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I
n the Java world, libraries are usually
available in a bytecode representation
that provides high-level semantic infor-
mation, such as type information. This
information is exploited by Java appli-
cation extractors, as discussed in the
article “Extracting Library-based Java

Applications” in this section. By contrast,
reusable code in the C/C++ world often is only
distributed in the form of native machine code in
object archives. Therefore, we cannot
rely on the same techniques to avoid
code reuse overhead in C/C++ pro-
grams. Code compaction tech-
niques that operate on native
assembly or machine code are the
topic here; these techniques can be
applied in the context of traditional
development environments consisting of
compilers and linkers.

In most C/C++ development tool chains,
the compiler is the only tool that really opti-
mizes code for speed or size [9]. The effect of
the compiler optimizations depends on the
amount of code available for inspection; tech-
niques like register allocation and procedure
inlining need a view of the entire program in

order to achieve maximum effect. However, the
scope of traditional compilers is often limited to
one source code module at a time. Module
boundaries are also optimization boundaries.
The effectiveness of optimizations can be
improved by extending their scope, that is, by
increasing the size of the source code modules.

Typical linkers [8] also leave room for
improvement since they perform few optimiza-

tions. Most linkers just examine the object
files constituting a program to find out

which external entities are referenced,
search for these entities in libraries,

and link the necessary library mem-
bers into the program. Once all refer-
ences are resolved, the linker assigns

addresses to all the object files and
library members, and patches references

to these newly assigned addresses.
For most linkers, object file sections are the

atomic building blocks of an executable. Hence,
to assure that only referenced library code1 is
linked with the final program, an object file sec-
tion should contain only one “linkable” entity,
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1Unreferenced code is not limited to libraries. It is often found in large appli-
cations of which the code base has been maintained and adapted for several

years by several different generations of programmers. 



42 August  2003/Vol. 46, No. 8 COMMUNICATIONS OF THE ACM

that is, one function or data element. Otherwise spuri-
ous entities can end up in the program that in turn
require additional entities to be linked in or retained.
There clearly is a goal conflict between compiler and
linker: the compiler needs large compilation units gen-
erating large, optimized object file sections, while the
linker needs fine-grained object files (having one pro-
gram entity per section) to prevent unnecessary code
bloat. 

Partial smart linking solutions to this problem have
existed for a long time. One quite common solution is
to let the compiler generate multiple separately link-
able sections from each source code file. This is only a
partial solution, as the requirement of separate linkage
by itself severely constrains the compiler optimization.
Compiling several source code modules together is
also only a partial solution, as it requires all code to be
available in the source code format handled by the
compiler. For closed-source third-party libraries and
program parts written in assembly, it is inapplicable.
Finally, embedded tool-chain builders often spend a
lot of time fine-tuning their libraries to get good code
size. While this tuning effort may minimize code size
on average, it does not minimize the code size of any
single application.

To further complicate the situation, modern soft-
ware engineering advocates maximum source code
reuse. A developer writing reusable code anticipates
the contexts in which the code could be reused in the
future. This involves generalizing the functionality,
adding extra checks on parameters and adding special-
ized code to handle corner cases efficiently. In any sin-
gle application, part of this extra code may be
unnecessary, but the compiler cannot remove it, as its
execution context is not known to the compiler.

It is clear from this discussion that traditional pro-
gramming tool chains and modern software engineer-
ing result in programs containing lots of unnecessary
code. In order to avoid this overhead, we need more
advanced techniques that go beyond the smart linking
of separately optimized pieces of code.

Post-Pass Whole-Program Optimization 
Post-pass whole-program optimizers to a large extent
solve this problem by applying an extra optimization
pass on assembly or object code. Because this pass is
applied after the regular optimization passes made by
the compiler, the post-pass optimization usually has a
larger scope: it can handle libraries, mixed-language
code applications, and handwritten assembly.

Here, we present the most important techniques
that post-pass compaction tools commonly use to pro-
duce more compact programs. To illustrate the poten-
tial of these techniques, three existing post-pass

optimizers developed by the authors—the assembly
optimizer aiPop and the link-time optimizers
Squeeze++ and Diablo—are evaluated in three sidebars
appearing at the end of this article.

The first broad class of post-pass compaction tech-
niques consists of whole-program optimizations. Most
of these optimizations are in fact local (in the sense that
they transform only one small program fragment at a
time) but they are called whole-program optimizations
because they rely on the information collected by
whole-program analyses.

Post-pass value analyses statically determine register
values that, independent of a program’s input, are
either constant or can take values only from some
restricted set. Value analyses can be used to remove
computations whose result is statically known or to
remove parts of the program that can never be exe-
cuted, given the set of the values that are produced.
Prominent examples of value analyses are constant
propagation and interval analysis [9].

During program execution constant values are pro-
duced by literal operands, by loads from read-only
data, and by ALU-operations on known data. A major
source of constants, not available to the compiler, are
the code and data addresses that are determined only
when the linker lays out the code and data in the final
program. The computation of these addresses and their
use in the program can be optimized by the post-pass
optimizers just like any other computation.

Whole-program liveness analysis [9], another
important analysis, determines for each program point
which registers contain live values, that is, values that
may be needed later during the execution of the pro-
gram. Its results can be used during post-pass opti-
mization to remove unnecessary parameter-passing
code and redundant register saving/restoring code that
typically results from overly conservative adherence to
calling conventions. Additionally, post-pass optimizers
reapply many standard compiler optimizations, such as
peephole optimization, copy propagation, useless code
elimination, and strength reduction [9]. There are two
reasons to do so. 

First, most compile-time optimizations are per-
formed on the intermediate representation of the pro-
gram. By contrast, post-pass optimizers handle the
machine code instructions of the program individually.
As such they can perform more fine-grained optimiza-
tions, including architecture-dependent optimizations
tailored to individual properties of some target proces-
sor. Examples are addressing mode and memory-access
optimizations.

Another reason to reapply the compiler optimiza-
tions is that the typical post-pass whole-program analy-
ses and optimizations result in new opportunities for
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typical compiler optimizations. This might be because
more free registers have become available or because the
elimination of some execution paths has made compu-
tations (partially) redundant.

Eliminating Duplicated Code
The second broad class of post-pass compaction tech-
niques seeks to eliminate duplicate code fragments in
programs. Code duplication can originate,  for exam-
ple, from the use of C++ templates. Templates allow a
programmer to write generic code once and then spe-
cialize it at compile time for multiple execution con-
texts, which are often based on type information.
Unless care is taken, a program containing multiple dif-
ferent instantiations of a template method will contain
a lot of duplicated code.

A number of techniques have been developed to
avoid linking identical template instantiations with a
program several times [8]; most use type information
to compare instantiations, which is very unsatisfac-
tory. Code that seems different at the source code level
(because a pointer to a Shape object, for example, has
a different type from a pointer to an Employee object)
can be identical or very similar at the assembly level
where all pointers are simple addresses. Type-based
techniques will not detect such duplicates.

Other techniques directly compare the assembly
code of template method instantiations. Most of these
techniques are very coarse-grained, as they only avoid
the duplication of whole identical method instantia-
tions. They do not at all avoid duplicated code in

almost identical or very similar instantiations.
To get rid of such code duplicates as well, post-pass

procedural abstraction is very well suited. With pro-
cedural abstraction (also called outlining), multiple
occurring identical assembly code fragments are
abstracted into a new procedure. All original occur-
rences are replaced by a call to this procedure. Going
further, nonidentical, but similar or functionally
equivalent code can first be made identical by reorder-
ing instructions, renaming registers or parameteriza-
tion, after which they can be abstracted as well [2].

A technique similar to procedural abstraction is tail
merging. The main difference is that no procedures
containing common code sequences are built; instead,
they are encapsulated in code entered by normal jump
instructions. 

While the code originating from templates proves to
be an ideal candidate for procedural abstraction and tail
merging, these techniques can also be used on other
code. For example, compilers tend to generate identical
or similar code at the start and end of procedures to
save registers on the stack and for other aspects of call-
ing conventions. These procedure prologues and epi-
logues are ideal candidates for abstraction, as they
frequently occur at well-known program points, thus
easing their detection [1].

Other code abstraction and tail-merging opportuni-
ties originate from the frequent use of copy and paste
by programmers, a technique that not only makes pro-
grams more difficult to maintain but also makes them
unnecessarily large.

Diablo
Diablo (see www.elis.ugent.be/diablo) is a retargetable framework for link-time optimization. 
Binaries are transformed into a representation that encodes both target-independent and target-
dependent attributes, thus enabling target-independent and target-dependent optimizations. Diablo
back-ends for the ARM, MIPS, IA32, IA64, SuperH, and PowerPC architectures are available.

As opposed to Squeeze++, Diablo is still in an early
development stage, and a lot of optimization and com-
paction techniques still need to be implemented. More
important, however, Diablo was developed to operate in
highly competitive embedded software 
development tool chains, such as the ARM Developer Suite,
a widely used tool chain that is highly regarded for the
small binaries it generates.

To demonstrate Diablo’s (very preliminary) compaction potential, we evaluated it on some small 
programs (less than 100,000 instructions) taken from the Mibench and Mediabench suites. These programs
were compiled with the ARM Developer Suite (version 1.1). The table here shows the size of the binaries
after compaction, relative to the size of the original binaries.

These results indicate link-time compaction offers significant code size reductions (10% on average),
even in environments already geared toward producing compact code. Also, contrary to common belief
about whole-program optimization techniques, these techniques need not be too slow to be practically
viable. All presented benchmarks were compacted by Diablo in several seconds. c
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87.2%
87.6%
95.9%
81.1%

Adpcm
Bitcount
Djpeg
Epic

85.2%
87.8%
93.1%
95.1%

G721
HelloWorld
Qsort
Susan

Diablo: Size of the binaries after compaction.



Building an Internal Representation 
The construction of an internal program representa-
tion is a problem we did not mention so far. Yet it is
critical for the success of post-pass compaction tools, as
these tools process flat lists of machine-code instruc-
tions without high-level control flow constructs like
loops or switch statements. 

The first step of any post-pass compaction is the
construction of a control flow graph [1, 7]. The nodes

of this graph represent basic blocks of instructions, and
its edges represent all possible control flow between the
nodes. Computing this graph is straightforward, except
for indirect control flow instructions where the target
address is contained in a register. Such indirect control
flow transfers are pessimistically approximated by
assuming that every computable code address (for
example, a code label in assembly code) is a possible
target. While the resulting graph contains a lot of unre-
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aiPop 
aiPop (see www.AbsInt.com/aipop and [5]) is a commercial assembly-based post-pass optimizer for the
C16x/ST10 processor family that performs a wide range of code optimizations. Quick retargeting to other
processors is supported by an underlying hardware specification mechanism.  

To speed up the time-consuming identification of repeated code sequences, aiPop analyzes the entire
application and builds a pattern database. It is not necessary to rebuild the database in each optimization
run; instead, when there are only minor changes in the application, a previously created pattern database
can be used.

aiPop leaves most of the symbolic debug information intact and annotates the generated code with
information about the applied transformations, as depicted in the example code fragment here. Only the
debug information for factorized program parts must be discarded. However, since the extracted program
parts are usually only a few instructions long, source-level debugging is only slightly influenced. All trans-
formations of aiPop are deterministic, that is, fully reproducible. This property, together with the possibil-
ity of validating the correctness of the applied transformations by studying the generated annotations,
has proven to be a key aspect to the industry acceptance of this tool.

Command line options are available that disable optimizations potentially degrading performance, so
that customers can individually determine the trade-off between code size and performance. aiPop has
reduced entire customer applications to between 95.2% (for a small application featuring highly optimized
C code) and 79.61% (for a large mobile-phone application) of their original size. The latter result means
that 25% more code and functionality can be packed into a flash memory of the same size.

Optimization Annotations—Simple Example
; file.c  21 a = 15; b = -3; l = 8L;

MOVB RL3,#0Fh

; MOV R13,#0FFFDh ; -aipop166: --opt-mc

MOV R15,#0fffdh ; +aipop166: --opt-mc

MOV R1, #08h

MOV R2, #00h

; file.c  22 cdb = b; xg = c;

; MOV R15,R13 ; -aipop166: --opt-mc

; NOP ;-aipop166: --opt-nop; +aipop166: --opt-mc

; Explanation: 

; Assembly comments generated by the compiler in debug mode are preserved. The string 

; 'aipop166: --opt-mc' indicates that a transformation has been caused by the 'mc' module

; which collapses redundant move chains (b:=a; c:=b -> c:=a). If an instruction is 

; removed, the annotation is prefixed by '-', if an instruction is added, it is prefixed

; by '+'.

; MOV R13,#0FFFDh is replaced by MOV R15,#0fffdh. MOV R15,R13 is replaced by a NOP the 

; NOP is removed by optimization module --opt-nop which eliminates NOP instructions that are

; not necessary for timing reasons. c



alizable execution paths, it is a good starting point for
the whole-program analyses we discussed earlier. 

The results of those analyses can be used to elimi-
nate some unrealizable execution paths from the
graph, thus refining it into a more precise representa-
tion of the program. For example, when the target
address of an indirect jump is found to be constant, we
can replace many control flow edges by one. Because
the resulting graph is more accurate, new opportuni-
ties arise for propagating constants, and thus call for
even further refinement. 

Sometimes such an iterative refinement, involving a
new program analysis after each refinement, is compu-
tationally impractical. Often program slicing is more
appropriate. A program slice consists of the program

parts that potentially affect the values computed at
some point of interest. Control flow refinement by pro-
gram slicing determines statically known register values,
but only by analyzing the code sequences responsible
for computing the control flow targets [7].

With the refined graph, it is straightforward to
detect code sequences that are never executed. It suffices
to recursively mark all nodes of the control flow graph
that are reachable from any entry point of the program.
All nodes that are not marked reachable can be
removed from the graph. Unreachable data can be
removed in a comparable fashion. If none of the point-
ers to a data section of some object file are used
throughout the program, that section can be removed
from the program. Due to aliasing problems the analy-
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Squeeze++ 
Squeeze++ (see
www.elis.ugent.be/squeeze++
and [1–4]) is a link-time
binary rewriter that uses only
the information necessary to
link a program. Source or
assembly code need not be
available; object files includ-
ing relocation and symbol
information suffice.
Squeeze++ is a proof-of-con-
cept research prototype that
applies an entire range of whole-program optimiza-
tions and code-abstraction
techniques. Its target archi-
tecture, the clean Alpha archi-
tecture, provided an excellent
research platform to the
researchers. The techniques
implemented in Squeeze++ are
not tied to the Alpha architec-
ture, however. 

The compaction results for
the set of C++ benchmarks
listed in the table here are depicted in the figure in
this sidebar. Some programs are reduced to about
half or even one-third of their original size. This is the
case for programs consisting largely of template code, and it can be seen that for those applications, code
abstraction is vital in order to achieve good compaction. With respect to side effects on performance, we
made the following observations. First, the compacted programs become 2%-30% faster, with the speedup
averaging approximately 11%. The main reason for this speedup is that, with code abstraction limited to
infrequently executed code only, the whole-program optimizations results in far less instructions being exe-
cuted. We also counted up to 16% fewer instruction cache misses and up to 45% fewer data cache misses
during simulations of relatively small caches (split level-1 instruction and data caches of 4KB).

The compaction times for these programs range from tens of seconds to about 15 minutes for the largest
application. This is not extremely fast but is fast enough to be practically viable. c
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ses needed to detect unreachable data are complex, yet
they have proven to be quite effective [3].

Note that the detection of unreachable data can also
affect code size; for code addresses stored in unreach-
able data, we do not have to make the pessimistic
assumption that they can be the target of any indirect
jump. 

Side Effects on Performance
Although in some situations code size is the only
important constraint on a program, often performance
(execution speed and power consumption) is even
more important. It is clear that whole-program opti-
mizations in general do not only optimize code size,
but also optimize performance, just like most compiler
optimizations do. Post-pass optimizers aiming at per-
formance [6, 10] not surprisingly overlap to a large
extent with post-pass compaction tools.

The two exceptions are procedural abstraction and
tail merging. Besides the insertion of control flow
transfers, any non-trivial abstraction or tail merging
involves the insertion of additional glue code and there-
fore of runtime overhead. As more instructions have to
be executed and fetched from memory, code abstrac-
tion and tail merging often result in a slowdown and
increased power consumption.

In most applications 10%–20% of the code is
responsible for 80%–90% of the execution time. One
important observation worth mentioning is that mini-
mizing the size of a whole program through code
abstraction or tail merging does not imply a size reduc-
tion of the frequently executed code. As a result, apply-
ing these techniques to minimize the size of an entire
program does not necessarily imply better instruction
cache performance. A simple solution to this problem
is to separate frequently and infrequently executed code
during code abstraction. An even simpler solution is to
apply code abstraction and tail merging only to infre-
quently executed code. This solution avoids all possible
kinds of overhead [4].

Discussion
We’ve described how post-pass compaction tools can
solve many of the code-size-related problems in today’s
program development environments. The added value
of post-pass compaction results mainly from the global
scope of their analyses and transformations and the
application thereof to machine code, where all details
are exposed. 

The three tools discussed in the sidebars here—in
particular aiPop—prove that the discussed techniques
are practically viable and robust. Our experience with
Diablo and Squeeze++ enforces our belief that these
techniques will gain importance in the future, but also

that a lot of research remains to be done in this area.
An additional advantage of existing post-pass tools is

that they can easily be integrated into existing tool
chains: they are just another shackle. This ease of inte-
gration (or should we call it lack of integration) is not
sustainable. The main limitation of today’s post-pass
optimizers is they do not have access to the detailed
(semantic) information a compiler has access to. Better
integration in existing tool chains and better preserva-
tion along the chain of the information collected by
compilers should allow post-pass tools to improve
upon their current performance.  
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