
Conit Graph Based Alloation of Stati Objets

to Memory Banks

Peter Keyngnaert Bart Demoen

Bjorn De Sutter Bruno De Bus Koen De Bosshere

Department of Computer Siene

Katholieke Universiteit Leuven

B-3001 Leuven, Belgium

fpeter.keyngnaert,bart.demoeng�s.kuleuven.a.be

Department of Eletronis and Information Systems

Universiteit Gent

B-9000 Gent, Belgium

fbjorn.desutter,bruno.debus,koen.debosshereg�elis.rug.a.be

September 6, 2001

ABSTRACT

Several arhitetures, in partiular those spei�ally

designed for digital signal proessing, have a memory

struture that onsists of a number of banks with dif-

ferent harateristis suh as waitstate, size, : : : There

may also exist onstraints on the aessibility of these

banks, as some bank ombinations an be aessed

in parallel, while others an not. As memory aess

onits lead to pipeline stalls, the assignment of the

data objets of a program to the set of memory banks

is ruial with respet to a program's exeution speed.

Programmers usually do the assignment of the stati

objets manually. We present a method to automate

this proess at/post link-time, as the linking proess is

the �rst moment at whih both the entire program as

well as the target arhiteture's harateristis are fully

known. Based upon statistis drawn from an exeution

trae of the program, an ordering of onits is derived

aording to the possible exeution time penalties they

generate. By alloating the objets of those onits that

have the most negative impat on the program exeution

time �rst, a deent alloation an be derived automatially.

Keywords: memory alloation, stati objets, DSP,

memory arhiteture, onit graph

1 INTRODUCTION

Some proessors, espeially those dediated to digital sig-

nal proessing (DSPs), have a omplex memory arhite-

ture: their main memory spae physially onsists of a

number of memory banks that may not only have di�er-

ent sizes but also di�erent aess onstraints and aess

times: some (ombinations of) banks may be aessed in

parallel while others may not; some banks allow more than

one aess per pu yle or have a smaller waitstate than

others. For this kind of proessing units, data plaement

has severe impliations on the exeution speed of an ap-

pliation. Objets that are often aessed together during

the same pu yle greatly bene�t from being assigned to

memory banks in suh a way that the number of onits

leading to pipeline stalls or the insertion of pipeline bubbles

is minimal.

In the DSP world, it is still ommon pratie to op-

timize the �nal version of a program by hand, as speed

is ruial for real-time appliations and humans still out-

perform ompilers at writing the fastest ode. One of the

tasks not yet handled by the development environment is

the aforementioned assignment of stati objets to memory

banks. This task is partially supported by the system, as

there exist tools that let programmers drag stati variables

from their soure ode into a visual representation of the

memory arhiteture they target (e.g. [15℄), but it takes

a lot of time and expertise to ome up with a good plae-

ment. In this paper, we propose a novel way of automating

this proess.

In setion 2 we formalize the problem and prove it

to be NP-omplete. Setion 3 introdues the onit

graph and shows how it an be used to impose an order

upon the objets by whih they should be alloated to a

memory bank. Setion 4 then proposes some heuristis

to automate the alloation proess. Setions 5, 6 and 7

over related work, onsiderations for future work and

onlusions respetively.

2 THE PROBLEM AND

ITS COMPLEXITY

Given are the set of stati objets O used by a program

P, as well as the set of memory banks B of the target



arhiteture. The goal is to �nd an alloation funtion

allo : O ! B that minimizes the exeution time of

P. In the next paragraphs we show that this problem is

NP-omplete, so our goal is to �nd a good approximation

of the optimal solution in an aeptable amount of time.

Graph olouring Consider the well-known problem of

graph olouring. Given are a graph G = (V;E) and a set

C where V is the set of verties (nodes), E � V �V is the

set of edges between nodes of V and C is a set of k olours.

A k -olouring of G is a mapping ol : V ! C that olours

eah node in V with a olour from C where all k olours

are used and taking the following restrition into aount:

8n

i

; n

j

2 V : 9(n

i

; n

j

) 2 E =) ol(n

i

) 6= ol(n

j

)

The problems of deiding whether suh a mapping ol ex-

ists as well as �nding one are NP-omplete [10℄.

A restrited version of objet alloation Now on-

sider the problem of alloating the objets used by a pro-

gram P to the memory of an arhiteture A that supports

multiple memory banks. Let O be the set of n objets

used by P, let size(o) be the size of objet o 2 O and let

B be the set of k memory banks of A where size(b), ws(b)

and a(b) are the size, waitstate and possible number of

aesses (per pu yle) to bank b 2 B respetively. For

eah memory bank b 2 B we assume the following hara-

teristis:

� size(b) =

P

n

j=1

size(o

j

); 8j (1 � j � n) : o

j

2 O

� ws : B ! f0g : b 7! 0

� a : B ! f1g : b 7! 1

A allows any ombination of 2 memory banks to be a-

essed onurrently during one pu yle. During the exe-

ution of P, at most 2 objets need to be aessed during

the same pu yle. We all (o

i

; o

j

) a onit between

objets o

i

; o

j

2 O if o

i

and o

j

need to be aessed during

the same pu yle: there will be a loss of exeution speed

if they are assigned to the same memory bank. Solving the

alloation problem to avoid as muh onits as possible

is equivalent to �nding a k -olouring

ol

0

: V

0

! C

0

of G

0

= (V

0

; E

0

) where V

0

= O, E

0

� O � O and C

0

= B

is the set of olours. The olouring restrition

8o

i

; o

j

2 O : 9(o

i

; o

j

) 2 E

0

=) ol

0

(o

i

) 6= ol

0

(o

j

)

holds. This problem naturally maps onto the graph ol-

ouring problem given in the previous paragraph, so this

alloation problem is NP � omplete also.

A general version of objet alloation Apply the

following generalizations to the alloation problem given

in the previous paragraph:

� allow only ertain ombinations of i (1 � i � k)

memory banks of B to be aessed onurrently dur-

ing one pu yle

� allow onits (o

i

; : : : ; o

i+j�1

) of arbitrary size j, or

equivalent: allow an edge e 2 E

0

to onnet any j

(2 � j � n) nodes o

i

; : : : ; o

i+j�1

2 O. j is alled the

degree of e: j = degree(e)

� allow memory banks to have any waitstate:

ws : B ! N : b 7! ws(b)

� allow memory banks to have any size:

size : B ! N

0

: b 7! size(b)

� allow memory banks to support an arbitrary number

of aesses during one pu yle

a : B ! N

0

: b 7! a(b)

The problem given in the previous paragraph is just one

spei� instane of the general lass of problems given here.

Sine that one instane is NP-omplete, solving the prob-

lem in general must also be NP-omplete.

Graph-Program bijetions The onlusion of the pre-

vious paragraph also requires that the following holds:

1. for eah program P, a onit graph graph G = (V;E)

exists

2. for eah graph G = (V;E) with d = max fdegree(e) j

e 2 Eg, it is possible to write a program P for an

arhiteture that allows simultaneous aesses to at

most d memory banks, so that P has G as its onit

graph

Proving the �rst assumption is fairly trivial: simulate the

exeution of P and have the simulator detet the objet

onits required for onstruting G. The seond assump-

tion an be proven by giving an algorithm that generates

the desired program:

for eah edge e f

1. generate ode that requires degree(e)

simultaneous memory aesses to the

nodes onneted by e;

2. generate enough nop instrutions to avoid

interferene with other instrutions ;

g

for eah node n not appearing in any edge e f

1. generate ode that aesses n;

2. generate enough nop instrutions to avoid

interferene with other instrutions ;

g

3 DETERMINING THE

ALLOCATION ORDER

To maximally exploit parallellism, our method �rst

imposes an order on the onits and then alloates the

objets that appear in the most important onits �rst.

This notion of importane is based on a ombination of

2 riteria: how often an objet is used and how often

it onits with other objets. In this setion, we show

how suh an order an be derived automatially from an

exeution trae of P.



3.1 Gathering information by simula-

tion

In [8℄ we presented a simple but general model of both

the memory arhiteture as well as the pipelined exeu-

tion of a DSP arhiteture. Given an exeution trae of

P (the sequene of instrutions as they are handled dur-

ing the exeutionof P), where all instrution operands are

manifest (i.e. their values are known), relevant objet use

information is olleted by one run of the the pipeline sim-

ulation.

3.2 The onit graph

Reall that a onit (o

1

; : : : ; o

m

) between m objets

o

1

; : : : ; o

m

is the need for simultaneous aess of these ob-

jets during program exeution. A use of an objet is any

aess to that objet, either read or write. To minimize

the exeution time of P, the objets need to be plaed in

the di�erent memory banks in suh a way that the pu

yle penalties (the number of extra pu yles needed to

aess the objets due to their alloation) for both the on-

its and the uses are minimal. While going over the exeu-

tion trae with the simulator, a data struture G = (V;E)

alled the onit graph is build. This graph keeps trak

of the number of onits, the objets involved in them as

well as the overall number of uses of eah objet:

� a node n 2 V represents an objet (its identi�er and

its size) and the number of times that objet has been

aessed without being part of a onit.

� a labeled edge e 2 E represents the onits involving

the nodes it onnets. The label indiates how many

suh onits arise.

Note that an edge an onnet more than 2 nodes. Rep-

resenting a onit between 3 nodes an also be done by 3

normal edges that onnet the 3 possible pairs of nodes (see

�gure 1), but this results in a loss of knowledge. Indeed,

using 3 edges that onnet 2 nodes eah, as is depited

in (a), gives the impression that there are 3 possibly inde-

pendent onits. The knowledge that it really is 1 onit

in whih all nodes are aessed during the same pu yle

is lost. Clearly, graph (b) has a notion of time that graph

(a) has not: it an express that ertain onits between

pairs of objets happen simultaneously. We all edges that

onnet more than 2 nodes multi-edges. Note that self-

referening edges may exist: an edge an be onneted to

a ertain node more than one so multiple aesses to the

same objet within a onit an be represented in G.

It is lear that the dominating fators in the alloation

are the number of times eah objet is used and the number

of onits. If an objet is used very often, it should reside

in the fastest memory bank possible. If a number of objets

are aessed simultaneously, they should be assigned to

that set of memory banks that allow these aesses in the

shortest possible time.

3.3 Deiding objet alloation order

The algorithm used to do the alloation is based on the

use of a set of tables T = fT

i

j 1 � i � ng where n =

maxfdegree(e) j e 2 Eg. Eah table T

i

has

�

#B + i � 1

i

�

s Au
A

Bs Bu
C

Cs Cu
B

As AuA

n

A

Bs Bu
C

Cs Cu
B

(a) (b)

n n

n

Figure 1: Edges onneting more than 2 nodes represent

additional knowledge.

entries (i-ombinations with repetition of #B). Eah entry

in T

i

is a funtion

f(b

1

; :::; b

i

) : B �B � : : :�B ! N

where f(b

1

; :::; b

i

) is the number of yles lost due to a on-

it of degree i (i.e. a onit involving i objets) where

one objet is in bank b

1

, one objet is in b

2

, : : : and one

objet is in b

i

. One both G and T are generated, we om-

bine the information they ontain into a new table T

final

upon whih our heuristi is built. For eah edge

1

in G,

there is an entry in T

final

that indiates what loss of pu

yles an be avoided by doing a good alloation of the

objets involved.

The basi idea is to try to resolve the edge that rep-

resents the most ostly onits �rst. This is based upon

the assumption that a minimalization of the number of

onits orresponds to a maximalization of the exeu-

tion speed of the program, provided often used objets

are assigned to the fastest banks. The following heuristi

approximates the biggest possible gain in pu yles for

an edge e 2 E that onnets nodes n

1

, : : : , n

m

(with

m � degree(e): we take eah node into aount only one):

GAIN

e

= WORST

e

�BEST

e

(1)

where n = degree(e) and

BEST

e

= f(b

0

1

; : : : ; b

0

n

)� onflits(e)

+

m

X

i=1

uses(n

i

)� (ws(b

0

i

) + 1) (2)

WORST

e

= f(b

slow

; : : : ; b

slow

)� onflits(e)

+

m

X

i=1

uses(n

i

)� (ws(b

slow

) + 1) (3)

with b

0

1

; : : : ; b

0

n

suh that

f(b

0

1

; : : : ; b

0

n

) = min

b

0

1

;::: ;b

0

n

f(b

0

1

; : : : ; b

0

n

) 2 T

n

8i; 1 � i � #B : ws(b

slow

) � ws(b

i

)

uses(n

i

) is the number of times the objet of node n

i

was

aessed without being part of the urrent onit (i.e.

1

Some nodes in G may not be onneted to any other nodes.

For our algorithm to work, we add a self-referening edge to

them labeled with 0 number of uses.



the onit represented by e), onflits(e) is the number

of onits of type e and b

slow

is the slowest memory bank

available. Note that we use ws(b

i

) + 1 instead of just

ws(b

i

) beause in general the latter is 0 for the fastest

banks, whih would eliminate the inuene of the number

of uses besides those of the urrent onit. The entries

in T

final

are ordered by dereasing value of the GAIN

e

�eld of the table. The objets of the edges with a higher

GAIN

e

value will be alloated �rst.

4 TOWARDS AUTOMATIC

ALLOCATION

4.1 The heuristi

Given T

final

it is possible to automate the alloation pro-

ess. The alloation guidelines handled by a prototype

system we have developed inlude:

� We try to assign the most often used objets in

nodes n

1

; : : : ; n

degree(e)

to the fastest memory banks

in b

0

1

; : : : ; b

0

degree(e)

.

� If multiple f

j

have a minimal value, we try to spread

the objets over as many di�erent banks as possible.

� If objets have self-referening onits, they are as-

signed faster banks whih allow multiple aesses per

yle (if these exist).

� If there are multiple equally fast memory banks to

assign an objet to, the bank with the most free spae

left is piked.

The alloation is based on a single iteration over the entries

in T

final

in the order in whih they were sorted. All entries

start as unmarked. For eah entry that is not marked, all

nodes in it are alloated aording to the guidelines above.

This entry is then marked, as well as all entries that ontain

only nodes that have already been alloated.

4.2 A small example

Assume a target arhiteture with B = fb

1

; b

2

; b

3

g where

the banks have sizes of 25, 25 and 1000 words respetively.

Eah pu yle, 2 aesses to b

1

are possible. b

1

and b

2

an be aessed in parallel, resulting in 1 aess to b

1

and

1 aess to b

2

during the same yle. b

3

is slower, having a

waitstate of 1. b

3

an not be aessed in parallel with either

b

1

or b

2

. This results in T = fT

1

; T

2

; T

3

g with T

3

shown

in table 2. Instrutions are of the form mnem sr1, sr2,

dst where sr1 and sr2 an be an immediate value, a

register or an address of/into an objet and dst an be

either a register or an address. Sine immediates and re-

gisters are irrelevant for our onerns, they are replaed by

a -. Aesses to an objet are represented by #x where x

is the name of the objet. Eah memory ell of any bank

an hold exatly 1 instrution (or 1 word of data). The

pipeline has 5 stages: stage 1 fethes the instrution, stage

2 deodes it and stage 3 reads the soure operands sr1

and sr2 from memory. Stage 4 exeutes the instrution

and �nally during stage 5 the result is written to dst.

B
7 2

C
15 2

D
2 0

E
2 1

H
5 0

G
16 0

9

F
6 0

1

2

1

1

1

1

1

1

1

1

0

1
A

3

Figure 2: Conit graph for the example.

Consider the exeution trae in �gure 3 featuring 8 ob-

jets A (size 9), B (size 7), C (size 15), D (size 2), E (size

2), F (size 6), G (size 16) and H (size 5). The onit

01 mnem #A, -, - 13 mnem -, #C, #E

02 mnem -, #A, - 14 mnem #F, #C, #E

03 mnem -, -, #A 15 mnem #C, #C, #C

04 mnem -, -, - 16 mnem -, #C, #F

05 mnem -, -, - 17 mnem #B, -, #B

06 mnem -, -, - 18 mnem #G, #C, #E

07 mnem -, #B, - 19 mnem #G, -, #E

08 mnem #B, #C, #D 20 mnem #E, #H, -

09 mnem #D, #C, #C 21 mnem -, -, -

10 mnem #D, -, #B 22 mnem #E, #G, #C

11 mnem #D, #E, - 23 mnem -, -, #B

12 mnem #B, -, -

Figure 3: Trae for the example.

graph for this trae is shown in �gure 2. Note the edges

that onnet more than 2 nodes (dotted lines) as well as

the self-referening edges. From T and G, the values for

BEST

e

and WORST

e

(and hene for GAIN

e

) an be de-

rived, resulting in T

final

(see table 1).

Aording to the results from table 1, the objet allo-

ation is done as follows:

1. First try to assign C sine it has 44 uses in total,

whih is more than both D (12 uses) and E (28 uses).

Sine there exist onits in whih C is aessed twie

during the same pu yle (in this example, there is

only one suh onit: (C;C;E)), C is put in the

only memory bank that allows this, i.e. b

1

. Next, E

is onsidered. It also has a onit where it is aessed

twie, so E is also put in b

1

sine it still �ts into that

bank. D is never aessed more than one during the

same onit and gets put into b

2

sine f(b

1

,b

1

,b

2

) =

f(b

1

,b

1

,b

1

) = 1: there is no need to take up spae in



edge # WORST

e

BEST

e

GAIN

e

(D,E,C) 1 41 19 22

(B,C) 2 34 14 20

(C,C,E) 1 35 16 19

(C,E) 1 35 16 19

(G,C,F) 1 31 14 17

(D,C) 1 27 12 15

(F,C) 1 25 11 14

(G,B) 1 19 8 11

(E,G) 1 19 8 11

(E,H,E) 1 15 6 9

(B,B) 1 13 5 8

(A,A) 0 6 3 3

Table 1: T

final

for the example.

b

1

when alloating the objet to b

2

doesn't make the

handling of the onit any slower. Entry (D;E;C)

in T

final

is marked as done. Also, entries (C;C;E),

(C;E) and (D;E) are marked as done sine all of the

objets featured in any of these entries already have

been alloated to a memory bank.

2. When onsidering entry (B;C), we only need to al-

loate B sine C has a plae already. B has an entry

in T

final

where it is aessed twie (i.e. (B;B)) so it

is put in b

1

. Both (B;C) and (B;B) are marked as

done.

3. For entry (G;C; F ), G and F still need to be allo-

ated. G has more uses than F so G is put into b

2

while F, whih no longer �ts in either b

1

or b

2

, is

put into the slow bank b

3

. Entries (G;C; F ), (F;C),

(G;B) and (E;G) are marked as done.

4. Entry (E;H;E) only has H as an objet that still

needs a plae to reside during exeution. H still �ts

into b

2

so it is put there. (E;H;E) is marked as done.

5. The only entry left is (A;A). A is put into the only

memory bank that has enough spae left for it: b

3

.

(A;A) is marked as done and the algorithm termin-

ates.

The �nal alloation is represented in �gure 4. In the

worst ase, whih for this arhiteture means alloating

all objets to b

3

, the exeution of the example would take

82 pu yles (we assume that an instrution is fethed

from the I-ahe eah yle and that all instrutions take

1 pu yle to exeute). Given the alloation above, this

is redued to 38 yles. The total penalty for the onits

due to the initial bad alloation has been redued from 55

to 11.

5 RELATED WORK

Assigning stati objets to memory banks is learly some-

thing that should be inorporated into (or after) the link-

age proess, sine unlike the ompiler, the linker knows the

memory map. Researh that has foused on (post) link-

time optimization (for general purpose proessors) inludes

[16, 14, 13, 7, 2, 4, 3, 12℄.

1

b3

b2

F A

G H

b

D

C E B
�
�
�

�
�
�

Figure 4: Final alloation for the example.

T

3

f # lost yles

f(b

1

; b

1

; b

1

) 1

f(b

1

; b

1

; b

2

) 1

f(b

1

; b

2

; b

2

) 1

f(b

1

; b

2

; b

3

) 2

f(b

1

; b

1

; b

3

) 2

f(b

2

; b

2

; b

2

) 2

f(b

2

; b

2

; b

3

) 3

f(b

1

; b

3

; b

3

) 4

f(b

2

; b

3

; b

3

) 4

f(b

3

; b

3

; b

3

) 5

Table 2: Table of penalties for onits of degree 3 for the

example.

A problem similar to the one in this paper is takled in

hapter 11 of [1℄. Given P, O and a target yle budget,

a memory bank on�guration (and the alloation of the

objets to it) is derived, suh that the power onsumption

versus exeution speed trade-o� is as good as possible. [11℄

minimizes power onsumption for existing embedded DSP

proessors with only 2 memory banks whih have the same

harateristis.

[6℄ suggests a tehnique where a pre-ompiler phase is

used to eliminate objets that are not used by the program

or to see whih objets an be put at the same loations.

This is orthogonal to what we do at link-time.

Other researh suh as [9℄ or [5℄ fouses on using the

typial addressing methods of DSP proessors to optimize

data plaement for speed, but they do not onsider the

di�erent harateristis of the memory banks.

6 FUTURE WORK

Size does matter Equations 1, 2 and 3 don't take the

size of objets into aount. However, an objet's size an

play a major role in ertain speial ases. If the most often

used objet is so big that it oupies the entire fast memory

spae, the others will be alloated to the slow memory,

although the total of their uses may be quite a bit bigger.

On the other hand, we may still have some fast memory

spae left when all objets have been assigned to memory.

A postproessing step that dupliates objets and opies

them into that spae may improve parallellism. Another

size related onept is swith ost: if an objet is very

heavily aessed but is too big to reside in a fast memory



bank, it may still be worth it to add ode that opies parts

of the objet to the fast bank as they are needed. Another

option may be to split the objet and alloate the parts

individually. Most of these tehniques require another run

over the ode to hek whih opy/part of an objet should

be aessed at whih point in time. Moreover, this may

also result in additional ode if non read-only objets need

to be kept onsistent.

Lifetime analysis and dynami objets It is lear

that our algorithm an be improved by taking the life time

of objets into aount: objets with non-overlapping life

times an be assigned to the same memory blok. The fat

that two objets have non-overlapping life times will be

visible in the onit graph by adding some

2

extra edges.

When alloating an objet, the spae oupied by already

alloated objets that are dead when that objet is live

an be reused. One life times of objets are taken into a-

ount, and sine we start from a manifest trae, dynami

objets alloated by mallo() an be plaed optimally in

memory using the same mehanism as for the stati ob-

jets.

Implementation for a target arhiteture As

the topis above fous on the relation between data

plaement and ode, we will have to migrate our tool

(whih urrently performs the algorithm presented on a

parametrized model of a DSP) to a spei� arhiteture,

as ode manipulation is needed there.

7 CONCLUSIONS

We have shown the automati generation of a table that

an guide the alloation of stati objets to the memory

banks of a DSP arhiteture. Instead of using a searh

algorithm that requires an evaluation funtion in the form

of a program simulation that is exeuted multiple times,

we extrat the neessary onit information from just

one simulation. Using a onit graph to represent that

information, as well as tables that hold the arhiteture

dependent alloation penalties, we are able to impose an

order on the estimated ost of aess onits. This order

is the basis for automated alloation of objets, alloating

the objets involved in the most ostly onits �rst.

8 ACKNOWLEDGEMENTS

This work is sponsored by the Fund for Sienti� Researh

- Flanders under grant 3G001998.

Referenes

[1℄ F. Catthoor, S. Wuytak, E. De Greef, F. Balasa,

L. Nahtergaele, and A. Vandeappelle. Custom

Memory Management Methodology. Kluwer Aademi

Publishers, 1998.

2

existing edges represent some of the life time overlaps

already

[2℄ R. Cohn, D. Goodwin, P. Lowney, and N. Rubin.

Spike: An Optimizer for Aplha/NT Exeutables.

USENIX Windows NT Workshop, August 1997.

[3℄ B. De Sutter, B. De Bus, K. De Bosshere,

P. Keyngnaert, and B. Demoen. On the Stati Ana-

lysis of Indiret Control Transfers in Binaries. In

Proeedings of the International Conferene on Paral-

lel and Distributed Proessing Tehniques and Appli-

ations, Las Vegas, Nevada, USA, pages 1013{1019,

June 2000.

[4℄ S. Debray, W. Evans, R. Muth, and B. De Sutter.

Compiler Tehniques for Code Compation. ACM

Transations on Programming Languages and Sys-

tems (TOPLAS), 22(3):378{415, Marh 2000.

[5℄ E. Ekstein and A. Krall. Minimizing Cost of Loal

Variables Aess for DSP-proessors. In Proeedings

of the ACM SIGPLAN 1999 workshop on Languages,

ompilers, and tools for embedded systems, Atlanta,

GA USA, pages 20{27, May 1999.

[6℄ P. Ellervee, M. Miranda, F. Catthoor, and A. Hemani.

Exploiting Data Transfer Loality in Memory Map-

ping. In Proeedings of the 25th IEEE Euromiro Con-

ferene, Milan, Italy, pages 14{21, September 1999.

[7℄ M. F. Fernandez. A Retargettable, Optimizing Linker.

PhD thesis, Prineton University, USA, January 1996.

[8℄ P. Keyngnaert, B. Demoen, B. De Sutter, and K. De

Bosshere. Trae-based Memory Layout Optimiza-

tion for DSPs. Tehnial Report CW282, K.U.Leuven,

Belgium, Marh 2000.

[9℄ N. Kogure, N. Sugino, and A. Nishihara. Memory Al-

loation Method for Indiret Addressing DSPs with �

Update Operations. IEICE TRANS. FUNDAMENT-

ALS, E81-A(3):420{428, Marh 1998.

[10℄ D. C. Kozen. The Design and Analysis of Algorithms.

Springer-Verlag, New York, USA, 1992.

[11℄ T. C. Lee and V. Tiwari. A Memory Alloation Teh-

nique for Low-Energy Embedded DSP Software. In

Proeedings of the 1995 IEEE Symposium on Low

Power Eletronis, San Diego, CA, USA, Otober

1995.

[12℄ R. Muth, S. Debray, S. Watterson, and K. De

Bosshere. alto: A Link-Time Optimizer for the

Compaq Alpha. Software Pratie and Experiene,

31:67{101, January 2001.

[13℄ A. Srivastava and D. Wall. A Pratial System for In-

termodule Code Optimization at Link-Time. Journal

of Programming Languages, pages 1{8, Marh 1993.

[14℄ A. Srivastava and D. Wall. Link-Time Optimiza-

tion of Address Calulation on a 64-bit Arhiteture.

In Proeedings of the SIGPLAN '94 Conferene on

Programming Language Design and Implementation,

pages 49{60, June 1994.

[15℄ Texas Instruments' Visual Linker, see

http://dspvillage.ti.om/dos/studio/.

[16℄ D. W. Wall. Global Register Alloation at Link Time.

In Proeedings of the ACM SIGPLAN '86 Conferene

on Compiler Constrution., pages 264{275, 1986.


