
Link-Time Optimization of ARM Binaries

Bruno De Bus
bdebus@elis.ugent.be

Bjorn De Sutter
brdsutte@elis.ugent.be

Ludo Van Put
lvanput@elis.ugent.be

Dominique Chanet
dchanet@elis.ugent.be

Koen De Bosschere
kdb@elis.ugent.be

Electronics and Information Systems (ELIS) Department
Ghent University, Sint-Pietersnieuwstraat 41

9000 Gent, Belgium

ABSTRACT
The overhead in terms of code size, power consumption and
execution time caused by the use of precompiled libraries
and separate compilation is often unacceptable in the em-
bedded world, where real-time constraints, battery life-time
and production costs are of critical importance. In this pa-
per we present our link-time optimizer for the ARM archi-
tecture. We discuss how we can deal with the peculiarities of
the ARM architecture related to its visible program counter
and how the introduced overhead can be eliminated to a
large extent. Our link-time optimizer is evaluated in two
tool chains. In the Arm Developer Suite tool chain, av-
erage code size reductions with 14.6% are achieved, while
execution time is reduced with 8.3% on average, and en-
ergy consumption with 7.3%. On binaries from the GCC
tool chain the average code size reduction is 16.6%, execu-
tion time is reduced with 12.3% and the energy consumption
with 11.5% on average. Finally, we show how the incorpo-
ration of link-time optimization in tool chains may influence
library interface design.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration;compilers;optimization; E.4 [Coding and Infor-
mation Theory]: Data Compaction and Compression—
program representation

General Terms
Experimentation, Performance

Keywords
performance, compaction, linker, optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’04, June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006 ...$5.00.

1. INTRODUCTION
The use of compilers to replace manual assembler writing
and the use of reusable code libraries have become com-
monplace in the general-purpose computing world. These
software engineering techniques improve programmer pro-
ductivity, shorten time-to-market and increase system reli-
ability. An unfortunate, but non-critical drawback is the
code size, execution time and power consumption overhead
these techniques introduce in the generated programs.
In the embedded world, the situation is somewhat differ-
ent. Here the more critical factors include hardware produc-
tion cost, real-time constraints and battery life-time. As a
result the overhead introduced by software engineering tech-
niques is often unacceptable. In this paper we target the
overhead introduced by separate compilation and the use of
precompiled (system) libraries on the ARM platform. This
overhead has several causes.
Firstly ordinary linkers most often link too much library
code into (statically linked) programs, as they lack the abil-
ity to detect precisely which library code is needed in a spe-
cific program. Also, the library code is not optimized for
any single application.
Secondly, compilers rely on calling conventions to enable
cooperation between separately compiled source code files
and library code. While calling conventions are designed to
optimize the “the average procedure call”, they rarely are
optimal for a specific caller-callee pair in a program.
Finally, compilers are unable to apply aggressive whole-
program optimizations. This is particularly important for
address computations: since the linker decides on the final
addresses of the code and data in a program, these addresses
are unknown at compile time. A compiler therefore has to
generate relocatable code, which is most often suboptimal.
Optimizing linkers try to overcome these problems by
adding a link-time optimization pass to the tool chain. Op-
timizing linkers take as input compiled object files and pre-
compiled code libraries, and optimize them together to pro-
duce smaller, faster, or less power-hungry binaries.
This paper presents our link-time optimizer for the ARM
platform, whose architecture poses some specific problems
for link-time optimization. Our main contributions are:

• We show how to deal effectively with the program
counter (PC)-relative address computations that are
omnipresent in ARM binaries.

211



Figure 1: The Diablo framework on the left, and
backends on the right. The parts used in the link-
time optimizer evaluated in this paper are drawn in
grey.

• We show how link-time constant propagation can be
used to optimize indirect data accesses through ad-
dress pools.

• We demonstrate that significant program size reduc-
tions can be obtained by adding an optimizing linker
to a tool chain that is known for producing very com-
pact programs: the ARM Developer Suite.

• We show how link-time optimization can not only re-
move overhead introduced by separate compilation,
but also how its incorporation in tool chains may affect
the design of library interfaces.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of our link-time optimizer. Section
3 discusses the peculiarities of the ARM architecture for
link-time optimization, and how we deal with them in our
internal program representation. Section 4 discusses some
interesting link-time optimizations for the ARM. Their per-
formance is evaluated in Section 5, after which related work
is discussed in Section 6, and conclusions are drawn in Sec-
tion 7.

2. OVERVIEW
Our ARM link-time optimizer is implemented in Diablo [3],
a portable, retargetable framework we developed for link-
time code editing (http://www.elis.ugent.be/diablo). Dia-
blo consists of a core framework, as depicted in Figure 1,
extended with different object-file format and architecture
backends.

2.1 General Overview
When the Diablo framework is used to apply link-time op-
timization, several internal program transformation phases
can be distinguished. First, the appropriate file-format back-
end links the necessary program and library object files.
Then an internal instruction representation is built during
the disassembler phase. This representation consists of both
architecture-independent information and architecture-

dependent information. Both types of information are gath-
ered via call-backs to the appropriate architecture back-
ends. For the rather clean RISC ARM architecture, we chose
an architecture-dependent instruction description that maps
each ARM instruction to one ARM Diablo instruction.
After the disassembler phase, an interprocedural control
flow graph (ICFG) is constructed via call-backs to the ar-
chitecture backend. In this graph, which is a non-linear
representation of the program code, addresses are meaning-
less. Therefore all PC-relative computations in the program
are replaced by either edges in the graph (as for PC-relative
direct branches) or by so called address producers which we
discuss in detail in section 3.
Analyses and optimizations are applied on the ICFG. In
the architecture-independent analyses and optimizations im-
plemented in the core of the framework, such as liveness
analysis and useless code elimination, only the architecture-
independent information is used. Architecture specific opti-
mizations, such as peephole optimizations, are implemented
via call-backs to the appropriate architecture backend, as are
the semantics-based analyses such as constant propagation.
After the program is optimized, the ICFG is linearized
again and address producers are translated into ARM in-
struction sequences. This will be discussed in detail in sec-
tion 4.
Finally, the linearized sequence of instructions is assem-
bled, and the final program is written out.

2.2 Two Optimization Phases
The data flow analyses in Diablo compute information
about registers. Compared to compile-time data flow analy-
ses on variables, link-time analyses are simplified by the fact
that no pointers to register exist, and that hence no aliasing
between registers is possible.
On the other hand link-time analysis is hampered by the
fact that registers are frequently spilled to memory in gen-
eral, and onto the stack in particular. If this spilling is not
appropriately modeled, analyses become less precise.
While stack analyses can be used to track data spilled
onto the stack, such analyses have never proven to be very
precise. Fortunately however, information derived from the
fact that calling conventions are respected can be exploited
to improve the precision of existing stack analyses. Calling
conventions for example prescribe which callee-saved regis-
ters are spilled to the stack upon entry to a procedure. Call-
ing convention information needs to be handled with care
however, and to do so, we have split the program analyses
and optimizations in our link-time optimizer in two phases.
During the first phase, aggressive program analysis is fa-
vored over aggressive optimization. Analyses and optimiza-
tions are performed iteratively (as there are mutual depen-
dencies) and information that can be extracted from calling-
convention adherence is exploited to improve the analyses.
As a result, we can present very precise whole-program anal-
ysis information to the program optimizations. During this
first phase, the optimizations are limited to transformations
that do not result in code disrespecting the calling conven-
tions. This way subsequent analyses in this first phase can
still safely rely on calling convention information.
In the second optimization phase, no calling convention
information is used in the analyses, and the optimizations
may transform the program in any (semantics-preserving)
way, disregarding the calling conventions completely.

212



The benefit of using two optimization phases, one with
calling convention adherence and one without, is the sim-
plification of the implementation of additional analyses and
optimizations. For analyses that we want to run in both
phases, we only need to implement the possibility to disable
the use of calling convention information. For optimiza-
tions that we want to apply in both phases, we only need
to implement the possibility to disable calling-convention-
disregarding transformations.
The alternative would have been to make all transforma-
tions update the information describing how procedures ad-
here to calling conventions, and have all analyses take this
information into account. As a consequence, the transfor-
mations still would need to differentiate between cases that
result in convention-disrespecting code or not, and analyses
would still need to be able to work with and without calling
convention adherence.
Clearly our simple two-phase all-or-nothing approach is
much simpler and less error-prone. Moreover, in practice we
have experienced that the number of cases in which a more
refined approach would be useful is very limited.

3. INTERNAL PROGRAM REPRESENTA-
TION

In this section, we discuss the ARM architecture pecu-
liarities and how we deal with them in our internal program
representation.

3.1 ARM architecture
The ARM architecture [7] is one of the most popular ar-
chitectures in embedded systems. All ARM processors sup-
port the 32- bit RISC ARM instruction set and many of
the recent implementations also support a 16-bit instruction
set extension called Thumb[1]. The Thumb instruction set
features a subset of the most commonly used 32-bit ARM
instructions, compressed into 16 bits for code size optimiza-
tion purposes. As our current link-time optimizer has no
Thumb backend yet, we focus on the ARM architecture and
code in this paper.
For our purpose the most interesting features of the ARM
architecture are:

• There are 15 general purpose registers.
• A 16th architectural register is the PC. This regis-
ter can be read (to store return addresses or for PC-
relative address computations and data accesses) and
written (to implement indirect control flow, including
procedure returns).

• Almost all instructions can be predicated with condi-
tion codes.

• Most arithmetic and logic instructions can shift or ro-
tate one of the source operands.

• Immediate instruction operands consist of an 8-bit con-
stant value and a 4-bit shift or rotate value, that de-
scribes how the constant should be shifted or rotated.

These features result in a dense instruction set, ideally
suited to generate small programs. This is important since
production cost and power consumption constraints on em-
bedded systems often limit the available amount of memory
in such systems.

Figure 2: Example of the use of address pools and
PC-relative data accesses.

Unfortunately these features also have some drawbacks.
Since the predicates take up 4 of the 32 bits in the instruc-
tion opcodes, there are at most 12 bits left to specify imme-
diate operands, such as offsets in indexed memory accesses
or in PC-relative computations. In order to access statically
allocated global data or code, first the address of that data
or code needs to be produced in a register, and then the
access itself can be performed.
On most general-purpose architectures, this problem is
solved by using a so called global offset table (GOT) and a
special-purpose register, the global pointer (GP). The GP
always holds a pointer to the GOT, in which the addresses
of all statically allocated data and code are stored. If such
data or code needs to be accessed, its address is loaded from
the GOT by a load instruction that indexes the GP with an
immediate operand.
On the ARM architecture, such an approach has two draw-
backs: given that there are only 15 general-purpose registers,
sacrificing one of them to become a GP is not preferable.
Moreover, since the immediate operands that can be used
on the ARM are very small, the GOT would not be able to
store much addresses. While this can be solved, it can not
be solved cheaply.
For these reasons, no single GOT is used on the ARM.
Instead, several address pools are stored in between the
code, and they are accessed through PC-relative loads. Fig-
ure 2 depicts how statically allocated data can be accessed
through such address pools. The instruction on address
0x0101b4 in the code section needs access to the data stored
at address 0x12e568 in the data section. Remember that the
compiler knows that the instruction needs access to the data,
but not where the instruction or the data will be placed in
the final program. The compiler will implement this access
by adding an address pool (depicted in gray) in between the
code, and by inserting an instruction (on address 0x101b0 in
the example) that loads the final address from the address
pool.

213



Just like uses of single GOTs offer a lot of optimization
possibilities for link-time optimizers[10, 8], so do address
pools on the ARM. In Figure 2 for example, if register r1
is not written between the second and the third load, the
indirection through the address pool can be eliminated by
replacing the load on address 0x0103a0 by an addition that
adds 0x98 (the displacement between the two addresses in
the data section) to register r1. Alternatively, the load in-
struction on address 0x0103a0 can be removed altogether,
if we change the immediate operand of the fourth load to
0x98.
Unfortunately, representing the PC-relative load instruc-
tions in an ICFG at link-time is not straightforward. In an
ICFG, there is no such value as the PC-value: instructions
have no fixed location, and therefore no meaningful address.
As a result, there is also no meaningful value for PC-relative
offsets. How we deal with this problem is discussed in sec-
tion 3.3.
First we will deal with another problem the ARM archi-
tecture presents us with. If we want to build a precise ICFG
of a program at link-time, we need to know which instruc-
tions in the program implement procedure calls and proce-
dure returns, and which instructions implement other forms
of indirect control flow. Consider the instruction at address
0x010500 in Figure 2. The value in register r4 is copied into
the PC. The result is an indirect control flow transfer. But
is it a procedure call, or a return?

3.2 Building the ICFG
The ICFG is a fundamental data structure for link-time
optimization. Not only is it needed by many of the analyses
performed at link-time, but it also provides a view of the
program that is free of code addresses. This address-free
representation is much easier to manipulate than a linear
assembly list of instructions: instructions can be inserted
and deleted without the need to update all addresses in the
program.
Constructing a control flow graph from a linear list of (dis-
assembled) instructions is a well-studied problem[9] and is
straightforward for most RISC architectures. Basic blocks
are identified by marking all targets of direct control con-
trol flow transfers and the instructions following control flow
transfers as basic block entry points. To find the possible
targets of indirect control flow transfers, relocation infor-
mation can be used. After a linker determines the final
program layout, computed or stored addresses need to be
adapted to the final program locations. The linker identifies
such computations and addresses by using the relocation in-
formation generated by the compiler. In other words, the
relocation information identifies all computed and stored ad-
dresses. Since the set of possible targets of indirect control
flow transfers is a subset of the set of all computed and stored
addresses, relocation information also identifies all possible
targets of indirect control flow.
Once the basic blocks are discovered, they are connected
by the appropriate edges. These depend on the type of con-
trol flow instructions: for a conditional branch, e.g., a jump
edge and a fall-through edge are added, for a call instruction
a call edge is added, for return instruction return edges are
added, etc.
On the ARM, leader detection is easy. Generating the
correct control flow edges is more difficult however, since the
control flow semantics of instructions that set the PC are not

always immediately clear from the instructions themselves.
A load into the PC, e.g., can be a call, a return, a switch
table jump or an indirect jump.
Fortunately, it is always possible to construct a conserva-
tive ICFG by adding more edges than necessary. It suffices
to add an extra node, which we call the hell node, to the
ICFG to model all unknown control flow. This hell node
has incoming edges for all the indirect control flow transfers
for which the target is unknown, and outgoing edges to all
basic blocks that can be the target of (unknown) indirect
control flow transfers.
Unfortunately, simply relying on the conservative hell-
node strategy for all indirect control flow instructions would
seriously hamper our link-time analysis and optimizations.
On the ARM architecture with its PC register, there are
just too many indirect control flow transfers.
A more satisfying solution involves pattern matching of
instruction sequences. In the past pattern matching of pro-
gram slices was used to detect targets of C-style switch state-
ments [5]. Such statements are typically implemented with
fixed instruction sequences, and pattern matching the pro-
gram slice of an indirect jump to the known sequences often
allows to detect the potential targets of the jump.
On the ARM architecture, the patterns we use to de-
tect indirect calls and returns are variants of three schemes.
First, when the instruction preceding an indirect jumpmoves
the PC+8 into the register specified as the return address
register by the calling conventions, the jump is treated as
a call. Secondly, a move from the return address register
into the PC is considered a return. Finally, an instruction
loading the PC from the stack is considered a return.
While this pattern matching in theory is an unsafe heuris-
tic, we have not yet seen any case where our approach re-
sulted in an incorrect ICFG. Moreover, compilers have no
reason to generate “non-conforming” code. By contrast,
since the return address prediction stack on modern ARM
processor implementations uses the same patterns to differ-
entiate calls and returns from other control flow on modern
implementations of the ARM, the compiler is encouraged to
follows these patterns.
For these reasons, we believe our approach to be safe for
compiler generated code.

3.3 Modeling Address Computations
Instructions computing or loading constant addresses, and
instructions that use PC-relative values are meaningless in
an address-less ICFG program representation.
Therefore we replace instructions that load addresses from
the address pools by pseudo instructions: so called address
producers. These instructions produce an address in a reg-
ister. If we assume the data section in the example of Fig-
ure 2 starts at address 0x100000, the first load instruction is
replaced with an address producer that moves the relocat-
able address (START OF DATA + 0x2e568) into register
r1. The value of this relocatable address is unknown until
the final program layout is determined after the link-time
optimizations.
All analyses and optimizations in our link-time optimizer
that work with constants can also handle relocatable ad-
dresses. Constant propagation, e.g., will propagate the con-
stant values 0x10 and 0x16 from producers to consumers
as well as the relocatable addresses (START OF DATA +
0x2e568) and (START OF DATA + 0x2e600). When some

214



instruction adds a constant to the latter address, say 0x20,
constant propagation will propagate the relocatable address
(START OF DATA + 0x2e620) from that point on, just like
it propagates 0x70 after 0x50 gets added to 0x20.
If all address producers that load addresses from an ad-
dress pool are converted, that address pool is no longer ac-
cessed and it is removed from the program by the optimiza-
tion described in 4.1.
Eventually, when all optimizations are applied and the
ICFG is converted back to a linear list of instructions, we
know all the final addresses and translate all address pro-
ducers back to real ARM instructions.

4. CODE OPTIMIZATION
Our link-time optimizer optimizes for size, speed and power
consumption. It first applies a set of whole-program anal-
yses and optimizations that compact the program, but do
not have a negative influence on execution speed or power
consumption. On top of this a set of profile-guided speed
optimizations that have only a minimal effect on code size
can be applied.
We describe the most important whole-program optimiza-
tions in sections 4.1, 4.2, 4.3 and 4.4. The profile-guided
speed optimizations are described in section 4.5.

4.1 Unreachable code and data removal
Unreachable code and data elimination is used to iden-
tify parts of the ICFG and the statically allocated data that
cannot be executed or accessed. To do this our optimizer ap-
plies a simplified, architecture-independent implementation
of the algorithm we described in [4].
Our fixpoint algorithm iteratively marks basic blocks and
data sections as reachable and accessible. Basic blocks are
marked reachable when there exists a path from the entry
point of the program to the basic block. An object file data
section is considered accessible if a pointer that can be used
to address the data (this information can be derived from re-
location information [4]) is produced in one of the reachable
basic blocks or if one of the already accessible data sections
contains a pointer to the data block.
Indirect calls and jumps are treated specially. An indirect
call makes all blocks reachable to which a pointer is pro-
duced in reachable code or data. To identify such pointers
the relocation information is used.

4.2 Constant and address optimizations
Constant propagation is used to detect which registers
hold constant values. This is done using a fixpoint com-
putation that propagates register contents forward through
the program. Instructions produce constants if (a) their
source operands have constant values, and (b) the condition
flags are known in case of conditional instruction execution,
and (c) for load operations, the (constant) memory loca-
tions from which data is loaded are part of the read-only
data sections of the program.
During the different optimization phases code and data
addresses are not fixed. But as we’ve discussed in Sec-
tion 3.3, addresses produced by address producers can be
treated as if they are constants.
The results of constant propagation are used in a number
of ways:

• Unreachable paths following conditional branches that
always evaluate in the same direction are eliminated.

• Constant values are encoded as immediate operands of
instructions whenever this is possible.

• Predicated instructions whose condition always evalu-
ates to true or false are optimized.

• Expensive instructions (e.g., using two operands or
loading data) that produce easy-to-produce constants
are replaced by simpler instructions.

The relocation information that is propagated along can be
used to optimize address producers. If an address in some
register at some program point refers to the same block of
data or code as the address producer at that point, and the
offset between the two addresses is small enough, the ad-
dress producer can be replaced by a simple addition: the
address it needs to produce is computed from the already
available address instead of producing it from scratch (and
possibly loading it). Note that in order to do this effectively,
dead values have to be propagated as well. In the example of
Figure 2, the register r1 is dead prior to the load at address
0x103a0. To detect that the load can be replaced by an add
instruction however, we need to propagate the value of r1 to
that load instruction. This differs from compile-time con-
stant propagation, where propagated values, because they
are propagated from producers to consumers, are live by
definition.

4.3 Address producers
Although the above optimization removes much of the
address producers from the program, it cannot remove all of
them. This means it is necessary to regenerate the remaining
address producers before the program is written out.
Whenever possible we want to avoid loads by producing
the address from another value, from scratch or from the
PC with one arithmetic instruction. Although this might
appear simple at first it is actually quite complex. As said,
ARM immediates consist of an 8-bit constant value and a
4-bit shift or rotate value. This means an address can be
computed in one instruction from the PC if the offset be-
tween the address and the generated instruction is at most
1024 (256 shifted left over 2 positions).
If the address is not generated in one instruction we need
to load the value from an address pool. This data pool has
to be close enough to the load instruction or else we cannot
load it.
The addressing mode allows to generate offset greater
than 1024 bytes, but in this case our link-time optimizer
doesn’t try to compute the address from the PC. Exploiting
the complex addressing mode is not feasible since the offset
between an address producer and the address of its target
is not fixed yet. This means that when an instruction gets
eliminated or inserted at this point, the address generation
should start all over again, and is not guaranteed to end.
The complex addressing mode makes generating addresses
a difficult problem for which we currently have not yet found
the optimal solution.

4.4 Eliminating procedure call and calling
convention overhead

Calling conventions dictate which registers need to remain
unchanged by called procedures and how data is passed from
callers to callees. Compilers have to rely on conventions
when the caller and callee are unknown when one of them
are compiled.

215



At link-time much more pairs of callers and callees are
known. Hence the calling conventions can be avoided. To re-
move much of the overly conservative spilling of callee saved
registers to the stack, liveness analysis detects which regis-
ter actually hold live values in a caller. Those who don’t do
not need to be spilled.
Copy propagation and load-store-forwarding are used to
further avoid adherence to overly conservative data passing
conventions where possible.
Code motion moves identical instructions at all the call
sites of a callee into the caller, thus saving space.
Finally, if a callee is called at only one place in the program
or if the callee is very small, it is inlined it in the call site.

4.5 Profile-guided optimizations
When profiles are available a link-time optimizer can achieve
significant speed improvements with little impact on the
code size. Our link-time optimizer performs loop invari-
ant code motion when this is beneficial and performs loop
unrolling and branch inversion to decrease the number of
branch mispredicts in hot loops.
Many compilers already perform profile based optimiza-
tions that relayout code, but the ones we looked at for the
ARM ignored conditional instructions. Although code that
uses predicates is often smaller than the same code with
conditional branches, it is not always faster. Predicated
instructions are fetched from the I-cache whether they are
executed or not, and thus still consume time and energy.
When there are enough conditional instructions and when
these instructions are executed much less frequently than the
other instructions in the basic block, the optimizer splits the
block and use conditional branches instead of predication.
A special case occurs when the basic block ends with a con-
ditional control flow instruction that uses the same or the
inverse predicate as the one used in the predicated instruc-
tions. In this case the link-time optimizer will move the
instruction past the control flow instruction (and remove
the predicates).

5. EXPERIMENTAL EVALUATION
To evaluate our link-time optimizer we applied it on a
number of standard benchmark programs. Furthermore, we
evaluated its effect on an example program to illustrate the
influence link-time optimization may have on interface de-
sign.

5.1 Standard Benchmarks
We applied our link-time optimizer on 10 benchmark pro-
grams. In addition to 8 programs from the MediaBench
benchmark suite, we included crc from the MiBench suite,
and vortex from the SPECint2000 benchmark suite. While
the first 9 programs represent embedded applications, vortex
is a good example of a larger application. The reason for
only using 1 out of 12 SPECint2000 programs is that the
other 11 programs require standard C-library functionality
that is not available in the Arm Developer Suite tool chain
we used in our experiments.
All programs were compiled and linked (statically) with
two completely different tool chains for two slightly different
platforms. First we used GCC 3.3.2 and glibc 2.3.2 to com-
pile binaries for the StrongARM/Elf Linux platform. These
binaries were compiled with the -O3 flag and profile feed-
back for optimal performance. Secondly, we used the ARM

Figure 3: Original code sizes (in bytes) of the bench-
marks programs.

Developer Suite (ADS) 1.1 to generate code-size-optimized
binaries for the StrongARM ARM Firmware Suite platform.
This is a platform with a minimal amount of OS function-
ality.
Whereas Linux provides a lot of OS functionality to ap-
plications through system calls, most of that functionality
needs to be included in the applications themselves on the
ARM Firmware platform. Even so, because the ADS com-
pilers produce extremely compact code, and because the
ADS standard libraries are engineered for small code size,
the ADS binaries are on average 302KiB smaller than the
GCC binaries. This can be seen in Table 3. The ADS bi-
naries are therefore ideal candidates to test the program
compaction capabilities of our link-time optimizer.
To evaluate the performance of our link-time optimizer,
we ran it on all 20 programs, with and without profile-
guided link-time optimizations. To collect performance re-
sults, all original and optimized binaries were simulated with
PowerAnalyzer (a power simulator built on top of the Sim-
pleScalar [2] simulator suite), which was configured as an
SA1100 StrongARM processor. In order to simulate ADS
binaries, we first adopted SimpleScalar to correctly handle
the system calls of the ARM Firmware platform.
The input sets used for collecting profiles (both for GCC
and for our link-time optimizer) always differ from the input
sets used for the performance measurements. For the profile-
guided link-time optimizations, we collected instruction ex-
ecution counts for conditionally executed instructions, be-
sides simple basic blocks execution counts. Both types of
profile information were collected with the instrumentation
infrastructure of Diablo.
The use of profile information in our link-time optimizer
is limited as follows. On the one hand no loop unrolling
is applied when no profile information is available, and no
code motion is performed that may introduce additional
branches. Also, no conditional branches are inverted to im-
prove the branch prediction. (Note however, that in the case
of the GCC compiler, this should not make any difference,
since the compiler has already optimized the branches). On
the other hand, when profile information is available, our
link-time optimizers first favors the translation of frequently
executed address producers into two instructions that com-
pute an address over the translation into one instruction
that loads the address. Both implementations require two
memory or cache fetches per executed address producer, but
whereas two computational instructions require two cheaper
I-cache fetches, a load instruction requires one cheaper I-

216



Figure 4: Optimization of the “address producers”
after profile-guided optimization. The first column
shows the fraction of address producers remaining
after the link-time optimization, the second column
shows the fraction of address producers that load an
address (instead of computing it) remaining after
link-time optimization. Finally, the third column
indicates the fraction of address pool entries that
remains after link-time optimization.

cache fetch and one more expensive D-cache access. Fi-
nally, it is important to note that in our current implemen-
tation, inlining is not profile-guided: inlining is performed
only when it benefits code size.
The results of our link-time optimizations are depicted in
Figures 4 and 5.

5.1.1 Address producers
As depicted in Figure 4, our link-time optimizer succeeds
in eliminating much of the address producers in the original
programs. On average, about 32.5% are eliminated from
the ADS binaries, while about 41.7% are eliminated from
the GCC binaries.
Furthermore, of the address producers that load addresses,
even more are eliminated: on average this is 38% for the
ADS binaries, and 44.8% for the GCC binaries. The reason
is that some address producers that originally load addresses
are transformed into address producers that compute ad-
dresses instead.
Finally, the remaining address producing loads require
even less address pool entries: on average 40.8% of the ad-
dress pool entries is eliminated from ADS binaries, while
53.5% of them is eliminated from GCC binaries. The rea-
son we are able to remove even more address pool entries
than we can remove address producing loads is that address
pool entries in the optimized program can be shared by ad-
dress producers originating from multiple object files. The
original object files, that were separately generated by the
compiler, each contained their own address pools, of which
many contained the same addresses. But since the com-
piler did not have a whole-program overview, it could not
eliminate the duplicate entries.

5.1.2 Code Compaction
Using profile information, about 14.6% of the code gets
eliminated from the ADS binaries on average. On three
benchmarks the results differ significantly from this aver-
age. For cjpeg and djpeg (two similar applications compiled
from largely the same code base) the low numbers of 4.7%
and 4.6% result from the fact that a very large fraction of

all procedure calls are through function pointers. Our link-
time optimizer therefore fails to construct a precise ICFG,
and accordingly, to eliminate much code.
unepic is a program compiled from the same code base as

epic. A large part of the code linked into both applications
by the ADS linker is unused in unepic however. Unlike the
ADS linker, our link-time optimizer successfully eliminates
this unused code from the program.
For the GCC programs, the results are along similar lines,
despite the fact that the original programs were much larger
that the ADS programs. The reason is the structure of
the glibc implementation of the standard C-library. More
importantly, the glibc implementation contains a number
of function pointer tables. Our link-time optimizer cannot
(yet) detect which elements from such tables will actually be
used by a program, and hence it cannot eliminate the cor-
responding procedures. Note that it is also because of these
tables that much more code is linked into the programs in
the first place.
From these results, we can conclude that link-time opti-
mization is not at all the silver bullet for code compaction.
As our results for GCC programs illustrate, the effects of
badly designed libraries on code size cannot be undone com-
pletely at link-time. On the other hand, we can conclude
that link-time optimization can significantly reduce the size
of programs, even in tool chains that are considered world-
class when it comes to generating small programs.
The code size reductions obtained without the use of pro-
file information are very similar. The conclusion for this is
that using profile information to improve performance, as
the next sections discuss, does not need to increase program
size significantly.

5.1.3 Execution Time
Let’s first look at the execution time improvements when
no profile information is used: these are improvements that
result from the optimizations enabled by the whole-program
overview of the link-time optimizer.
For the GCC binaries, the improvement in execution speed
is on average 8.2%. The improvement on crc is much larger
than for the other benchmarks. The reason thereof is dis-
cussed in Section 5.2. For the other benchmarks, one trend is
easily spotted: typically the improvement in execution time
follows the improvement in the number of executed instruc-
tions very closely. When the execution time decreases more
than the numbers of executed instructions, it is because the
number of executed control flow transfers drops more (be-
cause of inlining) and/or because the number of executed
loads drops more (because of address producer optimiza-
tions and because of interprocedural load-store forwarding
after inlining).
For the ADS binaries, the same trend can be spotted,
albeit that the speedups achieved are much smaller. This is
to be expected, as the code produced by the ADS compiler
is of higher quality than the code produced by GCC. On
average, only 4.7% of the execution time is eliminated.
When profile information is used, the speed-ups are much
higher: on average they are 12.3% for the GCC binaries,
and 8.3% for the ADS binaries.
In the case of ADS programs, this is to a large extent
the result of profile-based branch prediction optimization1:
while the number of executed instructions hardly drops com-

1Note that the number of executed jumps increases for some

217



(a) with profile-guided optimization

(b) without profile-guided optimization

Figure 5: Improvements in the characteristics of the link-time optimized programs. Each fraction denotes
the value of the optimized program normalized to the corresponding value of the original program. From
left to right, the six columns for each program version indicate (1) code size, (2) execution time, (3) energy
consumption ratio, and the ratio’s of the number of executed (4) instructions, (5) load instructions, and (6)
control flow transfers.

pared to the non-profile-guided optimized binaries, the num-
ber of cycles does decrease significantly. This is not sur-
prising, as the ADS compiler cannot exploit profile infor-
mation. In addition to inverting conditional branches to
improve branch prediction, our link-time optimizer also un-
rolls very small (2 basic blocks at most) loops to improve
branch prediction.
In the case of GCC binaries, the speed-up is still about
4.1% higher than the speedup achieved with non-profile-
guided optimization, while the number of executed instruc-
tions only drops with 2.1%. Again this is difference is due to
branch prediction improvements. While this may look sur-
prising at first, it is not. Whereas the GCC compiler does
not unroll loops to improve branch prediction, our link-time
optimizer does. Moreover, the optimizer apply the branch
optimizations on library code as well, whereas the GCC com-
piler is limited to optimizing the application source code.

5.1.4 Power consumption
Power consumption improvements typically follow the ex-
ecution time improvements. This is not a surprise, as our
link-time optimizer includes only one power optimization
technique that does not improve execution time: the trans-
lation of frequently executed address producers into two
computation instructions instead of one load instruction.
As can be seen in Figure 5, the two benchmarks in which

benchmarks because infrequently executed conditional in-
struction sequences in frequently executed code are replaced
by separate basic blocks and conditional branches. The
number of conditional branches thus increases, but the num-
ber of mispredicted branches does not.

energy consumption drops significantly more than the ex-
ecution time, are the benchmarks in which the number of
executed loads drops more much than the total number of
executed instructions: rawcaudio and rawdaudio compiled
with GCC.

5.2 Influence on Interface Design
In the evaluation of our link-time compactor on a num-
ber of benchmarks, the enormous performance improvement
achieved for the crc benchmark jumps out. The reason for
the achieved improvement is as follows. The inner loop in
crc contains a call to the getc() standard C-library pro-
cedure. As this is a precompiled library, the compiler did
not inline or optimize getc() in the inner loop of crc. The
resulting overhead proved an ideal optimization candidate
for our link-time optimizer.
At first sight, this situation in crc might seem a rare case.
To the contrary however, this situation is an example of a
problem that quite often occurs in embedded systems. It oc-
curs particularly in data streaming multimedia applications
in which data streams through a number of subsequent fil-
ters. Ideally, we would like to develop (and compile) such
filters as independent components.
Any cooperation between separately compiled components
will involve the overhead discussed in the introduction. To
minimize this overhead, it is important to design the inter-
faces between the components appropriately. One particular
design choice concerns data passing: will we use buffered or
unbuffered data passing between two components? With
buffered data passing, the communication (procedure call)
overhead is limited because the communication between two

218



file1.c:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

extern void buffered(char *buffer,int buffersize);
extern char unbuffered(char in);

int main(int argc, char ** argv){
FILE * fp_in = fopen(argv[1],"r");
FILE * fp_out = fopen(argv[2],"w");
char * in = (char*) malloc(262144*sizeof(char));
char * out = (char*) malloc(262144*sizeof(char));
int i;

fread(in,262144,sizeof(char),fp_in);

if (argv[3][0]==’B’){
int buffersize = atoi(argv[4]);
for (i=0;i<262144;i+=buffersize){

memcpy(out+i,in+i,buffersize*sizeof(char));
buffered(out+i,buffersize);

}
}
else {

char * in_it = in, * out_it = out;
for (i=0;i<262144;i++)

*(out_it++) = unbuffered(*(in_it++));
}

fwrite(out,262144,sizeof(char),fp_out);
fclose(fp_in);
fclose(fp_out);

}

file2.c:

void buffered(char * buffer, int buffersize){
char * p, * p_end = buffer+buffersize;

for (p=buffer;p<p_end;p++)
*p=(*p+1)&0xff;

}

char unbuffered(char in){
return (in+1)&0xff;

}

Figure 6: Example code to illustrate the effects of
link-time optimization on buffered data passing.

components takes place once per filled buffer, instead of once
per buffer element. Unfortunately, buffered data passing
comes with a major disadvantage: one component will have
to fill a buffer, and the other will have to empty it. In prac-
tice, buffering happens in power-hungry (and often slower)
data memory. Filling and emptying a buffer will therefore
constitute its own overhead. This contrasts with unbuffered
data passing, where data often can be passed through reg-
isters. As a final consideration, real-time constrains might
need to be taken into account, as in some cases buffered data
passing may result in longer latencies.
In each embedded application, the advantages and dis-
advantages of using buffers need to be carefully balanced.
In Figure 6, we show two source code files that model two
components. The component in file2.c provides some (con-
trived) functionality to the component in file1.c. This func-
tionality is provided through an unbuffered and a buffered
interface. Using the PowerAnalyzer simulation toolkit, we
measured the performance of both interfaces before and af-
ter link-time optimization. The results for unbuffered data
passing and buffers of different sizes are depicted in Figure 7.

In the left chart of Figure 7, we notice that both power
consumption and execution time are optimal when buffered
data passing is used with large buffers. As soon as the buffer
size exceeds 16, the buffered interface performs better than
the unbuffered solution. At that point, the communication
overhead of the unbuffered communication is higher than
the overhead of filling and emptying the buffer.
After link-time optimization, the situation is completely
different however. In the rightmost chart of Figure 7, it be-
comes clear that our link-time optimizer was able to remove
the communication (procedure call) overhead. No communi-
cation overhead remains in the unbuffered case. By contrast,
the overhead of filling and emptying the buffer could not be
removed. In the end, the link-time optimized unbuffered
interface proves to be the best choice.
While the discussed example is certainly contrived, it shows
how adding link-time optimization may severely shift the
balance between different design options. Our experience
with link-time optimization so far learns that component
communication overhead is much more effectively removed
by a link-time optimizer than other types of program over-
head, such as the filling and emptying of buffers. When us-
ing a link-time optimizer, a programmer will therefore not
only generate better performing programs, he will also need
to reconsider some of his design decisions in the light of the
link-time optimizations. In practice, there often will be no
more use for special interface constructs that try to avoid
communication overhead between components.
To summarize, link-time optimization not only optimizes
existing programs and component interfaces, it also enables
the use of more efficient interfaces to begin with.

6. RELATED WORK
Whereas our optimizer deals with object code, aiPop [3]
applies post-pass optimization on the assembly code of a
whole program. With aiPop, code size reductions ranging
from 5 to 20% have been achieved on real-life customer appli-
cations. At the assembly level, more information is available
than at link-time, but a major drawback of assembly-level
post-pass optimization is the adaptation required to inte-
grate the post-pass optimizer into an existing tool chain.
Post-pass assembly optimization does not work on library
code that is precompiled into object code. By contrast, our
link-time optimizer also optimizes ADS library object code.
Srivastava and Wall [10] discuss the overhead of using a
GOT on the 64-bit Alpha architecture. They eliminate part
of this overhead at link-time when it turns out that one GOT
suffices to address all data in the program. Their link-time
optimized code also accesses the data that is in the scope of
the GP directly, avoiding the indirection through the GOT.
Their link-time code modification system improves perfor-
mance of statically linked programs by 3.8% and compacts
programs with 10%. Haber et al. [8] improved upon this
work by reordering the global data based on feedback infor-
mation. Frequently accessed data is moved closer to the GP
so that it is in scope for direct accessing. This speeds up
programs by 3% on average, and reduces memory references
by 2.1% on average. As far as we know, we are the first to
apply similar techniques to non-contiguous address pools.
Other work on link-time optimization has targeted per-
formance [9] and program size [4, 6] on the Alpha platform,
where code size is not a priority of the tool chain. Whereas
the latter work could be seen as a proof-of-concept, we are

219



Figure 7: Execution time and power consumption for the code of Figure 6, normalized to the original
unbuffered program. The horizontal axes indicate buffer sizes, with 1 meaning unbuffered.

the first to show that significant compaction can be achieved
at link-time in a tool chain such as ADS that is well known
for producing extremely small binaries.

7. CONCLUSIONS
Using heuristics to deal with indirect control flow and
pseudo-instructions to replace PC-relative address compu-
tations, we have shown that link-time optimization can be
applied successfully on the ARM platform.
When evaluated in the ARM Developer Suite, a toolchain
known for the small, high quality code it produces, our link-
time optimizer is able to obtain code size reductions averag-
ing around 14.6%. Execution time and power consumption
on average decrease with 8.3% on average, and energy con-
sumption with 7.3%. With the GCC toolchain, an average
code size reduction of 16.6% was achieved, while execution
time and power consumption dropped with 12.3 and 11.5%.
Finally, we have illustrated how the incorporation of link-
time optimization in tool chains may influence library inter-
face design, and lead to better performing library interfaces.

Acknowledgement
Bjorn De Sutter, as a Postdoctoral Research Fellow, and
Dominique Chanet, being a PhD. student, are supported by
the Fund for Scientific Research - Flanders (FWO). Bruno
De Bus and Ludo Van Put are supported by the Institute
for the Promotion of Innovation by Science and Technology
in Flanders (IWT). This research is also partially supported
by Ghent University.

8. REFERENCES
[1] ARM. An Introduction to Thumb. Advanced RISC
Machines Ltd., 3 1995.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling.
Computer, 35(2):59–67, 2002.

[3] B. De Bus, D. Kästner, D. Chanet, L. Van Put, and
B. De Sutter. Post-pass compaction techniques.
Communications of the ACM, 46(8):41–46, 8 2003.

[4] B. De Sutter, B. De Bus, K. De Bosschere, and
S. Debray. Combining global code and data
compaction. In Proc. of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Embedded Systems, pages 29–38, 2001.

[5] B. De Sutter, B. De Bus, K. De Bosschere,
P. Keyngnaert, and B. Demoen. On the static analysis
of indirect control transfers in binaries. In Proc. of the
International Conference on Parallel and Distributed
Processing Techniques and Applications, pages
1013–1019, 2000.

[6] S. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compaction. ACM
Transactions on Programming Languages and
Systems, 22(2):378–415, 3 2002.

[7] S. Furber. ARM System Architecture. Addison Wesley,
1996.

[8] G. Haber, M. Klausner, V. Eisenberg, B. Mendelson,
and M. Gurevich. Optimization opportunities created
by global data reordering. In Proc. of the
International Symposium on Code Generation and
Optimization, pages 228–237, 2003.

[9] R. Muth, S. K. Debray, S. A. Watterson, and
K. De Bosschere. alto: a link-time optimizer for the
compaq alpha. Software - Practice and Experience,
31(1):67–101, 2001.

[10] A. Srivastava and D. W. Wall. Link-time optimization
of address calculation on a 64-bit architecture. In
Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 49–60, 1994.

220


