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ABSTRACT

Several ar
hite
tures, in parti
ular those spe
i�
ally

designed for digital signal pro
essing, have a memory

stru
ture that 
onsists of a number of banks with dif-

ferent 
hara
teristi
s su
h as waitstate, size, : : : There

may also exist 
onstraints on the a

essibility of these

banks, as some bank 
ombinations 
an be a

essed

in parallel, while others 
an not. As memory a

ess


on
i
ts lead to pipeline stalls, the assignment of the

data obje
ts of a program to the set of memory banks

is 
ru
ial with respe
t to a program's exe
ution speed.

Programmers usually do the assignment of the stati


obje
ts manually. We present a method to automate

this pro
ess at/post link-time, as the linking pro
ess is

the �rst moment at whi
h both the entire program as

well as the target ar
hite
ture's 
hara
teristi
s are fully

known. Based upon statisti
s drawn from an exe
ution

tra
e of the program, an ordering of 
on
i
ts is derived

a

ording to the possible exe
ution time penalties they

generate. By allo
ating the obje
ts of those 
on
i
ts that

have the most negative impa
t on the program exe
ution

time �rst, a de
ent allo
ation 
an be derived automati
ally.

Keywords: memory allo
ation, stati
 obje
ts, DSP,

memory ar
hite
ture, 
on
i
t graph

1 INTRODUCTION

Some pro
essors, espe
ially those dedi
ated to digital sig-

nal pro
essing (DSPs), have a 
omplex memory ar
hite
-

ture: their main memory spa
e physi
ally 
onsists of a

number of memory banks that may not only have di�er-

ent sizes but also di�erent a

ess 
onstraints and a

ess

times: some (
ombinations of) banks may be a

essed in

parallel while others may not; some banks allow more than

one a

ess per 
pu 
y
le or have a smaller waitstate than

others. For this kind of pro
essing units, data pla
ement

has severe impli
ations on the exe
ution speed of an ap-

pli
ation. Obje
ts that are often a

essed together during

the same 
pu 
y
le greatly bene�t from being assigned to

memory banks in su
h a way that the number of 
on
i
ts

leading to pipeline stalls or the insertion of pipeline bubbles

is minimal.

In the DSP world, it is still 
ommon pra
ti
e to op-

timize the �nal version of a program by hand, as speed

is 
ru
ial for real-time appli
ations and humans still out-

perform 
ompilers at writing the fastest 
ode. One of the

tasks not yet handled by the development environment is

the aforementioned assignment of stati
 obje
ts to memory

banks. This task is partially supported by the system, as

there exist tools that let programmers drag stati
 variables

from their sour
e 
ode into a visual representation of the

memory ar
hite
ture they target (e.g. [15℄), but it takes

a lot of time and expertise to 
ome up with a good pla
e-

ment. In this paper, we propose a novel way of automating

this pro
ess.

In se
tion 2 we formalize the problem and prove it

to be NP-
omplete. Se
tion 3 introdu
es the 
on
i
t

graph and shows how it 
an be used to impose an order

upon the obje
ts by whi
h they should be allo
ated to a

memory bank. Se
tion 4 then proposes some heuristi
s

to automate the allo
ation pro
ess. Se
tions 5, 6 and 7


over related work, 
onsiderations for future work and


on
lusions respe
tively.

2 THE PROBLEM AND

ITS COMPLEXITY

Given are the set of stati
 obje
ts O used by a program

P, as well as the set of memory banks B of the target



ar
hite
ture. The goal is to �nd an allo
ation fun
tion

allo
 : O ! B that minimizes the exe
ution time of

P. In the next paragraphs we show that this problem is

NP-
omplete, so our goal is to �nd a good approximation

of the optimal solution in an a

eptable amount of time.

Graph 
olouring Consider the well-known problem of

graph 
olouring. Given are a graph G = (V;E) and a set

C where V is the set of verti
es (nodes), E � V �V is the

set of edges between nodes of V and C is a set of k 
olours.

A k -
olouring of G is a mapping 
ol : V ! C that 
olours

ea
h node in V with a 
olour from C where all k 
olours

are used and taking the following restri
tion into a

ount:

8n

i

; n

j

2 V : 9(n

i

; n

j

) 2 E =) 
ol(n

i

) 6= 
ol(n

j

)

The problems of de
iding whether su
h a mapping 
ol ex-

ists as well as �nding one are NP-
omplete [10℄.

A restri
ted version of obje
t allo
ation Now 
on-

sider the problem of allo
ating the obje
ts used by a pro-

gram P to the memory of an ar
hite
ture A that supports

multiple memory banks. Let O be the set of n obje
ts

used by P, let size(o) be the size of obje
t o 2 O and let

B be the set of k memory banks of A where size(b), ws(b)

and a

(b) are the size, waitstate and possible number of

a

esses (per 
pu 
y
le) to bank b 2 B respe
tively. For

ea
h memory bank b 2 B we assume the following 
hara
-

teristi
s:

� size(b) =

P

n

j=1

size(o

j

); 8j (1 � j � n) : o

j

2 O

� ws : B ! f0g : b 7! 0

� a

 : B ! f1g : b 7! 1

A allows any 
ombination of 2 memory banks to be a
-


essed 
on
urrently during one 
pu 
y
le. During the exe-


ution of P, at most 2 obje
ts need to be a

essed during

the same 
pu 
y
le. We 
all 
(o

i

; o

j

) a 
on
i
t between

obje
ts o

i

; o

j

2 O if o

i

and o

j

need to be a

essed during

the same 
pu 
y
le: there will be a loss of exe
ution speed

if they are assigned to the same memory bank. Solving the

allo
ation problem to avoid as mu
h 
on
i
ts as possible

is equivalent to �nding a k -
olouring


ol

0

: V

0

! C

0

of G

0

= (V

0

; E

0

) where V

0

= O, E

0

� O � O and C

0

= B

is the set of 
olours. The 
olouring restri
tion

8o

i

; o

j

2 O : 9(o

i

; o

j

) 2 E

0

=) 
ol

0

(o

i

) 6= 
ol

0

(o

j

)

holds. This problem naturally maps onto the graph 
ol-

ouring problem given in the previous paragraph, so this

allo
ation problem is NP � 
omplete also.

A general version of obje
t allo
ation Apply the

following generalizations to the allo
ation problem given

in the previous paragraph:

� allow only 
ertain 
ombinations of i (1 � i � k)

memory banks of B to be a

essed 
on
urrently dur-

ing one 
pu 
y
le

� allow 
on
i
ts 
(o

i

; : : : ; o

i+j�1

) of arbitrary size j, or

equivalent: allow an edge e 2 E

0

to 
onne
t any j

(2 � j � n) nodes o

i

; : : : ; o

i+j�1

2 O. j is 
alled the

degree of e: j = degree(e)

� allow memory banks to have any waitstate:

ws : B ! N : b 7! ws(b)

� allow memory banks to have any size:

size : B ! N

0

: b 7! size(b)

� allow memory banks to support an arbitrary number

of a

esses during one 
pu 
y
le

a

 : B ! N

0

: b 7! a

(b)

The problem given in the previous paragraph is just one

spe
i�
 instan
e of the general 
lass of problems given here.

Sin
e that one instan
e is NP-
omplete, solving the prob-

lem in general must also be NP-
omplete.

Graph-Program bije
tions The 
on
lusion of the pre-

vious paragraph also requires that the following holds:

1. for ea
h program P, a 
on
i
t graph graph G = (V;E)

exists

2. for ea
h graph G = (V;E) with d = max fdegree(e) j

e 2 Eg, it is possible to write a program P for an

ar
hite
ture that allows simultaneous a

esses to at

most d memory banks, so that P has G as its 
on
i
t

graph

Proving the �rst assumption is fairly trivial: simulate the

exe
ution of P and have the simulator dete
t the obje
t


on
i
ts required for 
onstru
ting G. The se
ond assump-

tion 
an be proven by giving an algorithm that generates

the desired program:

for ea
h edge e f

1. generate 
ode that requires degree(e)

simultaneous memory a

esses to the

nodes 
onne
ted by e;

2. generate enough nop instru
tions to avoid

interferen
e with other instru
tions ;

g

for ea
h node n not appearing in any edge e f

1. generate 
ode that a

esses n;

2. generate enough nop instru
tions to avoid

interferen
e with other instru
tions ;

g

3 DETERMINING THE

ALLOCATION ORDER

To maximally exploit parallellism, our method �rst

imposes an order on the 
on
i
ts and then allo
ates the

obje
ts that appear in the most important 
on
i
ts �rst.

This notion of importan
e is based on a 
ombination of

2 
riteria: how often an obje
t is used and how often

it 
on
i
ts with other obje
ts. In this se
tion, we show

how su
h an order 
an be derived automati
ally from an

exe
ution tra
e of P.



3.1 Gathering information by simula-

tion

In [8℄ we presented a simple but general model of both

the memory ar
hite
ture as well as the pipelined exe
u-

tion of a DSP ar
hite
ture. Given an exe
ution tra
e of

P (the sequen
e of instru
tions as they are handled dur-

ing the exe
utionof P), where all instru
tion operands are

manifest (i.e. their values are known), relevant obje
t use

information is 
olle
ted by one run of the the pipeline sim-

ulation.

3.2 The 
on
i
t graph

Re
all that a 
on
i
t 
(o

1

; : : : ; o

m

) between m obje
ts

o

1

; : : : ; o

m

is the need for simultaneous a

ess of these ob-

je
ts during program exe
ution. A use of an obje
t is any

a

ess to that obje
t, either read or write. To minimize

the exe
ution time of P, the obje
ts need to be pla
ed in

the di�erent memory banks in su
h a way that the 
pu


y
le penalties (the number of extra 
pu 
y
les needed to

a

ess the obje
ts due to their allo
ation) for both the 
on-


i
ts and the uses are minimal. While going over the exe
u-

tion tra
e with the simulator, a data stru
ture G = (V;E)


alled the 
on
i
t graph is build. This graph keeps tra
k

of the number of 
on
i
ts, the obje
ts involved in them as

well as the overall number of uses of ea
h obje
t:

� a node n 2 V represents an obje
t (its identi�er and

its size) and the number of times that obje
t has been

a

essed without being part of a 
on
i
t.

� a labeled edge e 2 E represents the 
on
i
ts involving

the nodes it 
onne
ts. The label indi
ates how many

su
h 
on
i
ts arise.

Note that an edge 
an 
onne
t more than 2 nodes. Rep-

resenting a 
on
i
t between 3 nodes 
an also be done by 3

normal edges that 
onne
t the 3 possible pairs of nodes (see

�gure 1), but this results in a loss of knowledge. Indeed,

using 3 edges that 
onne
t 2 nodes ea
h, as is depi
ted

in (a), gives the impression that there are 3 possibly inde-

pendent 
on
i
ts. The knowledge that it really is 1 
on
i
t

in whi
h all nodes are a

essed during the same 
pu 
y
le

is lost. Clearly, graph (b) has a notion of time that graph

(a) has not: it 
an express that 
ertain 
on
i
ts between

pairs of obje
ts happen simultaneously. We 
all edges that


onne
t more than 2 nodes multi-edges. Note that self-

referen
ing edges may exist: an edge 
an be 
onne
ted to

a 
ertain node more than on
e so multiple a

esses to the

same obje
t within a 
on
i
t 
an be represented in G.

It is 
lear that the dominating fa
tors in the allo
ation

are the number of times ea
h obje
t is used and the number

of 
on
i
ts. If an obje
t is used very often, it should reside

in the fastest memory bank possible. If a number of obje
ts

are a

essed simultaneously, they should be assigned to

that set of memory banks that allow these a

esses in the

shortest possible time.

3.3 De
iding obje
t allo
ation order

The algorithm used to do the allo
ation is based on the

use of a set of tables T = fT

i

j 1 � i � ng where n =

maxfdegree(e) j e 2 Eg. Ea
h table T

i

has

�

#B + i � 1

i

�

s Au
A

Bs Bu
C

Cs Cu
B

As AuA

n

A

Bs Bu
C

Cs Cu
B

(a) (b)

n n

n

Figure 1: Edges 
onne
ting more than 2 nodes represent

additional knowledge.

entries (i-
ombinations with repetition of #B). Ea
h entry

in T

i

is a fun
tion

f(b

1

; :::; b

i

) : B �B � : : :�B ! N

where f(b

1

; :::; b

i

) is the number of 
y
les lost due to a 
on-


i
t of degree i (i.e. a 
on
i
t involving i obje
ts) where

one obje
t is in bank b

1

, one obje
t is in b

2

, : : : and one

obje
t is in b

i

. On
e both G and T are generated, we 
om-

bine the information they 
ontain into a new table T

final

upon whi
h our heuristi
 is built. For ea
h edge

1

in G,

there is an entry in T

final

that indi
ates what loss of 
pu


y
les 
an be avoided by doing a good allo
ation of the

obje
ts involved.

The basi
 idea is to try to resolve the edge that rep-

resents the most 
ostly 
on
i
ts �rst. This is based upon

the assumption that a minimalization of the number of


on
i
ts 
orresponds to a maximalization of the exe
u-

tion speed of the program, provided often used obje
ts

are assigned to the fastest banks. The following heuristi


approximates the biggest possible gain in 
pu 
y
les for

an edge e 2 E that 
onne
ts nodes n

1

, : : : , n

m

(with

m � degree(e): we take ea
h node into a

ount only on
e):

GAIN

e

= WORST

e

�BEST

e

(1)

where n = degree(e) and

BEST

e

= f(b

0

1

; : : : ; b

0

n

)� 
onfli
ts(e)

+

m

X

i=1

uses(n

i

)� (ws(b

0

i

) + 1) (2)

WORST

e

= f(b

slow

; : : : ; b

slow

)� 
onfli
ts(e)

+

m

X

i=1

uses(n

i

)� (ws(b

slow

) + 1) (3)

with b

0

1

; : : : ; b

0

n

su
h that

f(b

0

1

; : : : ; b

0

n

) = min

b

0

1

;::: ;b

0

n

f(b

0

1

; : : : ; b

0

n

) 2 T

n

8i; 1 � i � #B : ws(b

slow

) � ws(b

i

)

uses(n

i

) is the number of times the obje
t of node n

i

was

a

essed without being part of the 
urrent 
on
i
t (i.e.

1

Some nodes in G may not be 
onne
ted to any other nodes.

For our algorithm to work, we add a self-referen
ing edge to

them labeled with 0 number of uses.



the 
on
i
t represented by e), 
onfli
ts(e) is the number

of 
on
i
ts of type e and b

slow

is the slowest memory bank

available. Note that we use ws(b

i

) + 1 instead of just

ws(b

i

) be
ause in general the latter is 0 for the fastest

banks, whi
h would eliminate the in
uen
e of the number

of uses besides those of the 
urrent 
on
i
t. The entries

in T

final

are ordered by de
reasing value of the GAIN

e

�eld of the table. The obje
ts of the edges with a higher

GAIN

e

value will be allo
ated �rst.

4 TOWARDS AUTOMATIC

ALLOCATION

4.1 The heuristi


Given T

final

it is possible to automate the allo
ation pro-


ess. The allo
ation guidelines handled by a prototype

system we have developed in
lude:

� We try to assign the most often used obje
ts in

nodes n

1

; : : : ; n

degree(e)

to the fastest memory banks

in b

0

1

; : : : ; b

0

degree(e)

.

� If multiple f

j

have a minimal value, we try to spread

the obje
ts over as many di�erent banks as possible.

� If obje
ts have self-referen
ing 
on
i
ts, they are as-

signed faster banks whi
h allow multiple a

esses per


y
le (if these exist).

� If there are multiple equally fast memory banks to

assign an obje
t to, the bank with the most free spa
e

left is pi
ked.

The allo
ation is based on a single iteration over the entries

in T

final

in the order in whi
h they were sorted. All entries

start as unmarked. For ea
h entry that is not marked, all

nodes in it are allo
ated a

ording to the guidelines above.

This entry is then marked, as well as all entries that 
ontain

only nodes that have already been allo
ated.

4.2 A small example

Assume a target ar
hite
ture with B = fb

1

; b

2

; b

3

g where

the banks have sizes of 25, 25 and 1000 words respe
tively.

Ea
h 
pu 
y
le, 2 a

esses to b

1

are possible. b

1

and b

2


an be a

essed in parallel, resulting in 1 a

ess to b

1

and

1 a

ess to b

2

during the same 
y
le. b

3

is slower, having a

waitstate of 1. b

3


an not be a

essed in parallel with either

b

1

or b

2

. This results in T = fT

1

; T

2

; T

3

g with T

3

shown

in table 2. Instru
tions are of the form mnem sr
1, sr
2,

dst where sr
1 and sr
2 
an be an immediate value, a

register or an address of/into an obje
t and dst 
an be

either a register or an address. Sin
e immediates and re-

gisters are irrelevant for our 
on
erns, they are repla
ed by

a -. A

esses to an obje
t are represented by #x where x

is the name of the obje
t. Ea
h memory 
ell of any bank


an hold exa
tly 1 instru
tion (or 1 word of data). The

pipeline has 5 stages: stage 1 fet
hes the instru
tion, stage

2 de
odes it and stage 3 reads the sour
e operands sr
1

and sr
2 from memory. Stage 4 exe
utes the instru
tion

and �nally during stage 5 the result is written to dst.

B
7 2

C
15 2

D
2 0

E
2 1

H
5 0

G
16 0

9

F
6 0

1

2

1

1

1

1

1

1

1

1

0

1
A

3

Figure 2: Con
i
t graph for the example.

Consider the exe
ution tra
e in �gure 3 featuring 8 ob-

je
ts A (size 9), B (size 7), C (size 15), D (size 2), E (size

2), F (size 6), G (size 16) and H (size 5). The 
on
i
t

01 mnem #A, -, - 13 mnem -, #C, #E

02 mnem -, #A, - 14 mnem #F, #C, #E

03 mnem -, -, #A 15 mnem #C, #C, #C

04 mnem -, -, - 16 mnem -, #C, #F

05 mnem -, -, - 17 mnem #B, -, #B

06 mnem -, -, - 18 mnem #G, #C, #E

07 mnem -, #B, - 19 mnem #G, -, #E

08 mnem #B, #C, #D 20 mnem #E, #H, -

09 mnem #D, #C, #C 21 mnem -, -, -

10 mnem #D, -, #B 22 mnem #E, #G, #C

11 mnem #D, #E, - 23 mnem -, -, #B

12 mnem #B, -, -

Figure 3: Tra
e for the example.

graph for this tra
e is shown in �gure 2. Note the edges

that 
onne
t more than 2 nodes (dotted lines) as well as

the self-referen
ing edges. From T and G, the values for

BEST

e

and WORST

e

(and hen
e for GAIN

e

) 
an be de-

rived, resulting in T

final

(see table 1).

A

ording to the results from table 1, the obje
t allo
-

ation is done as follows:

1. First try to assign C sin
e it has 44 uses in total,

whi
h is more than both D (12 uses) and E (28 uses).

Sin
e there exist 
on
i
ts in whi
h C is a

essed twi
e

during the same 
pu 
y
le (in this example, there is

only one su
h 
on
i
t: (C;C;E)), C is put in the

only memory bank that allows this, i.e. b

1

. Next, E

is 
onsidered. It also has a 
on
i
t where it is a

essed

twi
e, so E is also put in b

1

sin
e it still �ts into that

bank. D is never a

essed more than on
e during the

same 
on
i
t and gets put into b

2

sin
e f(b

1

,b

1

,b

2

) =

f(b

1

,b

1

,b

1

) = 1: there is no need to take up spa
e in



edge # WORST

e

BEST

e

GAIN

e

(D,E,C) 1 41 19 22

(B,C) 2 34 14 20

(C,C,E) 1 35 16 19

(C,E) 1 35 16 19

(G,C,F) 1 31 14 17

(D,C) 1 27 12 15

(F,C) 1 25 11 14

(G,B) 1 19 8 11

(E,G) 1 19 8 11

(E,H,E) 1 15 6 9

(B,B) 1 13 5 8

(A,A) 0 6 3 3

Table 1: T

final

for the example.

b

1

when allo
ating the obje
t to b

2

doesn't make the

handling of the 
on
i
t any slower. Entry (D;E;C)

in T

final

is marked as done. Also, entries (C;C;E),

(C;E) and (D;E) are marked as done sin
e all of the

obje
ts featured in any of these entries already have

been allo
ated to a memory bank.

2. When 
onsidering entry (B;C), we only need to al-

lo
ate B sin
e C has a pla
e already. B has an entry

in T

final

where it is a

essed twi
e (i.e. (B;B)) so it

is put in b

1

. Both (B;C) and (B;B) are marked as

done.

3. For entry (G;C; F ), G and F still need to be allo
-

ated. G has more uses than F so G is put into b

2

while F, whi
h no longer �ts in either b

1

or b

2

, is

put into the slow bank b

3

. Entries (G;C; F ), (F;C),

(G;B) and (E;G) are marked as done.

4. Entry (E;H;E) only has H as an obje
t that still

needs a pla
e to reside during exe
ution. H still �ts

into b

2

so it is put there. (E;H;E) is marked as done.

5. The only entry left is (A;A). A is put into the only

memory bank that has enough spa
e left for it: b

3

.

(A;A) is marked as done and the algorithm termin-

ates.

The �nal allo
ation is represented in �gure 4. In the

worst 
ase, whi
h for this ar
hite
ture means allo
ating

all obje
ts to b

3

, the exe
ution of the example would take

82 
pu 
y
les (we assume that an instru
tion is fet
hed

from the I-
a
he ea
h 
y
le and that all instru
tions take

1 
pu 
y
le to exe
ute). Given the allo
ation above, this

is redu
ed to 38 
y
les. The total penalty for the 
on
i
ts

due to the initial bad allo
ation has been redu
ed from 55

to 11.

5 RELATED WORK

Assigning stati
 obje
ts to memory banks is 
learly some-

thing that should be in
orporated into (or after) the link-

age pro
ess, sin
e unlike the 
ompiler, the linker knows the

memory map. Resear
h that has fo
used on (post) link-

time optimization (for general purpose pro
essors) in
ludes

[16, 14, 13, 7, 2, 4, 3, 12℄.

1

b3

b2

F A

G H

b

D

C E B
�
�
�

�
�
�

Figure 4: Final allo
ation for the example.
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) 1
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1

; b

1
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2

) 1

f(b

1

; b

2

; b

2

) 1

f(b

1

; b

2

; b

3

) 2

f(b

1

; b

1

; b

3

) 2

f(b

2

; b

2

; b

2

) 2

f(b

2

; b

2

; b

3

) 3

f(b

1

; b

3

; b

3

) 4

f(b

2

; b

3

; b

3

) 4

f(b

3

; b

3

; b

3

) 5

Table 2: Table of penalties for 
on
i
ts of degree 3 for the

example.

A problem similar to the one in this paper is ta
kled in


hapter 11 of [1℄. Given P, O and a target 
y
le budget,

a memory bank 
on�guration (and the allo
ation of the

obje
ts to it) is derived, su
h that the power 
onsumption

versus exe
ution speed trade-o� is as good as possible. [11℄

minimizes power 
onsumption for existing embedded DSP

pro
essors with only 2 memory banks whi
h have the same


hara
teristi
s.

[6℄ suggests a te
hnique where a pre-
ompiler phase is

used to eliminate obje
ts that are not used by the program

or to see whi
h obje
ts 
an be put at the same lo
ations.

This is orthogonal to what we do at link-time.

Other resear
h su
h as [9℄ or [5℄ fo
uses on using the

typi
al addressing methods of DSP pro
essors to optimize

data pla
ement for speed, but they do not 
onsider the

di�erent 
hara
teristi
s of the memory banks.

6 FUTURE WORK

Size does matter Equations 1, 2 and 3 don't take the

size of obje
ts into a

ount. However, an obje
t's size 
an

play a major role in 
ertain spe
ial 
ases. If the most often

used obje
t is so big that it o

upies the entire fast memory

spa
e, the others will be allo
ated to the slow memory,

although the total of their uses may be quite a bit bigger.

On the other hand, we may still have some fast memory

spa
e left when all obje
ts have been assigned to memory.

A postpro
essing step that dupli
ates obje
ts and 
opies

them into that spa
e may improve parallellism. Another

size related 
on
ept is swit
h 
ost: if an obje
t is very

heavily a

essed but is too big to reside in a fast memory



bank, it may still be worth it to add 
ode that 
opies parts

of the obje
t to the fast bank as they are needed. Another

option may be to split the obje
t and allo
ate the parts

individually. Most of these te
hniques require another run

over the 
ode to 
he
k whi
h 
opy/part of an obje
t should

be a

essed at whi
h point in time. Moreover, this may

also result in additional 
ode if non read-only obje
ts need

to be kept 
onsistent.

Lifetime analysis and dynami
 obje
ts It is 
lear

that our algorithm 
an be improved by taking the life time

of obje
ts into a

ount: obje
ts with non-overlapping life

times 
an be assigned to the same memory blo
k. The fa
t

that two obje
ts have non-overlapping life times will be

visible in the 
on
i
t graph by adding some

2

extra edges.

When allo
ating an obje
t, the spa
e o

upied by already

allo
ated obje
ts that are dead when that obje
t is live


an be reused. On
e life times of obje
ts are taken into a
-


ount, and sin
e we start from a manifest tra
e, dynami


obje
ts allo
ated by mallo
() 
an be pla
ed optimally in

memory using the same me
hanism as for the stati
 ob-

je
ts.

Implementation for a target ar
hite
ture As

the topi
s above fo
us on the relation between data

pla
ement and 
ode, we will have to migrate our tool

(whi
h 
urrently performs the algorithm presented on a

parametrized model of a DSP) to a spe
i�
 ar
hite
ture,

as 
ode manipulation is needed there.

7 CONCLUSIONS

We have shown the automati
 generation of a table that


an guide the allo
ation of stati
 obje
ts to the memory

banks of a DSP ar
hite
ture. Instead of using a sear
h

algorithm that requires an evaluation fun
tion in the form

of a program simulation that is exe
uted multiple times,

we extra
t the ne
essary 
on
i
t information from just

one simulation. Using a 
on
i
t graph to represent that

information, as well as tables that hold the ar
hite
ture

dependent allo
ation penalties, we are able to impose an

order on the estimated 
ost of a

ess 
on
i
ts. This order

is the basis for automated allo
ation of obje
ts, allo
ating

the obje
ts involved in the most 
ostly 
on
i
ts �rst.

8 ACKNOWLEDGEMENTS

This work is sponsored by the Fund for S
ienti�
 Resear
h

- Flanders under grant 3G001998.

Referen
es

[1℄ F. Catthoor, S. Wuyta
k, E. De Greef, F. Balasa,

L. Na
htergaele, and A. Vande
appelle. Custom

Memory Management Methodology. Kluwer A
ademi


Publishers, 1998.

2

existing edges represent some of the life time overlaps

already

[2℄ R. Cohn, D. Goodwin, P. Lowney, and N. Rubin.

Spike: An Optimizer for Aplha/NT Exe
utables.

USENIX Windows NT Workshop, August 1997.

[3℄ B. De Sutter, B. De Bus, K. De Boss
here,

P. Keyngnaert, and B. Demoen. On the Stati
 Ana-

lysis of Indire
t Control Transfers in Binaries. In

Pro
eedings of the International Conferen
e on Paral-

lel and Distributed Pro
essing Te
hniques and Appli
-

ations, Las Vegas, Nevada, USA, pages 1013{1019,

June 2000.

[4℄ S. Debray, W. Evans, R. Muth, and B. De Sutter.

Compiler Te
hniques for Code Compa
tion. ACM

Transa
tions on Programming Languages and Sys-

tems (TOPLAS), 22(3):378{415, Mar
h 2000.

[5℄ E. E
kstein and A. Krall. Minimizing Cost of Lo
al

Variables A

ess for DSP-pro
essors. In Pro
eedings

of the ACM SIGPLAN 1999 workshop on Languages,


ompilers, and tools for embedded systems, Atlanta,

GA USA, pages 20{27, May 1999.

[6℄ P. Ellervee, M. Miranda, F. Catthoor, and A. Hemani.

Exploiting Data Transfer Lo
ality in Memory Map-

ping. In Pro
eedings of the 25th IEEE Euromi
ro Con-

feren
e, Milan, Italy, pages 14{21, September 1999.

[7℄ M. F. Fernandez. A Retargettable, Optimizing Linker.

PhD thesis, Prin
eton University, USA, January 1996.

[8℄ P. Keyngnaert, B. Demoen, B. De Sutter, and K. De

Boss
here. Tra
e-based Memory Layout Optimiza-

tion for DSPs. Te
hni
al Report CW282, K.U.Leuven,

Belgium, Mar
h 2000.

[9℄ N. Kogure, N. Sugino, and A. Nishihara. Memory Al-

lo
ation Method for Indire
t Addressing DSPs with �

Update Operations. IEICE TRANS. FUNDAMENT-

ALS, E81-A(3):420{428, Mar
h 1998.

[10℄ D. C. Kozen. The Design and Analysis of Algorithms.

Springer-Verlag, New York, USA, 1992.

[11℄ T. C. Lee and V. Tiwari. A Memory Allo
ation Te
h-

nique for Low-Energy Embedded DSP Software. In

Pro
eedings of the 1995 IEEE Symposium on Low

Power Ele
troni
s, San Diego, CA, USA, O
tober

1995.

[12℄ R. Muth, S. Debray, S. Watterson, and K. De

Boss
here. alto: A Link-Time Optimizer for the

Compaq Alpha. Software Pra
ti
e and Experien
e,

31:67{101, January 2001.

[13℄ A. Srivastava and D. Wall. A Pra
ti
al System for In-

termodule Code Optimization at Link-Time. Journal

of Programming Languages, pages 1{8, Mar
h 1993.

[14℄ A. Srivastava and D. Wall. Link-Time Optimiza-

tion of Address Cal
ulation on a 64-bit Ar
hite
ture.

In Pro
eedings of the SIGPLAN '94 Conferen
e on

Programming Language Design and Implementation,

pages 49{60, June 1994.

[15℄ Texas Instruments' Visual Linker, see

http://dspvillage.ti.
om/do
s/

studio/.

[16℄ D. W. Wall. Global Register Allo
ation at Link Time.

In Pro
eedings of the ACM SIGPLAN '86 Conferen
e

on Compiler Constru
tion., pages 264{275, 1986.


