
..

MICROARCHITECTURE-INDEPENDENT
WORKLOAD CHARACTERIZATION

..

FOR COMPUTER DESIGNERS, UNDERSTANDING THE CHARACTERISTICS OF WORKLOADS

RUNNING ON CURRENT AND FUTURE COMPUTER SYSTEMS IS OF UTMOST IMPORTANCE

DURING MICROPROCESSOR DESIGN. A MICROARCHITECTURE-INDEPENDENT METHOD

ENSURES AN ACCURATE CHARACTERIZATION OF INHERENT PROGRAM BEHAVIOR AND

AVOIDS THE WEAKNESSES OF MICROARCHITECTURE-DEPENDENT METRICS.

......The workloads that run on our
computer systems are always evolving. Soft-
ware companies continually come up with
new applications, many triggered by the
increasing computational power available. It
is important that computer designers un-
derstand the characteristics of these emerging
workloads to optimize systems for their
target workloads. Moreover, the need for
a solid workload characterization methodol-
ogy is increasing with the shift to chip
multiprocessors—especially heterogeneous
CMPs with various cores specialized for
particular types of workloads.

Computer architects and performance
analysts are well aware of the workload drift
phenomenon, and to address it, they typically
collect benchmarks to represent emerging
workloads. Examples of recently introduced
benchmark suites covering emerging work-
loads are MediaBench for multimedia work-
loads, MiBench and EEMBC (Embedded
Microprocessor Benchmark Consortium,
http://www.eembc.org) for embedded work-
loads, BioMetricsWorkload for biometrics
workloads, and BioInfoMark and BioPerf for
bioinformatics workloads.1–5 A key question
is how different these workloads are from
existing, well-known benchmark suites. An-
swering this question is important for two

reasons. First, it provides insight into whether
next-generation microprocessors should be
designed differently from today’s machines to
accommodate the emerging workloads. Sec-
ond, if the new workload domain is not
significantly different from existing bench-
mark suites, there is no need to include the
new benchmarks in the design process—
simulating the additional benchmarks would
only add to the simulation time without
providing additional information.

To find out how different the emerging
workloads are from existing benchmark
suites, computer designers usually compare
the characteristics of the emerging work-
loads with the characteristics of well-known
benchmark suites. A typical approach is to
characterize the emerging workload in terms
of microarchitecture-dependent metrics.
For example, most workload characteriza-
tion studies run benchmarks representing
the emerging workload on a given micro-
processor while measuring program char-
acteristics with hardware performance coun-
ters. Other studies use simulation to derive
similar results. The program characteristics
typically measured include instruction mix
and microarchitecture-dependent character-
istics such as instructions per cycle (IPC),
cache miss rates, branch misprediction rates,

Kenneth Hoste

Lieven Eeckhout

Ghent University

0272-1732/07/$20.00 G 2007 IEEE Published by the IEEE Computer Society.

..

63

and translation look-aside buffer (TLB)
miss rates. These studies conclude either
that two workloads are dissimilar if their
hardware performance counter characteris-
tics are dissimilar, or that two workloads are
similar if their hardware performance
counter characteristics are similar.

A major pitfall of a microarchitecture-
dependent workload characterization meth-
odology is that it can hide underlying,
inherent program behavior. To avoid this
pitfall, we advocate characterizing work-
loads in a microarchitecture-independent
manner to capture their true inherent
program behavior. This article presents
a microarchitecture-independent workload
characterization methodology and demon-
strates its usefulness in characterizing bench-
mark suites for emerging workloads.

Pitfall of microarchitecture-dependent
workload characterization

Before presenting our methodology, we
present a case study that illustrates the
problem with microarchitecture-dependent
workload characterization. We considered
118 benchmarks from six benchmark suites:
SPECcpu2000, MediaBench, MiBench,
BioInfoMark, BioMetricsWorkload, and

CommBench. Throughout the article, we
refer to a benchmark-input pair as a bench-
mark. For each benchmark, we collected
microarchitecture-dependent characteristics
with hardware performance counters using
the Digital Continuous Profiling Infrastruc-
ture (DCPI) tool on two hardware plat-
forms: an Alpha 21164A (EV56) and an
Alpha 21264A (EV67) machine. The
characteristics we collected are cycles per
instruction (CPI) on both the EV56 and the
EV67; and the L1 D-cache, L1 I-cache, and
L2 cache miss rates on the EV56.

We also measured a set of microarchi-
tecture-independent characteristics in six
categories. Table 1 summarizes these char-
acteristics; we present a more detailed
description elsewhere.6 These microarchi-
tecture-independent characteristics can be
collected through binary instrumentation
using tools such as ATOM (which we
use), Pin, Valgrind, and DynamoRIO.
These characteristics are microarchitecture-
independent but not independent of the
instruction set architecture (ISA) and the
compiler. In previous work, however, we
observed that these characteristics provide
a fairly accurate characterization picture,
even across platforms.7

Table 1. Microarchitecture-independent characteristics collected to characterize workload behavior.

Characteristic category Measurement Description

Instruction mix 6 percentages Percentage of loads, stores, branches, arithmetic operations, multiplies,

and floating-point operations.

Instruction-level parallelism

(ILP)

4 values IPC achievable for an idealized out-of-order processor (with perfect

caches and branch predictor) for window sizes of 32, 64, 128, and

256 in-flight instructions.

Register traffic 2 values and 7 probabilities Average number of register input operands per instruction, average

number of register reads per register write, distribution (measured in

buckets) of register dependency distance, or number of instructions

between production and consumption of a register instance.

Working-set size 4 numbers Number of unique 32-byte blocks and 4-Kbyte memory pages touched

for both instruction and data streams.

Data stream strides 20 probabilities Distribution, measured in buckets, of global and local strides. Global

stride is the difference in memory addresses between two

consecutive memory accesses; local stride is restricted to two

consecutive memory accesses by the same static instruction.

Strides are measured separately for memory reads and writes.

Branch predictability 4 percentages Branch prediction accuracy for the theoretical prediction-by-partial-

matching (PPM) predictor.8 We considered global and local history

predictors, and per-address and global predictors.

...

WORKLOAD CHARACTERIZATION

...

64 IEEE MICRO

Of the 118 benchmarks in our data set, we
compare two for our case study: SPEC-
cpu2000’s gzip-graphic and BioInfoMark’s
fasta. Many pairs of benchmarks could serve
as a case study, but we limit ourselves to
a single example. Table 2 shows microarch-
itecture-dependent and microarchitecture-
independent characteristics for the two
benchmarks, as well as the maximum value
observed across all 118 benchmarks (to put
the values for gzip and fasta in perspective).
The microarchitecture-dependent character-
istics, CPI and cache miss rates, are fairly
similar for gzip and fasta (especially com-
pared with the maximum values observed
across the entire data set).

The microarchitecture-independent char-
acteristics, on the other hand, are quite
different. The fasta benchmark’s data work-
ing set is one order of magnitude smaller
than that of gzip (although fasta’s dynamic
instruction count is about 6.7 times larger).
Memory access patterns are also very
different for the two benchmarks. For
example, the probability of the same static
load addressing the same memory location
at consecutive executions—a local load
stride equal to zero—is more than twice as
large for gzip as for fasta. The probability of
the difference in memory addresses of
consecutive memory writes—the global

store stride—being smaller than 64 is more
than 2.5 times as large for fasta as for gzip.

We conclude that although microarchi-
tecture-dependent workload behavior is fair-
ly similar, inherent program behavior can be
very different, which can be misleading for
microprocessor design. Although two work-
loads behave the same on one microarchi-
tecture, they might exhibit different behavior
and performance on other microarchitec-
tures. We therefore advocate using micro-
architecture-independent program character-
istics to characterize workloads. Similar
microarchitecture-independent behavior im-
plies similar microarchitecture-dependent
behavior; dissimilar microarchitecture-
dependent behavior implies dissimilar in-
herent behavior.

Methodology
Although collecting microarchitecture-

independent characteristics is straightforward
with binary instrumentation tools, analyzing
the collected data is far from trivial. For
example, our data set is a 118 3 47 data
matrix. That is, there are 118 benchmarks,
for which we measure p5 47 characteristics.
Obviously, gaining insight into a large data
set is difficult without an appropriate data
analysis technique. Here, we discuss two
possible techniques. One is a statistical

Table 2. Case study comparing microarchitecture-dependent and -independent characteristics for

benchmarks gzip-graphic and fasta.

Characteristic gzip-graphic fasta All 118 benchmarks (maximum)

Microarchitecture-dependent

CPI on Alpha 21164 1.01 0.92 14.04

CPI on Alpha 21264 0.63 0.66 5.22

L1 D-cache misses per instruction (%) 1.61 1.90 22.58

L1 I-cache misses per instruction (%) 0.15 0.18 6.44

L2 cache misses per instruction (%) 0.78 0.25 17.59

Microarchitecture-independent

Data working set (32-byte blocks) 3,857,693 438,726 31,709,065

Data working set (4-Kbyte pages) 46,199 4,058 248,108

Instruction working set (32-byte blocks) 1,394 3,801 24,377

Instruction working set (4-Kbyte pages) 33 79 341

Probability of local load stride 5 0 0.67 0.30 0.91

Probability of local store stride 5 0 0.64 0.05 0.99

Probability of global load stride # 64 0.26 0.18 0.86

Probability of global store stride # 64 0.35 0.93 0.99

..

MAY–JUNE 2007 65

..

Related work
A fairly large body of work exists on microarchitecture-independent workload

characterization. The first thread of research on the subject has shown that there

is a strong correlation between executed code and performance.1–5 The

SimPoint tool builds on this notion by selecting sampling units for use during

sampled simulation. SimPoint’s key insight is that execution intervals that

execute similar code behave similarly in terms of various microarchitecture-

dependent program characteristics such as cache miss rates, branch

misprediction rates, and IPC. Code signatures thus allow identification of

microarchitecture-independent program phases.

But code signatures cannot be used for identifying program similarity

across programs. Researchers instead use a collection of program

characteristics to compare benchmarks. For example, Weicker, and Saavedra

and Smith characterize benchmarks at the programming-language level by

counting the numbers of assignments, if-then-else statements, function calls,

loops, and so forth.6,7 More recent work on program similarity applies

statistical data analysis techniques to binary-level program characteristics.

Some researchers use microarchitecture-dependent characteristics only;8

others use a mixture of microarchitecture-dependent and -independent

characteristics;9 yet others use microarchitecture-independent characteris-

tics only.10,11 We use genetic algorithms to learn how microarchitecture-

independent characteristics relate to overall performance.12 This lets us rank

machines for an application of interest according to its inherent program

similarity with a set of previously profiled benchmarks. Yi, Lilja, and Hawkins

present a completely different approach to finding benchmark similarity

based on a Placket-Burman design.13 They classify benchmarks according to

the degree to which they stress various processor structures.

Recent work in workload characterization focuses on better un-

derstanding of how benchmarks evolve over time. For example, Joshi et

al. study how the SPECcpu suites evolved over four generations (cpu89,

cpu92, cpu95, and cpu2000), concluding that none of the inherent program

characteristics changed as dramatically as the dynamic instruction count.14

They also conclude that temporal data locality has become increasingly poor

over time, while other characteristics have remained more or less the same.

Yi et al. go a step further, studying how benchmark drift affects processor

design.15 They conclude that benchmark drift can have significant negative

impact on the performance of next-generation processors running future

workloads if their design is driven solely by yesterday’s benchmarks. In other

words, to ensure that next-generation processors perform well, designers

need an accurate workload characterization methodology to compare

emerging workloads with existing workloads.

References

1. J. Lau, S. Schoenmackers, and B. Calder, ‘‘Structures for

Phase Classification,’’ Proc. Int’l Symp. Performance

Analysis of Systems and Software (ISPASS 04), IEEE CS

Press, 2004, pp. 57-67.

2. T. Sherwood et al., ‘‘Automatically Characterizing Large

Scale Program Behavior,’’ Proc. 10th Int’l Conf. Architec-

tural Support for Programming Languages and Operating

Systems (ASPLOS 02), ACM Press, 2002, pp. 45-57.

3. M. Annavaram et al., ‘‘The Fuzzy Correlation between Code

and Performance Predictability,’’ Proc. 37th Ann. Int’l

Symp. Microarchitecture (MICRO 04), IEEE CS Press,

2004, pp. 93-104.

4. J. Lau et al., ‘‘The Strong Correlation between Code

Signatures and Performance,’’ Proc. IEEE Int’l Symp.

Performance Analysis of Systems and Software (ISPASS

05), IEEE Press, 2005, pp. 236-247.

5. H. Patil et al., ‘‘Pinpointing Representative Portions of Large

Intel Itanium Programs with Dynamic Instrumentation,’’

Proc. 37th Ann. Int’l Symp. Microarchitecture (MICRO 04),

IEEE CS Press, 2004, pp. 81-93.

6. R.P. Weicker, ‘‘An Overview of Common Benchmarks,’’

Computer, vol. 23, no. 12, Dec. 1990, pp. 65-75.

7. R.H. Saavedra and A.J. Smith, ‘‘Analysis of Benchmark

Characteristics and Benchmark Performance Prediction,’’

ACM Trans. Computer Systems, vol. 14, no. 4, Nov. 1996,

pp. 344-384.

8. H. Vandierendonck and K. De Bosschere, ‘‘Experiments

with Subsetting Benchmark Suites,’’ Proc. 7th Ann. IEEE

Int’l Workshop Workload Characterization (WWC 04), IEEE

Press, 2004, pp. 55-62.

9. L. Eeckhout, H. Vandierendonck, and K. De Bosschere,

‘‘Quantifying the Impact of Input Data Sets on Program

Behavior and Its Applications,’’ J. Instruction-Level Paral-

lelism, vol. 5, Feb. 2003, http://www.jilp.org/vol5.

10. A. Phansalkar et al., ‘‘Measuring Program Similarity:

Experiments with SPEC CPU Benchmark Suites,’’ Proc.

IEEE Int’l Symp. Performance Analysis of Systems and

Software (ISPASS 05), IEEE Press, 2005, pp. 10-20.

11. L. Eeckhout, J. Sampson, and B. Calder, ‘‘Exploiting Program

Microarchitecture Independent Characteristics and Phase

Behavior for Reduced Benchmark Suite Simulation,’’ Proc.

IEEE Int’l Symp. Workload Characterization (IISWC 05), IEEE

Press, 2005, pp. 2-12.

12. K. Hoste et al., ‘‘Performance Prediction Based on Inherent

Program Similarity,’’ Proc. Int’l Conf. Parallel Architectures

and Compilation Techniques (PACT 06), IEEE CS Press,

2006, pp. 114-122.

13. J.J. Yi, D.J. Lilja, and D.M. Hawkins, ‘‘A Statistically

Rigorous Approach for Improving Simulation Methodolo-

gy,’’ Proc. 9th Int’l Symp. High-Performance Computer

Architecture (HPCA 03), IEEE CS Press, 2003, pp. 281-

291.

14. A. Joshi et al., ‘‘Measuring Benchmark Similarity Using

Inherent Program Characteristics,’’ IEEE Trans. Compu-

ters, vol. 55, no. 6, June 2006, pp. 769-782.

15. J.J. Yi et al., ‘‘The Exigency of Benchmark and Compiler

Drift: Designing Tomorrow’s Processors with Yesterday’s

Tools,’’ Proc. 20th Ann. Int’l Conf. Supercomputing (ICS

06), ACM Press, 2006, pp. 75-86.

...

WORKLOAD CHARACTERIZATION

...

66 IEEE MICRO

technique called principal components anal-
ysis (PCA). The other is a machine-learning
algorithm called a genetic algorithm (GA).
The goal of both approaches is to make the
data set more understandable by reducing its
dimensionality.

Principal components analysis
PCA has two main properties: It reduces

the data set’s dimensionality, and it removes
correlation from the data set.9 Both features
are important to increasing the data set’s
understandability. First, analyzing a lower-
dimensional space is easier than analyzing
a higher-dimensional space. Second, analyz-
ing correlated data results in a distorted
view—a distance measure in a correlated
space places too much weight on correlated
variables. For example, suppose that two
correlated program characteristics are a con-
sequence of the same underlying program
characteristic. Then consider two bench-
marks that show different behavior in terms
of this underlying characteristic. Measuring
this difference in terms of the correlated
program characteristics will magnify it.
Removing the correlation from the data
set will give equal weight to all underlying
program characteristics.

Before applying PCA, we first normalize
the data set. We do this in two steps:

1. computing the mean x̄ and standard
deviation s per microarchitecture-inde-
pendent characteristic Xi, 1 # i # p
across all benchmarks, and

2. subtracting the mean and dividing by
the standard deviation: Yi 5 (Xi 2 x̄)/s.

The result is that the transformed
characteristics Yi, 1 # i # p have a zero
mean and a unit standard deviation. The
goal of the normalization is to put all
characteristics on a common scale.

The input to PCA is a matrix in which
the rows are the benchmarks and the
columns are the normalized microarchitec-
ture-independent characteristics Yi. PCA
computes new variables, called principal
components, which are linear combinations
of the microarchitecture-independent char-
acteristics, such that all principal compo-
nents are uncorrelated. In other words, PCA

transforms the p normalized microarchitec-
ture-independent characteristics Y1, Y2, …,
Yp into p principal components Z1, Z2, …,
Zp with Zi ~

Pp
j~1 aijYj . This transfor-

mation has two main properties. First, the
first principal component exhibits the
largest variance, followed by the second,
followed by the third, and so on. That is,
Var[Z1] $ Var[Z2] $ … $ Var[Zp].
Intuitively, this means that Z1 contains the
most information, and Zp the least. Second,
the dimensions along which the principal
components are identified are orthogonal to
each other. That is, the covariance between
principal components is zero, that is,
Cov[Zi, Zj] 5 0, ;i ? j. This means there
is no information overlap between the
principal components.

By removing the principal components
with the lowest variance, we can reduce the
data set’s dimensionality while controlling the
amount of information lost. Determining the
number of principal components to retain is
also important. Too few principal components
won’t capture important trends in the data set,
and too many can lead to a curse of
dimensionality problem. To measure the
fraction of information retained in this
q-dimensional space, we use the amount of
variance

Pq
i~1 Var Zi½ �� �� Pp

i~1 Var Zi½ �� �

accounted for by these q principal compo-
nents. For example, we can use criteria for data
reduction such as ‘‘the retained principal
components should explain 70 or 80 percent
of the total variance.’’ For our data set, we
retain eight principal components, which
explain 78 percent of the original data set’s
total variance.

After PCA, it is important to normalize
the principal components to give equal
weight to all the retained principal compo-
nents. Our intuition is that by doing so, we
give equal weight to the underlying program
behaviors extracted by PCA.

By examining the most important q
principal components Zi ~

Pp
j~1 aijYj , i

5 1, …, q, we can interpret these principal
components in terms of the original micro-
architecture-independent characteristics. A
coefficient aij that is close to +1 or 21
implies a strong impact of the original
characteristic Xj on principal component Zi.

..

MAY–JUNE 2007 67

A coefficient aij close to 0, on the other
hand, implies no impact.

Genetic algorithm
Although PCA reduces the data set’s

dimensionality effectively, the fact that each
principal component is a linear combina-
tion of the original workload characteristics
complicates the understandability of the
lower-dimensional workload space. Our
second workload analysis methodology,
which uses a genetic algorithm (GA), also
reduces the data set’s dimensionality, but
the retained dimensions are easier to un-
derstand because each dimension is a single
workload characteristic.

A GA is an evolutionary optimization
method that starts from a set of populations
of random solutions. The algorithm com-
putes a fitness score for each solution and
selects the solutions with the highest fitness
scores to construct the next generation of
solutions. It constructs the next generation
by applying mutation, crossover, and mi-
gration to the selected solutions. Mutation
randomly changes a single solution, cross-
over generates new solutions by mixing
existing solutions, and migration allows
solutions to switch populations. The GA
repeats this process—that is, it constructs
new generations—until the fitness score
shows no further improvement.

A solution is a series of N zeros and ones,
with N being the number of microarchi-
tecture-independent characteristics. A one
selects a program characteristic, and a zero
excludes a program characteristic.

The GA’s fitness score evaluates the
correlation coefficient of the distances
between benchmark pairs in the original
data set versus the distances between
benchmark pairs in the reduced data set,
which includes only characteristics with
a one assigned. We use PCA to compute
the distance in the original data set as well as
in the reduced data set. That is, we first
apply PCA on both data sets, retain the
principal components with a variance great-
er than one, normalize the principal
components, and finally compute the
Euclidean distances between benchmarks
in terms of their normalized principal
components. We take this additional PCA

step to discount the correlation in the data
set from the distance measure while ac-
counting for the most important underlying
program characteristics. The GA’s end
result is a limited number of program
characteristics that accurately characterize
a program’s behavior. In selecting eight
program characteristics (to yield the same
dimensionality that we obtained with PCA),
the GA achieved a 0.86 correlation co-
efficient between the distances in the
original data set compared with the dis-
tances in the reduced data set.

Evaluation
To gain confidence about the reduced

data set’s validity with respect to the original
data set, we use the reduced data set to
compose a subset of benchmarks. Previous
work proposed an approach for composing
representative benchmark suites based on
inherent program behavior.10–13 The goal of
benchmark suite composition is to select
a small set of benchmarks representative of
a larger set, so that all major program
behaviors are represented in the composed
benchmark suite. This benchmark suite
composition method consists of three steps.
The first step measures a number of
microarchitecture-independent characteris-
tics for all benchmarks. The second step
reduces the data set’s dimensionality. We
can do this with PCA, or we can use the GA
to select a limited number of program
characteristics. The third step clusters the
various benchmarks according to their
inherent behavior. The goal of cluster
analysis is to group benchmarks with similar
program behavior in a single cluster and
benchmarks with dissimilar program behav-
ior in different clusters.9 The benchmark
suite subset composer then chooses a repre-
sentative from each cluster; this is the
benchmark closest to the cluster’s centroid.
The representative’s weight is the number of
benchmarks it represents in the cluster.

This methodology lets us find subsets of
benchmarks that are representative across
different microarchitectures.11,13 Figure 1
illustrates this by showing the CPI pre-
diction error for the selected subset with
respect to all benchmarks for the Alpha
21264 machine. The CPI prediction error

...

WORKLOAD CHARACTERIZATION

...

68 IEEE MICRO

is the relative error between the average
CPI of all benchmarks and the CPI
computed as a weighted average over the
CPI values of the representatives. This
graph shows curves for both the PCA and
GA approaches. In both cases, eight
dimensions are retained. CPI prediction
error typically decreases with increasing
subset sizes. Once beyond a subset size of
50 of the 118 benchmarks, the maximum
CPI prediction error is consistently below
5 percent.

Comparing benchmark suites
Because the workload characterization

obtained with the GA is easier to understand,
we use that methodology to characterize the
118 benchmarks. The following are the eight
microarchitecture-independent characteris-
tics retained by the GA:

N probability of a register dependence
distance # 16

N branch predictability of per-address,
global history table (PAg) prediction-
by-partial-matching (PPM) predictor

N percentage of multiply instructions
N data stream working-set size at 32-byte

block level
N probability of a local load stride 5 0
N probability of a global load stride # 8
N probability of a local store stride # 8
N probability of a local store stride #

4,096

These key characteristics relate to register
dependence distance distribution, branch
predictability, instruction mix, data stream
working-set size, and data working-set
access patterns.

We use Kiviat plots to visualize a bench-
mark’s inherent behavior in terms of the
eight key microarchitecture-independent
characteristics. Figure 2 shows Kiviat plots
for the 118 benchmarks. Each axis repre-
sents a microarchitecture-independent char-
acteristic. The various rings within the plot
represent the mean value minus one
standard deviation, the mean value, and
the mean value plus one standard deviation
along each dimension. The center point and
the outer ring represent values outside the
range defined by the mean minus and plus
the standard deviation. We characterize the
prominent program behaviors by connect-
ing their key characteristics to form an area
shown in dark gray, which visualizes
a benchmark’s inherent behavior. By com-
paring the dark areas across the various
benchmarks, we can see how different their
behaviors are. We also cluster the bench-
marks into 50 clusters, each bounded by
a box, with the cluster representative in-
dicated by an asterisk.

These plots provide valuable insight. For
example, some benchmarks seem to be
isolated. These benchmarks exhibit program
characteristics very dissimilar to any of the
other benchmarks, so they appear as
singleton clusters. Examples are blast, mcf,
and swim. We can derive the reason for
their particular program behavior from the
plots. For example, the reason for blast’s
being isolated is its large working set, and
mcf exhibits long local store strides (that is,
large address differences between consecu-
tive memory accesses by the same static
store instruction).

Another observation is that some bench-
marks are susceptible to their input, whereas

Figure 1. CPI prediction error as a function of subset size for the PCA and GA data reduction approaches.

..

MAY–JUNE 2007 69

others are not. For example, the input to gcc
and perl causes quite different behavioral
characteristics; for vortex, gzip, and csu, on
the other hand, the input doesn’t seem to
affect the behavioral characteristics as greatly.
Yet another interesting observation is that

many benchmarks from recently introduced
benchmark suites exhibit dissimilar inherent
behavior compared to SPECcpu2000 bench-
marks. More particularly, about 40 percent
of the clusters don’t contain any of the
SPECcpu benchmarks. This suggests that

Figure 2. Kiviat diagrams representing the eight key microarchitecture-independent characteristics of the 118 benchmarks.

Darkest areas represent inherent behavior patterns. Boxes represent clusters, and asterisks indicate cluster representatives.

...

WORKLOAD CHARACTERIZATION

...

70 IEEE MICRO

SPECcpu doesn’t adequately cover the entire
workload space, and that a more complete
benchmark suite should incorporate addi-
tional benchmarks for the microprocessor
design cycle. The methodology presented
here lets designers select a diverse and
representative benchmark set.

Several potential avenues toward an even
more effective workload characterization

methodology are worth addressing. First,
speeding up the time-consuming profiling
step of collecting microarchitecture-
independent characteristics would greatly
improve our methodology’s usability. Possi-
ble ways to accomplish this include sampling,
hardware acceleration, and multithreaded
profiling. Second, as we have demon-
strated, a microarchitecture-independent
workload characterization is more accurate
and informative than a microarchitecture-
dependent characterization. Ideally, however,
the characterization should also be indepen-
dent of the ISA and the compiler, to capture
a program’s true inherent behavior. Making
the characterization both ISA and compiler
independent is thus another interesting path
to explore. Third, an important question is
what program characteristics to include in the
analysis. It is important that the characteriza-
tion includes a sufficiently diverse set of
characteristics. For example, extending the
current set of characteristics to characterize
multithreaded workloads in a microarchitec-
ture-independent manner is an area to focus
on. Also, as architectures evolve, it is
important to revisit these program character-
istics. Finally, other statistical, machine-
learning, or data-mining techniques might
be useful for analyzing workload behavior
and extracting key program behavior char-
acteristics. MICRO

Acknowledgments
We thank the anonymous reviewers for

their valuable comments. Kenneth Hoste
receives support through a doctoral student
fellowship from the Institute for the Pro-
motion of Innovation by Science and
Technology in Flanders (IWT-Flanders).
Lieven Eeckhout receives support through
a postdoctoral fellowship of the Fund
for Scientific Research, Flanders, Belgium

(FWO-Vlaanderen). We also thank Kjell
Andresen from the University of Oslo for
offering Alpha machine compute cycles.

..

References
1. C. Lee, M. Potkonjak, and W.H. Mangione-

Smith, ‘‘MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Commu-

nications Systems,’’ Proc. 30th Ann. IEEE/

ACM Int’l Symp. Microarchitecture (MICRO

97), IEEE CS Press, 1997, pp. 330-335.

2. M.R. Guthaus et al., ‘‘MiBench: A Free,

Commercially Representative Embedded

Benchmark Suite,’’ Proc. 4th Ann. IEEE

Int’l Workshop Workload Characterization

(WWC 01), IEEE CS Press, 2001, pp. 3-14.

3. C.-B. Cho et al., ‘‘Workload Characteriza-

tion of Biometric Applications on Pentium 4

Microarchitecture,’’ Proc. IEEE Int’l Symp.

Workload Characterization (IISWC 05),

IEEE Press, 2005, pp. 76-86.

4. Y. Li and T. Li,BioInfoMark: A Bioinformatic

Benchmark Suite for Computer Architec-

ture Research, tech. report, Univ. of Flor-

ida, Dept. of ECE, 2005.

5. D.A. Bader et al., ‘‘BioPerf: A Benchmark

Suite to Evaluate High-Performance Com-

puter Architecture on Bioinformatics Appli-

cations,’’ Proc. IEEE Int’l Symp. Workload

Characterization (IISWC 05), IEEE Press,

2005, pp. 163-173.

6. K. Hoste and L. Eeckhout, ‘‘Comparing

Benchmarks Using Key Microarchitecture-

Independent Characteristics,’’ Proc. IEEE

Int’l Symp. Workload Characterization

(IISWC 06), IEEE Press, 2006, pp. 83-92.

7. K. Hoste et al., ‘‘Performance Prediction

Based on Inherent Program Similarity,’’

Proc. Int’l Conf. Parallel Architectures and

Compilation Techniques (PACT 06), IEEE

CS Press, 2006, pp. 114-122.

8. I.K. Chen, J.T. Coffey, and T.N. Mudge,

‘‘Analysis of Branch Prediction via Data

Compression,’’ Proc. 7th Int’l Conf. Archi-

tectural Support for Programming Lan-

guages and Operating Systems (ASPLOS

VII), ACM Press, 1996, pp. 128-137.

9. R.A. Johnson and D.W. Wichern, Applied

Multivariate Statistical Analysis, 5th ed.,

Prentice Hall, 2002.

10. L. Eeckhout, H. Vandierendonck, and K. De

Bosschere, ‘‘Quantifying the Impact of Input

..

MAY–JUNE 2007 71

Data Sets on Program Behavior and Its

Applications,’’ J. Instruction-Level Parallelism,

vol. 5, Feb. 2003, http://www.jilp.org/vol5.

11. A. Joshi et al., ‘‘Measuring Benchmark

Similarity Using Inherent Program Charac-

teristics,’’ IEEE Trans. Computers, vol. 55,

no. 6, June 2006, pp. 769-782.

12. L. Eeckhout, J. Sampson, and B. Calder,

‘‘Exploiting Program Microarchitecture In-

dependent Characteristics and Phase Be-

havior for Reduced Benchmark Suite Sim-

ulation,’’ Proc. IEEE Int’l Symp. Workload

Characterization (IISWC 05), IEEE Press,

2005, pp. 2-12.

13. J.J. Yi et al., ‘‘Evaluating Benchmark

Subsetting Approaches,’’ Proc. IEEE Int’l

Symp. Workload Characterization (IISWC

06), IEEE Press, 2006, pp. 93-104.

Kenneth Hoste is a doctoral student in the
Electronics and Information Systems De-
partment of Ghent University, Belgium.
His research interests include computer
architecture in general and workload char-

acterization in particular. Hoste has an MS
in computer science from Ghent University.

Lieven Eeckhout is an assistant professor in
the Electronics and Information Systems
Department of Ghent University, Belgium.
His research interests include computer
architecture, virtual machines, performance
analysis and modeling, and workload char-
acterization. Eeckhout has a PhD in com-
puter science and engineering from Ghent
University. He is a member of the IEEE.

Direct questions and comments about this
article to Kenneth Houste and Lieven
Eeckhout, ELIS, Ghent University, Sint-
Pieternieuwstraat 41, B-9000 Gent, Belgium;
kehoste@elis.UGent.be and leeckhou@elis.
UGent.be.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

publications/dlib.

...

WORKLOAD CHARACTERIZATION

...

72 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

