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Abstract

Parallel implementations of algorithms for medical image processing mostly focus
on the use of multiprocessor parallelism. Modern processor architectures however,
provide several additional forms of parallelism at the processor level: subword par-
allelism, speculative execution, superscalar pipelining, very long instruction word,
etc. In this article, we show that well-known parallelization techniques for multi-
processor systems can be used to exploit subword parallelism. Loop unrolling, loop
fusion and if-hoisting prove to be valuable to achieve this goal. To illustrate this, we
transformed the inner loops of a positron emission tomography image reconstruction
algorithm. We achieved a speed-up of 45% on Sun’s UltraSPARC processor.

Key words: subword parallelism, loop transformations, positron emission
tomography

1 Introduction

Parallel and distributed processing has been applied to almost every compute-
intensive task to speed up its execution. To that end, libraries (DSM [27,28],
PVM [4], MPI [2,3], etc.) and programming environments [9] (FPT [13],
SUIF [15], Polaris [10], Parafrase-2 [25], etc.) have been developed. The long-
term goal of all this work is eventually to come to the fully automatic par-
allelization of code and to make optimal use of the available computing re-
sources.

With the advent of sophisticated superscalar processor architectures, multi-
processor parallelism is however not the only technique available to speed up
an application: cache behavior, branch prediction, instruction scheduling, and
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the ability to make use of the more powerful instructions have a nontrivial
impact on the global performance of an application. They all aim at execut-
ing more instructions per cycle (IPC), by making better use of the available
hardware. A speed-up of a factor 2-3 is not unusual when combining all these
techniques [30].

Recently, several general purpose processors have been enriched with so-called
multimedia extensions (Intel MMX [1], Hewlett Packard’s MAX-II [17] exten-
sions, Sun’s VISual Instruction Set [8], MIPS’s MDMX [32]). These extensions
are characterized by two features:

(1) besides modulo arithmetic, they also support saturation arithmetic which
is more convenient when dealing with overflow in signal and image pro-
cessing,

(2) they allow to simultaneously operate on several small data items by first
packing them into one machine word and by applying specialized instruc-
tions to them (e.g. four simultaneous 16-bit additions instead of one 64-bit
addition).

This latter feature is called subword parallelism, which allows to make bet-
ter use of the 64-bit machine words of modern architectures for applications
that typically deal with small data items (pixel, samples, etc.). Most trans-
formational instructions can easily be generalized to take the subwords into
account.

Besides the evolutions in the general purpose processors, there is also an in-
creased interest in VLIW-architectures [31] where one instruction consists of
several (independent) elementary operations that are all executed in parallel
within certain restrictions. Here too, optimally scheduling the operations over
the instruction may yield important speed-ups. A technique that proves very
useful is predication which allows to conditionally execute predicated opera-
tions.

State of the art compilers already do a good job at optimizing the instruction
scheduling and at improving the branch prediction. Some also take the cache
behavior into account. With respect to the exploitation of the multimedia ex-
tensions such as subword parallelism, there is yet a long way to go. At the time
of this writing, most compilers do not even generate the novel instructions for
saturation or subword arithmetic. Most applications that use the multimedia
extensions are hand-coded assembly routines for fairly simple multimedia pro-
cessing algorithms. The main cause why compilers do not exploit the power
of these new instructions is that it is far from trivial to detect opportunities
in the source program where e.g., subword parallelism could be exploited.

In this paper, we show that traditional program transformations such as loop
unfolding, code hoisting, and loop merging can be used to create opportunities



for exploiting subword parallelism. We claim that the suite of transformations
we propose is not limited to simple and regular multimedia processing algo-
rithms but that it is also applicable in more complex medical image processing
algorithms, provided that they have at least one loop with independent iter-
ations. That loop is then used as starting point in the search for calculations
that can be executed in subword parallel. We believe that subword parallelism
is a viable new form of parallel processing that can be detected automatically
by the compiler, and that certainly deserves more attention in the future.

In section 2 we present the individual code transformations that are used.
Herein we deal with loops consisting of one basic block, loops containing if-
tests, and loops containing other loops, so that we can basically process any
well-structured program. In section 3, we manually apply the suite of code
transformations to a nontrivial loop that calculates the radiological path in a
medical image reconstruction application. Section 4 reveals some implemen-
tation aspects of our work, and section 5 presents the speed-up that results
from the subword parallelism.

2 Loop Transformations for Uncovering Subword Parallelism

With subword parallelism, several identical operations on different data are
grouped into one instruction. It is a specific form of SIMD (Single Instruction
Multiple Data). In order to fully exploit this technique, basic blocks need
to contain enough identical operations. In what follows we will propose how
combinations of several known techniques can transform general loops in loops
suited for the exploitation of subword parallelism.

An important reason to work on loops is that, although some of the trans-
formations have a wider applicability, the conditions that must hold to apply
the transformations are more easily verified in loops. This makes the proposed
techniques possible candidates for integration in future compilers.

2.1 Loop Unrolling and Software Pipelining

For very simple loops, loop unrolling and software pipelining are techniques
suitable for the creation of loop bodies with identical operations on different
data. If the original loop consists of independent iterations, then the instruc-
tions from the original iterations are independent in the resulting loop body
as well.

For more complex loops, loop unrolling and software pipelining are also the



(a) initial loop (b) after loop unrolling (c) after software pipelining
Fig. 1. Control flow graphs after consecutive simple code transformations

first transformations one needs to apply in order to eventually create the
desired basic blocks.

Starting from an initial loop, as depicted in Figure 1a, loop unrolling can yield
a flow graph as shown in Figure 1b. Basic block a is the entry block of the loop,
while ¢ is the exit block. The convention in the control flow graphs (CFG) that
we use, is that rectangles denote not yet identified constructs or regions (loops,
if-then-else-constructs, etc.), while ellipses stand for (possibly empty) basic
blocks. Note that we have unrolled the loop once, for the clarity of the figures,
but more may be desirable.

If the iterations in the original loop were independent, the basic blocks as, by
and ¢, operate on data independent from the data operated on in basic blocks
a1, by and c¢;. Throughout this article, as a convention, regions or basic blocks
with different indices operate on independent data. Basic blocks with the same
name, but different indices, perform the same operations on independent data.

Because of the mentioned independence in the graph in Figure 1b, software
pipelining the loop body is possible. The result of this transformation is shown
in Figure 1c. Basic block A is the result of merging basic blocks a; and as,
and C is the result of merging ¢; and c,.

For the rest of this article, it is important to note that, while the original loop
was assumed to have independent iterations, this assumption is no longer
needed in the unrolled version or for any loop introduced later in this section.

Now, for the simplest case, where b is a simple basic block, the instructions in by
and by can be grouped and possibly replaced by subword parallel instructions



Fig. 2. The final loop after merging the inner basic blocks

(a) loop body with if-structure (b) after if-hoisting
Fig. 3. Loops with if-then-else-structures in the loop body

as in Figure 2.

2.2 If-hoisting

In more complex loops, with e.g. if-then-else-constructs in the loop body b,
loop unrolling and software pipelining yields a CFG as shown in Figure 3a.
No basic blocks containing identical operations exist if they were not already
present in the original loop body.

But if we now hoist the lower if-tests, together with e; and f (which results
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Fig. 4. A loop using a parallel comparison

in the graph of Figure 3b) then the regions e; and f; immediately precede
e and fy. Then g; and g9 are candidates to be executed in subword parallel.
Furthermore, if on the one hand e and f are basic blocks, e; and e,, and f; and
f2 can be executed in subword parallel. In addition, if f and e have common
operations, even e; and fy, and f; and ey can be executed in subword parallel.

If on the other hand, e and f are not basic blocks but do have identical
constructs and operations, a combination of all the transformations in this
section can be applied on them and might still uncover subword parallelism.
(The two consecutive nodes on every of the four paths are then in the same
situation as b; and b in Figure 1c and the same transformations can be applied
here as well.)

Another way to speed up the execution of a loop as shown in Figure 3b us-
ing subword parallelism is by optimizing the if-tests tree. Most multimedia-
extended architectures provide parallel subword comparisons. These compar-
isons always generate a bit pattern. This pattern can easily be transformed
into a bit pattern fit to index a jump-table. Replacing the consecutive tests
on every path by one parallel test and a look-up in the jump table results in
the flow graph shown in Figure 4. As can be expected, this optimization gives
a boost in performance.



(a) nested loop (b) after loop fusion
Fig. 5. Nested loops

2.8 Loop Fusion

Another possible structure for the region b in Figure 1a is a loop. It does not
matter for our purpose whether this inner loop has independent iterations
or not. The more general graph of Figure 1c can now be refined to the one
depicted in Figure bHa.

All operations in b; are independent of those in by since the original outer
loop had independent iterations. Thus, loop fusion of the two inner loops can
be applied. The resulting graph is shown in Figure 5b. Because the number
of iterations of the loops b; and b, may differ, it might be necessary that
some iterations are executed separately. These can be put in regions K and
L. The inner loop of this graph is now identical to the loop of Figure 1b and
all illustrated transformations can again be applied to this inner loop.

Note that loop fusion can be advantageous even when subword parallelism is
not used. In some algorithms the cache-behavior is greatly improved if the two
fused loops load data in each others vicinity. An example is given in section 3.
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Fig. 6. A flowchart of the possible loop transformations that might result in exploit-
ing subword parallelism

2.4 Combining Transformations

Figure 6 shows how combinations of the proposed transformations can even-
tually lead to basic blocks containing the desired instructions to use subword
parallelism.

The transformations we have shown are more generally applicable. Consider
for example a loop body consisting of an if-then-else followed by a nested
loop. After loop unrolling, the two or more if-then-else-structures in the
new loop body can be shifted upwards, ready for if-hoisting. The remaining
loops are grouped in the lower part of the body and are candidates for loop
fusion.

To conclude the section about general code transformations, notice that the
goal of these transformations, namely the creation of basic blocks with in-
dependent but identical operations, is not only useful for exploiting subword
parallelism. These transformations can also lead to better scheduling oppor-
tunities for the compiler in general.

3 A Case Study: The Calculation of Radiological Paths

We have shown that loops with independent iterations show much potential for
the exploitation of subword parallelism. The possible examples are numerous:
matrix operations, signal filtering, image reconstruction, etc. It is precisely for



this kind of applications that multimedia extensions were added to general-
purpose architectures: to achieve a speed-up in the execution of the rather
simple inner loops of multimedia applications.

In this paper however, we want to prove that applications with inner loops
of a more complex structure will also benefit from multimedia extensions. To
fully illustrate the possibilities to exploit subword parallelism for more com-
plex loops, we shall delve a little deeper into a particular medical imaging
algorithm: the calculation of radiological paths and its implementation on an
UltraSPARC 1I [7]. This processor is an implementation of the SPARCv9 [5]
architecture, extended with a set of multimedia-oriented instructions: the VI-
Sual Instruction Set or VIS [8].

3.1 The Calculation of Radiological Paths

A radiological path (RP) of a line through an image is defined as a weighted
sum of pixel values. The weighting factors are the distances the line traverses
through the pixels.

By itself, this calculation is not very time consuming since most images have
a maximum resolution of 512 x 512. For positron emission tomography (PET)
image reconstruction however, the RP is calculated for sets of hundreds of
parallel lines under varying angles. This results in routines that are repeated
millions of times during one image reconstruction, making them a suitable
candidate for optimization.

The fastest method known to us to calculate a RP is the incremental algo-
rithm. It is inspired by Siddon’s algorithm [20] that works on a parametrized
representation of the line. For the sake of brevity, we will explain in this article
only the bare minimum necessary to understand the applicability of subword
parallelism to this problem. For an in-depth description see [12].

The line is represented by a parameter varying linearly (see Figure 7a). First,
we determine a, the parameter value of the entry point of the line into the
image and the corresponding entry pixel p. Next, the first intersections of
the line with horizontal and vertical pixel boundaries inside the image are
calculated (with resp. parameter values h and v). This provides us with a
basis to start calculating the RP.

Suppose, that the pixel boundary through which we leave p is a horizontal
one. This can easily be detected by noticing that 4 < v. The measure for the
length of the line segment in p is [ = h — a. We obtain the contribution of
pixel p to the RP by multiplying [ with the density of p.
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Fig. 7. The parameter values during traversal of the image.

To advance to the next pixel, we adjust the values of a, h, v and p (see
Figure 7b). The entry point into the next pixel is easily determined: it is the
intersection with the horizontal line of which we already know the parameter
value h. So we give a the value of h. The value of v need not change; the
next intersection with a vertical line is still the same. We do, however, need
to change the value of A. The new value of h becomes h + Ah, where Ah is
the constant distance between two consecutive intersections with horizontal
boundaries. Finally, after a simple integer addition, the new p points to the
pixel under the previous one.

The calculations, as described in the previous paragraphs, are repeated until
the line leaves the image. The total sum of all the contributions of the pixels
forms the RP of the line.

All this makes for a fairly simple iteration scheme. It has a few shortcomings
however. First, for every pixel, we need to determine whether the line crossed
a horizontal or vertical boundary. This results in a loop with an if-then-else-
construct inside the inner loop producing code with small basic blocks. Second,
every iteration is dependent on the previous one, making parallel execution
nontrivial.

In what follows, we will apply our general transformations to this code and
show it effectively eliminates the shortcomings in this code.

3.2 The Transformations Applied

Our algorithm for the calculation of the RP in pseudo-code is presented in
Figure 8. On the right side, we have annotated the code according to the
labels used in the transformations in section 2.

Since during the calculation of the RP, all data is written to separate memory
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for (each angle ¢) // loop 1
for (each line | under angle ¢) // loop 2

inttialize line [; a
for (each pizel in line l) // loop 3 )
if (h<v) d|)
RP +=[h — a] x imagelp); )
a = h —
h +=Ah; (Le]

p +=Ay; ) > @

RP +=[v — a] * image|p]; )

else

a = v
4

v 4= Av; /

p +=Az

store RP;

Fig. 8. Pseudo-code for part of an ML-EM image reconstruction

for (each angle ¢) // loop 1

for (each lines 1y, lo, l3, 1y under angle ¢) // loop 2
A
by || b2 || b3 || bs
C

Fig. 9. Pseudo-code after loop unrolling and software pipelining

locations, there is no dependency between the iterations of loop 2. This loop
is therefore the starting point of our consecutive transformations.

The first transformations we always apply are loop unrolling and software
pipelining. Since we are trying to implement this algorithm on an UltraSPARC
which is able to perform 4-way subword parallel operations, we will unroll the
loop 4 times. This is possible because the 16 bit subwords of a 64 bit register
have a sufficiently large range and precision. The result of these transforma-
tions can be seen in Figure 9, which corresponds to Figure 1c. All initializations
have been absorbed by code region A and all stores by region C'.

Next, we notice that b consists of a loop. Therefore, we can perform our third
transformation, loop fusion. The result is shown in Figure 10. This figure
corresponds to Figure 5b where hy; 9y and jj19) are empty. The number of
iterations (m) in the fused loop is that of the shortest original loop. It is
calculated in K. Region L consists of code for the residual part of each of the
four loops.
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for (each angle ¢) // loop 1

for (each lines ly, lo, I3, Iy under angle ¢) // loop 2
A
K
for (for the first m pizels of 11, ly, I3, 1y ) // loop 3 fused

bllz’Ll bl2:7/2 bg:’bg), bg:u

L
C

Fig. 10. Pseudo-code after loop fusion
for (the first m pizels of ly, la, I3, 1y ) // loop 3 fused
if| d; |then if | d, | then if | d; | then if | d, | then

€1 €2 €3 €4

else

€1 €2 €3 f 4
else if | d, | then
€1 €2 f 3 €4

else

€1 €2 f3 f4

Fig. 11. Pseudo-code after if-hoisting

The innermost loop, thus created, corresponds to the situation depicted in
Figure 1lc. So we can start the whole transformation process over again using
this loop, where 7 is renamed to b'.

From this point forward, we will show only the transformations on the inner-
most loop. The code regions b} through b} consist of identical, independent
if-then-else-structures of which the then and else-part perform exactly the
same operations on different data. After performing if-hoisting, the result is
shown in Figure 11.

Since the tests are simple comparisons, they can be performed in parallel. The
result on the UltraSPARC architecture is a 4 bit bitfield (one bit for each
comparison), which can be used as an index in the jump table. This way, after
1 table look-up, we can jump directly to the correct combination of then and
else parts. The result is shown in Figure 12.

It is clear that, since the e; and f; basic blocks perform identical operations
(multiplication, addition, subtraction and assignment) on independent data,
they can be parallelized using subword parallelism. We will go in a little more

12



for (the first m pizels of ly, ls, I3, 1y ) // loop & fused
bitfield = par_comp ( |d; | dy | d3 |dy|)
goto jump_table[bitfield]

jump_table[0]: er |l e || e3 || es

jump_table[1]: e1 || e || e3 || fa

jump_table[15]: | fi || fo || f5 || fa

Fig. 12. Pseudo-code with parallel subword comparison

for (each angle @) C
for (each 4 lines under @) C O
for (each of m pixel-quadruples) £ 2

,,,,,

Fig. 13. The flow graph of the incremental algorithm after code transformations

detail on this in the next paragraph. The final flow graph, after all transfor-
mations have been applied, is depicted in Figure 13.

This is the simplest visualization of the CFG. It is clear that the edges con-
verging in the exit block of the inner loop and the back edge can be avoided by
appending the entry and the exit blocks to each of the 16 calculation blocks.
From the end of each block, we then jump directly to the appropriate block
for the next iteration using the jump table (see Figure 14 for a CFG with 2
paths). The jump table is extended to contain an extra address, the target
address of the exit jump. A conditional move can set the index in the table to
point to this extra address in order to exit the loop.

13
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Fig. 14. Reducing the number of branches in the inner loop body

3.3  FExploiting Subword Parallelism

In this paragraph we will show how to use subword parallel instructions for
the calculations in the e and f blocks.

The conversion to subword parallel operations implies more than the replace-
ment of several identical instructions by a parallel one. The operands of the
original instructions have to be packed in words and become subwords before
one can operate on them in parallel. Three steps are necessary in general. For
the sake of clarity, we apply them to our example algorithm.

Packing data in registers In our algorithm, a-values, h-values and v-values
for each of the 4 lines are grouped in {a), (k) and (v). This grouping is fixed
for the whole execution of the loop.

Loading data elements In each iteration, 4 new pixel values are loaded.
These are loaded separately, each in a different register. We need to pack
them into one register in each iteration. This is the main difference between
our type of algorithm and typical imaging or multimedia applications. In
those applications, operations on data streams run through the data in a
very regular form in which adjacent pixels can be loaded in parallel and can
be operated upon immediately. We need more preparatory work to pack the
data elements in registers.

Performing operations In every iteration some of the elements of (h) are
updated (then-part in the original program), as well as other elements in
(v) (else-part in the original program). Operations on some elements in
(h) can be performed using masks.

For example, an addition to the first and third subword of (h) is done by
adding (Ah) to it, whereas the second and fourth element of (Ah) are set
to zero by a mask. The use of masks is straightforward, but to be efficient,
enough registers have to be available. In our program, 16 different masks
are used, which are best placed in registers permanently.

14



Summarizing, we can say that variables used in the loop have to be packed,
masks have to be used to perform the correct operations and pixels have to
be loaded and merged in registers.

It is important to note that the calculation of pixel indices is not done using
subword parallelism. These calculations are done using integer arithmetic in
the first place, and thus are executed in parallel with the subword parallel
operations on superscalar architectures. Besides that, for large images, the
range needed for the indices would be too large to fit in subwords anyway.

3.4 Possible Further Optimizations

Each of the 16 paths in the inner loop requires the application of masks to
data. If we take a closer look, we can wonder whether this is really necessary.

If the next iteration passes along the same path as the previous one, some
masked operands are still available from that previous iteration. This is the

case for (Ah) and (Av).

This kind of partial redundant calculations will almost certainly occur when
if-hoisting is applied. In some cases, this can be optimized as depicted in
Figure 15. The left graph shows one of the 16 different paths in the inner loop
of our algorithm.

First we duplicate the calculation block g. The result is shown in figure 15b.
From the copy ¢', we delete the unnecessary instructions for the case when
the previous iteration passed along this same path. Next, we insert two in-
structions in the original basic block ¢ that set the jump-table pointer to a
new table, in which the address of ¢ is replaced by that of ¢’. These two in-
structions present no overhead, since they are executed in parallel with the
subword parallel instructions.

This way, as long as the same path is chosen, the loop will iterate using the
faster basic blocks ¢' (the control flow graph as depicted in Figure 15¢) and
only when a new path is chosen will the initializing instructions for that path
be executed (the control flow graph for that path looks like Figure 15b).

Throughout the program, all addresses in the jump table but one point to
the original calculation blocks. Only the address of the block we have just
executed is replaced with that of the corresponding faster block.

This optimization will definitely not hold for some algorithms. In our case
however, one third of the iterations passes along the same path as the pre-
vious iteration. This makes the effort of optimizing the code as illustrated

15
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Fig. 15. Inner loop paths after if-hoisting with duplicated basic blocks

viable. In general, we note that after if-hoisting, a multitude of similar calcu-
lation blocks is created. It is our opinion that it will often be useful to try to
recuperate some intermediate data from one block to reuse it in the following
blocks. This requires tracing the program to estimate the dynamic probability
that certain branches are taken.

4 Programming Subword Parallelism

We have shown that to fully exploit subword parallelism, nontrivial code trans-
formations are necessary. The programmer can use all the help he/she can get
to simplify this process. During our research on the UltraSPARC, we tried
several tools to automate as much as possible the programming task.

4.1  Automatic Compilation

In an ideal world, one would provide a specification of a problem without any
regard for the underlying architecture. Then the compiler would do extensive
transformations on the specification and eventually produce excellent code.
Sadly, at the time of writing, this is not the case; the compiler cannot even
produce the new VIS instructions that implement subword parallelism on the
UltraSPARC. Still, it is interesting to wonder what the minimal adjustments
to a compiler/programming language should be to make the use of subword
parallelism possible.

First of all, the compiler must be capable of generating the whole of the
instruction set, including the instructions implementing subword parallelism.
This implies that it has knowledge of the latencies of these instructions, their
path through the processor pipeline, etc. This is well within the reach of
modern compilers.

16



But how could a compiler decide to use such new instructions? It might try
to extract by itself the necessary information from the source code. In a lan-
guage like C, it would probably find little opportunity for optimizations, since
almost none of the data types fit into subwords (only the char type). The
compiler would have to decide whether the ranges of other variables with data
types like float, integer, ... would fit into 8 or 16 bits. This implies an
understanding of the semantics of programs beyond the capability of current
compiler technology.

We must therefore explore other options. A first one is the addition of com-
piler directives. These would allow the programmer to express the fact that,
although a variable has a larger range, its values would fit into 8 or 16 bits.
This opens the way for more compiler optimizations. Yet another step further
is the alteration of the language itself by adding new data types like an array of
four 16-bit values or eight 8-bit values. Then operations like addition, compar-
ison, etc. on these new data types can be defined. This way, the programmer
is able to directly express his algorithms exploiting the new hardware to the
fullest. Both these options have a major drawback: they endanger portability,
albeit possible to make compiler directives transparent.

The loop transformations that we have put forward are used in vectorization
compilers. These are mostly Fortran compilers. It is not trivial to port these
compilers to languages like C, where pointers and other constructs complicate
data analysis.

4.2 Templates

The compiler, not being able to exploit the VISual Instruction Set of the
UltraSPARC, did present another option: inline assembler templates. This is
a technique whereby pieces of assembly code are wrapped into a C-function.
This C-function can then be called from a program, allowing the inclusion of
specific assembly routines. The idea is then to inline these C-routines in the
rest of the code, effectively removing the function call and only leaving the
assembly body.

Sun provides a library containing one wrapper function for every VIS-assembly
instruction. Although it seems an efficient technique to exploit subword paral-
lelism, it totally confused the data analysis phase of the compiler. This resulted
in extremely bad code in which tremendous amounts of time were spent su-
perfluously loading and storing the content of registers. Rice’s report [30] on
using VIS has shown that for simpler algorithms, inline templates are a viable
option. It is clear that using these templates complicates portability.

17



4.8 Libraries

A third option to exploit subword parallelism are preprogrammed libraries.
Although this is a very interesting method for most programmers, since it
presents them with highly optimized, out-of-the-box code, it does require the
existence of library routines that can be used. Our problem was far too specific
for any useful libraries to exist. At the moment of writing, only libraries for
typical multimedia applications exist.

4.4 Hand Coded Assembly Language

Eventually, we were forced to hand code our algorithms in assembly. This
is of course a very time-consuming, tedious and error-prone task. Its main
advantage is full control of all the features present in a processor. Its disad-
vantage is its lack of portability between different processor families and even
between processor generations. When a new version of a processor is released,
its instruction latencies and pipeline behavior in general may have changed,
warranting the manual rescheduling of the assembly code. Again a very time
consuming task, best performed aided by a simulator of the CPU in question.

5 Results of Using Subword Parallelism

Having described how and by what means the incremental algorithm is im-
plemented to exploit subword parallelism, we can now give results of these
optimizations. In Figure 16 the execution times for a PET image reconstruc-
tion are plotted for various image sizes.

We embedded our routines in an existing 2D PET reconstruction program,
emwvor2d. This evaluation program is developed by the Medical Image Pro-
cessing Group (MIPG), Department of Radiology, University of Pennsylvania,
Philadelphia, USA. More advanced statistical PET reconstruction algorithms,
such as RAM-LA, are faster, but use the same core routines for the calculation
of the RP. Emvox2d uses the Maximum Likelihood-Expectation Maximization
algorithm (ML-EM) [19], in which RP calculations take about 90% of the time.
Our algorithm is linear in the sum of the dimensions of the image. Any non-
linearities in the graph result from cache-behavior.

The speed-up achieved by exploiting subword parallelism is 45% compared to
our best C-code optimized using the SCO 4.0 compiler. This is not only due
to the use of subword parallelism, but also to the better cache behavior: the
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Fig. 16. Execution time of an ML-EM PET image reconstruction.

pixels are represented in a smaller data format and thus more pixels fit in the
cache.

Finally, it is noteworthy to say that our optimizations are applicable to 3D
PET image reconstruction as well.

6 Related Work

Rice has described in [30] how typical imaging and multimedia applications
can benefit from multimedia extensions. These applications include image
addition with clamping, blending using mask images, convolutions, resizing
using bicubic interpolation, rescaling, conversion from YUV to RGB and
Gouraud shading and texture mapping. These are applications with simple
inner loop bodies.

In his report, he extensively shows how inline templates can be used and how
VIS can be enhanced.

A new generation of true multimedia processors [14] (such as the Philips Tri-
Media [6], the Mpact Media Engine [33], the MicroUnity MediaProcessor [16]
and NVidia NV-1 [34]) offer, in addition to subword parallelism, some new or
reborn types of parallelism:
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e very long instruction word (VLIW),

e hardware micro-threading, in which instructions from different threads are
interleaved,

e special functional units that perform typical multimedia tasks, in parallel
with the core processor activity,

e interfaces that prepare incoming data streams for efficient processing on the
core processor,

e input and output buffers that replace DMA-channels (Direct Memory Ac-
cess) to minimize the necessary memory bandwidth.

These processors are very efficient for processing multimedia. We have done
some experiments on the TriMedia, which have learned us that its VLIW core
processor is highly suited for the calculation of radiological paths. Because on
the TriMedia basic blocks have to be large as well, since the delay slot contains
15 operations, we used the same code transformations, except for if-hoisting.
Instead, we used guarding (all instructions can be executed conditionally) to
merge the then-part and the else-part in the inner loop body into one basic
block. The result of the if-test is then used as a guard or predicate.

Recently, much research is being done into the use of guarding and predicates
in general to increase the number of instruction that can be executed simul-
taneously [24,11,23]. The transformations shown should increase the potential
for exploiting these techniques.

It should be noted that the SPARC processor that we considered, includes
a fairly simple branch prediction scheme (2-bit prediction scheme) and that
2 level branch history based prediction schemes [21,29] could possibly also
speed up the execution of the program by better predicting the outcome of the
original branches. We proposed a static technique that transforms a sequence
of control flow instructions into one parallel branch so that only one branch
misprediction can take place and as such only one branch penalty will be
observed.

We also made use of the fact that if certain control paths are taken, some
data values do not have to be recalculated. This topic too is actively being
investigated by several groups around the world [22,26]. However they look at
dynamic techniques in what they call data-prediction techniques.

7 Conclusions

In this article, we have shown that subword parallelism, as recently introduced
in multimedia-oriented architectures, is beneficial for more general algorithms.
More specifically, the calculation of the radiological path, a recurring routine
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in image reconstruction algorithms, executes 45% faster on an UltraSPARC
when using the VISual Instruction Set.

The loop transformations we applied are standard techniques in multiproces-
sor parallelization and prove very effective for exploiting subword parallelism.
Performing these transformations is a task that should be automated as has
been done in parallelizing compilers. Further research in this direction should
include the necessary data types and data analysis.
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