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ABSTRACT

Several architectures, in particular those specifically
designed for digital signal processing, have a memory
structure that consists of a number of banks with dif-
ferent characteristics such as waitstate, size, ... There
may also exist constraints on the accessibility of these
banks, as some bank combinations can be accessed
in parallel, while others can not. As memory access
conflicts lead to pipeline stalls, the assignment of the
data objects of a program to the set of memory banks
is crucial with respect to a program’s execution speed.
Programmers usually do the assignment of the static
objects manually. We present a method to automate
this process at/post link-time, as the linking process is
the first moment at which both the entire program as
well as the target architecture’s characteristics are fully
known. Based upon statistics drawn from an execution
trace of the program, an ordering of conflicts is derived
according to the possible execution time penalties they
generate. By allocating the objects of those conflicts that
have the most negative impact on the program execution
time first, a decent allocation can be derived automatically.

Keywords: memory allocation, static objects, DSP,
memory architecture, conflict graph

1 INTRODUCTION

Some processors, especially those dedicated to digital sig-
nal processing (DSPs), have a complex memory architec-
ture: their main memory space physically consists of a
number of memory banks that may not only have differ-
ent sizes but also different access constraints and access
times: some (combinations of) banks may be accessed in
parallel while others may not; some banks allow more than

one access per cpu cycle or have a smaller waitstate than
others. For this kind of processing units, data placement
has severe implications on the execution speed of an ap-
plication. Objects that are often accessed together during
the same cpu cycle greatly benefit from being assigned to
memory banks in such a way that the number of conflicts
leading to pipeline stalls or the insertion of pipeline bubbles
is minimal.

In the DSP world, it is still common practice to op-
timize the final version of a program by hand, as speed
is crucial for real-time applications and humans still out-
perform compilers at writing the fastest code. One of the
tasks not yet handled by the development environment is
the aforementioned assignment of static objects to memory
banks. This task is partially supported by the system, as
there exist tools that let programmers drag static variables
from their source code into a visual representation of the
memory architecture they target (e.g. [15]), but it takes
a lot of time and expertise to come up with a good place-
ment. In this paper, we propose a novel way of automating
this process.

In section 2 we formalize the problem and prove it
to be NP-complete. Section 3 introduces the conflict
graph and shows how it can be used to impose an order
upon the objects by which they should be allocated to a
memory bank. Section 4 then proposes some heuristics
to automate the allocation process. Sections 5, 6 and 7
cover related work, considerations for future work and
conclusions respectively.

2 THE PROBLEM AND
ITS COMPLEXITY

Given are the set of static objects O used by a program
P, as well as the set of memory banks B of the target



architecture. The goal is to find an allocation function
alloc : O — B that minimizes the execution time of
P. In the next paragraphs we show that this problem is
NP-complete, so our goal is to find a good approximation
of the optimal solution in an acceptable amount of time.

Graph colouring Consider the well-known problem of
graph colouring. Given are a graph G = (V| E) and a set
C where V is the set of vertices (nodes), E C V x V is the
set of edges between nodes of V and C'is a set of k colours.
A E-colouring of G is a mapping col : V — C that colours
each node in V with a colour from C where all k colours
are used and taking the following restriction into account:

Vni,n; €V : A(ni,n;) € E = col(n;) # col(n;j)

The problems of deciding whether such a mapping col ex-
ists as well as finding one are NP-complete [10].

A restricted version of object allocation Now con-
sider the problem of allocating the objects used by a pro-
gram P to the memory of an architecture A that supports
multiple memory banks. Let O be the set of n objects
used by P, let size(o) be the size of object 0o € O and let
B be the set of k memory banks of A where size(b), ws(b)
and acc(b) are the size, waitstate and possible number of
accesses (per cpu cycle) to bank b € B respectively. For
each memory bank b € B we assume the following charac-
teristics:

o size(b) =37, size(0;), Vj (1<j<n) : 0; €0

e ws : B—{0} : b—0

e acc : B—>{l} : b—1
A allows any combination of 2 memory banks to be ac-
cessed concurrently during one cpu cycle. During the exe-
cution of P, at most 2 objects need to be accessed during
the same cpu cycle. We call ¢(0i,0;) a conflict between
objects 0i,0; € O if 0; and 0; need to be accessed during
the same cpu cycle: there will be a loss of execution speed
if they are assigned to the same memory bank. Solving the
allocation problem to avoid as much conflicts as possible
is equivalent to finding a k-colouring

coll - V' =
of G =(V',E') where V. =0, E' COx O and C' = B
is the set of colours. The colouring restriction
Yoi,0; € O : 3(0;,0;) € E' = col'(0;) # col'(0;)

holds. This problem naturally maps onto the graph col-
ouring problem given in the previous paragraph, so this
allocation problem is NP — complete also.

A general version of object allocation Apply the
following generalizations to the allocation problem given
in the previous paragraph:
e allow only certain combinations of 7 (1 < ¢ < k)
memory banks of B to be accessed concurrently dur-
ing one cpu cycle

e allow conflicts ¢(0;, ... ,0i+j—1) of arbitrary size j, or
equivalent: allow an edge e € E’ to connect any j
(2 <j <n)nodes 0;,... ,0i4j—1 € O. jis called the

degree of e: j = degree(e)

¢ allow memory banks to have any waitstate:

ws : B—> N : b ws(b)

e allow memory banks to have any size:
size : B— Ny : b+ size(b)

e allow memory banks to support an arbitrary number
of accesses during one cpu cycle

acc : B—=>Ny : b+ acc(b)

The problem given in the previous paragraph is just one
specific instance of the general class of problems given here.
Since that one instance is NP-complete, solving the prob-
lem in general must also be NP-complete.

Graph-Program bijections The conclusion of the pre-
vious paragraph also requires that the following holds:

1. for each program P, a conflict graph graph G = (V, E)
exists

2. for each graph G = (V, E) with d = max {degree(e) |
e € E}, it is possible to write a program P for an
architecture that allows simultaneous accesses to at
most d memory banks, so that P has G as its conflict
graph

Proving the first assumption is fairly trivial: simulate the
execution of P and have the simulator detect the object
conflicts required for constructing G. The second assump-
tion can be proven by giving an algorithm that generates
the desired program:

for each edge e {
1. generate code that requires degree(e)
simultaneous memory accesses to the
nodes connected by e;
2. generate enough nop instructions to avoid
interference with other instructions;

}

for each node n not appearing in any edge e {
1. generate code that accesses n;
2. generate enough nop instructions to avoid
interference with other instructions;

3 DETERMINING THE
ALLOCATION ORDER

To maximally exploit parallellism, our method first
imposes an order on the conflicts and then allocates the
objects that appear in the most important conflicts first.
This notion of importance is based on a combination of
2 criteria: how often an object is used and how often
it conflicts with other objects. In this section, we show
how such an order can be derived automatically from an
execution trace of P.



3.1 Gathering information by simula-
tion

In [8] we presented a simple but general model of both
the memory architecture as well as the pipelined execu-
tion of a DSP architecture. Given an execution trace of
P (the sequence of instructions as they are handled dur-
ing the executionof P), where all instruction operands are
manifest (i.e. their values are known), relevant object use
information is collected by one run of the the pipeline sim-
ulation.

3.2 The conflict graph

Recall that a conflict c(o1,...,0m) between m objects
01,...,0m is the need for simultaneous access of these ob-
jects during program execution. A use of an object is any
access to that object, either read or write. To minimize
the execution time of P, the objects need to be placed in
the different memory banks in such a way that the cpu
cycle penalties (the number of extra cpu cycles needed to
access the objects due to their allocation) for both the con-
flicts and the uses are minimal. While going over the execu-
tion trace with the simulator, a data structure G = (V, E)
called the conflict graph is build. This graph keeps track
of the number of conflicts, the objects involved in them as
well as the overall number of uses of each object:

e a node n € V represents an object (its identifier and
its size) and the number of times that object has been
accessed without being part of a conflict.

e alabeled edge e € E represents the conflicts involving
the nodes it connects. The label indicates how many
such conflicts arise.

Note that an edge can connect more than 2 nodes. Rep-
resenting a conflict between 3 nodes can also be done by 3
normal edges that connect the 3 possible pairs of nodes (see
figure 1), but this results in a loss of knowledge. Indeed,
using 3 edges that connect 2 nodes each, as is depicted
in (a), gives the impression that there are 3 possibly inde-
pendent conflicts. The knowledge that it really is 1 conflict
in which all nodes are accessed during the same cpu cycle
is lost. Clearly, graph (b) has a notion of time that graph
(a) has not: it can express that certain conflicts between
pairs of objects happen simultaneously. We call edges that
connect more than 2 nodes multi-edges. Note that self-
referencing edges may exist: an edge can be connected to
a certain node more than once so multiple accesses to the
same object within a conflict can be represented in G.

It is clear that the dominating factors in the allocation
are the number of times each object is used and the number
of conflicts. If an object is used very often, it should reside
in the fastest memory bank possible. If a number of objects
are accessed simultaneously, they should be assigned to
that set of memory banks that allow these accesses in the
shortest possible time.

3.3 Deciding object allocation order

The algorithm used to do the allocation is based on the
use of a set of tables T = {T; | 1 < i < n} where n =
max{degree(e) | e € E}. Each table T; has (#B tre N

6

@ (b)

Figure 1: Edges connecting more than 2 nodes represent
additional knowledge.

entries (i-combinations with repetition of #B). Each entry
in T is a function

f(b1,...;;)):BXBx...x B> N

where f(b1, ..., b;) is the number of cycles lost due to a con-
flict of degree i (i.e. a conflict involving ¢ objects) where
one object is in bank b1, one object is in b2, ... and one
object is in b;. Once both G and T are generated, we com-
bine the information they contain into a new table T'f;nar
upon which our heuristic is built. For each edge' in G,
there is an entry in Tfine; that indicates what loss of cpu
cycles can be avoided by doing a good allocation of the
objects involved.

The basic idea is to try to resolve the edge that rep-
resents the most costly conflicts first. This is based upon
the assumption that a minimalization of the number of
conflicts corresponds to a maximalization of the execu-
tion speed of the program, provided often used objects
are assigned to the fastest banks. The following heuristic
approximates the biggest possible gain in cpu cycles for
an edge e € E that connects nodes ni, ..., nn, (with
m < degree(e): we take each node into account only once):

GAIN. = WORST. — BEST. (1)
where n = degree(e) and

BEST. = f(by,... ,by,) x conflicts(e)

+ Zuses(ni) x (ws(b) + 1) (2)

WORST: = f(bsiow - - - »bsiow) X conflicts(e)
—+ Zuses(ni) X ('U)S(bslow) + ]-) (3)
i=1

with b, ... b}, such that

fy,..0by) = min  f(bi,...,b,) €Ty
-

Vi, 1 <i < #B:ws(bsiow) > ws(b;)

uses(n;) is the number of times the object of node n; was
accessed without being part of the current conflict (i.e.

1Some nodes in G may not be connected to any other nodes.
For our algorithm to work, we add a self-referencing edge to
them labeled with 0 number of uses.



the conflict represented by e), conflicts(e) is the number
of conflicts of type e and bgjy is the slowest memory bank
available. Note that we use ws(b;) + 1 instead of just
ws(b;) because in general the latter is 0 for the fastest
banks, which would eliminate the influence of the number
of uses besides those of the current conflict. The entries
in Tfinat are ordered by decreasing value of the GAIN,
field of the table. The objects of the edges with a higher
GAIN, value will be allocated first.

4 TOWARDS AUTOMATIC
ALLOCATION

4.1 The heuristic

Given Tfinq it is possible to automate the allocation pro-
cess. The allocation guidelines handled by a prototype
system we have developed include:

e We try to assign the most often used objects in
nodes ni1,... ,Ngegree(e) to the fastest memory banks

. ’ /
m bla s 7bdegree(e)'

o If multiple f; have a minimal value, we try to spread
the objects over as many different banks as possible.

e If objects have self-referencing conflicts, they are as-
signed faster banks which allow multiple accesses per
cycle (if these exist).

e If there are multiple equally fast memory banks to
assign an object to, the bank with the most free space
left is picked.

The allocation is based on a single iteration over the entries
in Tinar in the order in which they were sorted. All entries
start as unmarked. For each entry that is not marked, all
nodes in it are allocated according to the guidelines above.
This entry is then marked, as well as all entries that contain
only nodes that have already been allocated.

4.2 A small example

Assume a target architecture with B = {b1,b2, b3} where
the banks have sizes of 25, 25 and 1000 words respectively.
Each cpu cycle, 2 accesses to b; are possible. b; and bs
can be accessed in parallel, resulting in 1 access to by and
1 access to b2 during the same cycle. b3 is slower, having a
waitstate of 1. b3 can not be accessed in parallel with either
b1 or be. This results in T = {T1,T», T3} with T3 shown
in table 2. Instructions are of the form mnem src1l, src2,
dst where srcl and src2 can be an immediate value, a
register or an address of/into an object and dst can be
either a register or an address. Since immediates and re-
gisters are irrelevant for our concerns, they are replaced by
a -. Accesses to an object are represented by #x where x
is the name of the object. Each memory cell of any bank
can hold exactly 1 instruction (or 1 word of data). The
pipeline has 5 stages: stage 1 fetches the instruction, stage
2 decodes it and stage 3 reads the source operands srci
and src2 from memory. Stage 4 executes the instruction
and finally during stage 5 the result is written to dst.

Figure 2: Conflict graph for the example.

Consider the execution trace in figure 3 featuring 8 ob-
jects A (size 9), B (size 7), C (size 15), D (size 2), E (size
2), F (size 6), G (size 16) and H (size 5). The conflict

01 mnem #A, -, - 13 mnem -, #C, #E
02 mnem -, #A, - 14 mnem #F, #C, #E
03 mnem -, -, #A 15 mnem #C, #C, #C
04 mnem -, -, - 16 mnem -, #C, #F
05 mnem -, -, - 17 mnem #B, -, #B
06 mnem -, -, - 18 mnem #G, #C, #E
07 mnem -, #B, - 19 mnem #G, -, #E
08 mnem #B, #C, #D 20 mnem #E, #H, -
09 mnem #D, #C, #C 21 mnem -, -, -
10 mnem #D, -, #B 22 mnem #E, #G, #C
11 mnem #D, #E, - 23 mnem -, -, #B
12 mnem #B, -, -

Figure 3: Trace for the example.

graph for this trace is shown in figure 2. Note the edges
that connect more than 2 nodes (dotted lines) as well as
the self-referencing edges. From T and G, the values for
BEST, and WORST. (and hence for GAIN,) can be de-
rived, resulting in Tfinq; (see table 1).

According to the results from table 1, the object alloc-
ation is done as follows:

1. First try to assign C since it has 44 uses in total,
which is more than both D (12 uses) and E (28 uses).
Since there exist conflicts in which C is accessed twice
during the same cpu cycle (in this example, there is
only one such conflict: (C,C,E)), C is put in the
only memory bank that allows this, i.e. b;. Next, E
is considered. It also has a conflict where it is accessed
twice, so E is also put in b; since it still fits into that
bank. D is never accessed more than once during the
same conflict and gets put into bs since f(b1,b1,b2) =
f(b1,b1,b1) = 1: there is no need to take up space in



| edge | # | WORST. | BEST. | GAIN, |
MEC) [ 1 41 19 22
(B,C) |2 34 14 20
(CCE) | 1 35 16 19
(CE) |1 35 16 19
(GCF) [ 1 31 14 17
D0 |1 27 12 15
FO |1 25 11 14
(GB) |1 19 8 11
BG |1 19 8 11
(BHE) | 1 15 6 9
BB) |1 13 5 8
AA) o 6 3 3

Table 1: Tfinq for the example.

b1 when allocating the object to b> doesn’t make the
handling of the conflict any slower. Entry (D, E, C)
in Tfinar is marked as done. Also, entries (C,C, E),
(C,E) and (D, E) are marked as done since all of the
objects featured in any of these entries already have
been allocated to a memory bank.

2. When considering entry (B,C), we only need to al-
locate B since C has a place already. B has an entry
in Tfinar where it is accessed twice (i.e. (B, B)) so it
is put in b;. Both (B,C) and (B, B) are marked as
done.

3. For entry (G,C, F), G and F still need to be alloc-
ated. G has more uses than F so G is put into b2
while F, which no longer fits in either by or bs, is
put into the slow bank bs. Entries (G, C, F), (F,C),
(G, B) and (F, @) are marked as done.

4. Entry (E,H,FE) only has H as an object that still
needs a place to reside during execution. H still fits
into b2 so it is put there. (E, H, E) is marked as done.

5. The only entry left is (4, A). A is put into the only
memory bank that has enough space left for it: bs.
(A, A) is marked as done and the algorithm termin-
ates.

The final allocation is represented in figure 4. In the
worst case, which for this architecture means allocating
all objects to b3, the execution of the example would take
82 cpu cycles (we assume that an instruction is fetched
from the I-cache each cycle and that all instructions take
1 cpu cycle to execute). Given the allocation above, this
is reduced to 38 cycles. The total penalty for the conflicts
due to the initial bad allocation has been reduced from 55
to 11.

5 RELATED WORK

Assigning static objects to memory banks is clearly some-
thing that should be incorporated into (or after) the link-
age process, since unlike the compiler, the linker knows the
memory map. Research that has focused on (post) link-
time optimization (for general purpose processors) includes
[16, 14, 13, 7, 2, 4, 3, 12].

b3 F A

Figure 4: Final allocation for the example.

| Ty |
| f | # lost cycles |

Y | | W N NN | =] =

Table 2: Table of penalties for conflicts of degree 3 for the
example.

A problem similar to the one in this paper is tackled in
chapter 11 of [1]. Given P, O and a target cycle budget,
a memory bank configuration (and the allocation of the
objects to it) is derived, such that the power consumption
versus execution speed trade-off is as good as possible. [11]
minimizes power consumption for existing embedded DSP
processors with only 2 memory banks which have the same
characteristics.

[6] suggests a technique where a pre-compiler phase is
used to eliminate objects that are not used by the program
or to see which objects can be put at the same locations.
This is orthogonal to what we do at link-time.

Other research such as [9] or [5] focuses on using the
typical addressing methods of DSP processors to optimize
data placement for speed, but they do not consider the
different characteristics of the memory banks.

6 FUTURE WORK

Size does matter Equations 1, 2 and 3 don’t take the
size of objects into account. However, an object’s size can
play a major role in certain special cases. If the most often
used object is so big that it occupies the entire fast memory
space, the others will be allocated to the slow memory,
although the total of their uses may be quite a bit bigger.
On the other hand, we may still have some fast memory
space left when all objects have been assigned to memory.
A postprocessing step that duplicates objects and copies
them into that space may improve parallellism. Another
size related concept is switch cost: if an object is very
heavily accessed but is too big to reside in a fast memory



bank, it may still be worth it to add code that copies parts
of the object to the fast bank as they are needed. Another
option may be to split the object and allocate the parts
individually. Most of these techniques require another run
over the code to check which copy/part of an object should
be accessed at which point in time. Moreover, this may
also result in additional code if non read-only objects need
to be kept consistent.

Lifetime analysis and dynamic objects It is clear
that our algorithm can be improved by taking the life time
of objects into account: objects with non-overlapping life
times can be assigned to the same memory block. The fact
that two objects have non-overlapping life times will be
visible in the conflict graph by adding some? extra edges.
When allocating an object, the space occupied by already
allocated objects that are dead when that object is live
can be reused. Once life times of objects are taken into ac-
count, and since we start from a manifest trace, dynamic
objects allocated by malloc() can be placed optimally in
memory using the same mechanism as for the static ob-
jects.

Implementation for a target architecture As
the topics above focus on the relation between data
placement and code, we will have to migrate our tool
(which currently performs the algorithm presented on a
parametrized model of a DSP) to a specific architecture,
as code manipulation is needed there.

7 CONCLUSIONS

We have shown the automatic generation of a table that
can guide the allocation of static objects to the memory
banks of a DSP architecture. Instead of using a search
algorithm that requires an evaluation function in the form
of a program simulation that is executed multiple times,
we extract the necessary conflict information from just
one simulation. Using a conflict graph to represent that
information, as well as tables that hold the architecture
dependent allocation penalties, we are able to impose an
order on the estimated cost of access conflicts. This order
is the basis for automated allocation of objects, allocating
the objects involved in the most costly conflicts first.
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