
Link-time Compaction of MIPS Programs
Matias Madou, Bjorn De Sutter, Bruno De Bus, Ludo Van Put, and Koen De Bosschere

Abstract—Embedded systems often have limited amounts
of available memory, thus encouraging the development of
compact programs. This paper presents a link-time pro-
gram compactor for the embedded MIPS architecture. The
application of several important data flow and control flow
analyses and the related program transformations at link-
time are discussed and evaluated for a collection of typical
embedded applications compiled against the uClibc library
targeted at the embedded market. With the presented link-
time compactor, code size reductions of up to 27% are ob-
tained, and speedups of up to 17%.

Index Terms—compiler, linker, compaction, optimization

I. Introduction

The MIPS architecture is intended for high performance,
low-power, system-on-a-chip applications, such as smart
cards, point of deployment devices, digital cameras, set-top
boxes, GPS-systems, etc. The production cost and power
consumption of such mass-production embedded systems
are becoming increasingly important, which results in lim-
ited amounts of memory on such systems. Of course, mem-
ories can only be made as small as the programs that need
to be stored in them.

To reduce the program size of programs written in stat-
ically bound programming languages such as C and C++,
we have proposed link-time code compaction [3, 1, 2] in
the past. By applying an additional program optimization
pass at link-time, code overhead resulting from separate
compilation (of source code files and of application and
library code) can be eliminated to a large extent. Until
recently, research into link-time program compaction re-
mained in the proof-of-concept phase: the Squeeze++ pro-
totype compactor [3, 2], e.g., was evaluated on the Alpha
Tru64Unix platform. This workstation and server platform
can hardly be called an embedded platform, as neither its
architecture, nor its compilers or system libraries are ori-
ented towards the embedded market.

In this paper, we present our link-time compactor for the
embedded MIPS R3000 platform. This optimizer is devel-
oped in the Diablo [1] link-time code editing framework,
and it applies aggressive whole-program optimizations such
as constant propagation, address computation optimiza-
tions, unreachable code elimination and useless code elim-
ination on binary MIPS code at link time.

This paper is organized as follows. Section II discusses
those parts of the MIPS architecture that require special
attention when editing binary MIPS code. Section III dis-
cusses the actual whole-program optimizations applied in
our link-time optimizer. An experimental evaluation is the

Presenting author: Matias Madou; Postal Address: Ghent Uni-
versity, Department of Electronics and Information Systems, Sint-
Pietersnieuwstraat 41, 9000 Gent, Belgium; phone: +32 9 264 33 67;
fax: +32 9 264 35 94; email: mmadou@elis.ugent.be

subject of section IV, after which related work is discussed
in Section V and conclusions are drawn in Section VI.

II. The MIPS Architecture

The MIPS architecture [9] is a RISC architecture with
fixed-width 32 bits instructions. This, combined with the
fact that there is no data mixed in between the code in
MIPS programs, makes it trivial to disassemble the binary
code in a program into an intermediate program represen-
tation that is suitable for link-time optimization. Some
important pipeline effects however, such as delay slots,
are programmer-visible and need to be taken into account
when binary MIPS code is manipulated at link-time. These
effects are the subject of this section.

A. Delayed Branches

Some versions of the MIPS ISA provide delayed and non-
delayed branches. With delayed branches, the instruction
following a branch (i.e. the delay slot) is always executed,
whether or not the (conditional) branch is taken, to reduce
the branch-misprediction penalty. Because non-delayed
branch instructions are quite expensive in terms of branch-
misprediction penalty, programmers are encouraged not to
use them. But of course, when no suitable instruction can
be found to fill the delay slot, code size increases because
a no-op instruction has to be inserted in the code.
Since the primary focus of our link-time optimizer is

code compaction, we might have chosen to use non-delayed
branches to decrease the number of no-ops inserted. We
have not chosen to do so, because non-delayed branches
will probably be removed from the next revision of the
MIPS architecture. Therefore introducing non-delayed
branches in a program would endanger forward compatibil-
ity of the generated code. Furthermore, we have not found
a single compiler that generates code with non-delayed
branches. Introducing non-delayed branches at link-time
to decrease code size would therefore not only be unwise
for compatibility reasons, it would also be unfair: the code
size reduction obtained at link-time would no longer re-
sult from typical link-time optimization opportunities, but
from a compiler’s deliberate choice not to exploit some
(dubious) part of the architecture.

B. Delayed Loads

Besides branches, load instructions may also have a de-
lay slot in MIPS processors. Since the data loaded by an
instruction is not available during the next cycle, the pro-
cessor must either be able to lock the pipeline when the
next instruction consumes the loaded value, or such de-
pendencies must simply be forbidden. While implementing
interlocked loads increases the complexity of a processor’s
circuitry, thus increasing the power consumption of a pro-
cessor, disallowing load dependencies in two consecutive



The remainder of this paper is not in-
cluded as this paper is copyrighted ma-
terial. If you wish to obtain an elec-
tronic version of this paper, please send
an email to bib@elis.UGent.be with a
request for publication P104.043.pdf.

1


