
assumptions when simulating large multi-core and multi-
processor systems. A common assumption is to assume
that all cores execute one instruction per cycle (i.e., a non-
memory IPC equal to one), see for example [13, 17, 22].
Interval simulation is an easy-to-implement, fast and more
accurate alternative for the one-IPC performance model.

Sampled simulation. The idea of sampled simulation is
to simulate a number of sampling units rather than the en-
tire dynamic instruction stream. The sampling units are
selected either randomly (Conte et al. [6]), or periodically
(SMARTS, Wunderlich et al. [33]), or based on phase anal-
ysis (SimPoint, Sherwood et al. [28]). A number of papers
have been working on sampled simulation of multi-threaded
and multi-core processors. Van Biesbrouck et al. [30] pro-
pose the co-phase matrix for speeding up sampled simulta-
neous multithreading (SMT) processor simulation running
multi-program workloads. Ekman and Stenström [8] make
the observation that fewer sampling units need to be taken
to estimate overall performance for larger multi-processor
systems than for smaller multi-processor systems in case
one is interested in aggregate performance only. Wenisch et
al. [32] obtained similar conclusions for throughput server
workloads. Barr et al. [1] propose the Memory Timestamp
Record (MTR) to store microarchitecture state (cache and
directory state) at the beginning of a sampling unit as a
checkpoint. Interval simulation is orthogonal to sampled
simulation: sampled simulation reduces the number of in-
structions that need to be simulated; interval simulation on
the other hand models core-level performance through ana-
lytical modeling.

FPGA-accelerated simulation. FPGA-accelerated simu-
lation [4, 26, 27, 31] speeds up simulation by mapping
timing models onto field-programmable gate-arrays (FP-
GAs). The timing models in FPGA-accelerated simulators
are cycle-accurate, and the simulation speedup comes from
exploiting fine-grain parallelism in the FPGA. Interval sim-
ulation takes a different approach to speeding up simula-
tion by analytically modeling core-level performance. In
fact, interval simulation could be used in conjunction with
FPGA-accelerated simulation, i.e., the cycle-accurate tim-
ing models could be replaced by analytical timing mod-
els. This would not only speedup FPGA-based simulation,
it would also shorten FPGA-model development time and
in addition it would also enable simulating larger computer
systems on a single FPGA.

Statistical simulation. Statistical performance modeling
has a gained a lot of interest over the past few years. Sta-
tistical simulation [7, 23, 25] speeds up architectural simu-
lation by providing short-running synthetic traces or bench-
marks that are representative for long-running benchmarks.
This is done by profiling the execution of the original bench-
mark and capturing the key execution characteristics in the
form of a statistical profile. A synthetic trace or bench-
mark is then generated from this statistical profile. By
construction, the synthetic clone exhibits similar execution
characteristics as the original benchmark. Nussbaum and
Smith [24] and Hughes and Li [15] apply the statistical
simulation paradigm to multithreaded programs running on
shared-memory multiprocessor (SMP) systems. To do so,
they extended statistical simulation to model synchroniza-
tion and accesses to shared memory. Genbrugge and Eeck-
hout [12] show what execution characteristics to measure in
the statistical profile in order to be able to accurately sim-
ulate shared resources in multi-core processors. The key
benefit of statistical simulation is that the synthetic clone’s
dynamic instruction count is several orders of magnitude
smaller than is the case for the original benchmark, which
leads to dramatic reductions in simulation time. Interval
simulation is orthogonal to statistical simulation: statistical
simulation reduces simulation time by reducing the number
of instructions that need to be simulated, whereas interval
simulation reduces simulation time by raising the level of
abstraction in the simulation model.

Analytical modeling. There are basically three ap-
proaches to analytical performance modeling: mechanis-
tic modeling, empirical modeling and hybrid mechanis-
tic/empirical modeling. Mechanistic modeling [9, 11, 18,
29] constructs a model based on the mechanics of the target
processor, i.e., white-box modeling. The first-order core-
level performance model by Eyerman et al. [11] serves as
the basis for interval simulation. Empirical modeling learns
a performance model through training and does not assume
specific knowledge about the target processor, i.e., black-

box modeling. Ipek et al. [16] learn a model through neural
networks, and Lee and Brooks [20] build a model through
regression modeling. Lee et al. [21] leverage regression
modeling to predict multiprocessor performance running
multi-program workloads. Hybrid mechanistic/empirical
modeling proposes a mechanistic performance formula in
which the parameters are derived through empirical model-
ing, see the pipeline model by Hartstein and Puzak [14] as
an example.

7 Conclusion

This paper proposed interval simulation which raises the
level of abstraction in multi-core architectural simulation.
Interval simulation replaces the core-level cycle-accurate
simulation model in a multi-core simulator by a mechanistic
analytical model. The analytical model estimates core-level
performance by dividing the execution in so called inter-
vals. The intervals are separated by miss events, i.e., branch
mispredictions, TLB misses and cache misses (e.g., conflict
misses, coherence misses, etc.). The miss events are de-
termined through branch predictor and memory hierarchy
simulation; the impact of these miss events on core-level
performance is determined through analytical modeling.

Using multi-program SPEC CPU2000 workloads as well
as multi-threaded PARSEC benchmarks, and the M5 full-
system simulator, we demonstrate the accuracy of multi-
core interval simulation: we report average errors around
4% for multi-program SPEC CPU2000 workloads; for the
multi-threaded full-system PARSEC benchmarks, the aver-
age error is 4.6% (max error of 11%) for up to eight cores.
Interval simulation achieves a simulation speedup of one
order of magnitude compared to cycle-accurate simulation.
Moreover, interval simulation is easy to implement: our
implementation of the analytical model is about one thou-
sand lines of code, which is a dramatic reduction compared
to a detailed cycle-level out-of-order processor simulation
model (e.g., 28 thousand lines of code for the out-of-order
core model in M5).

We believe that interval simulation is widely applica-
ble. We view interval simulation as a useful complement
to cycle-accurate simulation for design studies that do not
need cycle-accurate timing at the core level, e.g., when
making design decisions in early stages of the design or
when making system-level and high-level microarchitec-
ture design trade-offs or when simulating very large servers.
Moreover, interval simulation is orthogonal to existing sim-
ulation speedup approaches such as sampled simulation and
FPGA-accelerated simulation.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their valuable comments and suggestions. Stijn Ey-
erman is a Postdoctoral Fellow with the Fund for Scientific

Research in Flanders (Belgium) (FWO Vlaanderen). Addi-
tional support is provided by the FWO projects G.0232.06
and G.0255.08, and the UGent-BOF projects 01J14407 and
01Z04109.

References

[1] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic. Acceler-
ating multiprocessor simulation with a memory timestamp
record. InISPASS, pages 66–77, Mar. 2005.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural impli-
cations. InPACT, pages 72–81, Oct. 2008.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 simulator: Modeling
networked systems.IEEE Micro, 26(4):52–60, 2006.

[4] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart,
D. E. Johnson, J. Keefe, and H. Angepat. FPGA-accelerated
simulation technologies (FAST): Fast, full-system, cycle-
accurate simulators. InMICRO, pages 249–261, Dec. 2007.

[5] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-
mizations for exploiting memory-level parallelism. InISCA,
pages 76–87, June 2004.

[6] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing
state loss for effective trace sampling of superscalar proces-
sors. InICCD, pages 468–477, Oct. 1996.

[7] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and
L. K. John. Control flow modeling in statistical simulation
for accurate and efficient processor design studies. InISCA,
pages 350–361, June 2004.

[8] M. Ekman and P. Stenström. Enhancing multiprocessor ar-
chitecture simulation speed using matched-pair comparison.
In ISPASS, pages 89–99, Mar. 2005.

[9] P. G. Emma. Understanding some simple processor-
performance limits. IBM Journal of Research and Devel-
opment, 41(3):215–232, May 1997.

[10] S. Eyerman and L. Eeckhout. System-level perfor-
mance metrics for multi-program workloads.IEEE Micro,
28(3):42–53, May/June 2008.

[11] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A mechanistic performance model for superscalar out-of-
order processors.ACM Transactions on Computer Systems
(TOCS), 27(2), May 2009.

[12] D. Genbrugge and L. Eeckhout. Chip multiprocessor de-
sign space exploration through statistical simulation.IEEE
Transactions on Computers, 58(12):1668–1681, Dec. 2009.

[13] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. D.
an B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and con-
sistency. InISCA, pages 102–113, June 2004.

[14] A. Hartstein and T. R. Puzak. The optimal pipeline depthfor
a microprocessor. InISCA, pages 7–13, May 2002.

[15] C. Hughes and T. Li. Accelerating multi-core processorde-
sign space evaluation using automatic multi-threaded work-
load synthesis. InIISWC, pages 163–172, Sept. 2008.

[16] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and
R. Caruana. Efficiently exploring architectural design spaces
via predictive modeling. InASPLOS, pages 195–206, Oct.
2006.

[17] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely,
Jr., and J. S. Emer. Adaptive insertion policies for managing
shared caches. InPACT, pages 208–219, Oct. 2008.

[18] T. Karkhanis and J. E. Smith. A first-order superscalar pro-
cessor model. InISCA, pages 338–349, June 2004.

[19] T. Kgil, S. D’Souza, A. Saidi, B. N, R. Dreslinski, S. Rein-
hardt, K. Flautner, and T. Mudge. PicoServer: Using 3D
stacking technology to enable a compact energy efficient
chip multiprocessor. InASPLOS, pages 117–128, Oct. 2006.

[20] B. Lee and D. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power
prediction. InASPLOS, pages 185–194, Oct. 2006.

[21] B. Lee, J. Collins, H. Wang, and D. Brooks. CPR: Com-
posable performance regression for scalable multiprocessor
models. InMICRO, pages 270–281, Nov. 2008.

[22] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. InHPCA,
pages 254–265, Feb. 2006.

[23] S. Nussbaum and J. E. Smith. Modeling superscalar proces-
sors via statistical simulation. InPACT, pages 15–24, Sept.
2001.

[24] S. Nussbaum and J. E. Smith. Statistical simulation of sym-
metric multiprocessor systems. InANSS, pages 89–97, Apr.
2002.

[25] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining
statistical and symbolic simulation to guide microprocessor
design. InISCA, pages 71–82, June 2000.

[26] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. S.
Emer. Quick performance models quickly: Closely-coupled
partitioned simulation on FPGAs. InISPASS, pages 1–10,
Apr. 2008.

[27] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I.
August, and D. Connors. Exploiting parallelism and struc-
ture to accelerate the simulation of chip multi-processors. In
HPCA, pages 27–38, Feb. 2006.

[28] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior.In
ASPLOS, pages 45–57, Oct. 2002.

[29] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A.
Wood. Analytic evaluation of shared-memory systems with
ILP processors. InISCA, pages 380–391, June 1998.

[30] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase
matrix to guide simultaneous multithreading simulation. In
ISPASS, pages 45–56, Mar. 2004.

[31] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu,
C. Kozyrakis, J. C. Hoe, D. Chiou, and K. Asanovic. RAMP:
Research accelerator for multiple processors.IEEE Micro,
27(2):46–57, Mar. 2007.

[32] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: Statistical sampling of
computer system simulation.IEEE Micro, 26(4):18–31, July
2006.

[33] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. InISCA, pages 84–95, June
2003.

