
Sifting out the Mud: Low Level C++ Code Reuse

Bjorn De Sutter Bruno De Bus Koen De Bosschere
Electronics And Information Systems Department

Ghent University, Belgium
{brdsutte,bdebus,kdb}@elis.rug.ac.be

ABSTRACT
More and more computers are being incorporated in de-
vices where the available amount of memory is limited. This
contrasts with the increasing need for additional functional-
ity and the need for rapid application development. While
object-oriented programming languages, providing mecha-
nisms such as inheritance and templates, allow fast develop-
ment of complex applications, they have a detrimental effect
on program size. This paper introduces new techniques to
reuse the code of whole procedures at the binary level and a
supporting technique for data reuse. These techniques bene-
fit specifically from program properties originating from the
use of templates and inheritance. Together with our pre-
vious work on code abstraction at lower levels of granular-
ity, they achieve additional code size reductions of up to
38% on already highly optimized and compacted binaries,
without sacrificing execution speed. We have incorporated
these techniques in Squeeze++, a prototype link-time bi-
nary rewriter for the Alpha architecture, and extensively
evaluate them on a suite of 8 real-life C++ applications.
The total code size reductions achieved post link-time (i.e.
without requiring any change to the compiler) range from
27 to 70%, averaging at around 43%.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—C++; D.3.4 [Programming Languages]: Proces-
sors—code generation; compilers; optimization; E.4. [Co-
ding and Information Theory]: Data Compaction and
Compression—program representation

General Terms
Experimentation, Performance

Keywords
Code compaction, code size reduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

1. INTRODUCTION
More and more computers are being incorporated in de-

vices where the available amount of memory is limited, such
as PDAs, set top boxes, wearables, mobile and embedded
systems in general. The limitations on memory size result
from considerations such as space, weight, power consump-
tion and production cost.

At the same time, ever sophisticated applications have to
be executed on these devices, such as encryption and speech
recognition, often accompanied by all kinds of eye-candy
and fancy GUIs. These applications have to be developed
in shorter and shorter design cycles. More complex appli-
cations, i.e. providing more functionality, generally mean
larger applications. Additional functionality is however not
the only reason why applications are becoming bigger. An-
other important reason is the use of modern software engi-
neering techniques, such as OO-frameworks and component-
based development, where generic building blocks are used
to tackle the complexity problem. These building blocks
are primarily developed with reusability and generality in
mind. An application developer often uses only part of a
component or a library, but because of the complex relation
between these building blocks and the straightforward way
linkers build a program (only using symbolic references), the
linker often links a lot of redundant code and data into an
application. Even useful code that is linked with the ap-
plication will often involve some superfluous instructions,
since it was not programmed with that specific application
context in mind.

During the last decade, the creation of smaller programs
using compaction and compression techniques was exten-
sively researched. The differences between the two cate-
gories is that, while compressed programs need to be de-
compressed before being executed, compacted programs are
directly executable.

At the hardware side, the techniques used range from ar-
chitectural design to hardware supported dynamic decom-
pression. Examples are the design and wide-spread use of
the code size efficient Thumb ISA [36] and dynamic decom-
pression when code is loaded into higher levels of the mem-
ory hierarchy [22, 35].

At the software side, a wide range of techniques is devel-
oped. Whole-program analysis and code extraction avoid to
some extent the linking of redundant code with a program [1,
32, 33]. Application-specific, ultra compact instruction sets
are interpreted [18, 19] and frequently repeated instruction
sequences within a program are identified and abstracted
into procedures [6, 17] or macro-operations [4]. Dynamic

275

decompression is done in software [9] as well. Charles Le-
furgy’s Phd. thesis [24] provides an excellent overview of
these techniques.

As object-oriented programming languages (OOPL) en-
gage the programmer to develop and use reusable code, it
is no surprise that the average application written in OOPL
contains a considerable amount of redundant code. (For a
set of Java programs, Tip and Palsberg [34] on average found
more than 40% of all methods to be unreachable.) Besides
this, the facilities provided by OOPL to develop reusable
code at the source code level, such as template instantiation
and class inheritance, often result in duplicate code frag-
ments at the assembly level, thus needlessly increasing pro-
gram size again. For each different template instantiation,
e.g., a separate specialization or low-level implementation is
generated. While at the source code level the instantiations
have different types, their low-level implementations are of-
ten very similar. Pointers to different types of object, e.g.,
have a different type at the source code level, but are all
simple addresses at the lower level.

Because of the high overhead in code size, the use of
modern software engineering techniques and OOPL is of-
ten not even considered viable for embedded or portable
applications. One can ask whether the limitations on com-
plexity and offered functionality of these applications result
from hardware limitations (memory size, power consump-
tion, etc.) or from the overhead introduced when trying
to manage the complexity using modern software engineer-
ing techniques. This question and the problems with code
size have led to the development of Embedded C++ [11],
a subset of the C++ language from which features such as
templates that lead to code bloat have been removed.

The techniques introduced and discussed in this paper ad-
dress the mentioned code bloat directly. Without sacrificing
language features (and not requiring any changes to com-
pilers), programs are produced that are both significantly
smaller and at the same time faster. As these programs are
still directly executable, all forms of run-time optimization
and dynamic (de)compression techniques can still be applied
on them. This is all achieved by aggressive whole-program
optimization and extensive code reuse after a program has
been linked. The achieved code size reductions range from
27 to 70%, averaging around 43%. From a commercial point
of view, this work leads to somewhat less than a halved code
size requirement, which under otherwise identical conditions
(e.g. a fixed maximum die area available for ROM) means a
year and a half earlier on the market.

In the whole picture we sketched so far, the linker, albeit a
very important component in any software development en-
vironment, is largely understudied. Several techniques are
being used to avoid linking multiple identical specializations
into a program. These techniques include incremental link-
ing and the use of repositories [25], which rely on compiler-
linker cooperation. They are based on the forwarding of ex-
tra information by the compiler to the linker or on feedback
from the linker to the compiler. However, these techniques
do not at all address the possible reuse of nearly identical
code fragments or code fragments that are identical only at
the assembly level, but not at the source level.

In the past we have proposed applying code and data
compaction in a link-time binary rewriter named Squeeze.
We have demonstrated how aggressive whole-program opti-
mization [10] and combined redundant data and code elim-

stk.h:

template<class T> class Stk {

private:

static int total_space;

T* stk;

int size;

int elements;

T* top;

public:

Stk(void);

void Push(T elem);

T Pop(void);

~Stk(void);

};

stk.cpp:

template <class T> T Stk<T>::Pop(void) {

if (elements==size){

size-=10;

total_space-=10;

stk=(T*) realloc(stk,size*sizeof(T));

top = &(stk[elements]);

}

elements--;

return *--top;

}

main.cpp:

#include <stdio.h>

#include "stk.h"

main(){

Stk<long int> x;

Stk<int> y;

x.Push(1000L);

y.Push(1000);

printf("%ld %d\n",x.Pop(),y.Pop());

}

Figure 1: Example C++ code

ination [7] at link-time (or more precisely post link-time)
can effectively reduce the size of programs. It was no sur-
prise that these techniques and especially the elimination of
unreachable code by detecting statically allocated data (in-
cluding procedure pointers) that is dead, performed much
better on C++ programs than on C programs. This follows
from the discussion above. In [10] we also discussed code
abstraction at low levels of granularity: code regions and
basic blocks. These code abstraction techniques were eval-
uated on a set of C programs, and resulted in a significant,
but rather limited additional code compaction.

Today we present Squeeze++, our latest prototype link-
time program compactor. Its name was chosen, not only be-
cause it is a better Squeeze, but because it incorporates a
number of new code abstraction and parameterization tech-
niques specifically aimed at reusing whole identical or nearly
identical procedures, as typically found in programs written
in object-oriented languages such as C++. These new code
reuse techniques are introduced in this paper, and our whole

276

range of previous work on code abstraction is reevaluated for
a number of C++ programs, showing that code abstraction
and parameterization is a very powerful technique for addi-
tional code size reduction for C++ programs (up to 38%)
on top of aggressive post link-time program optimization.
This results in a total link-time code size reduction of up to
70%, which is considerably more than what we previously
achieved for C or Fortran programs [10], thus addressing the
problems of code bloat and program size where it is most
needed: where (redundant) code is most reused.

The remainder of this paper is organized as follows. In
section 2 a motivating example is studied. The new code
reuse techniques are discussed in section 3. Our previous
work on code abstraction techniques is discussed in section 4.
Some new insights and enhancements are discussed as well.
An extensive evaluation of the discussed techniques is made
in section 5. Related work is discussed in section 6, after
which our conclusions are drawn in the last section.

2. MOTIVATING EXAMPLE
We have depicted some C++ code fragments in Figure 1.

This code is not from a real-world application. It serves our
purpose however, as it contains some typical code aspects
found in real-world applications.

A template class Stk<T> implements a stack data struc-
ture, for different types of objects of type T. The elements
on the stack are stored in a private array stk with size ele-
ments. The top data member points to the top element of
the stack. The number of elements on the stack is stored in
elements. The array stk is dynamically allocated. It grows
and shrinks in chunks of 10 elements, as objects are pushed
or popped. The private static data member total space is
a class member that records the total memory size for one
type of stack. Its only purpose is to serve our discussion
(although it might be useful for debugging purposes). In
the main program, two stacks are created, one for objects of
type int and one for objects of type long int.

In Figure 2 we have depicted the control flow graphs
(CFGs) and assembly code for the two generated instances of
the Pop() method. This code was generated using the Com-
paq C++ V6.3-002 for Compaq Tru64 UNIX V5.1 compiler
for the Alpha platform. The CFGs are generated from the
internal representation of the program after Squeeze++

has compacted the program. Inlining was not applied since
we want to depict these methods isolated from their calling
contexts for the purpose of our example. Neither have we
applied code abstraction, as we want to show where opportu-
nities for code abstraction and parameterization are found.
We have depicted assembly code with more generally un-
derstandable mnemonics instead of the Alpha mnemonics,
although there is no need to understand this code to under-
stand the discussion of this example.

These CFGs and assembly code obviously are very sim-
ilar to one another. There are some differences however,
indicated by the use of a bold and italic typeface. These
differences have two origins:

1. A first difference has to do with the static total space
data member. Each of the specializations of the Stk
class has a separate instance of this class member. In
the final program, these two instances are stored in the
statically allocated data. They are allocated at dif-
ferent locations however, so the locations from which

their values are loaded in the Pop method differ. These
different locations result in different indices (or relative
addresses) in the instructions that access them (index
0x2280 in int Stk<int>::Pop() and index 0x2270 in long
Stk<long>::Pop()).

More generally, all statically allocated objects for some
class will have different addresses for each specializa-
tion. This is not just the case for class members, but
also for, e.g., stored initialization values of local vari-
ables in methods (even if these values are the same for
all specializations).

2. The second difference results from the different sizes
of the objects stored on the stack. On our 64-bit tar-
get architecture, int variables occupy 4 bytes, while
long int variables occupy 8 bytes. Different instructions
are used to load and store these values, corresponding
to their respective word widths (e.g. load int vs. load
long). The pointer arithmetic also differs: indexing is
done using different instructions (add int index vs. add
long index) or different relative addresses (0x0004 vs.
0x0008).

With this motivating example, we have shown how very sim-
ilar the assembly code of different specializations of a tem-
plate can be, and what some of the most important reasons
for differences are. A third origin of differences is often found
at calls to methods that depend on the type of object the
template is specialized for: a sorting method of some con-
tainer class, e.g., often calls the compare method of the class
it was specialized for. Specializations for different classes
will usually have exactly the same sorting routine at the as-
sembly level, except for the call to the compare method. If
the method called is a virtual method, the address of the
vtable from which the address of the actual called method
is loaded will be different. This is very similar to the first
origin of differences in the motivating example.

3. REUSING WHOLE PROCEDURES
Programming constructs such as templates and inheri-

tance often result in multiple low-level implementations of
source code fragments that show great similarity. Signifi-
cant compaction of programs can be obtained by abstract-
ing multiple-occurring instruction sequences: a multiple-
occurring instruction sequence is put in a separate proce-
dure and all occurrences of the sequence are replaced by
calls to that single procedure. This is the inverse of inlining.
Looking for multiple-occurring instruction sequences can be
done at various levels of granularity, that are discussed in
this and the next section. We will look at whole procedures,
code regions (i.e. groups of basic blocks with a unique en-
try and exit point), basic blocks and subblock instruction
sequences. In this section we focus on the higher level: that
of whole procedures. We also discuss the reuse of statically
allocated data, as it creates more opportunities for the code
reuse techniques.

3.1 Whole-Procedure Reuse
The targets of whole-procedure reuse are multiple iden-

tical procedures that might be found in the program be-
cause template specializations are different on the source
code level, but identical on the assembly code level.

A question to answer is: what do we consider to be identi-
cal procedures? Do we, e.g., consider two procedures identi-

277

Figure 2: The CFGs generated for int Stk<int>::Pop() and long Stk<long>::Pop().

cal if they are exactly the same, apart from the registers they
use for storing local variables? Or apart from the exact in-
struction schedules? The answer is that we require the pro-
cedures to be exactly the same, having the same structure
of basic blocks and having exactly the same instructions,
in identical schedules, and with identical register operands.
This requirement speeds-up the search for identical proce-
dures, as we never need to check whether two variants are
functionally equivalent.

One might think that a significant number of functionally
equivalent procedures will not be discovered, but this is not
the case, as a compiler implementing identical functionality
will use identical registers and produce the same basic block
layout. There is no reason to assume nondeterminism in this
respect. Even for compilers implementing interprocedural
register allocation, this is often the case, as template classes
are usually defined in separate source code modules and the
interprocedural register allocation typically is intramodular.

Looking for fully identical procedures is straightforward:
we apply a pairwise comparison of the CFGs of procedures
by traversing the procedures in depth-first order, during
which their instructions are compared. If two or more identi-
cal procedures have been found, one master procedure is se-

lected and all call-sites of the others are converted to call the
master procedure. Function pointers stored in the statically
allocated data of the program (such as method addresses
in vtables) are also converted to all point to the master
procedure. Note that the search for identical procedures is
an iterative process. As a procedure’s callees change, they
might become identical.

To limit the number of comparisons necessary, a finger-
printing scheme is used. A procedure’s fingerprint consists of
its number of basic blocks and instructions, and a string de-
scribing the structure of its CFG. This string is constructed
using a depth-first traversal, during which characters that
denote basic block types are concatenated. The type of
a block is the type of its last instruction: there are ’C’all
blocks, ’R’eturn block, ’B’ranch blocks, etc. Using the fin-
gerprints, the procedures are partitioned, after which the
more comprehensive pairwise comparison is performed per
partition of similar procedures. Note that the various finger-
printing schemes discussed in this paper are not fundamental
for the code reuse techniques. They are very useful however
to limit their computational cost.

278

3.2 Procedure Parameterization
As shown in the motivating example, it is possible that

procedures are nearly identical. One possible solution to
reuse the common code fragments is to apply abstraction
techniques on smaller code fragments, such as the ones we
will discuss in the next section. This can be very expensive
however. Suppose we need to separately abstract every basic
block but one. This would mean that for each basic block
but one a procedure call has to be inserted.

A different approach is to merge nearly identical proce-
dures and to add a parameter to the merged procedure.
This parameter is used to select and execute the code frag-
ments corresponding to one of the original procedures where
the code differs. The merged procedure gets multiple entry
points, one for each of the original procedures, at which
the parameter is set. This approach requires two questions
to be answered: what do we consider as nearly identical
procedures and how do we add a parameter to the merged
procedure?

As for whole-procedure reuse, we limit the search for near-
ly identical procedures to procedures with identical struc-
tures of basic blocks. A pre-pass phase again partitions the
procedures using a fingerprint based on the number of blocks
and the structure and the types of the blocks. The number of
instructions is now not used to partition procedures. Proce-
dures with identical structures are then pairwise compared
and are given an equivalence score. This score equals the
(predicted) code size reduction when two procedures would
be merged. Each pair of corresponding basic blocks in the
two procedures contributes to the score as follows:

• The number of identical instructions starting from the
entry points of the blocks is added to the score. If
both blocks are completely identical, this is the final
contribution of these blocks to the equivalence score.
It indicates that a whole block can be eliminated.

• If the blocks are not identical, the number of identi-
cal instructions going backwards from the exit points
of the blocks is added to the score. 3 points are sub-
tracted however, as we conservatively assume that 3
instructions are needed to implement the conditional
branch that needs to be inserted before the different
parts of the blocks.

The rationale behind this counting is that identical prefixes
and postfixes of instruction sequences in basic blocks will
be hoisted or sunk in the merged procedure, thus eliminat-
ing one of them. As this counting is only a prediction, and
as this is sometimes not very accurate, due to, e.g., possi-
ble register renaming or instruction reordering being applied
later on during the code compaction, we only count identi-
cal instructions in identical orders, with identical operands
(register and immediate operands). For nearly identical spe-
cializations of the same template class with differences that
we discussed in section 2 this suffices. Experiments have
shown that the threshold of the equivalence score to apply
parameterization is best chosen at 10, i.e. the score has to
be at least 10 or more.

Once we have found nearly identical procedures, we must
find a location to store the parameter that will be used in
the merged procedure to select the correct code to be exe-
cuted at program points were the original procedures were
different. This is not an easy task, because of two observa-
tions:

1. We almost always must assume the merged procedure
to be re-entrant through possible recursive calls. The
reason is that we very often don’t know exactly what
methods can be called at call-sites with indirect proce-
dure calls. This is in general the case where procedure
pointers are used, such as for all virtual method calls.
For these indirect calls, we assume that all code ad-
dresses stored in the program can be possible targets,
resulting in an overly conservative call graph of the
program. The consequence of this observation of re-
entrancy is that the parameter must be stored on the
stack.

2. Transforming the stack behavior of procedures or a
program in a link-time or post link-time program com-
pactor is very difficult, if not impossible, due to the
general lack of any high-level semantic information
about the program being compacted, and particularly
about the stack behavior. To rely on compilers to pro-
vide this information to the program compactor, would
endanger the general applicability of our techniques,
so we have chosen to not follow that path. The conse-
quence is that we will not allocate additional space on
the stack for storing the parameter.

If we cannot change the stack frame of a procedure, how
are we going to store a parameter in it? The solution in-
volves the return address corresponding to procedure calls.
If a procedure is not a leaf procedure, this address is def-
initely stored on the stack, as the calls in the procedure
overwrite the return address. If the procedure is a leaf pro-
cedure, the return address is often not stored on the stack,
but in that case we are sure that the procedure is not re-
entrant and we know that at least some register will hold
the return address throughout the whole procedure. It is
therefore safe to assume that the location where the return
address is stored, either in a register or on the stack, is a
location that holds its value throughout a whole procedure’s
execution, whether this execution is interrupted by recursive
calls or not. On our target architecture, as on most 32-bit
RISC architectures having a fixed instruction width and 4-
byte aligned instructions, the 2 least significant bits of the
return address are always zero. We can therefore use these 2
bits to encode at most 4 different parameters corresponding
to at most 4 procedures being parametrized and merged.
The maximum number of procedures that can be merged
to a single parametrized procedure is limited to 4, but as
we will see in the evaluation section, this is enough to get a
significant compaction with procedure parameterization. To
select groups of 4 procedures from a larger group of nearly
identical procedures, we use a greedy algorithm based on
the equivalence scores.

Using the thus stored parameter for conditional branches
in the merged procedure body is trivial, as the location of
a return address stored on the stack is determined by the
calling conventions. The 3 instructions needed for these con-
ditional branches are (1) to load the return address from the
stack; (2) to extract the least-significant bits (if necessary)
from the return address; (3) the conditional branch on these
bits. Note that on architectures where the return instruc-
tion doesn’t care about the two least-significant bits of the
return addresses, there will be no need to remove the param-
eter from the return address before returning from a call to
the merged procedure.

279

Figure 3: The CFGs for int Stk<int>::Pop() and long Stk<long>::Pop() after parameterization.

280

For the motivating example in section 2, the final CFGs of
the original procedures after parameterization are depicted
in Figure 3. As one can see, the total number of instructions
in these 2 procedures has gone down from 68 to 56. This 56
includes the number of unconditional branches that need to
be inserted because basic blocks can only have one prede-
cessor on a fall-through path. These unconditional branch
instructions are not part of our internal program represen-
tation, and are hence not depicted.

3.3 Reusing Statically Allocated Data
It often occurs that constant values stored in the read-

only data sections of a program occur multiple times. On
compiling one source code module, the compiler provides
space in the statically allocated data of the generated ob-
ject file for the addresses of all externally declared objects
that are accessed from within the module. While linking and
relocating modules, the linker fills in the final addresses. If
global objects are accessed from within multiple modules,
their address will occur multiple times in the statically allo-
cated data of the final program.

Another case are constant numerical values for which load-
ing them from the data sections is the most efficient way to
get them in a register. This is typically the case for floating-
point constants such as π or e. These constant values are
often stored in the data sections of multiple object files and
therefore occur multiple times in the final program.

As data is linked with the program to be loaded some-
where, the result of multiple occurences of identical data is
that otherwise identical code fragments can differ in the lo-
cation from which they load the (identical) data. As our
link-time code compactor incorporates a constant propa-
gator that to some extent detects what constant data is
loaded, we can convert instructions that load the same con-
stant value from different locations into instructions that
load them from the same location. This has proven to be
very beneficial for code reuse, and especially for the reuse
of whole identical or nearly identical procedures, as it lim-
its the first kind of differences between procedures discussed
in section 2. Note however that we apply this conversion
independently from the code reuse techniques, as they also
improve cache behavior.

4. FINE-GRAINED CODE REUSE
In this section, our previous work on code reuse of more

fine-grained identical or functionally equivalent code frag-
ments is rediscussed. On several occasions, new insights
and enhancements are introduced.

The use of inheritance and virtual method calls results
in procedures that are often not identical or even similar,
but still contain similar code fragments, simply because they
provide similar functionality. It therefore often happens that
parts of such methods are identical or at least functionally
equivalent (i.e. the apply the same computations, but on
different register operands). Sometimes template instanti-
ations are not similar enough according to our equivalence
score metric, but still contain similar or identical code frag-
ments. In both cases, identical or functionally equivalent
code fragments can be abstracted into procedures.

The execution of thus abstracted procedures ends at a re-
turn instruction, after which the execution of the program
always continues at the instruction following the call-site of
the abstracted procedure. Therefore, abstracted code frag-

ments must have a unique entry point and a unique exit
point. This by definition is the case for basic blocks and
subblock instruction sequences. Code fragments consisting
of multiple basic blocks can also have a unique entry and
exit point. Those fragments are called code regions, and
we’ll start our discussion of fine-grained code reuse tech-
niques with code regions.

4.1 Code Region Abstraction
The exit and entry points of a code region correspond to

a pair of dominator and postdominator blocks. Such pairs
therefore uniquely identify a code region. Again a finger-
printing system is used to prepartition all the regions in a
program. As the number of code regions is much higher than
the number of procedures and as techniques such as regis-
ter renaming to make functionally equivalent regions using
different register operands identical are computation expen-
sive, we limit our search space to fully identical regions: i.e.
with identical structure, instructions, schedule and register
operands.

Allocating space for the return address poses a problem
when procedures are being called from within the abstracted
procedure, as we discussed in section 3.2: calls to abstracted
code need to store a return address somewhere and this re-
turn address can be seen as some kind of parameter. A
difference with the discussion in section 3.2 is that, because
compiler generated stack allocation mostly takes place in the
entry and exit blocks of a procedure, and not in the code in
between, we can expect that fewer stack allocations in the
original code regions will interfere with the additional stack
space we want to allocate. However, while we have found a
very conservative way to allocate an additional location to
store the return address for such abstracted code regions,
it is so conservative that we can almost never apply it and
therefore almost never are able to abstract code regions in
which procedure calls occur.

One exception is when the code regions to be abstracted
end with a return instruction. As the call to the abstracted
code in this case is a tail call, there is no need for a pro-
cedure call to the abstracted procedure. Applying tail-call
optimization, we can just jump into the abstracted proce-
dure and the return at the end of it will return directly to
the callers of the procedures from which the region was ab-
stracted.

4.2 Basic Block Abstraction
Like we said before, basic blocks are by definition code

fragments with a unique entry and a unique exit block.
As opposed to whole procedures with identical function-
ality, basic blocks with identical functionality show much
more variation in the used register operands. The reason
is that the compiler allocates registers for a whole proce-
dure. Therefore, the register operands used in a basic block
largely depend on the registers used in the surrounding code.
For this reason, and because local register renaming (within
a single basic block) is not nearly as complex and time
consuming as global register renaming (over multiple ba-
sic blocks), we’ll try to make functionally equivalent basic
blocks identical by renaming registers.

Like we did for the other reuse techniques, basic blocks
are first partitioned to speed up the detection of equivalent
blocks. The fingerprints used to do so include the opcodes
of the instructions, but not the register operands. Within

281

each partition, the search for functionally identical blocks is
done as follows:

• As long as there are multiple blocks in a partition, a
master block is selected.

• We try to rename all the other (slave) blocks to the
master block. If a slave block already is identical to
the master block, renaming is of course unnecessary.

• The master block and all slave blocks (made) identical
to the master block are abstracted into a procedure,
and procedure calls to this abstracted procedure re-
place the original occurrences of the blocks.

• If no slave blocks are found that are or can be made
identical to the master block, the master block is re-
moved from the partition.

This is all similar to our previous work in [10]. We have
however enhanced the renaming algorithm. Our new renam-
ing algorithm works in three phases:

1. Comparing the dependency graphs
First, the dependency graphs1 of the master and slave
blocks are compared. Conceptually this is done by con-
verting the blocks to a symbolic static single assign-
ment representation and by just comparing whether
the symbolic register operands of each instruction are
the same.

One detail of this conversion and comparison is im-
portant to discuss: all externally defined registers are
converted to a single symbolic register. Consider the
example code in Figure 4. The fourth instruction in
the master block has two different externally defined
source register operands: r7 and r8. In the slave block,
register r7 is used twice. In our symbolic representa-
tion for comparing the dependency graphs of the two
blocks, the same symbolic register x is used for r7 and
r8.

2. Adding copy operations
If the slave and master blocks implement the same
dependency graph as discussed in the first phase, we
try to insert copy operations. These are added for
three reasons:

(a) When externally defined registers differ, copy op-
erations are inserted before the slave block (copy
operation (2) in the example).

(b) When different registers are defined in the blocks
that are live2 at the end of the slave block, copy
operations are inserted after the slave block (copy
operation (3) in the example).

(c) When a register is defined in the master block
that is not defined in the slave block, but which

1A dependency graph is a directed graph where the operands
of instructions are vertices. Directed edges connect defini-
tions (i.e. write operations) of destination operands with
consuming source operands (i.e. operands of operations
reading the value produced at the definition).
2A register is considered live if its content can be used by
some instruction later on during the program execution. If
a register is live at some program point we cannot overwrite
its value, unless its original value is stored somewhere else
(spilled on the stack or in some other register).

is live over the whole slave block, copy operations
are inserted before and after the slave block to
temporarily store the register content in another
register. Assume register r0 to be live over the
whole slave block in the example. Then two copy
operations need to be inserted: (1) and (4).

3. Actual renaming and abstraction
The insertion of copy operations is considered success-
ful if there are no copy operations necessary before or
after the slave block that need to copy different regis-
ters to the same destination register. If the number of
inserted copy operations is small enough for the blocks
to be abstracted, the slave block is simply replaced by
the master block, thus effectively renaming the slave
block. In the example, renaming is possible, but not
considered worthwhile, as the number of added copy
operations is higher than the code size reduction ob-
tained by abstracting the basic blocks. Note that we
also would have to add two call instructions and one
return instruction to abstract the blocks.

The difference between this renaming algorithm and the
one we previously published [10] is that the old algorithm
combined phases 1 and 2: the copy operations were collected
during the dependency graph comparison. To be able to do
this in one phase, all externally defined registers used in the
blocks must get unique symbolic names (x1, x2, etc. instead
of a single x). If this is done, the fourth instruction in the
master and slave blocks of the example in Figure 4 have
different operands, and the dependency graph is not con-
sidered identical. These blocks were therefore not consid-
ered renameable with the old algorithm. One could say that
the old algorithm could only rename functionally equivalent
blocks, whereas the new algorithm is also able to rename
blocks to functionally superior blocks.

Cooper and McIntosh [6] propose renaming basic blocks
by globally renaming registers instead of inserting register
copy operations. This has the disadvantage that renaming
to make one pair of blocks identical can affect (even undo)
renaming for another pair of blocks. We feel that insert-
ing copy operations is favorable, especially since a separate
copy elimination phase after the code abstraction will be
able to eliminate most, if not all, of the copy instructions in
those cases where global renaming could have been applied
to make the blocks identical.

Another advantage of using copy instructions is that these
can easily be used to “rename” immediate operands to reg-
isters. Just like a copy instruction is inserted, an inserted
instruction can store a value in a register that is than used
in the abstracted block instead of the immediate operands
in the original blocks. This of course is useful only when
the corresponding immediate operands or registers in the
original blocks differ.

The renaming algorithm is the only transformation we
apply to make functionally equivalent (or superior) blocks
identical. A question now arises concerning our search space:
do the schedules (or order) of the instructions in the master
and slave blocks matter?

What if two blocks are identical, except for the order of the
instructions? We have done some experiments to answer this
question by inserting a pre-pass scheduler, that generates
a deterministic schedule given a dependency graph. This
means that two blocks with identical dependency graphs but

282

master slave master slave master slave
r9 := r0 (1)
r8 := r7 (2)

r4 := r2 + r1 r1 := r2 + r1 i1 := x + x i1 := x + x r4 := r2 + r1 r4 := r2 + r1
r4 := r4 - r3 r4 := r1 - r3 i2 := i1 - x i2 := i1 - x r4 := r4 - r3 r4 := r4 - r3
r0 := r4 / r6 r9 := r4 / r6 i3 := i2 / x i3 := i2 / x r0 := r4 / r6 r0 := r4 / r6
r4 := r7 * r8 r5 := r7 * r7 i4 := x * x i4 := x * x r4 := r7 * r8 r4 := r7 * r8

r5 := r4 (3)
r0 := r9 (4)

Original blocks Using symbolic registers Renamed blocks

Figure 4: Example basic blocks for basic block abstraction.

with different instruction orders are transformed in blocks
with the same order. This allows us to disregard scheduling
differences when comparing dependency graphs or inserting
copy instructions. We have learned that this pre-pass does
not yield a significant increase in the number of blocks being
abstracted (less than 0.1%). We conjecture that the local
schedules generated by the compiler are pretty determinis-
tic.

4.3 Subblock Instruction Sequence Abstrac-
tion

Our previous research on abstracting partially matched
basic blocks involved two important special cases: saves and
restores for callee-saved registers. Most of the time the saves
occur in the entry block of a procedure and the restores oc-
cur in blocks ending with a return instruction. As this limits
the number of code fragments that have to be compared, we
can afford the time to try to make these sequences iden-
tical by locally rescheduling code (i.e. within the entry or
return blocks of a procedure). This rescheduling might be
necessary when the compiler has mixed the save and re-
store instruction sequences with other instructions. While
abstracting register save sequences involves some overhead
because of the extra call and return, this is not the case for
register restores, as tail-call optimization can often eliminate
the overhead. How this is done is discussed in more detail
in [10].

Whereas we previously found that a more general abstrac-
tion of partially matched blocks is computationally quite ex-
pensive without offering significant code size reductions for
C programs, this is not the case for C++ programs. The
reason is again that C++ programs offer more possibilities
for code reuse. However we still need to keep the computa-
tional cost reasonable, so we restrict the general abstraction
of partially matched basic blocks to identical instruction se-
quences. No register renaming or rescheduling is applied to
create identical sequences. Even then an enormous num-
ber of instruction sequences have to be compared. A quite
efficient way we found to do this is as follows.

A separate pass over the whole code is applied for all pos-
sible instruction sequence lengths we want to abstract, start-
ing with the longest sequences and ending with the shortest
one (3 instructions). During each pass for instruction se-
quences with length n

1. all occurring sequences of length n are collected and
prepartitioned according to a fingerprint (that now in-
cludes the register operands used);

2. for each partition, identical sequences are collected.
These multiple identical sequences are placed in sepa-
rate basic blocks, by splitting up the blocks in which
they first occurred.

After this splitting of basic blocks for all sequence lengths,
the basic block abstraction technique is applied again to
actually abstract the identical sequences in the split basic
blocks. By not collecting instruction sequences in phase 1
that were separated in phase 2 of a previous pass, larger
blocks are greedily abstracted first. Although this is not op-
timal, (more beneficial splitting of basic blocks might be pos-
sible), we found this to be a good compromise between com-
putational efficiency and code size reductions. By having a
separate pass for all possible instruction sequence lengths,
the memory-footprint can be kept acceptable without sacri-
ficing execution speed. Note that for high values of n, where
large fingerprints need to be used, the number of instruction
sequences in a program decreases, as basic blocks on average
consist of 4–5 instructions only.

4.4 Summary
Reusing multiple instances of identical code fragments can

be done at various levels of granularity: procedures, code
regions with unique entry and exit points, basic blocks and
partially matched basic blocks. Looking at the ratio be-
tween computational cost and code size reduction certain
trade-offs have to be made. Register renaming to create
identical code fragments is applied at the basic block level
only. Rescheduling to create identical code sequences is ap-
plied for callee-saved register stores and restores only.

It is obvious that the different abstraction levels influence
each other: without procedural abstraction or parameteri-
zation, all the identical blocks or regions in procedures will
still be abstracted if basic block and region abstraction are
applied. The introduced overhead will then be larger how-
ever, since a procedure is then largely replaced by a number
of calls to abstracted procedures.

283

5. EXPERIMENTAL EVALUATION
The algorithms described in this paper are implemented

in Squeeze++, a binary rewriting tool aiming at code com-
paction for the Alpha architecture. The Alpha architecture
was chosen because of its clean nature that eases the imple-
mentation of algorithms, in particular of the Squeeze++

backend. We firmly believe that the algorithms implemented
in Squeeze++ are generally applicable and not architecture
specific, and therefore consider Squeeze++ and the results
obtained with it a valid proof-of-concept.

5.1 The Benchmarks
The performance of Squeeze++ is measured on a num-

ber of real-life C++ benchmarks. Although some of these
benchmarks are not typical examples of embedded applica-
tions, we believe they represent a broad range of the code
properties of the targeted (embedded) applications: appli-
cations written in C++ using more or less library code and
using more or less templates and inheritance. Some proper-
ties of the benchmark programs are summarized in Table 1:
a short functional description is provided, together with the
number of assembly instructions in the base versions of the
applications. It are these base versions with which the com-
pacted versions will be compared. They were generated us-
ing three tools:

1. Compaq’s C++ V6.3-002 compiler was used to compile
with the -O1 -arch ev67 flags, resulting in the smallest
binaries the compiler can generate.

2. The Compaq Linker for Tru64Unix 5.1 (the operat-
ing system used for our evaluation) was used to link
the programs with the flags -Wl,-m -Wl,-r -Wl,-z -Wl,-
r -non shared, resulting in statically3 linked binaries
including the relocation and symbol information nec-
essary for Squeeze++, and resulting in a map of the
original object file code and data sections in the final
program. Squeeze++ requires this map for its anal-
yses discussed in [7].

3. A very basic post link-time program compactor. It
eliminates no-ops from the programs and performs an
initial elimination of unreachable code. It applies no-
op elimination on the linked binaries because a code-
size-oriented compiler would not have inserted no-ops
in the first place, and an initial unreachable code elim-
ination because this compensates for the fact that the
Compaq system libraries are not really structured with
compact programs in mind: the object files in the li-
braries have a larger granularity than one would ex-
pect from a library oriented at compact programs, as
more coarse-grain object files generally result in more
redundant code being linked with a program. It also
applies the same code scheduling and layouting algo-
rithms as Squeeze++, using the same profiling infor-
mation for the benchmarks. Using the same scheduler
and layouter allows us to make a fair comparison be-
tween the execution speeds of different versions of the
benchmarks.

As the prototype Squeeze++ only handles statically linked
programs, including both application-specific and library

3Unless programs are statically linked, the Compaq linker
will not include the relocation information needed by
Squeeze++ in the generated binary.

code, the fraction of the program code that we consider
application-specific is also given. All system libraries (libc,
libcxx, libstdcxx, libX11, etc.) are considered library code
and not application-specific. Libraries that typically are
used by more applications on a system are also not con-
sidered application-specific. For the lyx benchmarks, e.g.,
the forms GUI-library is not considered application-specific,
while the xforms library is considered application-specific, as
it is written as a wrapper around the forms library to ease
the implementation of lyx, and only of lyx. Although we
have linked xforms into the program as a library, such that
the linker only includes the necessary parts of the xforms
library (this part may depend, e.g., on the target platform),
we still consider it part of the application-specific code. A
similar reasoning holds for the GTL library: it is a library,
so we link it with the program as a library. Still we consider
it to be application-specific, as it represents the kind of li-
braries that is typically not used in multiple applications on
a system.

The table also includes the fraction of the application-
specific code that comes from the so called repository, i.e.
the fraction of the code that was generated for template
instantiations. As discussed in section 6, a repository is
used to avoid the inclusion of multiple identical template
instantiations or specializations into a program. We have
included these fractions, because they give an idea of the
size of the code that we explicitly target with our techniques
for whole-procedure reuse and parameterization.

5.2 Whole-Program Code Compaction
The code abstraction performance of Squeeze++ is eval-

uated by comparing three versions of the benchmark pro-
grams: the base version for our comparison is the version
generated as described in the previous section. The second
version of the programs are the compacted binaries, but in
which no code is reused: i.e. the programs are compacted ap-
plying all the available techniques in Squeeze++ (including
constant propagation, useless code elimination, unreachable
code elimination, etc., see [7, 10] for an extended discussion)
except the techniques discussed in this paper. The third
version is generated by Squeeze++ applying all available
compaction and code reuse techniques.

The results for our benchmark programs are depicted in
Figure 5. The lower line indicates the compaction achieved
by Squeeze++ without the code abstraction techniques.
As can be seen, 26%-39% of the code is eliminated, averaging
around 31%.

If code abstraction and parameterization are applied as
well, the average code size reduction climbs to 45%. This
reduction fluctuates between 34 and 62%. The additional
code size reduction resulting from the code reuse thus aver-
ages around 14%, ranging from 6% to 24%.

5.3 Application-specific code
One can question the usefulness of measuring code size re-

ductions on statically linked programs. Aren’t smaller pro-
grams among the benefits of using shared libraries? Our
answer to this is twofold.

First of all, we think statically linked programs are still
very often used on embedded applications where code size
matters. A typical example is the implementation of com-
mand line tools, such as for embedded Linux systems. These
include tools such as ls, cat, more, less, echo, chown, chmod,

284

Program Description # instr. application- repository
specific code code

blackbox Fully functional, lightweight window manager 328240 14% 0%
bochs Virtual Pentium machine 275440 37% 0%
lcom “L” hardware description language compiler 99168 31% 0%
xkobo Arcade space shooter game 252800 4% 0%
fpt In-house HPF automatic parallelization tool 530896 32% 7%
252.eon Probabilistic ray tracer (from the SPECint2000 suite) 136224 51% 10%
lyx WYSIWYM(ean) word processor (LaTeX-like documents) 1329616 66% 23%
gtl Test program from the Graph Template Library (GTL) 161936 60% 47%

Table 1: Description and properties of the programs on which our code compaction was evaluated.

Figure 5: Code size reductions achieved on statically
linked program.

mkdir, etc. Instead of implementing these tools with mul-
tiple applications and shared libraries, only one statically
linked program is generated. This single program includes
the functionality of all separate tools. It is installed in the
/bin directory and symbolic links to it are created, each link
corresponding to one of the original command-line tools.
The program evaluates the command-line command (i.e.
the name fed by the user at the command-line) and the re-
quested functionality is performed. By using a single stati-
cally linked program, only those parts of the libraries needed
for all provided functionality are linked with the program,
thus avoiding the overhead of dynamic linking. This or sim-
ilar techniques are also used for implementing multiple ap-
plications on embedded systems.

The second and more interesting part of our answer is the
evaluation of our techniques on the application-specific code
of the program, i.e. the code that also is found in the dynam-
ically linked programs. To approximate the performance of
a Squeeze++-like tool for dynamically linked applications
as well as possible, we have adapted Squeeze++ in two
ways:

1. At call-sites in application-specific code where library
code is called, we have not resolved the calls. This
means that at the call-site, we do not know the callee.
We only know that the callee respects the calling-

Figure 6: Code size reductions achieved on
application-specific part of the program.

conventions. Vice versa, the thus called library code is
called from unknown calling contexts, assuming only
that their callers respect the calling conventions as
well. This is exactly the same as what compilers do
when callees are externally declared or when proce-
dures are exported.

2. For code reuse, all fingerprints used for prepartitioning
include a tag indicating whether the code belongs to
the application-specific or the library part of the pro-
gram. Identical, similar or equivalent code fragments
are therefore only detected within either application-
specific or library code and the code reuse is completely
separated for both parts.

With this adaptation, application-specific code is completely
separated from library code in Squeeze++, and the code
reuse techniques applied to the application-specific code are
exactly the ones that are also applicable on dynamically
linked programs. The only remaining difference with dy-
namically linked programs is that there are no stubs for im-
plementing the calls to shared library code. The influence
of these stubs on the results from applying our code reuse
techniques are in our opinion neglectible.

Figure 6 shows the same information as Figure 5, but
now for application-specific code only. As can be expected,
the performance of the general optimization and compaction

285

techniques is lower on the application-specific code. The
reason is precisely that this code is application-specific and
therefore fewer possibilities are found to optimize the code
for the application. By and large the general optimization
and compaction possibilities for application-specific code re-
sult from the inefficiencies of separate compilation. From
library code, by contrast, much more code is unreachable
in some application because it is redundant for that spe-
cific application. The average application-specific code size
reduction due to general optimization and compaction tech-
niques is 25% (compared to 32% for the whole programs).
This reduction ranges from 19 to 32% (compared to 26 to
39% for the whole programs).

At least for some of the benchmarks, the code abstrac-
tion and parameterization techniques perform much better
on the application-specific code, resulting in a total aver-
age code size reduction of 43%. This is still lower than the
average reduction achieved on whole programs (45%). For
some programs however, the maximal achieved compaction
on application-specific code is larger than the compaction on
the whole program. The maximum compaction now ranges
from 27 to 70% (compared to 34 to 62% for whole programs).

For some programs, the code reuse techniques perform
much better on application-specific code than on the whole
program, as can be seen when comparing Figures 5 and 6.
The average additional application-specific code size reduc-
tion due to code reuse techniques now ranges from 7 to 38%
(compared to 6 to 24% for the whole programs), averaging
around 18% (compared to 14%). This stronger performance
of the code reuse techniques on application-specific code can
be explained by looking at the third line we’ve included in
Figure 6, indicating the fraction of application-specific code
that comes from the repository. There is a very strong corre-
lation between the performance of the code reuse techniques
and the amount of code originating from templates. This
corresponds to the claims we have made about reusable code
generated for template specializations, even when reposito-
ries are used to avoid to some extent the linking of duplicate
code fragments.

5.4 Compaction Times
The common knowledge about whole-program analyses

and optimizations is that they are notoriously slow and
therefore often not practical. In Figure 7, we have de-
picted the time needed to fully compact the binaries with
Squeeze++, i.e. to apply all the techniques at our disposal.
We believe these compaction times show that link-time op-
timizations are practical, as there is no need to apply them
during each edit/compile/debug cycle.

It is important to note that Squeeze++ is a research pro-
totype. We have only optimized it to facilitate our research
and to shorten our edit/compile/debug cycles. So while we,
e.g., have optimized the liveness analysis, it is still fully sep-
arated from all other implemented techniques. Before any
of the other techniques that rely on liveness information are
applied, liveness analysis is restarted from scratch. It would
be much more efficient if all or at least some of the pro-
gram transformations would update the liveness informa-
tion on the fly. We have opted not to do so, because it
would severely limit the ease with which Squeeze++ can
be adapted to try out new techniques.

Figure 7: Compaction times (in minutes) in function
of the number of instructions in the binaries.

5.5 Breakdown of the Results
In the lower graph of Figure 8 we show the contribu-

tions of the different code reuse techniques to the total ad-
ditional code size reduction achieved by these techniques
combined. These contributions are additive, since more fine-
grained techniques are applied where coarse-grained tech-
niques failed to find multiple-occuring code fragments. As
we consider the numbers for the application-specific code to
be more relevant, we have depicted the graph for these num-
bers. It is clear from the graph that whole-procedure reuse
and abstraction perform best where templates are most used.
It is also clear that the importance of the more fine-grained
techniques lowers as more templates are used. Also note
that, as the lines in the graph for procedure parameteriza-
tion and code region abstraction are basically the same, code
region abstraction has lost most if not all of its merits.

5.6 Influence on Compaction Speed
In the upper graph of Figure 8, we have depicted the (ad-

ditive) slowdowns of Squeeze++ when code reuse tech-
niques are applied. Several things can be said about the
results shown in this graph. First of all notice that whole-
procedure reuse and parameterization seem almost free.
This is not because these techniques consume few cycles
compared to the other optimization techniques. The reason
is that these techniques are applied relatively early in the
compaction process. Squeeze++ consists of a number of
phases:

1. disassembly and CFG construction;

2. trivial optimizations (basic version);

3. iterative optimizations;

4. optimizations applied only once;

5. iterative optimizations;

6. fine-grained code reuse;

7. iterative optimizations;

8. code layout, scheduling and assembling.

286

Figure 8: Contributions to code size reduction and
compaction slowdown for the various code reuse
techniques.

The iterative optimizations include constant propagation,
unreachable and dead code elimination, CFG refinements,
etc. The optimizations that are applied only once include
some CFG refinements and the inlining of procedures with
only one calling context.

As whole-procedure code reuse targets identical proce-
dures, we do not want to take the risk that differences are in-
troduced in initially identical procedures by the application
of the iterative optimizations. On the other hand, these opti-
mizations might remove differences between procedures. To
exploit both possibilities, data reuse and whole-procedure
reuse are applied at the beginning of each run over the iter-
ative optimizations. As this immediately eliminates a large
amount of code for some of the benchmarks, all the later
techniques in Squeeze++ are applied on a smaller program,
hence the overall speedup on some benchmarks due to the
reuse of whole procedures.

As parameterization targets similar whole procedures, it
is of no use for nearly identical procedures that have been in-

lined in different contexts. Once they are inlined, we would
not consider them as procedures any more. On the other
hand, as parametrization involves the introduction of some
overhead, we want to avoid parametrizing two procedures
of which we later could find out that one of them was un-
reachable. Therefore procedure parameterization is applied
just prior to the inlining of procedures with only one call-
ing context. At that time, most unreachable code that we
can detect has been detected and removed. Again, the al-
gorithms in later phases are applied on a smaller program.

Two further remarks should be made: it looks as if (the
almost useless) code region abstraction is responsible for the
largest slowdown. A large part of the computations needed
for abstracting code regions however are also needed for
basic block abstraction. Therefore, the relative weight in
the slowdown because of code region abstraction is overes-
timated in the graph. Finally, it is important to know that
these numbers were collected using the Squeeze++ version
that keeps application-specific code and library code sep-
arated. All techniques are applied on both of them, albeit
separated. The slowdowns measured therefore are an overes-
timation of the actual slowdowns when the techniques would
have been applied on application-specific code only. This is
because most algorithms scale superlinearly and because the
whole-procedure reuse and parameterization techniques do
not at all reduce the size of the library code to be handled
by later phases in Squeeze++ like they do on application-
specific code.4

5.7 Influence on Execution Speed
As code reuse for minimizing the static code size is ap-

plied, control flow transfers and copy instructions are in-
serted in the program. Therefore the dynamic number of
executed instructions increases with code reuse and we can
expect that execution times increase as well with code reuse.
On the other hand, code reuse can improve cache behavior
and have a positive influence on execution speed. To mea-
sure the combined positive and negative influence on execu-
tion speed, we’ve measured the execution times of 4 versions
of some benchmark programs. These versions are:

• The base binaries.

• The compacted binaries where the reuse of identical
procedures is the only applied code reuse technique,
since it is the only reuse technique that introduces no
overhead (no overhead reuse).

• The fully compacted binaries (all reuse).

• A version of the programs, where all code reuse tech-
niques are applied, but the ones that involve overhead
are only applied on cold code, i.e. code that according
to the profile information is not frequently executed.
We took as cold code that part of the code with the
lowest execution frequencies, that is responsible for the
bottom 5% of the number of dynamically executed in-
structions (cold code reuse).

4Because of dependencies between the different general com-
paction techniques, major parts of Squeeze++ would re-
quire an (infeasible) rewrite not to apply the general com-
paction techniques on the library code. As we have not
rewritten Squeeze++ for this purpose, not applying the ab-
straction techniques to the library code would have resulted
in an underestimation. We prefer presenting overestimated
slowdowns.

287

The latter three versions were generated with (adapted)
versions of Squeeze++ that separate application-specific
code from library code. Figure 9 shows the code size reduc-
tions for the application-specific part of the three compacted
versions of the programs. It is clear that the maximal re-
ductions are very well approximated when reuse techniques
are applied to cold code only.

Figure 9: Code size reductions for the three com-
pacted versions of the program.

Figure 10: Speedups for the three compacted ver-
sions of the program.

In Figure 10, the speedups compared with the base ver-
sions are shown. The experiments were run on a 667 MHz
Compaq Alpha 21264 EV67 processor with a split primary
cache (64 KB each of instruction and data cache), 8 MB of
off-chip secondary cache, and 1.5 Gbytes of main memory
running Tru64 Unix 5.1. We were able to generate reliable
timing results for 4 of the 8 benchmarks. The other pro-
grams are either highly interactive, provide no batch mode
for execution, or we had no input data available that lead
to high enough execution times for accurate measurements.

For these four programs, the input data we used for measur-
ing the speedups are significantly larger and different from
the input data used for training the programs and generat-
ing the profiles.

As can be seen from the graph, the speedups obtained
by all the optimizations in Squeeze++ and the reuse tech-
niques involving no overhead are significant. Blindly apply-
ing all the code reuse techniques results in a much lower
speedup, and as more code is reused (left to right on the
graph), the obtained speedup shrinks. Selectively applying
the reuse techniques to cold code however does not result
in a slowdown (or smaller speedup). Sometimes, because of
improved cache behavior, the application even runs faster
when overhead is introduced in abstracted cold code.

Note that these timing results are indicative only. Be-
cause of the very strict scheduling and code layout rules to
be able to issue multiple instructions in one cycle, the execu-
tion times of different versions on our superscalar processor
are highly sensitive to very small variations in the layout
and the schedule of the generated code. Since no no-ops
are inserted during scheduling to optimize the schedule and
code layout, a fraction of the timing results depends on pure
luck. Given the fact that our timings results show consistent
trends for all four benchmarks, we however feel confident
about our conclusions: by selectively applying code reuse
techniques, the maximum possible code compaction can be
approximated very well, without sacrificing execution speed.

5.8 Discussion
One can ask whether the discussed techniques will per-

form better at compile-time or at link-time. We feel that
they will perform better at compile-time, where more se-
mantic information is available that can be used (1) to over-
come the stack frame constraints we encountered, and (2) to
build more precise call graphs. The latter is particularly im-
portant for the whole-program optimizations we apply (but
which are not discussed in this paper). On the other hand a
large part of the code size reduction we obtain is the direct
or indirect result of knowing the locations at which statically
allocated data is stored in the final program. These locations
are determined by the linker. So if one moves the related op-
timizations into the compiler, the linker functionallity needs
to be moved into the compiler as well. Compile-time then
equals link-time.

Being able to perform the techniques at link-time, i.e. af-
ter the semantical information is lost, also allows to deal
to a large extent with code size constraints without chang-
ing some principles of today’s C++-like programming envi-
ronments, such as separate compilation and libraries being
available in object format only. We feel that, before drop-
ping these principles and moving to whole-program compi-
lation because of their disadvantages, the possible strenghts
and weaknesses of link-time compaction should be well un-
derstood.

6. RELATED WORK

6.1 Code Compression
There is a considerable body of work on code compression,

but much of this focuses on compressing executable files as
much as possible in order to reduce storage or transmission
costs. These approaches generally produce compressed rep-
resentables that are smaller than those obtained using our

288

approach, but have the drawback that they must either be
decompressed to their original size before they can be ex-
ecuted [12, 14, 15, 16, 27]—which can be problematic for
limited-memory devices—or require special hardware sup-
port for executing the compressed code directly [21, 22, 23,
35, 36]. By contrast, programs compacted using our tech-
niques can be executed directly without any decompression
or special hardware support.

6.2 Code Abstraction
Most of the previous work on code abstraction to yield

smaller executables treats an executable program as a sim-
ple linear sequence of instructions [2, 6, 17]. They use suffix
trees to identify repeated instructions in the program and
abstract them into procedures. The size reductions they re-
port are modest, averaging about 4–7%. Clausen et al. [4]
applied minor modifications to the Java Virtual Machine to
allow it to decode macros that combine frequently recurring
bytecode instruction sequences. They report code size re-
ductions of 15% on average. Our techniques do not rely on
changing the underlying architecture on which a program is
executed and are not language dependent.

Fraser and Proebsting [18] look for repeated patterns in
the intermediate program representation used by the com-
piler. So called super-operators are chosen, corresponding to
the most frequently occurring patterns. These (application-
specific) super-operators are used to extend a virtual in-
struction architecture, for which the program is compiled.
At the same time, an interpreter that is able to interpret
the extended instruction set is generated in C, from which
it can be compiled to the original target architecture. They
report an average code size reduction of 50%, albeit with an
undesirable large impact on execution speed.

The techniques discussed in this paper are fully language
independent, do not require any modifications to the com-
pilers or the target architecture and produce programs that
are faster, rather than slower.

6.3 Other Program Compaction Techniques
The elimination of unused data from a program has been

considered by Srivastava and Wall [31] and Sweeney and Tip
[32]. Srivastava and Wall, describing a link-time optimiza-
tion technique for improving the code for subroutine calls in
Alpha executables, observe that the optimization allows the
elimination of most of the global address table entries in the
executables. However, their focus is primarily on improving
execution speed, and they do not investigate the elimination
of data areas other than the global address table. With our
previous work [7], the same optimizations are applied, but
in a more general way and not limited to the global address
table.

Sweeney and Tip [32] focus on the removal of dead data
members from classes in C++ programs. They report a run-
time high watermark (i.e. the largest object space needed
during the execution of the program) reduction of 4.4% on
the average. This is the result of the elimination of 12% of
the data members.

For object-oriented programming languages, several tech-
niques have been proposed for application extraction, where
only the necessary parts of libraries and/or run-time en-
vironments are linked with the programmer’s code. For
Self [1], a dynamically typed language, such systems ob-
tain higher compaction levels than our system. They are

however to some extent programming-language specific and
start from programs containing the whole run-time environ-
ment of Self applications.

Tip et al. [33] achieve results for Java programs that are
very similar to our results. Although most of their tech-
niques are based on language-independent algorithms, e.g.,
for building a call graph of a program [34], some of the
applied optimizations are language dependent, such as the
compaction of the constant pools in Java programs. Be-
sides that, their techniques exploit the type information
that is available in the Java bytecode. We do not use such
information, as it is not or hardly available in native bi-
nary programs. Srivastava has studied the removal of un-
reachable procedures in object-oriented programming envi-
ronments [30].

MLD [13] and Vortex [8] are two whole-program optimiz-
ers for object-oriented languages (that are not specifically
aimed at code compaction however). They focus on reducing
the overhead created by virtual method invocation. Look-
ing at the whole class hierarchy of a program, some of the
virtual method invocations can be replaced by direct ones.
These systems also reduce the performance penalty due to
polymorphism by using profile information to optimize the
method calls for the most frequently appearing object types.

6.4 Binary Rewriting and Binary Translation
Static binary rewriting at link-time somehow seems very

appropriate for the Alpha architecture. Several static link-
time binary optimizers have been developed for Alpha pow-
ered systems. These include OM [31], Spike [5] and Alto [26],
that focus on speed optimization. Alto is the most advanced
of them, and a binary optimizer quite similar to Alto has
been implemented for the IA-32 architecture: PLTO [29].

We know of two static binary rewriting tools for embed-
ded systems targeting code size. CodeCompressor [39] from
Raisonance is a code compactor applying inlining, code ab-
straction (we have found no details on their techniques) and
peephole optimizations on programs compiled for the 8051
architecture. The creators of this commercial tool expect
program size reductions of up to 25%. aiPop [38] is a more
sophisticated post link-time code compactor for the C16x ar-
chitectures. It includes, e.g., constant propagation, peephole
optimizations, code abstraction, procedure tail merging and
dead code elimination. The reported code size reductions
range from 4 to 20%. Besides the techniques discussed in
this paper, Squeeze++ implements a broad range of whole-
program analyses and optimizations. These include a.o.
peephole optimization, copy propagation, load/store avoid-
ance, constant propagation, dead code elimination, unreach-
able code elimination, dead data elimination, inlining and
code layout optimizations. We refer to [10, 7] for a more
detailed discussion.

There has been a great deal of interest in dynamic bi-
nary optimization (see, for example, [40, 20, 37]). In these
approaches, however, the data structures necessary for run-
time execution monitoring and optimization incur nontrivial
additional memory overheads, and hence are not suited for
the goal of this work, which is memory footprint reduction
of applications. For this reason, we do not discuss them
further.

289

6.5 OOPL-Specific Linking Mechanisms
If identical template instantiations occur in multiple mod-

ules from a program, several techniques [25] can be used to
avoid that these instantiations are linked with the program
multiple times.

One of these techniques is incremental linking, where the
compiler initially generates no instantiations at all. The
linker notices that some code and or data cannot be re-
trieved and feeds this back to the compiler, who generates
the necessary instantiations. This technique only provides
a way to avoid the linking of multiple identical instantia-
tions at the source code level, as it is based on the names of
the symbols the linker does not find. These names include,
through name mangling, the types of the objects for which
the templates were instantiated. Even when long and int are
identical on some machine, this scheme will not avoid link-
ing both Stack<long> and Stack<int> instantiations with
a program.

Another approach is the use of a so called repository, a
database consisting of all the instantiated templates. As
in relational databases, all records are unique, thus avoid-
ing multiple identical instances of the same template. As
the records in the repository are identified by names, these
repositories have the same limitations as incremental link-
ing. Some Microsoft linkers however are able to compare
the code in the records in the repository. [25].

A third technique is used by the GNU compilers: all sec-
tions in object files that were generated for instantiating
templates have a special tag: .gnu.linkonce.d. The linker
compares these sections (again using symbol names only)
and thus avoids multiple occurrences of the same template
instantiation in the final program.

It is clear that these techniques do not address the occur-
rence of code fragments like Squeeze++ does.

Very different techniques to avoid code growth because of
using template-like language features have extensively been
researched in the past, especially for the Ada programming
language and its so called generics. Most of the proposed
techniques use polymorphism [3, 28] to avoid the need for
static specialization of the generics used. The consequence
of those techniques is that no optimized specializations are
generated, but to the contrary, overhead is introduced to
implement the polymorphism. Furthermore, they do not
reuse code at the (sub) basic block level.

7. CONCLUSIONS
Generally applicable program compaction, applied at link-

time, is able to achieve significant code size reductions for
applications developed in object-oriented programming lan-
guages such as C++. The main opportunities come from the
use of reusable code: libraries developed with code reuse and
general applicability in mind on the higher level and pro-
gramming constructs such as templates and inheritance on
the lower level. The code reuse techniques for reusing whole
procedures introduced in this paper contribute significantly
to the achieved results.

Our prototype link-time code compactor, named
Squeeze++, achieves average code size reductions of 45%
on a set of 8 real-life statically linked C++ applications,
ranging from 34 to 62%, without sacrificing execution speed.
On the application-specific part of the programs, which is
representative for dynamically linked programs, even better

results are obtained when language features such as tem-
plates are used by the program. These code size reductions
do not lead to slower programs. In contrast, when the code
reuse techniques are applied selectively, the speedups ob-
tained by the general code optimization techniques imple-
mented in Squeeze++ can still be obtained.

Acknowledgements
The work of De Sutter was supported by the Fund for Sci-
entific Research – Flanders under grant 3G001998. De Bus
is supported by a grant from the ‘Flemisch Institute for the
Promotion of the Scientific Technological Research in the
Industry’ (IWT). We would like to thank Saumya Debray
and the anonymous reviewers for their very useful remarks
and suggestions on previous version of this paper.

8. REFERENCES
[1] O. Agesen and D. Ungar. Sifting out the gold:

Delivering compact applications from an exploratory
object-oriented environment. In Proc. 1994 ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 355–370, Oct. 1994.

[2] B. S. Baker and U. Manber. Deducing similarities in
Java sources from bytecodes. In USENIX Annual
Technical Conference, pages 179–190, June 1998.

[3] G. Bray. Sharing code among instances of Ada
generics. In Proc. 1984 ACM SIGPLAN Symposium
on Compiler Construction (CC), pages 276–284, June
1984.

[4] L. Clausen, U. Schultz, C. Consel, and G. Muller. Java
bytecode compression for low-end embedded systems.
ACM Transactions on Programming Languages and
Systems, 22(3):471–489, May 2000.

[5] R. Cohn, D. Goodwin, P. Lowney, and N. Rubin.
Spike: An optimizer for alpha/nt executables. In
USENIX Windows NT Workshop, Aug. 1997.

[6] K. Cooper and N. McIntosh. Enhanced code
compression for embedded RISC processors. In Proc.
1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
139–149, May 1999.

[7] B. De Sutter, B. De Bus, K. De Bosschere, and
S. Debray. Combining global code and data
compaction. In Proc. 2001 ACM SIGPLAN Workshop
on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 29–38, June 2001.

[8] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and
G. Chaimber. Vortex: an optimizing compiler for
object-oriented languages. In Proc. 1996 ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 83–100, Oct. 1996.

[9] S. Debray and W. Evans. Profile-guided code
compression. In Proc. 2002 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 95–105, June 2002.

[10] S. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compaction. ACM
Transactions on Programming Languages and
Systems, 22(2):378–415, Mar. 2000.

290

[11] Embedded C++ Technical Committee. The Embedded
C++ Specification, Oct. 1999.

[12] J. Ernst, W. Evans, C. Fraser, S. Lucco, and
T. Proebsting. Code compression. In Proc. 1997 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 358–365,
June 1997.

[13] M. Fernández. A Retargetable, Optimizing Linker.
PhD thesis, Princeton University, Jan. 1996.

[14] M. Franz. Adaptive compression of syntax trees and
iterative dynamic code optimization: Two basic
technologies for mobile-object systems. In J. Vitek
and C. Tschudin, editors, Mobile Object Systems:
Towards the Programmable Internet, number 1222 in
LNCS, pages 263–276. Springer, Feb. 1997.

[15] M. Franz and T. Kistler. Slim binaries. CACM,
40(12):87–94, Dec. 1997.

[16] C. Fraser. Automatic inference of models for statistical
code compression. In Proc. 1999 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 242–246, May 1999.

[17] C. Fraser, E. Myers, and A. Wendt. Analyzing and
compressing assembly code. In Proc. 1984 ACM
SIGPLAN Symposium on Compiler Construction
(CC), pages 117–121, June 1984.

[18] C. Fraser and T. Proebsting. Custom instruction sets
for code compression.
http://research.microsoft.com/˜toddpro, 1995.

[19] J. Hoogerbrugge, L. Augusteijn, J. Trum, and
R. van de Wiel. A code compression system based on
pipelined interpreters. Software Practice and
Experience, 29(11):1005–1023, 1999.

[20] R. Hookway and M. Herdeg. Digital FX!32:
Combining emulation and binary translation. Digital
Technical Journal, 9(1):3–12, 1997.

[21] T. M. Kemp, R. M. Montoye, J. D. Harper, J. D.
Palmer, and D. J. Auerbach. A decompression core for
powerpc. (IBM) J. Research and Development, 42(6),
Nov. 1998.

[22] D. Kirovski, J. Kin, and W. H. Mangione-Smith.
Procedure based program compression. In MICRO,
Dec. 1997.

[23] K. D. Kissell. MIPS16: High-density MIPS for the
embedded market. In Proc. of Real Time Systems ’97
(RTS97), 1997.

[24] C. Lefurgy. Efficient Execution of Compressed
Programs. PhD thesis, University of Michigan, June
2000.

[25] J. Levine. Linkers & Loaders. Morgan Kaufmann
Publishers, 2000.

[26] R. Muth, S. Debray, S. Watterson, and
K. De Bosschere. alto : A link-time optimizer for the
Compaq Alpha. Software Practice and Experience,
31(1):67–101, Jan. 2001.

[27] W. Pugh. Compressing java class files. In Proc. 1999
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
247–258, May 1999.

[28] J. Rosenberg. Generating Compact Code for Generic
Subprograms. PhD thesis, Carnegie-Mellon University,
1983.

[29] B. Schwarz, G. Andrews, M. Legendre, and S. Debray.
PLTO: A link-time optimizer for the intel ia-32
architecture. In Proc. Workshop on Binary
Translation (WBT), Sept. 2001.

[30] A. Srivastava. Unreachable procedures in
object-oriented programming. ACM Letters on
Programming Languages and Systems, 1(4):355–364,
Dec. 1992.

[31] A. Srivastava and W. Wall. Link-time optimization of
address calculation on a 64-bit architecture. In Proc.
1994 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
49–60, June 1994.

[32] P. Sweeney and F. Tip. A study of dead data members
in C++ applications. In Proc. 1998 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 324–323, June 1998.

[33] F. Tip, C. Laffra, and P. Sweeney. Practical experience
with an application extractor for java. In Proc. 1999
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 292–305, Nov. 1999.

[34] F. Tip and J. Palsberg. Scalable propagation-based
call graph construction algorithms. In Proc. 2000
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 281–293, Oct. 2000.

[35] TriMedia Technologies Inc. TriMedia32 Architecture,
Oct. 2000.

[36] J. Turley. Thumb squeezes ARM code size.
Microprocessor Report, 9(4):1–5, Mar. 1995.

[37] B. Vasanth, E. Duesterwald, and S. Banejia. Dynamo:
A transparent dynamic optimization system. In Proc.
2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
1–12, June 2000.

[38] http://www.absint.com/aipop/.

[39] http://www.raisonance.com.

[40] http://www.transitives.com.

291

