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1. INTRODUCTION

Die area is one of the most important factors contributing to the production
cost of embedded, mass-produced, consumer electronics systems. As on-chip
memories occupy large fractions of the die area, keeping these memories small
reduces production cost. In addition, smaller memories (on or off chip) con-
sume less power, an important consideration for devices that rely on batteries.
So even though computer memory has become increasingly cheap over recent
decades, embedded devices continue to require limited amounts of it. Because
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memories can only be made as small as the programs that need to be stored in
them, smaller programs imply cheaper, smaller, lighter, and more autonomous
devices.

Our goal is to produce the most compact applications while retaining the
same or similar levels of functionality, performance, and other key criteria.
Developing compact applications is not simple, however. Object-orientation,
component-based programming, and other modern software engineering tech-
niques increase programmer productivity, improve software reliability, and
shorten time-to-market by hiding lower-level issues from the programmer and
by enabling code reuse. Unfortunately, this often comes at the expense of
program size. Reusable code libraries, for example, are written with general
applicability in mind and provide more functionality than is typically needed
by any single application. Unless the unused functionality can be eliminated,
an application will be larger than necessary. Moreover, program optimizations
performed at compilation time, either on application code or on reusable library
code, are limited because the whole program is not available for optimization.
Again, the result is increased program size.

This article discusses link-time binary rewriting techniques to overcome the
discrepancy between modern software engineering practices and the need for
compact programs. The discussed techniques are applicable on programs writ-
ten in statically bound languages such as Fortran, C, or C++. Their goal is
to eliminate unnecessary computations and duplicated code and data from a
program.

Link-time compaction offers several potential advantages over compile-time
optimization. First, all code is available for inspection and compaction at link
time, even for mixed-language programs. This includes library code that is
statically linked with a program, even if this library code is distributed in a
machine code format only. Link-time rewriting therefore requires no change
to the often-used business models under which software is distributed in a
machine code format. Second, at link time, machine-specific optimizations are
possible because the link-time techniques are applied on assembly code. Finally,
link-time rewriting for compaction only requires modifying the linker, while all
other tools in program development chains, such as compilers, need not be
modified.

1.1 Contributions of this Article

In order to enable a link-time binary rewriting approach for program com-
paction, two major issues have to be addressed. First, no information other
than that required by the linker can be assumed to be available to the link-
time rewriter. Type information, for example, is usually not available in the
binary code that is passed to the linker. An important contribution of this article
shows that the limited amount of information available at link time is sufficient
(1) to correctly compact a program, and (2) to detect compiler-generated code
that may violate the application binary interface (ABI) or calling conventions.
This detection is based on the fact that wherever a compiler generates code
that violates these conventions or that needs special treatment by the linker,
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the compiler must notify the linker. Therefore, any link-time rewriter is also
notified of possible violations, and thus of adherence to conventions where no
violations occur. This knowledge enables more aggressive program analysis and
compaction.

The second major issue addressed by this article is that link-time whole
program analyses and transformations are efficient, effective, and scalable.
This article focuses on scalability. In particular, the techniques discussed in this
article address scalability issues by explicitely targeting separately compiled
code, rather than all possible exotic code that an assembly programmer can
write. While the latter has to be handled correctly, most of the code compaction
opportunities are found in compiler-generated code, so that is where we have
focused our effort.

1.2 Structure of the Article

This article is structured as follows. Section 2 provides background information
on how compilers and linkers interact, with special emphasis on the program
overhead that separate compilation introduces. Section 2 also discusses infor-
mation about a program that is available at link time, and how this information
relates to the overhead. Section 3 then describes how link-time information can
be used to build an internal program representation that is suited for effective
program compaction. Whole-program optimization techniques, aimed at elimi-
nating superfluous code and data from a program, are discussed in Section 4,
while techniques to avoid unnecessary duplication of code and data are the
topic of Section 5. How all the techniques are combined into an effective and
efficient tool is discussed in Section 6. The assumptions made throughout this
article are elaborated in Section 7, after which our prototype link-time com-
pactor is evaluated in Section 8. Finally, related work is discussed in Section 9
and conclusions are drawn in Section 10.

2. COMPILERS AND LINKERS

This section provides background information on the interaction between
compilers and linkers. In particular, it discusses the overhead resulting from
separate compilation and the related information that is available to a link-time
optimizer.

2.1 The Tool Chain

Figure 1 depicts a traditional programming tool chain. On the left-hand side,
source code files (src1.c, src2.f, and src3.C) in different programming languages
are compiled into object files (obj[1–4].o) by the language-specific compilers.
The object files generated contain the generated machine code (hereafter called
object code), the statically allocated data (hereafter called object data), and addi-
tional information that tells the linker how to combine the separately generated
object files into a single working program (a.out).

Although there is no difference between the compilation of libraries and
programs, there is a difference between how the generated object files are used.
Instead of being linked into a program directly, all of a library’s generated
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Fig. 1. Compilers, archivers, and linkers transform the source code files shown on top into the
executable program shown at the bottom.

object files are first archived into a library file (lib.a on the right-hand side of
Figure 1). When a program is statically linked with the archived library, the
linker extracts only the library’s object files that are needed by the program
and links the library’s needed object files with the program’s object files.

Typically, library code is compiled separately from application code. In ad-
dition, the source code files of an application may also be compiled separately.
During the separate compilation of one source code file or module,1 the compiler
has no knowledge of the other modules. As a consequence, compiler optimiza-
tions are conservative, which results in significant amounts of overhead in the
object files.

The compaction techniques in this article try to remove as much of that
overhead as possible by applying an additional program rewriting step at link
time. It is at this point that all code is available for inspection and compaction.
Throughout this article, we will indeed assume that all code constituting a
program is available at link time, or in other words, that the programs are
statically bound. This assumption is not valid for more dynamic languages
such as Java, where, because of reflection, the complete program may never be
available. Dynamic shared libraries, of which the code is only available when
a program is loaded into memory [Franz 1997b; Levine 2000], also violate this
assumption.

2.2 Overhead Resulting from Separate Compilation

There are four fundamental reasons for overhead in separately compiled
programs.

2.2.1 Limited Optimization and Analysis Scope. With separate compila-
tion, compile-time program analyses are limited to single modules. As a result,

1Whereas file refers to an entity stored on a disc, module denotes the corresponding entity in an
intermediate program representation in the compiler.
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the compile-time optimizations need to be very conservative. Even when a com-
piler analyzes all source code of a program at once, this does not include precom-
piled library code. This is particularly problematic because libraries are written
with general applicability in mind. As such they contain much more function-
ality than is needed by any single program. Moreover, the simple library object
file extraction scheme that linkers implement is not fine-grained enough to
ensure that no unneeded functionality is linked into specific programs.

2.2.2 Intermodular Data Passing. During the compilation of one module,
the machine code generated for other modules is unknown. As a result, calling
conventions need to be used to pass data at intermodular control flow transfers.
These conventions partition the available registers into argument registers,
return value registers, callee-saved and caller-saved registers, etc. When a com-
piler generates machine code that passes data between modules, the compiler
has to assume that all of the prescribed conventions need to be obeyed. Often,
this assumption is overly conservative, but besides whole-program optimiza-
tion, no workaround exists.

A typical example is the restoring of callee-saved registers prior to an
intermodular procedure return. In this case, the compiler must assume that
all callee-saved registers hold contents that will be used by the callee’s (un-
known) callers after returning to them. In practice, it often occurs that some
callee-saved registers do not hold useful contents in a callee’s callers. Hence
their contents do not need to be restored by the callee.

2.2.3 Unknown Addresses. Each object file is partitioned into a number
of different object sections. Each such section contains a specific type of code
or data.2 The .text section, for example, contains the object code; the .rdata
section contains read-only object data (such as initialization values or literal
strings), the .data section contains the mutable, that is, overwritable, object
data, and the .zero section contains the zero-initialized data. During the link-
ing process all object sections of the same type are combined into program
sections, as illustrated in Figure 2.

Since the linker determines the final memory locations of the thus combined
code and data, their final addresses are not known by the compiler. Therefore
the compiler has to generates code and data at temporary addresses. Such code
and data is called relocatable. Once the final locations of all code and data are
determined, the linker replaces all temporary addresses stored in the code and
data by the corresponding final addresses. This process is called relocation.

Unfortunately, relocatable code is often far from optimal. Since the relocation
process is nothing more than the replacement of temporary addresses by final
ones, all placeholders for temporary addresses (absolute or relative) have to be
at least as wide as the widest final address that might need to be stored in them.

2Although the techniques discussed in this article are evaluated on the Alpha-Tru64Unix platform,
the discussion of separate compilation issues and object formats is not based on the symbolic object
format that exists on that platform. Unless explicitly stated otherwise, all background provided in
this section and all assumptions made hold for all RISC and CISC platforms and object file formats
the authors are aware of, including ELF, COFF and PE [Levine 2000].
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Fig. 2. The object sections in three object files shown on the left are combined by the linker into
corresponding program sections in the executable program shown on the right.

In a 32-bit architecture, for example, all placeholders must be 32 bits wide.
On most 32-bit RISC architectures (as well as 16-bit and 64-bit architectures)
immediate operands of instructions cannot be 32 bits wide. This is because
some of the bits in a 32-bit instruction are needed to encode the instruction’s
functionality. Absolute addresses therefore cannot be encoded as immediate
operands of single instructions. On most RISC architectures, absolute addresses
cannot even be encoded in the immediate operands of two instructions. The most
efficient solution to produce such unknown but wide enough addresses then is
to load them from memory. Of course, a similar problem now arises: where do
we load the addresses from?

A common solution to this problem is the use of Global Offset Tables or GOTs.
These tables contain the addresses of all global code and data and are stored in
a section called .got.3 To access global code or data, its address is first loaded
from a GOT by indexing the Global Pointer or GP. The GP is a designated
register that always points to the GOT of the code being executed.

The inefficiencies of GOTs have long been recognized [Srivastava and Wall
1994]. Besides the overhead needed to ensure that the GP always points to the
part of the GOT associated with the code being executed, the indirection through
the GOT is itself often not necessary. Without a whole-program overview, gen-
erating more efficient code is not possible, however.4

2.2.4 Duplicated Code. The fourth problem of separate compilation is the
compiler’s unawareness, during the compilation of one module, of the com-
putations that are also implemented in other modules. The resulting code
duplication obviously constitutes overhead.

3Unlike global code and data, local data is most often stored on the stack and accessed by indexing
the stack pointer.
4On architectures with an explicit program counter, such as the ARM architecture, the GOT need
not be a contiguous table. Instead, the GOT can be distributed in between the code and accessed
through the program counter. This way, no register needs to function as a global pointer. CISC
architectures that allow encoding absolute addresses as immediate operands can be seen as a
special case of distributed GOTs; each absolute address that needs to be loaded at some point is
encoded in the instruction that will use the loaded address. Fundamentally, the use of distributed
GOTs or immediate operands is not different from the use of a contiguous GOT.
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This problem becomes particularly important when code is automatically
generated by code generators or precompilers that generate code from macros or
templates. This is often the case in rapid application development environments
that generate source code templates which the programmer has to complete. If
the same code template is used repeatedly, one can expect that, unless measures
are taken, a great deal of duplicated code will end up in the final program.

2.3 A Separate Compilation Example

Figure 3 illustrates how two source code files (A.c and B.c) are compiled sepa-
rately into object files (A.o and B.o) and linked into a single executable (a.out).
For the sake of generality, we have disassembled all machine code instructions
in the object files and the executable into simple C statements. The target
architecture is a 32-bit RISC architecture with five registers: r0 to pass argu-
ments and return values, r1 and r2 to store temporary values, sp to store the
stack pointer, and gp to store the global pointer. r1 is callee-saved, while r2 is
caller-saved.

In A.c, a global array R is defined, together with two global variables: a and b.
The main() procedure calls procedure f() in B.c, and f() returns a value that
depends on the array and variables defined in A.c.

Both the object files consist of three parts: relocatable code and data sections,
symbol information, and relocation information. The latter two are used the
replace temporary addresses, and are discussed later. The executable a.out
contains only the combined code and data sections at their final addresses.

In both object files A.o and B.o, the code sections start at the temporary
address 0x00. The code section in A.o contains the code generated for the main()
procedure. After the GP has been set to point to the .got section, the address
of procedure f() is loaded from the GOT, using the GP. The argument of the
call is stored in register r0, and the call is executed. The GOT or .got section
in A.o consists of one placeholder to store the address of f(), while the .data
section in A.o holds the array R and the variables a and b.

After the GP has been set in procedure f() in B.o, f() first pushes the callee-
saved register r1 onto the stack and, just prior to returning, f() restores the
callee-saved register by popping it off of the stack. This way, the calling con-
ventions are maintained. The addresses of the three values that need to be
added are all loaded in r2 from the GOT through the GP, and the result of
the consecutive additions is stored in register r0. The .got section in B.o pro-
vides placeholders for the addresses of R, a and b, since all three variables are
accessed in f(). No global variables are defined in B.c, however, so there is no
.data section in B.o.

Relocations indicate which addresses in the code and data sections are tem-
porary. These addresses are marked in gray in Figure 3. Relocations RA0 and
RA1 indicate that the instructions at temporary addresses .text+0x00 need to
set the GP to point to the GOT in the final program. Since multiple GOTs
from object files will be combined in the final program, the indexes used to
load addresses from the GOT through the GP also change in the final program.
The required changes to the indexes are marked by relocations RA2, RB4, RB5,
and RB6. Finally, the addresses of global code and data need to be put into the
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Fig. 3. The two C source code files on top (A.c and B.c) are compiled into two object files (A.o and
B.o) and linked into an executable (a.out).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



890 • B. De Sutter et al.

GOTs. For each such address, the required relocation is described via symbol
information.

Each global code or data element defined in a program has one corresponding
defining symbol. For example, symbol SB0 in B.o defines procedure f() as the
code starting at temporary address B.text+0x00. Similarly, symbol SA2 in A.o
defines array R as the data beginning at address A.data+0x00.

When global code or data is referenced in an object file, but not defined, a
referencing symbol is used. Symbols SA0, SB1, SB2, and SB3 are examples of such
referencing symbols. The linker will match each referencing symbol with the
corresponding defining symbol. After this symbol resolution, all relocations with
referencing symbols are applied using the corresponding defining symbol. For
example, RA1 in A.o refers to SA0 in A.o. By resolving SA0 with SB0 in B.o, the
linker knows that, in the final program, the final address of B.text+0x00 needs
to be stored at the final address of A.got+0x00. In other words, the address 0x14
is stored at location 0x48 in the final program.

Note that the linker also relies on symbol resolution to decide which library
object files need to be linked into a program. Library object files are iteratively
added until all referencing symbols are resolved to a corresponding defining
symbol.

Now let us examine some inefficiencies in the generated code. First of all,
register r1 is in fact unnecessarily pushed and popped onto and of the stack
in f(), since r1 holds no useful data at the only call-site of f() in main(). Of
course, the compiler could not know this when B.c was compiled.

Second, two of the three indirections through the GOT could have been
avoided in the code of f() if the compiler would have known that R, a, and
b are located next to each other in memory. In that case, then generated code
would access all three variables from the same base address, instead of loading
three different base addresses. In fact, in the final program all three variables
are so close to the GOT that they can be accessed directly from the GP. For
example, a’s value can be loaded directly with r1 = *(gp+0x18). The compiler
did not know this, however, since it didn’t know the sizes of the object sections
in other object files.

Finally, resetting the GP upon entry to f() was unnecessary because one GP
value suffices to index the whole GOT of this small program.

2.4 Object File Information Available at Link Time

From our introduction to the linking process, it follows that all object files
contain at least the generated object code and data, partitioned over a number
of sections, and relocation and symbol information [Levine 2000]. Together with
the knowledge of calling conventions, this is the only information our link-time
rewriting step has at its disposal. While other information, such as additional
information for debugging purposes, might be included in the object files, we
will not use this information. It is not needed for simple linking, and hence
depending on its availability would limit the applicability of our techniques.

2.4.1 Relocation Information. All temporary absolute addresses in the
object files are annotated with relocations. Therefore relocation information
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allows us to detect absolute addresses in the program, to distinguish them from
ordinary numerical constants, and to adapt them once a program is compacted.
All intersection relative addresses, that is, relative addresses corresponding to
a displacement between two different object sections, are annotated by reloca-
tions as well, since no final values of such displacements are known at compile
time.

No relocations need to be provided for intrasection relative addresses, how-
ever. Since instructions or data within an object section are not reordered by
the linker, the intrasection displacements are never changed by the linker.

For relative intrasection data addresses, it is in general undecidable which
data will be accessed with them. As a consequence, we need to treat such ad-
dresses very carefully. So far, the only conservative way we are aware of is to
prohibit any link-time change to intrasection displacements. In other words,
no motion or elimination of data within object sections is allowed. Instead, as
far as data sections are concerned, we can only move or eliminate whole object
sections.

For relative code addresses (such as computed addresses used in switch state-
ments), we will simply assume that they are all relocatable. (The validity of this
assumption is discussed in Section 7, when we reflect on all the assumptions we
make throughout this article.) Assuming that all code addresses are annotated
with relocations, we know the set of all code addresses that might be loaded or
computed during the execution of a program. As this set is, by definition, a su-
perset of the possible targets of indirect control flow transfers (i.e., transfers to
an instruction whose address is computed or loaded), the relocation information
on code addresses enables us to estimate all the targets of indirect control flow
transfers. This allows us to build a conservative representation of the control
flow of a program to be compacted, as is discussed in Section 3.

One important property, following from the fact that all absolute addresses
and all intersection relative addresses are relocatable, is that an object (code
or data) section can only be accessed through a relocatable address. In other
words, for data in a data object section to be accessible, at least one relocatable
address in another object section in the final program has to point to it, and
that address must actually be used during the execution of the program. If all
addresses pointing to a code or data object section are not used anywhere in
the program, then that data object section can be removed.

2.4.2 Symbol Information. For symbol resolution, the only required sym-
bol information is the relation between global code or data names and their
addresses.5

For link-time compaction, global symbols defining procedures provide useful
information. They indicate the entry-points of global procedures. Note, however,
that such symbols need not be present for procedures that are not global, such
as static procedures in C. In fact there can never be defining global symbols

5In programming languages where objects such as procedures can be overloaded, the symbol reso-
lution relies on type information as well. Name mangling is then used, in which the names of the
involved symbols (such as overloaded procedures) are extended with cryptic type descriptions.
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for them. If such symbols existed, name clashing would result in faulty symbol
resolution.

This important observation can be turned upside-down to our advantage
as follows. If a procedure is global, that is, defined by a global symbol, it is
exported from its module, and therefore the compiler is forced to assume that
the procedure might be called from within other modules. Consequently, the
compiler will have generated code that respects the calling conventions. In
short, global procedures respect the calling conventions!

3. INTERNAL PROGRAM REPRESENTATION

The internal program representation used to facilitates our program transfor-
mations is the Control Flow Graph (CFG). This graph contains basic blocks as
nodes, and potential control flow paths as edges. The basic blocks themselves
consist of a list of instructions. As we will demonstrate, the CFG meets two
important requirements: it can be built using the information we have available
at link time and it enables the efficient implementation of the transformations
that we want to apply.

This section describes the CFG components and the construction of the CFG.
The actual transformations applied to the CFG are discussed in later sections.

3.1 Instructions

After the symbol resolution process is finished and all necessary object files
are collected, the CFG construction stars with disassembling all code sections.
This first step involves detecting the bits representing instructions in the code
sections of the program, and decoding all instructions from their binary repre-
sentation into a representation that is more easily manipulated.

For RISC platforms where no data is mixed between the code, disassembling
the code sections is straightforward. All instructions occupy the same number
of bits, and all bits in the code sections are in fact code. Although many articles
have been written about the problem of differentiating mixed data and CISC
code (see, for example, Schwarz et al. [2002]), we believe this to be a nonissue. If
it is useful to separate code and data easily, compilers should generate tags (or
symbols) in the object files that mark code and data. It required, for example, a
patch of less than 10 lines to have the GNU assembler do this. With such tags,
disassembling code is also straightforward for mixed data and CISC code.

For the disassembled code, we need to choose either a more concrete or a
more abstract internal instruction representation. Do we choose a low-level as-
sembler representation, or do we decompile the instructions to a higher-level
RTL language or abstract syntax trees? Do the disassembled instructions op-
erate on architectural registers or on static-single assignment (SSA) [Cytron
et al. 1991] code where the operands are symbolic registers?

While many factors influence this choice, we will focus on the arguments
for not choosing an SSA representation. The main attraction of an SSA rep-
resentation is the elegance and efficiency it offers for the the implementation
of a great deal of analyses and transformations. Since all control and data de-
pendencies are explicitly encoded in the SSA representation, the analyses and
transformations applied to it more or less automatically respect all data and
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control dependency constraints. Of course this assumes that all other correct-
ness constraints can be dealt with when real machine code is generated from
the SSA representation.

One such constraint is the number of registers containing live values at each
program point. This does not matter in the SSA representation, as the number
of symbolic registers is virtually infinite. It does matter for real assembly code,
however, because the number of architectural registers is always limited. To
solve this problem, compilers allocate architectural registers when assembly
code is generated. During the register allocation, the necessary register spills
are inserted in the code. In reentrant code, spilled registers are spilled onto the
stack.

At link time, things are not that simple. We have not yet found a satisfactory
link-time method to determine which procedures are reentrant. Therefore, al-
most all spill code that we would need to introduce, after having transformed
a program at link time, would have to spill onto the stack. Unfortunately, we
have not yet found a link-time analysis that reveals, in enough detail, how the
stack is used by a program to enable the insertion of additional stack space for
all but the most trivial register spills.

The resulting inability to insert arbitrary register spills in a program at link
time is our main reason not to use a SSA program representation. Any anal-
ysis or transformation on such a SSA representation would still need to take
into account the constraints on the number of live registers. The implementa-
tion of such an analysis would be neither more elegant nor more efficient than
our current code that operates on what is basically an assembly code repre-
sentation. The operands of this representation are real architectural registers
that offer the additional benefit, on most architectures, of not being aliased.
On some architectures, such as the SPARC and IA64 architectures, some alias-
ing between registers exists because of software-controlled register renaming
of register windows. But since all renaming is explicit on such architectures,
the aliasing can be handled easily by inserting dummy instructions that mimic
register copy operations.

Contrary to internal compiler representations, there is no notion of vari-
ables in a link-time intermediate representation. This follows from the fact
that symbol information in the object files only defines labels, not vari-
ables. Furthermore, link-time points-to and alias analysis are very imprecise
[Debray et al. 1998]. Consequently, we treat memory to a large extent as a
black box, through which no information is propagated during data flow analy-
sis. Instead the data flow analyses are limited to information propagated from
registers to registers. Two exceptions to this rule are instructions loading data
from a known, constant address in a read-only data section (for which we know
what data they load), and easily analyzable register spills onto the stack (see
Section 4.1).

3.2 Basic Blocks

Basic blocks are the nodes in the CFG. They consist of a sequence of instruc-
tions. Once the code is disassembled, basic blocks are easily detected with the
leader algorithm [Aho et al. 1986] and the relocation information. All targets of
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direct control flow transfers are entry points (so-called leaders) of basic blocks,
as are all instructions directly following direct or indirect transfers. Since all
code addresses annotated with relocations are initially assumed to be possible
targets of all indirect control flow transfers, the instructions at those addresses
are considered entry points of blocks as well. As such, each basic block consists
of the instructions between (and including) its leader instruction and (exclud-
ing) the leader of the next block.

3.3 Edges

Detecting the edges for the CFG is as easy as detecting basic blocks. We can
get them directly from the disassembled code for direct control flow transfers
that encode their target in the instruction itself. For indirect transfers, we
assume that all the instructions at relocatable addresses can be the targets.
It suffices, therefore, to connect all indirect control flow transfer instructions
with all possible (relocatable) targets. Finally, fall-through edges are added
to all basic blocks ending with an instruction that does not unconditionally
transfer control.

By initially assuming that all relocatable code addresses can be potential
targets of all indirect control flow transfers, we build a very conservative CFG
that contains many unrealizable execution paths. Section 4 will show that the
information gathered by the analyses on this representation can be used to
compact the program, as well as to remove unrealizable paths from the graph.

3.4 Procedures

At the source code level, the relation between procedures can usually be modeled
by a call graph that encodes which procedures get called at which call-sites. This
is not the case at link time. First, compile-time optimizations such as tail-call
optimization or partial inlining result in interprocedural control flow transfers
other than calls and returns. In addition, manually written assembly code can
also contain all kinds of interprocedural control flow. When this occurs, it is
not always easy to determine which procedure a basic block belongs to. A block
may, in fact, belong to more than one procedure. Still, it is important to include
the notion of procedures in the program representation, because this will often
allow one to analyze a procedure call (and the execution of the callee) as an
atomic operation, once procedures are properly identified.

For these reasons, we have not chosen a hierarchical program representa-
tion consisting of a call graph of procedure CFGs. We have opted instead for
one Interprocedural CFG (ICFG) in which the nodes are the basic blocks, and
edges model all possible execution paths, including all interprocedural control
flow. Procedures in this graph are nothing more than a partition of basic blocks.
To determine which basic blocks belong to which procedure, one can use sev-
eral heuristics. The simplest heuristic considers targets of direct or indirect
procedure calls as procedure entry points, together with the procedure entry
addresses mentioned in the symbol information of the object files. It is then
assumed that each procedure consists of the sequence of instructions from its
entry point up to the instruction preceding the entry point of the next procedure.
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Fig. 4. On the left, the relevant control flow transfers in a fragment of assembler code are shown.
This fragment consists of three procedures: f(), g(), and h(). On the right, the corresponding ICFG
is shown, including three exit blocks, a call edge C, its corresponding return edge R, an escaping
edge E, and its compensating edge P.

To ease the conservative, yet efficient, effective, and elegant modeling of
all possible interprocedural execution paths in an ICFG, we add both virtual
edges and virtual nodes. First, every procedure gets an exit node: an empty basic
block that serves as a unique sink node of its procedure. All blocks ending with
a return instruction are connected to the exit node of their procedure, as in the
three procedures depicted in Figure 4. Procedure calls are then modeled with
a call edge (C) connecting the call-site with the entry-point of the callee, and
with a return edge (R) connecting the exit block of the callee with the return
point in the caller.

Link edges (L) are added to connect call-sites with the corresponding return
points following the call instructions. These link edges are added to the ICFG
because they ease the modeling of a procedure call as an atomic operation
during the analysis of a caller. Another frequently used term for such edges is
summary edges.

Finally, compensating edges (P) are added to the ICFG to model execution
paths that involve so-called escaping edges (E). Escaping edges model interpro-
cedural control flow transfers other than calls and returns. In the program code
depicted in the left-hand side of Figure 4, one possible execution path consists
of the instructions at the addresses 0x24, 0x28, 0x10, 0x14, 0x08, 0x0c, 0x28,
and 0x2c. By adding the escaping edge E and the compensating edge P to the
ICFG, this execution path is modeled in the ICFG in Figure 4. Compared to
adding an edge from the exit block of f() to the exit block of h() to model the
execution path, the use of a compensating edge offers the advantage that
there is a one-to-one correspondence between escaping edges and compensating
edges, just like one return edge always corresponds to one call edge in the ICFG.
This elegant, one-to-one correspondence for all interprocedural control flow sim-
plifies the implementation of interprocedural analyses significantly.

It is important to note that, with the appropriate compensating edges,
correctness is not affected by the assignment of basic blocks to procedures.
In particular, it does not matter whether or not the partitioning of basic
blocks into procedures actually reflects the original procedures from which
the code was generated. All analyses and transformations will be conservative
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independent of the partitioning. In fact, when partitioning basic blocks into pro-
cedures, more advanced heuristics do not try to approximate the procedures in a
program. They do, however, try to minimize the number of compensating edges.
Most often, but not always, this partitioning reflects the actual procedures in
the program.

One problem that we have not addressed as yet is the detection of “return”
instructions. On architectures with a program counter that can be accessed as
an ordinary register (such as the ARM architecture), returns are implemented
by copying the return address into the program counter. This is the same man-
ner as any indirect procedure call is implemented by coping a procedure pointer
into the program counter. The problem then is to correctly differentiate returns
from other indirect control flow transfers.

We have found that on such architectures, heuristics suffice to detect most,
if not all, returns correctly. Most modern processors use a return address pre-
dictor that requires easily recognizable return statements. Not to mislead to
predictor on the architectures in question, compilers generate code that uses
fixed locations to store return addresses, even if this is not required by the call-
ing conventions or for program correctness. When this location is copied into
the program counter, one can almost always be certain that the copy operation
is a procedure return, and apply heuristics to further analyze the code. When
one cannot be certain, a potential return can be modeled conservatively by an
interprocedural edge to the unknown node and a corresponding compensating
edge. This is discussed below.

3.5 The Unknown Node and the Unknown Procedure

Connecting all indirect control flow transfers with all instructions at relocat-
able code addresses results in a huge number of additional edges in the ICFG.
Besides being inelegant, this makes the whole-program analyses inefficient.

To avoid this, we include a so-called unknown node in the ICFG that consti-
tutes the unknown procedure. This node and procedure model unknown code,
and resemble the so-called extern node [Chang et al. 1992] that models (un-
known) external library code. Consider part of an ICFG as depicted in Figure 5.
The callees of indirect procedure calls like the one in caller() are unknown,
and therefore the unknown procedure is the callee of such indirect call-sites.
And because procedures with relocatable entry points, such as callee(), might
have unknown callers, they become callees of the unknown node.

The most important advantage of using an unknown node is that it reduces
the quadratic number of indirect control flow edges to a linear number of edges.

Moreover, the unknown node makes an elegant and efficient implementa-
tion possible for dealing with unknown code in all kinds of analyses and pro-
gram transformations. After having added the necessary edges to and from
the unknown node, as in Figure 5, it suffices let the unknown node model the
worst-case scenario for all possible analyses. For liveness analysis, for example,
it suffices to initially mark enough registers as live on entry to the unknown
node, after which the fix-point computations can be applied on the unknown
node just like on any regular node.
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Fig. 5. Part of an example ICFG to illustrate the use of the unknown node and procedure.

As we will later see in Sections 4.1 and 4.2, the unknown node also allows
the easy exploitation of calling convention information that we can get from the
symbol information discussed in Section 2.4.2.

Please note that each outgoing call edge of the unknown node corresponds
to a relocatable address stored or computed in the program. If we can, at
some point during the analyses of the program, determine precisely how a
relocatable address is used in the program, we may be able to replace its corre-
sponding edge with less conservative edges in the ICFG. To enable this, we need
to associate each relocatable address with both the entity that produces the re-
locatable address (that is, the instruction that computes the address, or the
memory location where the address is stored), and with one “unknown edge.”

4. WHOLE-PROGRAM ANALYSIS AND OPTIMIZATION

Once an initial conservative ICFG is constructed, we can start compacting
the program. The compaction techniques that we apply at link time can be
divided in two groups. On the one hand, whole-program optimization tech-
niques eliminate superfluous code and data that resulted from the separate
compilation issues discussed in Sections 2.2.1 through 2.2.3. Duplication elim-
ination techniques, on the other hand, eliminate duplicated code and data (see
Section 2.2.4). The latter techniques are discussed in Section 5. This section
focuses on the optimization techniques and in particular on the underlying
whole-program analyses.

We will not go through all the details of the analyses and optimizations we
have implemented and evaluated. They are extensively discussed by Debray
et al. [2000] and De Sutter et al. [2001]. In this section, we focus on the dif-
ferences with compile-time analyses and on how the information discussed in
Sections 2 and 3 can be exploited effectively. We also discuss how the ICFG can
be refined using the information collected by the analyses. At the end of this
section, we point out some effective ways to speed up the whole-program anal-
yses. This is important for scalability and practical applicability of link-time
compaction.

To overcome the limited scope of program analyses and optimizations at com-
pile time (see Section 2.2.1), we perform roughly the same analyses at link time.
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We have the advantage of performing these analyses on the whole program,
albeit on a low-level internal representation. These whole-program analyses
include liveness analysis to determine which registers hold useful contents,
constant propagation to determine which registers hold constant values, and
unreachable code detection [Aho et al. 1986] to detect code that can never be
executed.

4.1 Liveness Analysis

Liveness analysis is used, first of all, to overcome the overhead resulting from
overly conservative calling conventions. By detecting which registers hold live
contents (i.e., contents that might be used later on during program execution)
at intermodular control flow transfers, we can detect which parts of the calling
conventions that the compiler had to assume necessary are in fact unnecessary,
and optimize the code accordingly. Liveness analysis is also used to detect and
eliminate instructions that have become useless after other transformations
have been applied. Finally, liveness analysis is used to find free registers (i.e.,
registers that hold no useful contents) to store temporary values in order to
enable other program transformations.

To help us understand the requirements of a whole-program liveness analy-
sis, we make the following observations about procedure f() in Figure 3:

—Each caller of f() needs to store the argument to f() in register r0. In other
words, r0 is live at each call-site of f().

—Register r1 seems to be live on entry to f(), as r1 is consumed by the second
instruction in f(). Therefore, we can infer that r1 is live at each call-site of
f().

—However, whether or not the contents of r1 really is live at a call-site of
f() does not depend on f(), since no computation in f() depends on the
value of r1. Procedure f() merely spills r1 to maintain calling conventions.
Consequently, register r1 is live at a call-site of f() if, and only if, r1 is live
at the corresponding return point.

Several fix-point solutions for liveness analysis have been developed. These
reflect the third observation by propagating liveness information of callee-saved
registers back over link edges instead of over call edges. The version described
by Muth [1999] is the most advanced, and it is this context-sensitive backward
data flow analysis that is implemented in our prototype link-time compactor.

The accuracy of this liveness analysis depends on the accuracy with which we
can determine which registers are spilled onto the stack by each procedure. One
way to determine these registers is an analysis that inspects the code of each
procedure for stack saves and restores. This analysis is feasible but difficult,
because clever compilers try to move the register stores and restores away from
the procedure entry and exit points into the procedure bodies.

Fortunately, the need for a very accurate analysis by code inspection can be
eliminated, to a large extent, by looking at the unknown node and the available
symbol information. In Section 2.4.2 we noted that a compiler-generated global
procedure adheres to the calling conventions. These conventions define, among
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others, the callee-saved registers, of which a callee must assume that they
contain useful contents (for a caller), and of which it must guarantee that its
contents are unchanged. In the initial ICFG, we can therefore safely assume
that the callee-saved registers are unused and unchanged by global procedures.

Since getting rid of the adherence to overly conservative calling conventions
is one of the main goals of whole-program optimization, this adherence to calling
conventions may no longer hold after we have applied some optimizations. Can
we, in such cases, still rely on the symbol information? If we make sure that no
program transformation invalidates this property, the answer is yes. One option
would be take this restriction into account during the implementation of every
transformation. Because this would be very cumbersome and error-prone, this
option is not viable.

A much simpler solution involves the use of the unknown node. The conser-
vative properties of the unknown node by themselves guarantee that none of
the unknown node’s callees will ever be transformed from a calling-convention
maintaining procedure into a calling-convention disregarding procedure. We
can therefore safely conclude that for procedures that (1) are defined by a sym-
bol and (2) are callees of the unknown node, all callee-saved registers will be
unused and unchanged. For liveness analysis, such registers can be propagated
over link edges instead of over call edges.

4.2 Constant Propagation

We rely on constant propagation to solve the problem of unknown addresses,
as discussed in Section 2.2.3. In compilers, constant propagation is a forward
data-flow analysis to detect expressions that evaluate to constant numerical
values and detect and optimize expressions that depend on those values.

At link time, the constant values propagated over the ICFG of the program
during constant propagation are not limited to numerical constants. Instead,
constant (data) addresses are also propagated, and the instructions consuming
and producing the constant addresses are optimized.

4.2.1 Context-Sensitiveness. Just like link-time liveness analysis, link-
time constant propagation is performed on registers instead of on variables.
No information is propagated through memory, and therefore the same prob-
lems with callee-saved registers arise as in link-time liveness analysis. Looking
at the machine code of procedure f() in Figure 3 again, we observe that, even
though the a value is loaded into register r1 just before the return instruction,
the content of r1 after the return from a call to f() does not depend on f().
Instead its new content is identical to its content prior to the call to f(). As
we described for liveness analyses, we can also use the symbol information and
the unknown node to determine which registers remain unchanged by a callee
at some call-site. And just as we propagated the liveness information for those
registers backward over the link edge instead of over the call edge, we propa-
gate constant register contents of callee-saved registers forward over the link
edges instead of over the return edges.

The net result is that the constant propagation is context-sensitive with
respect to the callee-saved registers, even though it is otherwise completely
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context-insensitive. This is very beneficial, since in practice it results in an
analysis that is almost as precise as a more generally context-sensitive propa-
gation without requiring the computation time or space of the latter.

4.2.2 Differences with Compile-Time Constant Propagation. While link-
time constant propagation is conceptually similar to compile-time constant
propagation, there are some significant differences. Most importantly, at
compile time, constant values are propagated from producers to consumers.
Therefore the propagated values are by definition live.

At link time, we like to know all constant values stored in registers, whether
they are live at some point or not. An example of the usefulness of propagating
dead values can be seen in the code generated for procedure f() in the exe-
cutable a.out in Figure 3. As a first step in the compaction of procedure f(),
we want to replace the load of b’s address from the GOT by an addition that
computes b’s address out of a’s address. In order to enable this optimization,
constant propagation needs to detect that a’s address is available in r2 at the
point where b’s address is originally loaded. This detection is implemented by
propagating a’s address in r2 to the instruction that loads b’s address, even
though r2 is clearly dead just prior to that instruction.

Another primary difference with compile-time constant propagation is that
constant code and data addresses can also be propagated at link time. This
potential offers both an interesting phase-ordering problem, as well as some
important compaction opportunities. Starting with the compaction opportuni-
ties, propagating constant addresses allows (1) the optimization of the genera-
tion and use of addresses, just like the generation and use of other numerical
constants can be optimized and (2) the detection of which statically allocated
data can be accessed in the program.

4.2.3 Detection of Inaccessible Data. As indicated at the end of
Section 2.4.1, an object data section is accessible if, and only if, a relocatable
address pointing to the section may be used in the program. Since relocatable
addresses are constant in the linked program, constant propagation of con-
stant addresses can be used to detect which relocatable addresses are used in
the program. Hence constant propagation can be used to detect which statically
allocated data can be accessed by a program. When an address is used in a load
instruction, the data at that address is accessible, and when an address is used
in a store instruction, the data at that address is nonconstant or mutable.

Where constant propagation cannot keep track of how an address is used,
worst-case assumptions need to be made. This is, for example, the case when
an address is stored in memory, since constants are not propagated through
memory. Another case occurs when a register can hold more than one constant
address, as those addresses are not propagated separately.

Fortunately, because the compiler cannot have generated code that accesses
data in multiple data sections from one constant base data address (unless
the relocation information tells us differently), all worst-case assumptions that
need to be made are always restricted to one object section. If constant prop-
agation cannot keep track of a relocatable, constant address, it suffices to
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consider the whole object section to which the base address points accessible
and mutable. In practice, this granularity of object sections on which worst-
case assumptions need to be made has proven adequate to detect significant
amounts of inaccessible data.

Without going into further details (refer to De Sutter et al. [2001]), it is
important to note that knowing which absolute address is used at some point
is by itself not sufficient to know which object section will be accessed with
the address. Consider the final program a.out in Figure 3 again. The absolute
address used to access array R in procedure f() is not R’s starting address &R,
but &R-5 = 0x57. It is this 0x57 that is used in the subtraction instruction at
final address 0x20. Since an unknown value is at that point subtracted from
the constant address 0x57, constant propagation loses track of the use of this
address, and worst-case assumptions need to be made about its object section.
This cannot be accomplished by looking at the value of the address being used
however: 0x57 is not in A.o’s .data section in the final program, which ranges
from 0x5c to 0x67. Instead, the relocation associated with that 0x57 needs to be
used to identify the object section that will be accessed with it. In the example,
this is relocation RB1. Through symbol SB1, this relocation indeed points to
a.o’s .data section.

It is important that the relocations, rather than the corresponding constant
addresses themselves, need to be used. This implies that this analysis is ap-
plicable at link time only, and not post link time. Even if a linked executable
program is still relocatable because the linker provided relocation information
in it, and even if a so called link-map is generated to distinguish the differ-
ent object data sections that were combined into the program data sections,
there is no way to tell which of the original object data sections will be accessed
with which addresses. That information is only available in the original object
files.

4.2.4 A Phase-Ordering Problem. The phase-ordering problem we men-
tioned at the end of Section 4.2.2 relates to the propagation of addresses. On
the one hand, the propagation of constant addresses during constant propa-
gation obviously requires that the code and data addresses that appear in the
program be constant. On the other hand, using the results of the constant prop-
agation to eliminate instructions or data to compact the program requires the
remaining instructions or data to be moved, thus changing their addresses. In
short, we want to change the addresses of code and data using the results of an
analysis that requires them to be constant.

While this problem may at first sight seem similar to the compile-time phase-
ordering problem of span-dependent branches, it is not at all similar. Whereas
the optimization of span-dependent branches by Szymanski [1978] involves
only part of the instructions of a program (i.e., the branches), address compu-
tation optimizations at link time can result in free registers, because of which
many other optimization opportunities may be created for the surrounding code.
Vice versa, other optimizations may result in free registers from which address
computation optimizations can profit. Hence, it is impossible to separate the ad-
dress computation optimizations from the other program optimizations in such
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Fig. 6. Object data sections are reordered to separate inaccessible and accessible data before the
second pass of the compaction begins.

a way that an optimization similar to Szymanksi’s technique for optimizing
span-dependent branches would be useful.

For code addresses, our solution to this phase-ordering problem is simple: we
do not modify any instructions that compute code addresses. Since we assume
that all code address computations in the original program are relocatable,
the original relocations will tell us how code address computations need to be
adapted after the final compacted program has been assembled again. This
theoretically conservative solution of not optimizing any code address compu-
tation does not limit our compaction in practice, as programs rarely contain
code address computations.

For data addresses, whose computations are one of the most important op-
timization targets in a link-time compactor, the same approach is not feasible.
Instead, we have chosen to compact a program with two runs of our link-time
compactor.

During the first run, no object data sections are eliminated from the program.
Consequently, all code analyses and optimizations in that first run can exploit
the fact that all data addresses are constant. After the first run, a temporary
file is produced that describes which object data sections are inaccessible. Note
that this is not limited to data sections that were inaccessible in the original
program. Object data sections that were accessed in the original program might
have become inaccessible after the first compaction run. This happens, for ex-
ample, with parts of the GOT that are no longer accessed after the optimization
of indirect data accesses.

Before the second compaction run, the compactor first reads the temporary
file to reorder the data sections in the program. The new layout is such that
all data determined inaccessible after the first run is positioned after the data
determined accessible after the first run. An example is depicted in Figure 6. If
we suppose that the first compaction run was executed on the program linked
in Figure 2, and that is was determined that the .data section of obj1.o was
inaccessible, the compactor will relayout the data sections at the beginning of
the second run as depicted in the middle of Figure 6.
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As a result, eliminating the inaccessible data from the program during the
second compaction run no longer requires moving the remaining data. Dur-
ing the second run, data addresses can be treated as constants and it suffices
not to include the inaccessible data in the binary written out after the second
compaction run.6

We should point out that, in theory, there is no need for two full compaction
runs. A first alternative would be a compactor with two phases: one that con-
siders data addresses as not final, and one that considers data addresses as
final. Obviously the implementation of program analyses and transformations
that need to be run in both phases then becomes more complex.

A second alternative is to treat only the intrasection relative addresses as
constant values, both during a first and a second compaction phase. During
the first phase, all compaction techniques treat the intersection relative ad-
dresses as unknown values. Inaccessible object sections are eliminated and the
remaining ones are placed next to each other. After the first phase, all remaining
object sections are combined into one data section with fixed layout. Hence all
intersection relative addresses from the first phase have become intrasection
relative addresses in the second phase. The exact same compaction techniques
can be applied to these as in the first phase. This two-phases scheme offers
the advantage, as does our two-runs scheme, that the program analyses and
transformations are identical in both phases. But this two-phases scheme can-
not easily eliminate redundant addresses from the GOT, as these will remain
accessible throughout the first phase.

4.3 Unreachable Code Detection

Unreachable code detection detects code that will never be executed, because
no execution path leads to it. Basic unreachable code elimination is very sim-
ple [Aho et al. 1986]. Mark the entry point of a program, and iteratively
mark all successors of marked program points. After this iterative process has
converged, all unmarked blocks can be eliminated from the program, together
with their predecessor and successor edges.

Wegman and Zadeck [1991] demonstrated that combining unreachable code
detection and constant propagation as a single optimization performs better
than separate constant propagation and unreachable code elimination opti-
mizations at compilation time. We found this to be true at link time as well. So
the constant propagator we implemented is a conditional constant propagator.
If the condition of a conditional branch evaluates to some constant during con-
stant propagation (i.e., we know the outcome of the conditional branch), we only
propagate information over the corresponding edge, the branch-taken edge, or
the fall-through edge. Once the fix-point computations of constant propagation
have converged, conditional branches that were only evaluated in one direction
are converted to unconditional control flow, and the never-taken edge is removed

6Note that, on most platforms, code and data are not stored immediately after each other in the
memory space. Therefore changing the code addresses during the second compaction pass does not
result in changed data addresses.
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from the ICFG. If this results in basic blocks with no incoming edges, these will
be eliminated during a subsequent, simple unreachable code elimination.

A similar reasoning as for never-taken conditional edges holds for edges
from the unknown node to other basic blocks. Remember from Section 3.5 that
such edges were initially added to the ICFG for relocatable code addresses
stored in the statically allocated data or encoded in the immediate operands
of instructions in the program, and that there is a one-to-one correspondence
between the relocatable addresses and these edges. As long as the locations at
which such code addresses are stored have not become accessible (in case of
addresses stored in the data) or reachable (for instructions computing the code
addresses) during constant propagation, there is no need to propagate over the
corresponding edges from the unknown node.

And just as never-taken edges following conditional branches are removed
from the ICFG, so too are edges from the unknown node over which no data ever
needed to be propagated. As such, the detection of inaccessible data is not only
useful to eliminate it from the program (during the second compaction run), but
also to eliminate unreachable code of which we otherwise had to assume it was
reachable through indirect control flow transfers. This form of unreachable code
elimination proved to be particularly important for object-oriented programs,
in which polymorphic method calls are implemented as indirect procedure
calls.

4.4 Whole-Program Optimization

The information gathered by the liveness analysis, constant propagation, and
unreachable code detection is consumed by several optimizations.

Among the optimizations that proved useful at link time are [Aho et al.
1986]: useless code elimination, unreachable code elimination, branch forward-
ing, constant folding, load/store avoidance, strength-reduction, peephole opti-
mizations, copy propagation, copy elimination, inlining (of small procedures
and of procedures with one call-site only), code hoisting and sinking (for exam-
ple, when duplicated code can be hoisted or sunk to a common predecessor or
successor block in the ICFG).

It is important to note that the whole-program overview of a link-time
compactor is not the only reason why these optimizations are useful. Often
these optimizations build on information that was available at compile time,
but was not exploitable because of a lack of resources such as free registers.
At link time, liveness analysis not only detects more free registers, but other
optimizations also create more free registers. A typical use of constant folding,
for example, is to encode small constant operands as immediate operands in
instructions, thus avoiding the need to store them in a register. When more
registers become available as a result, this often creates new opportunities for
load/store avoidance, for copy propagation, and for other optimizations.

4.5 ICFG Refinement

Based on the results of conditional constant propagation, inaccessible data de-
tection, and unreachable code detection, unrealizable edges are removed from

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Link-Time Binary Rewriting Techniques for Program Compaction • 905

Fig. 7. Original C-structure used to collect information about a basic block.

the ICFG, thus making it less conservative. As a result, unreachable code may
be eliminated, and subsequent analyses may collect more accurate information.

Using the constant propagation results, we can to some extent also get rid
of indirect calls that are modeled by an edge to the unknown node. If it turns
out that an indirect procedure call has a known callee (i.e., there is a constant
target address), it suffices to replace the indirect call instruction by a direct
one and to replace the corresponding call and return edges to and from the
unknown node by call and return edges to and from the actual callee.

Indirect jumps other than calls are also initially modeled with an edge to the
unknown node. Most such indirect jumps in compiler generated code originate
from switch-like statements in the source code. These statements are usually
implemented with more or less fixed instruction sequences. A typical sequence
involves normalization of the index of the switch-statement, a bounds check,
the load of the actual target code address from some target address table using
the normalized index, and the actual jump. Of course, this sequence might be
scheduled around and in between other instructions, including procedure calls.
By pattern matching different versions of this scheme with the program slice of
the indirect jump (i.e., the instructions affecting the outcome of the jump), it is
often possible to extract the location of the target address table and the number
of elements in that table. At that point, the edge to the unknown node can be
replaced by edges to all the possible targets of the jump. This is discussed in
more detail by De Sutter et al. [2000] and Kästner and Wilhelm [2002].

4.6 Implementing Efficient Analyses

The ICFGs on which the whole-program analyses and optimizations are applied
often contain several hundred thousand nodes, whose combined data structures
do not fit in the caches of a memory hierarchy. It is therefore no surprise that
data locality is an important implementation issue affecting compaction time.

One obvious way to optimize spatial data locality is to restructure the data
collected about a program. A particularly interesting technique proves to be
data remapping [Palem et al. 2002]. Take, for example, the information we col-
lect about basic blocks. All the information collected about a block was originally
stored in one structure like the one depicted in Figure 7, and we used one huge
array of these structures to gather the data about all basic blocks.

While such a simple array enables simple and fast indexing to access the
collected data, thus easing our programming task, its structure nonetheless
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Fig. 8. Naive implementation of a fix-point computation.

Fig. 9. Implementation of a fix-point computation exploiting temporal locality.

proves to be very bad for performance. Each subsequent analysis, going over
the hundreds of thousands of basic blocks, only accesses a small number of
members from the depicted C-structure. However, when one member of the
C-structure is loaded into the cache, so are its neighboring members, whether
they are needed by the analysis or not. The result is a very low cache line
utilization, and because each subsequent analysis accesses different mem-
bers, reordering the members of the structures can never completely avoid the
resulting cache pollution.

The solution to this problem is the replacement of an array of structures by
a structure of arrays, of which each array stores one original structure member
for all basic blocks. As a result, only the members needed by an analysis are
loaded into the cache. This data remapping of the basic block data and of the
edge data structures results in a speedup by a factor of up to 2.5.

Besides restructuring the data to avoid underutilization of cache lines,
temporal locality should also be exploited as much as possible. Since most of the
analyses are iterative fix-point computations, increasing the temporal locality
is achieved by changing the order of the iterations. At first, our iterative anal-
yses mostly worked as depicted in Figure 8. In each iteration, all basic blocks
in the program for which recomputation is necessary are visited.

This loop obviously has little temporal locality. For most analyses, huge
speedups were achieved by simply converting the single iteration loop into two
nested loops, as depicted in Figure 9. The outer loop iterates over procedures
that need recomputation. In the inner loop, local convergence is first achieved
within one procedure. Because of the nested loops, basic blocks are revisited
much more quickly, when chances are higher that their data is still cached.
For context-sensitive liveness analysis, for example, we noticed a speedup by a
factor of 20 for larger test programs.

With respect to the iteration order in the inner loop, our experience was that
the optimal theoretical order is most often not optimal in practice. Instead,
we experienced that most iterative analysis performed best when a stack was
used to push and pop elements for which recomputation was needed. The LIFO
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order of the stack improved temporal locality, and, more importantly in light
of the already high stress on the caches, a minimal amount of memory was
required to store the set of elements that needed recomputation. Overall, it
proved beneficial to minimize the execution time per iteration by using a stack,
instead of optimizing the number of iterations.

Finally, we should mention an important use of the exit nodes of procedures
and of the mapping between incoming interprocedural edges and outgoing in-
terprocedural edges. Recall that each call edge has a corresponding return edge
in the ICFG, and that each escaping edge has a corresponding compensat-
ing edge. To implement context-sensitive analysis efficiently, this one-to-one
mapping must be stored directly, because one most often propagates data-flow
information from the head of the incoming edge to the tail of the outgoing
edge.

To iterate over the outgoing interprocedural edges of a procedure, it suffices
to iterate over the successor edges of the procedure’s exit node: those edges
are the return and compensating edges exiting a procedure. More importantly,
we can iterate over the incoming edges of a procedure by iterating over the
successor edges of the exit node, and taking their corresponding edges. Thus,
we only need to interate over one block’s predecessor edges.

In the presence of escaping edges and procedures with multiple entry points
that would otherwise complicate the implementation of interprocedural analy-
ses, this unusual use of the exit node has proven to be both elegant and efficient.
Apart from storing the corresponding edge for each edge, which is necessary
anyway for efficiently implementing context-sensitive analyses, there is no need
to store and maintain additional information (such as a list of incoming edges
per procedure, or whether or not an edge is interprocedural).

5. DUPLICATE CODE AND DATA ELIMINATION TECHNIQUES

As briefly discussed in Section 2.2.4, separately compiled programs may contain
duplicate code fragments. Furthermore, if some global code or data is accessed
by multiple source files, then each of their corresponding object files will contain
a placeholder for that code or data. As a result, a lot of addresses end up multiple
times in the data of a final program, and in particular in the GOT. Other data
that typically occurs multiple times in an executable are the numeric constants
that appear in the source code and that are cheaper to load than to compute,
such as floating-point values or wide bit masks. Such constants are stored in
the read-only object data of all modules in which code uses them. This section
discusses techniques to eliminate duplicate code and duplicate data.

5.1 Duplicate Code Elimination

To remove duplicate code at link time, the technique commonly referred to as
code abstraction is used. Multiple occurring code fragments are replaced by
one procedure implementing the code sequence, and the original occurrences
are replaced by calls to this procedure. Often code abstraction techniques are
not limited to identical multiple occurring code fragments. Some techniques
are able to abstract functionally equivalent but different code fragments, while
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other techniques are able to detect similar fragments that can be abstracted
only after some abstraction-enabling code transformations are applied.

This section will not delve into the technical details of code abstraction tech-
niques. Readers interested in specific link-time techniques are invited to read
Debray et al.’s [2000] or De Sutter’s et al.’s [2002] work. This section instead
focuses on how to engineer scalable techniques. Considering that the programs
we want to compact consist of up to hundreds of thousands of basic blocks and
millions of instructions, any link-time code abstraction technique should scale
very well.

Conceptually code abstraction techniques consist of three steps: the detec-
tion of identical or similar fragments, the application of abstraction-enabling
transformations, and the actual abstraction. Since the last two steps are
transformations on relatively small code fragments, the difficulties with re-
spect to scalability lie primarily in the detection of identical or similar
fragments.

A very natural approach to detect identical or similar code fragments is
the bottom-up approach: starting with pairs or groups of identical code frag-
ments consisting of one instruction only, we iteratively detect larger fragments
by growing the existing identical (or similar) fragments. In the software engi-
neering community, several very powerful bottom-up techniques for duplicated
code detection have been developed. They are used to detect code that has been
duplicated by programmers with copy&paste(&edit), which frequently occurs
during the development of large software projects, but is considered bad practice
because of its detrimental impact on software maintainability.

The best known bottom-up approaches [Krinke 2001; Komondoor and
Horwitz 2001] build on program dependency graphs and program slices.
Unfortunately, these bottom-up approaches do not scale well at all. Krinke
[2001] reported detection times ranging from 0.6 s to more than 48 h for
programs ranging from 2,402 to 24,950 lines of source code. Komondoor and
Horwitz [2001] similarly reported detection times ranging from 40 s for a
program of 1,569 lines of source code, to 93 min for a program of 11,520 source
code lines. Clearly such detection times are not feasible in compiler tool chains.
To the best of our understanding, this nonscalability is a fundamental problem
of bottom-up approaches, as they are specifically designed to explore extremely
large search spaces, which typically are much larger than what is useful for
automated code abstraction.

We strongly believe that the key point of making code abstraction at link
time scalable lies in limiting the search space. This is feasible because many
of the potentially duplicated code fragments are too irregular to be abstracted
into procedures, thus making it useless to detect them. Also, many potentially
duplicated code fragments occur very infrequently, making it not worthwhile to
try to detect them. Finally, as is common for problems with large search spaces,
divide-and-conquer approaches are useful. We have found it particularly use-
ful to engineer different abstraction techniques for different types of program
fragments, such as procedures, basic blocks, instruction sequences, etc. Not only
does this divide the search space, but it also allows us to conquer each subspace
with specific techniques.
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5.1.1 Duplicate Procedure Elimination. Duplicate procedures, either fully
or partially identical, mainly result from two programming techniques:
copy&paste by programmers, and the use of templates to reuse code. The latter
is frequently done in C++ programs, but is not limited to that or similar lan-
guages. Any rapid prototype programming environment, for example, generates
large amounts of code of which the skeleton is based on templates.

In C++ programs, it often occurs that different template instantiations at the
source code level result in identical instantiations at the object code level. At
the source code level, pointers to different types are themselves different types,
but at the assembly level, all pointers are simple addresses. And even if the
generated code is not identical, for example, because pointer arithmetic in the
instantiations depends on the size of the types the template is instantiated for,
the generated code will still have the same structure and show only local differ-
ences. A more extensive discussion of such local differences is given by De Sutter
et al. [2002]. Code generated from code skeletons, and copied&pasted code that
was later edited, also often show similar structure with local differences only.

Furthermore, procedures are the typical scope with which compilers optimize
and generate code, and compilers usually do so very deterministically. So there
is no reason to expect big differences in code schedules, register allocations, or
code layout for procedures that have the same structure and only very local
differences.

Therefore we can limit the detection of similar or identical procedures to
procedures with identical code structures, or, in other words, with identical
CFGs. Since the compactor is deterministic in its CFG creation, we can use a
direct comparison of the procedure CFGs, not requiring a complex detection of
different but isomorphic graphs. In order to do this efficiently and to reduce the
number of pairwise comparisons between procedures we need to perform, we
use a fingerprinting scheme to prepartition all procedures. For each procedure,
a deterministic depth-first traversal is used to build a string of characters that
identifies the basic blocks in the procedure and their types: ‘C’ stands for a block
ending with a call, ‘B’ for a block ending with a branch, etc. Procedures with
identical fingerprints are put in the same partition.

Inside each partition, a more accurate pairwise comparison of procedures is
then performed. It is important to note that this pairwise comparison is very
simple. Because of the deterministic way in which compilers generate code
schedules and register allocations for the procedures we target, the pairwise
comparisons do not need to handle differences in code schedules or register
allocations. Instead counting the number of identical pairs of corresponding
instructions in two procedures suffices to measure how similar two procedures
(of which we already know that they have the same structure) are.

If multiple identical procedures are discovered this way, we can simply
remove all but one of them, and convert all their call-sites to call the one remain-
ing copy. If two or more similar procedures are detected, the differences will be
local only. In this case the identical code in the procedures can be eliminated by
creating a new procedure that merges all code from the original procedures as
follows. All identical code from the original procedures occurs once in the new
procedure, as does all code that was not identical and appeared in only some of
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the original procedures. Wherever there was a local difference between the orig-
inal procedures, the differing fragments in the merged procedure are preceded
by a conditional branch (or a tree of branches). These branches control which of
the original different fragments will be executed, and they do so by testing an
additional parameter of the merged procedure that identifies the call-site from
which it was called. The original similar procedures are simply replaced by code
that sets the parameter and calls the merged procedure. De Sutter et al. [2002]
discussed in detail how one can add an additional parameter to the merged
procedure at link time.

5.1.2 Duplicate Code Region Elimination. A code region is a group of basic
blocks with a single entry point and a single exit point. They seem at first sight to
be good candidates for code abstraction. However, detecting identical or similar
code regions is not as simple as detecting identical or similar procedures.

First of all, the search space is larger: there are far more code regions in a
program than procedures. Moreover, the code schedules and register allocations
inside code regions that implement identical or similar source code will likely
show much more variation than the variation seen in identical or very similar
procedures, since these properties are typically influenced by the nonsimilar
code surrounding the regions. Fewer functionally equivalent regions will be
identical or mostly identical. So on top of having to explore a larger search
space, we will also need a more complex comparison to detect whether or not
some regions are functionally equivalent.

Furthermore, the abstraction of code regions is complicated by the fact that
a place has to be found to store the return address of the call to the abstracted
code. Unlike whole-procedures, there is no one-to-one correspondence between
stack frames and code regions, making it difficult to find such space on the stack.
Finding a free register to store the return address is not trivial either. First, if
the functionally equivalent regions contain procedure calls, it has to be checked
whether the abstracted procedure would be reentrant. If it would, no register
can be used. If it would not be reentrant, a free register actually has to be
found. While this is not complex, it is relatively time-consuming. For example,
for each of the equivalent regions, the sets of live and defined registers have to
be computed. This would not be problematic, were it not that the chances for
finding a free register are relatively small because of the rather large variation
in register allocation in functionally equivalent regions. Our experience to this
date is that the relatively time-consuming search with relatively small success
rate has not proven worthwhile.

For these reasons, we have not yet found a scalable technique to detect
abstractable, nontrivial code regions. From examining compiler-generated code
fragments, we do know that there definitely are code regions that can be fac-
tored out, but finding a cost-effective technique remains work for the future.

5.1.3 Duplicate Basic Block Elimination. Like code regions, basic blocks
implementing the same computations can be expected to show some variation in
code schedule and the registers used. And obviously there are even more basic
blocks than code regions. But because basic blocks involve no control flow, the
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detection of functional equivalence of two blocks is much simpler.7 Moreover,
because liveness information is already available per basic block, finding a free
register to store the return address of an abstract basic block is much less
time-consuming than finding a free register for an abstracted region. For these
reasons, basic blocks have proven to be good abstraction candidates.

To detect whether or not two blocks perform the same computations, we com-
pare their dependence graphs. These directed acyclic graphs (DAGs) consist of
instructions and edges that connect producers with consumers. Comparing two
dependence DAGs is straightforward, if the order of computations is assumed
identical. A single iteration over all the instructions suffices. Furthermore, if
we only try to detect functionally equivalent blocks in which all computations
are performed in the same order, it is trivial to generate fingerprints to prepar-
tition all the basic blocks as we did with procedures. In the case of blocks, the
fingerprint consists of the number of instructions in a block and a concatenation
of the opcodes of the instructions (excluding register operands).

In practice, we have experienced that limiting the detection of functionally
equivalent blocks to blocks with identical instruction schedules does not signifi-
cantly impact the number of abstracted blocks. Less than 0.5% of the abstracted
blocks are no longer abstracted because of this simplification. This result corre-
sponds with our experience that compilers most often generate identical sched-
ules for identical DAGs. It must be said, however, that this may not be the case
with more ambitious compiler schedulers. When global schedulers move code
between basic blocks aggressively, basic blocks that originally were identical
may become polluted with different code from different neighbors.

To test whether we can abstract basic blocks with the same fingerprints and
the same DAG, but possibly different register operands, we try to rename the
register operands in the blocks to each other. Again, a single iteration over the
instructions of the blocks suffices. To rename one block to another, we simply
insert copy operations before and after the block to be renamed. This was dis-
cussed in detail by Debray et al. [2000] and by De Sutter et al. [2002]. Renaming
is considered successful if (1) it is possible under the existing register pressure,
and (2) fewer register copies have to be inserted than what can be gained from
abstracting the code.

Note that by inserting copy operations just before and after a renamed basic
block, this renaming is local. Therefore, renaming one block does not influence
possible renamings of other blocks in its neighborhood. Cooper and McIntosh
[1999] proposed global register renaming, not requiring the addition of copy
operations. We believe our approach to be at least as effective. First, more
renaming will be performed in our approach, as it sometimes is applicable
where no global register renaming is possible. Second, in cases where global
renaming would perform better, a post-pass copy elimination step can eliminate
the inserted copy operations. The complexity of doing this is no greater than that

7As abstracted basic blocks need to end with a return instruction, we limit abstraction to basic
blocks that do not end with control flow transfers. In order to be able to abstract all basic blocks,
it suffices to split all blocks ending with a control flow transfer into two separate blocks, of which
the first contains all the computations.
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of doing global register renaming, as copy elimination and register renaming
are based on almost identical data flow analysis.

After renaming, identical basic blocks are abstracted. One copy forms the
body of a new procedure, and calls thereto replace the original occurrences of
the block.

5.1.4 Duplicate Subblock Instruction Sequence Elimination. Since the
number of instruction sequences in a program is much larger than the number
of basic blocks, the search space for equivalent subblock instruction sequences
again is larger. And, as the code fragments become smaller, there will be less to
gain from each group of abstracted subblock instruction sequences. As a result,
one is justified in making compromises in the detection of equivalent instruction
sequences.

We propose a compromise that needs very little implementation effort. We
only try to abstract identical sequences. To detect them, a fingerprinting scheme
like that for basic blocks is used, but now the fingerprints include the regis-
ter operands. Using the fingerprints, we greedily select identical sequences,
starting with the largest ones. The blocks in which they are found are split
to generate identical basic blocks. Once the blocks have been split, we simply
reapply the basic block reuse techniques. The number of identical subblock in-
struction sequences that can be found this way is relatively small, but so is the
implementation effort.

5.1.5 Duplicate Procedure Epilogue and Prologue Elimination. Unlike
general subblock instruction sequences, which are too small and of which there
are too many to allow complex detection techniques, two kinds of instruction se-
quences occur so frequently, and in such fixed locations, that a special treatment
is worthwhile. These sequences are the procedure prologues and epilogues that
allocate and deallocate the stack frames, and store and restore the callee-saved
registers. Because these registers are determined by calling conventions, all
epilogues and prologues are very much alike, making them very good abstrac-
tion candidates. On the other hand, as these sequences mainly consist of loads
and stores, compilers will most often try to hide their latency by scheduling
them in between the instructions of the procedure body. Because of this, it has
proven worthwhile to isolate the prologues and epilogues by rescheduling the
entry blocks and the return blocks of procedures before trying to abstract them.

While the isolated sequences can then be abstracted just like basic blocks, one
can often find more efficient ways of doing so, such as by combining the abstrac-
tion of procedure epilogues with tail-call optimization. Some clever schemes to
do so were discussed by Debray et al. [2000].

5.1.6 Cost of Duplicate Code Elimination. Unlike most of the code opti-
mizations we mentioned in Section 4, code abstraction techniques do not speed
up a program, but instead slow it down because additional instructions will
be executed. These additional executed instructions constitute the glue code
needed to implement the code abstraction: the calls to the abstracted proce-
dures, the return instructions, the register copy operations introduced because
of register renaming, and the setting and testing of the additional parameters
introduced when merging similar procedures.
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Moreover, while abstraction is performed to reduce the size of a whole pro-
gram, it does not imply that the instruction cache behavior improves. Reducing
the size of the whole program indeed does not imply that the working set size
is reduced. In practice, the working set size even increases [De Sutter et al.
2003]. This follows from the 90/10 rule that states that 90% of the executed
instructions corresponds to 10% of the static instructions. Because of this rule,
a hot (i.e., frequently executed) code fragment is much more likely abstracted
together with a cold fragment than with another hot fragment. Whenever one
hot fragment is abstracted with one or more cold fragments, the introduced
overhead only adds to the hot working set, thus putting additional pressure on
the instruction cache.

Fortunately, the performance degrading side effects of code abstraction can
be avoided easily by using profile information and by limiting code abstraction to
infrequently executed code. Because of the 90/10 rule, excluding the frequently
executed code from abstraction is not detrimental for code size. Moreover, as
programmers typically apply more optimization (and therefore more code spe-
cialization) to the frequently executed code, we are less likely to find duplicated
code in it anyway.

5.2 Duplicate Data Elimination

As indicated at the beginning Section 5, data is frequently duplicated in pro-
grams as well. In the case of read-only data, this data can be eliminated by
converting loads that load the same constant data from different locations into
loads that load them from the same location. If this conversion results in whole
object sections becoming inaccessible, they can be eliminated from the program.
This is particularly interesting for compacting a contiguous GOT. As all loads
from such a GOT are manifest direct loads using the global pointer, each entry
in the GOT can be seen as a separate object section. Therefore, the elimination
of inaccessible data from such a GOT can be performed at the granularity of
single entries.8

Moreover, the elimination of duplicate data may also create new opportu-
nities for code abstraction. Besides local differences resulting from different
pointer arithmetic, different instantiations of the same template also differ
locally because they use the same constant data, but load it from different lo-
cations. Such data includes initialization values, and procedure addresses that
are loaded for polymorphic (indirect) procedure calls. Converting these loads
from different locations to loads that load from identical locations reduces the
number of local differences between procedures, resulting in more duplicate
code elimination opportunities.

6. A LINK-TIME COMPACTION STRATEGY

This section presents an ordering in which to apply the analyses and transfor-
mations discussed in isolation in the previous sections. This ordering or strategy
is implemented in our prototype link-time compactor SQUEEZE++.

8Early experiments [De Bus et al. 2004] indicated that this is also the case on architectures with
distributed GOTs, such as the ARM architecture.
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6.1 Dependencies Between the Analysis and Transformations

There are a number of obvious dependencies between the analyses and transfor-
mations discussed in the previous sections. First, program transformations rely
on information gathered by the program analyses. Moreover, applying certain
transformations may result in some analyses becoming more accurate, while
other analyses will become less accurate. Finally, applying one transformation
may create new opportunities for other transformations. A short discussion of
the most important dependencies between the various analysis and transfor-
mations follows.

All program analyses benefit from the ICFG being refined and becoming less
conservative. And as a result of the more accurate analyses, more aggressive
program transformations can be applied. Since the ICFG refinement is built
on top of the analyses, however, there is a clear circularity in the dependencies
between refinement and analyses.

Of all analyses, liveness analysis is required for the largest number of trans-
formations. Besides being necessary to find free registers to store the return
addresses of abstracted procedures, transformations such as copy elimination
also rely on liveness information. Furthermore, liveness analysis is useful for
the detection of inaccessible data during constant propagation. As discussed in
Section 4.2.3, an important part of this detection consists of making the neces-
sary worst-case assumptions when the use of constant addresses can no longer
be tracked by the constant propagator. Obviously, when some register becomes
dead, there is no need to make worst-case assumptions about how the address
in the register will be used: it won’t be used. Using liveness information to ex-
ploit this observation speeds up the detection of inaccessible data, and improves
its accuracy.

The two most important control flow transformations are inlining and dupli-
cate code elimination. On the one hand, inlining is an effective way to overcome
the limitations of the partially context-sensitive constant propagation. There-
fore, inlining may have a positive influence on constant propagation. On the
other hand, inlined procedures complicate the analysis of the stack behavior
of a program, and thus may also negatively influence the data flow analyses.
Furthermore, inlining complicates the elimination of large duplicated proce-
dures, since inlined procedures are no longer separate procedures that are easily
detected and compared.

Finally, code abstraction may result in less accurate partially context-
sensitive analyses such as constant propagation, because code abstraction re-
sults in longer call chains. Moreover, constant propagation may suffer from the
elimination of duplicated procedures because, after this elimination, different
constants that were first propagated separately through separate equivalent
procedures, are now propagated through one procedure, in which they are no
longer a single constant.

6.2 Squeeze++

To exploit the positive dependencies maximally and to avoid negative de-
pendencies between analyses and transformations, our link-time compactor
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Fig. 10. The phases in the compaction strategy of SQUEEZE++, our link-time compaction prototype.

SQUEEZE++9 applies the program transformations and the underlying analyses
in six phases (see Figure 10). These six phases are applied in both the first and
second runs of our compactor, after the code has been disassembled, and the
initial ICFG is constructed.

(1) Trivial compaction. In the first phase, some trivial program optimizations
are performed, such as the elimination of unreachable code, no-ops, and
unnecessary GP computation code. If the GOT of a program is small enough
to be indexed with one GP-value only, the GP will have the same value
throughout the program, and all conservatively inserted GP-computations
may be removed. Note that this could just as well be done during constant
propagation, but treating the GP-computations as a special case is more
efficient. This was also done by Srivastava and Wall [1994]. Finally, during
the initial compaction phase, duplicate entries in the GOT are eliminated.

(2) Base compaction—round 1. Following the trivial optimizations of the first
phase, a number of the base whole-program analyses and program optimiza-
tions are applied iteratively to exploit the circular dependencies between
analyses, transformations, and ICFG refinement. In each iteration over the
base optimizations, we also try to eliminate duplicate identical procedures.
The rationale for doing so in this second phase is that we do not want to
miss early opportunities for duplicate code eliminations of two procedures
that initially are identical. If we apply too much program transformations
before eliminating identical procedures, we risk that two procedures that
initially were identical will become different as they are optimized in their
different calling contexts.

(3) Extra compaction. In the third phase we eliminate nearly identical dupli-
cate procedures. The reason for postponing this elimination until this third
phase is that, unlike the duplication elimination of whole identical pro-
cedures, the merging of nearly identical duplicate procedures introduces

9http://www.elis.UGent.be/squeeze++.
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overhead in the program. By postponing this merging until the ICFG has
been refined and most of the unreachable code has been eliminated from
the program, we avoid merging two procedures for which it later, after some
more ICFG refinement, could have turned out that one of them was in fact
unreachable.

Once the merging of nearly identical procedures is completed, larger
procedures with one call-site are inlined. Thus, we avoid having inlining
obfuscate the original, mergeable procedures in a program.

(4) Base compaction—round 2. Because this inlining results in additional
analysis accuracy and compaction possibilities, we reiterate over the base
analyses and transformations after the inlining. In each iteration, we still
perform the identical procedure elimination, because it can happen that
procedures that are at first not identical are made identical after some of
the other transformations, such as the elimination of duplicate data. In
order not to miss those opportunities, we keep applying duplication elimi-
nation for identical procedures during all iterations of the base compaction
techniques.

(5) Duplicate code elimination. Unlike inlining, the finer-grained code duplica-
tion techniques do have a negative effect on the precision of the data flow
analysis. Therefore these techniques are first applied in phase 5.

(6) Base compaction—round 3. After the finer-grained code duplication tech-
niques, one final run of all base analyses and transformations is performed.
This run eliminates as much of the overhead introduced during the previous
phase as possible. Copy propagation, for example, eliminates some of the
register copy operations that have been inserted during register renaming.

After these six phases, the basic blocks in the compacted ICFG are layed
out, using profile information and a Pettis-Hansen [Pettis and Hansen 1990]
style code layout algorithm. Finally, as our transformations have changed the
program radically, we reschedule the code using a fairly simple list scheduler,
and we assemble the code into an executable program.

7. VALIDITY OF UNDERLYING ASSUMPTIONS AND CORRECTNESS

Having brought together all discussed techniques in the prototype SQUEEZE++
in Section 6, this section reflects on the validity of the underlying assumptions
made throughout the previous sections. First, the use of calling convention in-
formation and our assumptions about address computations are put in perspec-
tive. Later, our prototype’s handling of more complex software constructs such
as self-modifying code, volatile memory, and exception handling are discussed.

7.1 Calling Conventions

From Section 2.4.2 on, we assumed that calling conventions are maintained
by global procedures, which can be detected by looking at the global symbol
information. In some situations, however, this assumption may be incorrect.

First, manually written assembly code does not need to maintain calling con-
ventions. While SQUEEZE++ currently does not include any tests for hand-written
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assembly, its use of calling convention information can be turned off easily. In
practice, however, we have not experienced a single case in which this was nec-
essary. Apparently none of the system libraries that were linked into our testing
applications contained problematic hand-written assembly code. If problematic
code did show up in a program, the only solution (apart from abandoning the
calling convention information) would be to have the compiler annotate the
hand-written code and to take the annotations into account in the link-time
analyses. While depending on such annotations would limit the applicability of
a link-time optimizer to tool chains that can provide them, adding such capa-
bilities to a tool chain is trivial. Some tool chains, such as the GCC compilers,
already offer this option.

Furthermore, whole-program compilers that compile all source code to-
gether (including all library code) can disregard calling conventions completely.
This is not a problem for link-time compaction, however, since link-time com-
paction would be useless in the presence of such whole-program compilers
anyway.

Finally, there exists a limited group of exported, compiler-generated rou-
tines that do not maintain calling conventions. These routines typically imple-
ment frequently occurring source-level programming language computations
that have no direct translation into a short instruction sequence. On the Al-
pha architecture, for example, this is the case for integer divide and remainder
computations. Since there are no single machine instructions to perform these
computations, they are implemented by calls to routines that perform the nec-
essary computations. Such routines are called the builtin routines because they
are built into the compiler. SQUEEZE++ is aware of the builtin functions as well.
Their names are simply hard-coded in SQUEEZE++. We feel this is acceptable
because, if the compiler knows that the builtin functions require special treat-
ment, why wouldn’t a link-time compactor know it too?

A final argument we want to make is the following: when followed by a link-
time compactor that can remove much if not all of the overhead relating to
calling conventions, a compiler or assembly programmer has no reason not to
adhere to the conventions. We conjecture that, even in cases where the link-time
optimizer can not get rid of all the overhead related to calling conventions, this is
compensated by the additional program size reductions and program optimiza-
tions that are achieved because of this assumption. We argue that adherence
to calling conventions of global procedures is a reasonable and acceptable sine
qua non of link-time compaction.

7.2 Address Computations

The detection of inaccessible data during constant propagation relies on the
fact that all intersection relative addresses used in a program are annotated as
relocatable. In theory, compiler-generated or manually written assembly code
can violate this assumption when detailed knowledge about the linking process
is exploited during the code generation.

In practice, however, we believe our assumption is still valid. First of all, we
never experienced any problems with this assumption while we were developing
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SQUEEZE++. More importantly, there is simply no incentive to generate code
breaking the assumption. Since a link-time program optimizer or compactor
is ideally suited to optimize the data address computations in a program,
there is, in our opinion, absolutely no incentive to optimize intersection address
computations in such a way that the assumption is broken. And even if a rea-
son should arise to optimize the intersection address computations at compila-
tion time, providing the appropriate relocation information would be a trivial
exercise.

With respect to code addresses, the detection of the potential targets of indi-
rect control flow transfers relies on the assumption that either no code address
computations are performed, or that they are annotated with relocation in-
formation. In practice, some of these annotations that we rely on need not be
present. For example, the linker does not require relocation information for
intramodular code displacements in position-independent code.

Again, we claim that we are allowed to make this assumption, as it is a
trivial matter for a compiler or assembler to provide the necessary relocation
information, even though it is redundant for simple linking. We know from
discussions with compiler developers at major embedded computing firms that
some of their compilers already annotate all address computations with re-
locations. They do so precisely to enable link-time program optimization and
compaction. This is also the case on the Alpha Tru64Unix platform, for which
we developed SQUEEZE++.

7.3 Self-Modifying Code

There are two basic ways to implement self-modifying code. The first one is to
have some code reside in the writable sections of a program, perhaps even on the
heap. This poses no problem, as the unknown node models this variable code.
Another possibility is to modify code in the read-only text section of a program.
In such cases, our compaction techniques will not work, as they assume that
the text sections contains fixed code. With most operating systems, however,
changing code in the text section requires system calls to get write access for
the read-only memory pages in the text section. It suffices to detect these system
calls and back off to treat this kind of self-modifying code correctly.

7.4 Volatile Memory

For the moment, the load/store avoidance optimizations in SQUEEZE++ cannot
handle volatile memory. We simply assume no volatile memory at all. We believe
this is not a fundamental problem. It would be simple to have a compiler provide
information to SQUEEZE++ about memory locations that are to be considered
volatile. Alternatively, we could exclude the load/store avoidance optimization
since we have experienced that load/store avoidance on average contributes
very little to the reductions in code size obtained with SQUEEZE++.

7.5 Exception Handling

Robust C++ program optimizers used in real production environments should
be able to deal with exception handling. As a research prototype, SQUEEZE++ does
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not. When exceptions are thrown in a program compacted with SQUEEZE++, the
behavior is undefined since the thrown exception will not be caught correctly.10

The problems with exception handling relate to stack unwinding and ex-
ception handler resolution. We conjecture that these do not pose fundamental
problems for link-time compaction. Discussions with industrial compiler de-
velopers strengthen our belief that exception handling is an implementation
issue. In practice, it only poses problems for researchers that are not in control
of the object file formats and the exception handling mechanism of their target
platform, and have to live with vendor-supplied formats and conventions.

When exception handling is needed by a program, object files contain code
region descriptors. In the context of this section, a code region is a range of
instructions between two code addresses. Code region descriptors describe for
each code region which exceptions are caught and which exceptions handlers
should be called. At first sight, code regions seem problematic for program
size when code abstraction is applied, since each abstracted procedure seems
to need a separate descriptor. However, while most current object file formats
and code region descriptor formats require that all procedures (or even parts
of procedures) have their own descriptors, this is not a fundamental require-
ment. The existing formats can easily be adapted to enable the use of a single
descriptor for multiple procedures. With such an extended format, and when
abstracted code is grouped in the program layout (which is possible without
influencing performance, since we only abstract cold code when we care about
performance anyway) and all abstracted code handles exceptions in the same
way, one descriptor will suffice for all abstracted code, and the influence on the
whole program size will be insignificant.

In practice, a very small number of descriptors will be necessary to cover
the abstracted procedures, rather than just one. For each abstracted region, it
suffices to let the exception handling consist of a rethrow of the exception. As
a result, the exception will be caught by the caller of the abstracted code. This
rethrow requires stack unwinding, though, and it is because of this unwinding
that multiple (rather than a single) descriptors are needed. In order to imple-
ment the stack unwinding, a descriptor encodes where the return address can
be found in the described code region and what the stack frame looks like. Ab-
stracted procedures for which the return address is stored in different places
therefore require different descriptors. The number of the descriptors needed
will remain small, however. There are only a liminted number of places to store
the return address: in a register or in the top stack frame. Therefore the effect
on the total program size will still be negligible.

Note that if two identical or similar code fragments each consist of more
than one code region with different corresponding exception handlers, simply
rethrowing an exception in the abstracted code is not an option. Handling this

10Note that programs compacted with SQUEEZE++ have no problem with handling signals. Signal
handlers, because their address is passed to the OS when they are installed, are treated conser-
vatively by the unreachable code detection. The system call is modeled by a call to the unknown
node, and therefore worst-case assumptions are made about the signal handlers as soon as their
address is propagated to the unknown node.
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situation in abstracted code would require more extensive changes to existing
exception handling mechanisms. Our experience with C++ code is that this
situation rarely occurs in the types of code fragments that our duplicate code
elimination targets. Therefore backing off in this situation, but still abstracting
the contained regions separately, will not result in significantly lower code size
reductions.

8. EXPERIMENTAL EVALUATION

This section evaluates the compaction techniques incorporated in SQUEEZE++.

8.1 Benchmark Programs

Our benchmark program suite consists of four groups of benchmarks:

(1) five embedded C applications from the MediaBench11 suite;
(2) the full SPECint200012 benchmark suite, whose 11 C and one C++ programs

are larger than the MediaBench programs;
(3) two scientific Fortran programs from the SPECfp200012 suite;
(4) a set of six C++ programs, including typical PDA applications such as the

arcade game xkobo, the WYSIWYG word processor LyX, and the lightweight
window manager blackbox.

All programs were compiled for the Alpha EV67 / Tru64 Unix (V5.1) platform
with the vendor-supplied Compaq CC C (V6.3-025), C++ (V6.3-002), and For-
tran (X5.3 ECO2) compilers (hereafter commonly described as CC compilers),
and with the GNU GCC 3.3.2 compilers. The compiler flags we used were “-O1
-arch ev67” for CC compilers, and “-Os” for the GCC compilers, which instructed
the compiler to optimize for size rather than for execution speed, without ap-
plying whole-program optimizations. All programs were statically linked with
the vendor-supplied linker against the vendor-supplied system libraries.13

Since our target platform and the vendor-supplied tool chain were not
oriented at code size, the generated binaries contained some overhead that
an embedded compiler would not have generated. Since we consider it unfair
to include the elimination of that overhead in the compaction results obtained
with SQUEEZE++, we first eliminated that overhead by applying a base version
of SQUEEZE++ on the linked binaries.14 This base SQUEEZE++ version first elimi-
nated duplicate entries from the GOT. This could be done without even disas-
sembling the code. Instead the relocation information sufficed. Furthermore,
the base version applied a simple unreachable code elimination because the
thus eliminated code would not have been present if the system libraries had
been engineered and structured with code size rather than execution speed

11http://www.cs.ucla.edu/~leec/mediabench/.
12http://www.spec.org.
13There exists no GNU linker or assembler for the Alpha/Tru64Unix platform.
14Note that SQUEEZE++ itself does not link a program. It operates on the linked binary and relies
on the vendor-supplied linker to provide a link map and relocation information to extract all the
necessary information from the original object files.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Link-Time Binary Rewriting Techniques for Program Compaction • 921

Table I. Original Sizes of the Code Sections, the Data Sections, and the Executable Files of the
Base Benchmarks

Compaq CC V6.3, Fortran X5.3 GCC 3.3.2
Benchmark Code Size Data Size Binary Size Code Size Data Size Binary Size

MediaBench C Programs
adpcm 135 KiB 66 KiB 208 KiB 135 KiB 65 KiB 208 KiB
epic 217 KiB 88 KiB 312 KiB 219 KiB 88 KiB 320 KiB
gsm 175 KiB 84 KiB 264 KiB 179 KiB 83 KiB 272 KiB
mpeg2decode 201 KiB 99 KiB 312 KiB 204 KiB 99 KiB 312 KiB
mpeg2encode 266 KiB 108 KiB 384 KiB 273 KiB 107 KiB 392 KiB

SPECint2000 C Programs
164.gzip 172 KiB 77 KiB 256 KiB 189 KiB 77 KiB 272 KiB
175.vpr 327 KiB 135 KiB 472 KiB 327 KiB 131 KiB 472 KiB
176.gcc 1,453 KiB 405 KiB 1,864 KiB 1,553 KiB 380 KiB 1,944 KiB
181.mcf 203 KiB 79 KiB 296 KiB 204 KiB 79 KiB 288 KiB
186.crafty 368 KiB 135 KiB 512 KiB 363 KiB 128 KiB 504 KiB
197.parser 287 KiB 106 KiB 400 KiB 298 KiB 101 KiB 408 KiB
253.perlbmk 724 KiB 223 KiB 952 KiB 742 KiB 213 KiB 960 KiB
254.gap 638 KiB 139 KiB 784 KiB 631 KiB 117 KiB 760 KiB
255.vortex 633 KiB 237 KiB 880 KiB 663 KiB 224 KiB 896 KiB
256.bzip2 162 KiB 73 KiB 248 KiB 166 KiB 73 KiB 248 KiB
300.twolf 399 KiB 124 KiB 528 KiB 394 KiB 112 KiB 520 KiB

SPECint2000 Fortran Programs
168.wupwise 697 KiB 181 KiB 888 KiB 245 KiB 100 KiB 360 KiB
178.galgel 868 KiB 193 KiB 1,072 KiB

C++ Programs
252.eon 525 KiB 222 KiB 760 KiB 784 KiB 332 KiB 1,128 KiB
blackbox 1,086 KiB 262 KiB 1,360 KiB 1,101 KiB 266 KiB 1,376 KiB
bochs 1,248 KiB 375 KiB 1,632 KiB 1,283 KiB 877 KiB 2,168 KiB
gtl 631 KiB 461 KiB 1,104 KiB 623 KiB 259 KiB 888 KiB
lcom 387 KiB 208 KiB 608 KiB 539 KiB 296 KiB 840 KiB
tyx 5,148 KiB 2,988 KiB 8,152 KiB 4,053 KiB 1,318 KiB 5,384 KiB
xkobo 987 KiB 338 KiB 1,328 KiB 1,010 KiB 467 KiB 1,480 KiB

in mind. Next, the base version removed no-ops from the linked binaries; a
code size conscious compiler would not have inserted them in the first place.
Finally, we used the profile-based code layout and code scheduling algorithms
in SQUEEZE++ for the generation of the base versions of the benchmarks. This
allowed us to evaluate the side effects of code compaction on execution speed,
instead of comparing the quality of the compiler and SQUEEZE++ code scheduling
back-ends.

The absolute sizes of all base program versions are given in Table I. Any size
reductions presented in this article were achieved on these base binaries. For
completeness, the white bars in Figure 11 indicate the fraction of the linked
programs that was removed by the base SQUEEZE++ version.

Note that, for most benchmarks, both base versions (CC and GCC) were
comparable in size. This is not surprising. Since the GNU C library was not
supported on our evaluation platform, all C-library code linked into both pro-
gram versions originated from the same library. The only significant differences
in base size appeared in the Fortran program 168.wupwise and in some of the
C++ programs. This was due to the use of different libraries, such as the bigger
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Fig. 11. Normalized static sizes of the compacted programs. All sizes are normalized to the size
of the base program versions. For each benchmark, the left bar indicates the relative sizes of the
CC-compiled program versions, while the right bar indicates the sizes of the GCC-compiled versions.
For each program version, the dark bottom bar indicates the relative size of the program after
compaction with SQUEEZE++. The white bars on top are added for completeness. They indicate the
size of the original programs, as linked with the standard linker, compared to the size of the base
programs. No average is given for the GCC versions of the Fortran programs, as only one Fortran
program (168.wupwise) was compiled with the GCC compiler. 178.galgel is a Fortran90 program,
for which no GCC compiler exists.

Fortran math library that was linked into the program when the CC compiler
was used, and the use of the GNU Standard C++ library by the GCC compilers.
Furthermore, the instantiation of templates differs from compiler to compiler.
The vendor-supplied C++ compiler used a repository [Levine 2000] to store
template instantiations. As all instantiations in the repository were unique,
only one copy of each instantiation was linked into the program. The GNU C++
compiler instead instantiated one copy of each required template class per com-
pile command. In order to avoid duplication of instantiations, all source code
was compiled with one single execution of the compiler front end. Note that
this did not change the fact that each source code file was compiled and opti-
mized separately. As can be seen in Table I, the GNU C++ compiler sometimes
generated the smallest binaries, while the CC compiler did a better job for other
programs.
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Note that zero-initialized data sections consumed no space in the executable
files stored on disk or in ROM. Those sections are therefore not included in the
static data sizes presented in Table I. The data sections containing exception
handling information (see Section 7.5) are included in the presented sizes, how-
ever. All standard and adapted versions of SQUEEZE++ used for this article left
those sections unchanged.

8.2 Static Program Size Reductions

The relative code, data, and executable file sizes after compaction with
SQUEEZE++ are depicted with the dark gray bars in Figure 11. From the base
CC binaries, SQUEEZE++ was able to eliminate between 26–62% of the code. De-
pending on the type of benchmark programs, the average code size reductions
ranged from 31% to 45%. Data size reductions ranged from a meager 5% to 31%,
with averages between 6% and 27%, depending on the category of benchmarks.

For Fortran, the lack of pointers in the Fortran programs helped our detection
of inaccessible data, as relatively few worst-case assumptions about the use of
data addresses had to be made. Fortran programs also contain far fewer indirect
control flow transfers, and thus allowed us to build a very precise ICFG, on
which the whole-program optimizations performed very well. This explains the
higher than average results for the Fortran programs.

C++ programs, on the other hand, are written in an object-oriented pro-
gramming language that strongly supports code reuse. Thus, the programs rely
more on library code, on which whole-program optimization in general, and un-
reachable code elimination in particular, perform very well. Furthermore, the
duplicate code elimination techniques perform very well on the C++ programs
containing a large number of templates, such as 252.eon, gtl and LyX.

The combined code and data compaction results in the total executable file
compaction depicted in the bottom chart of Figure 11. The reductions obtained
on the full executable files were along the lines of the reductions obtained on
the code alone, albeit somewhat smaller. The executable file reductions ranged
from 20 to 43%. The reason that they followed the code size reductions was
that (1) there was very little overhead in the executable file (such as headers
describing the sections in the executable), and (2) compared to the code sections
in an executable, the data sections were relatively small as well, thus playing
a minor role in total compaction.

The reductions obtained on the GCC binaries were mostly comparable to
those obtained on CC binaries. For the C programs, the average code size re-
ductions were even a couple of percentage points higher, ranging from 27% to
42%. The reason for the higher compaction was code quality: the code produced
by the GCC compilers was less optimized. As a result, more inaccessible data
was detected and many more edges coming from the unknown node were elim-
inated. The code sequences generated by the GCC back-end also showed less
variation, resulting in more code being abstracted.

For the C++ programs, link-time compaction also performed significantly dif-
ferently on the programs generated with GCC. To some degree, this resulted
from the fact that a different standard C++ library implementation was used
by the two C++ compilers. With respect to code size, the big differences in
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Fig. 12. Relative static size of the application-specific parts of the code after compaction with
SQUEEZE++. The left bar for each benchmark indicates the relative size of the CC version, the right
bar of the GCC version.

reduction between the CC and the GCC versions observed for gtl, 252.eon, and
LyX were due to the weaker performance of the duplicate procedure elimination
in the case of GCC. Many fewer identical duplicated procedures were discov-
ered and eliminated in the programs generated with the GCC compiler. This
resulted from the different template instantiation mechanism, as discussed in
Section 8.1. This also explains, to some extent, why much less inaccessible data
was eliminated in the programs generated with the GNU C++ compiler. With
the CC compiler and its use of a repository for template instantiations, each
instantiation was a separate object file in the repository, and each instanti-
ation therefore came with its own object data sections. When the GNU C++
compiler was used to generate code, template instantiations were generated
in the object files that used them, together with the nontemplate code. This
resulted in a link-time inaccessible data detection that worked on fewer, and
more coarse-grained object data sections, and that was hence less accurate.

Finally, it should be noted that SQUEEZE++ could not bridge the large size
gap between the two base versions of 168.wupwise. While the base CC ver-
sion was about twice as big as the base GCC versions, the relative code and
data reductions obtained on both versions were within 10% of each other. This
clearly shows that although large program size reductions can be obtained with
link-time compaction, it is not a silver bullet for compiler tool chain builders.
Even with link-time compaction, they still need to engineer their libraries very
carefully.

To exclude the effects of the commonly used system libraries on our measure-
ments for both compilers, and to get an indication of the code size reductions
that can be achieved with link-time compaction on programs that use dynam-
ically linked libraries (such as shared libraries), we evaluated SQUEEZE++ on
the application-specific code of the programs. In this experiment, an adapted
SQUEEZE++ treated all library code as a blackbox of unknown code.

The resulting relative sizes of the compacted application-specific code are
depicted in Figure 12. Typically, the code size reductions obtained on the
application-specific part of the code were less than that obtained on the whole
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Fig. 13. Relative dynamic sizes of the programs after compaction with SQUEEZE++. The left bar for
each benchmark corresponds to the CC version, the right bar to the GCC version.

program. The reason is that libraries are the pieces of code where separate
compilation leaves the most optimization opportunities for a link-time com-
pactor. Furthermore, it is clear that the lower quality of code generated by the
GCC compiler left significantly more compaction possibilities for link-time com-
pactors. As can be seen in Figure 12, SQUEEZE++ performed significantly better
on the GCC-compiled (application-specific) C code.

For the C++ programs, the code size reductions obtained were still very large,
at least for the programs consisting for a large part of template instantiations,
such as gtl and LyX. For those programs, duplicate code elimination performed
exceptionally well on the CC programs, and as a result the application-specific
part of the program was compacted more than the whole program. For C++,
the average code size reduction remained at 43%, coming from 45%, for the
programs compiled with CC. Because the template instantiation method in
GCC generates less duplicated code, SQUEEZE++ performed significantly worse
on the GCC versions of gtl and LyX. On most of the other C++ benchmarks,
however, SQUEEZE++ performed better on the GCC versions. As for C-programs,
the GCC compiler-generated code of a lower quality and with less variation,
which was more easily analyzed and abstracted.

8.3 Dynamic Program Size Reductions

The results presented thus far are static results: they present the relative sizes
of the code, the data, and the executable files as they are stored in ROM, a flash
memory, or on disk. Figure 13 presents the dynamic memory size reductions
achieved with SQUEEZE++, that is, the reductions on the amount of RAM that
the OS needs to allocate for executing a benchmark.

For some programs, such as the MediaBench programs and most of the C++
programs, the dynamic size reduction closely follows the static reduction on
the size of the executable file presented in the bottom chart of Figure 11. The
reason is, of course, that these programs allocate little if any memory on the
heap, and that their zero-initialized data sections (which are allocated when
the programs are loaded by the OS) are not very large compared to the sizes of
their code and other data sections. On this type of benchmark, the achieved
dynamic memory reductions range from 4% to 34%. Not surprisingly, the
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Fig. 14. Compaction time in minutes for the benchmark programs.

MediaBench benchmarks fall in this category. The MediaBench programs are
typical examples of embedded applications that need to run on embedded
systems with limited amounts of memory. blackbox, the lightweight windows
manager designed to consume as little memory as possible, is no surprise in
this category either. Other programs such as LyX and xkobo pleasantly surprised
us. Apparently these interactive programs also require very little dynamically
allocated memory.

For other benchmarks that allocate large amounts of memory dynamically,
such as most of the SPEC benchmarks, the static size savings are completely
outweighed by the size of the dynamically allocated memory. Since SQUEEZE++
never changes the amount of memory allocated on the heap (its optimizations
are much lower-level), the reductions obtained on the dynamic memory foot-
print of these benchmarks approximates zero.

8.4 Cost-Effectiveness of Whole-Program Analyses

Common wisdom about whole-program analyses says that they are often too
slow to be practically viable. In Figure 14, we have depicted the execution time
of one run of SQUEEZE++ as a function of the input program size.15 The equation
of the quadratic curve fitted to the results shows that the compaction time
scales quite well with program size, albeit not linearly. Memory consumption
varies linearly with program size, and for our largest benchmarks, we needed
about 1 GiB of memory.

While we have optimized SQUEEZE++ to some degree to ease our lives during
its development, there is still room for further optimizations. Nonetheless we
believe it is meaningful to measure the cost-effectiveness of some key analyses
in SQUEEZE++. To that extent, we have disabled or simplified some of those anal-
yses. The resulting changes in achieved compaction and in required compaction
time are presented in the remainder of this section.

15All experiments reported in this article were executed on a lightly loaded dual 667-MHz Alpha
21264 EV67. The four-way superscalar processors each have a split four-way associative L1 data
and instruction cache of 64 KiB and a unified L2 cache of 2 MiB. The main memory is 2.5 GiB large.
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Fig. 15. Fraction of the compaction time that can be saved and fraction of the code compaction
that is lost when disabling liveness analysis or when using a simpler version.

We strongly favor this method for measuring cost-efficiency over measur-
ing the execution time that is spent in any single analysis in isolation. In our
opinion, the latter would not result in meaningful numbers, since disabling or
simplifying one particular analysis always influences the effectiveness and effi-
ciency of other analyses. Measuring the number of instructions eliminated by a
specific program transformation is not useful either. Useless code elimination,
for example, eliminates both instructions that are useless in the original pro-
gram, and instructions that have become useless because other transformations
made them useless. Unfortunately, it is not possible to differentiate between
the two categories in SQUEEZE++, because program transformations and ICFG
refinement are applied together.

8.4.1 Liveness Analysis. For liveness analyses, we first compare
SQUEEZE++’s standard liveness analysis to a nonanalysis that conserva-
tively assumes all registers are live after all basic blocks. The results of this
comparison for CC-compiled binaries are depicted in Figure 15. We have
omitted the results for GCC-compiled binaries, because they are along similar
lines and offer no additional insights.

On the horizontal axis, the dark gray dots indicate the fraction of the com-
paction time that can be saved by disabling liveness analysis. In other words,
on the horizontal axis the dark gray dots indicate (1) the fraction of the com-
paction time spent in the context-sensitive liveness analysis itself and (2) what
additional/lesser time is spent in other analyses that take longer/shorter when
they consume the accurate liveness information. Figure 15 indicates that up to
34% of the compaction time in SQUEEZE++ is due to liveness analysis. However,
there are also programs on which liveness analysis consumes very little time.
On one program, 255.vortex, SQUEEZE++ with liveness analysis enabled runs
about 12% faster than SQUEEZE++ without liveness analysis. On that bench-
mark, the availability of accurate liveness information speeds up the detection
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of inaccessible data during constant propagation by a factor of 4, thus sav-
ing more time than is spent in the liveness analysis itself. Furthermore, more
code is eliminated when liveness information is available. More useless code is
detected, more free registers are found for program transformations, such as
procedural abstraction, and more inaccessible data (including inaccessible pro-
cedure pointers) is eliminated. So when accurate liveness analysis is available,
the other analyses and transformations in SQUEEZE++ are applied on a smaller
program. Hence they run more quickly.

The fraction of the total code compaction that directly or indirectly results
from liveness analysis is indicated by the dark gray dots on the vertical axis
in Figure 15. This amounts to up to 42% of the total compaction. Obviously
liveness analysis is very important for link-time compaction.

To evaluate whether or not the interprocedural liveness analysis needs to be
context-sensitive, we also implemented a context-insensitive liveness analysis
in SQUEEZE++. The results of this comparison are depicted in Figure 15 by means
of the light gray dots. On the horizontal axis, they indicate the fraction of the
compaction time that can be saved by replacing the context-sensitive analysis by
a context-insensitive one. This ranges from −3% to 22%. The reason why using
a simpler analysis can result in a slowdown of 3% is similar to the aforemen-
tioned reasons for the 12% speedup caused by enabling the context-sensitive
analysis.

Obviously opting for a simpler analysis has an associated cost. As the light
dots in Figure 15 indicate on the vertical axis, between 4% and 16% of the max-
imal compaction gets lost. Still, opting for a context-insensitive liveness anal-
ysis usually saves relatively more time than it costs in code size reduction. So
whereas disabling the liveness analysis altogether is clearly not cost-efficient,
the context-insensitive analysis may be considered more cost-efficient than a
context-sensitive one.

8.4.2 Constant Propagation. For constant propagation, we performed a
similar experiment as for liveness analysis. First, we disabled constant propa-
gation altogether. The results are depicted in Figure 16, by means of the dark
gray dots.

On average constant propagation is an expensive analysis: even though we
only apply it context-insensitively, not employing it saved us between 30% and
50% of the compaction time. However, the code compaction for many bench-
marks drops by more than 30% if no constant propagation is employed. Fur-
thermore, without constant propagation, no inaccessible data is detected or
eliminated. So while constant propagation is time-consuming, we believe it to
be worthwhile.

To evaluate whether or not the detection of inaccessible data during constant
propagation is cost-efficient for code compaction, we replaced the standard con-
stant propagation in SQUEEZE++ with a version that does propagate constants,
but that does not detect inaccessible data.

Compared to the standard constant propagation, using the simpler version
saves between −1% and 30% of the compaction time, as is indicated by the
light gray dots on the horizontal axes of Figure 16. The cost of opting for the
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Fig. 16. Fraction of the compaction time that can be saved and fraction of the code compaction
that is lost when disabling constant propagation or when using a simpler version.

simpler constant propagation is high however. Besides not being able to elimi-
nate inaccessible data with the simpler version, between 5% to 45% fewer code
is eliminated from the benchmarks. Clearly adding the detection of inaccessible
data to the constant propagation proves to be very cost-efficient.

The reason that both constant propagation and inaccessible data detection
are so important for compaction is threefold: (1) the optimization of address
computations largely depends of the detection of the addresses being computed
by constant propagation, (2) the refinement of the ICFG during the compaction
process depends largely on the detection of constant targets of indirect control
flow transfers, and (3) the detection of code pointers in inaccessible data section
is important in detecting additional unreachable code.

8.4.3 Duplicate Code Elimination. The cost-efficiency of the duplicate code
elimination is depicted in Figure 17. On the horizontal axis, the fraction of the
compaction time spent in the duplicate code elimination techniques (and the
underlying analyses) is indicated. This varies between −3% and 44%. On the
vertical axes, the fraction of the total compaction that is achieved through dupli-
cate code elimination is depicted. This amounts to 46% for the C++ programs.
For the C and Fortran programs, between 9% and 20% of the total code size
reduction originates from duplicate code elimination.

It should not come as a surprise that the higher dots on the chart are the C++
programs. For gtl, duplicate code elimination was so effective during the first
iterations of base optimizations, that its execution time was compensated for
the fact that the other analyses were performed on a much smaller program.

Unlike for C++ programs, duplicate code elimination is rather time-
consuming for the small C-programs, and hence not very cost-efficient. For such
small C programs, we can conclude that whole-program optimization is typi-
cally more important than duplicate code elimination, even though the latter
still results in significant code size reductions.
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Fig. 17. Fraction of the compaction time that can be saved and fraction of the code compaction
that is lost when disabling duplicate code elimination.

8.5 Other Performance Metrics

So far, we have quantified code size reductions and compaction times. In
what follows we provide insights on other important aspects of the compacted
programs.

8.5.1 Execution Speed. Most compilers have the capability of enabling or
disabling optimizations that involve a speed versus size tradeoff, such as in-
lining and loop unrolling. This provided tradeoff supports the common belief
that smaller programs are most often slower. As for the compaction techniques
discussed in this article, two direct effects on execution speed can be observed:

—The whole-program optimizations most often will have a positive effect on
execution speed, as they result in fewer instructions being executed.

—Some duplicate code elimination techniques will result in a slowdown of the
compacted programs, as they introduce run-time overhead. Code abstraction
introduces procedure calls and returns, and the merging of similar whole
procedures involves the addition of conditional branches and the setting
and testing of a parameter. Register renaming involves the insertion of copy
operations.

To quantify these effects, we measured the execution times of the
SPECint2000 benchmarks using the reference input sets.16 Besides the base
versions of the programs, we measured three versions that were compacted
with SQUEEZE++:

—Full duplicate code elimination. For this version, all compaction techniques
in SQUEEZE++ were applied to generate the smallest possible binaries.

16All profile information (i.e., basic block counts) used in this article were collected using the much
smaller and different standard training inputs.
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Fig. 18. Normalized code sizes versus normalized execution times for the SPECint2000 programs
compacted with SQUEEZE++. All values are normalized to the base program version, and the enlarged
symbols denote the averages.

—No-overhead duplicate code elimination. All optimizations were applied,
together with those compaction techniques that do not introduce run-time
overhead.

—Profile-guided duplicate code elimination. All compaction techniques were
applied, but duplicate code elimination techniques that introduce run-time
overhead were not applied on hot code. Hot code is code that is executed most
frequently and, in our experiments, was responsible for 95% of the dynamic
instruction count. This 95% was chosen out of a couple of possibilities (90%,
99%, etc.) because it resulted in our opinion in the best mix between execution
speed and code size.

The chart in Figure 18 shows the normalized code sizes and execution times
of the benchmarks generated with CC. On average, the full compaction ver-
sion was about 32% smaller than the base version. It was also about 6% faster.
On average, the speedup obtained with the whole-program optimizations was
therefore larger than the slowdown caused by duplicate code elimination. If we
didn’t apply duplicate code elimination techniques that introduced overhead,
the speedup obtained on average rose from 6% to about 13%. The associated
drawback was that the code size reductions dropped from 32% to 27%. Fortu-
nately, there is no need to make this compromise between execution speed and
code size. By using profile information to guide the duplicate code elimination,
we can, on average, get close to the best of both worlds. Less than 1% of the
obtainable size reduction is lost by excluding the hot code from duplicate code
elimination, while most of the possible speedup can still be obtained (11.5% on
average).

Note that for some programs (such as 181.mcf) the program version without
duplicate code elimination seems to be slower than the program versions with
profile-guided or full duplicate code elimination. The reason is that SQUEEZE++
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Fig. 19. Normalize dynamic instruction counts for several types of instructions, for four versions of
four benchmarks generated with the CC compilers. All counts are normalized to the total dynamic
instruction count of the base version of each benchmark.

does not insert no-ops to align hot basic block and procedure entry points for
optimal execution times. Not adding no-ops adds noise to the execution times,
because the quality of the generated schedules then depends on all the code in
the program. We have tried to remove this noise by adding no-ops to hot code,
but were unable to remove all noise without significantly increasing program
size. Therefore we chose not to add no-ops at all.

8.5.2 Instruction Counts. The speedups/slowdowns are to a large extent
caused by increasing/decreasing dynamic instruction counts. In Figure 19, we
have depicted the dynamic instructions counts for several important categories
of instructions for the same four versions of four benchmark programs. These
counts were measured with the SimpleScalar simulation tool set [Burger and
Austin 1997], using parts of the reference SPEC input data sets to avoid overly
long simulation times. Still all simulations were more than 36 billion instruc-
tions long.

The numbers in Figure 19 indicate that link-time compaction can indeed sig-
nificantly reduce the number of executed instructions, provided that duplicate
code elimination is not applied on frequently executed code.

The number of load instructions drops significantly because of whole-
program optimization, and in particular because of the elimination of most
loads from the GOT. This normally is not affected by duplicate code elimination,
except for programs such as 252.eon on which a lot of procedure parameteriza-
tion is applied. If this is applied on hot code, some additional loads are executed
to load the newly added parameter from the stack. These loads vanish as soon
as no hot duplicate code is parameterized.

As expected, the numbers of executed unconditional control flow transfers
(including procedure calls) increased when hot code was abstracted.

Finally, we notice that the number of conditional branches executed did not
decrease significantly. Instead, when parameterization was applied on hot code,
as in 252.eon, the number of executed conditional branches increased, because
conditional branches followed the tests on the new parameters.
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Fig. 20. Normalized number of instruction and data cache misses for four versions of four CC-
compiled programs and four cache sizes.

8.5.3 Cache Performance. To study the side effects of program compaction
on cache performance, we simulated the same benchmark programs with Sim-
pleScalar again, measuring the number of level 1 caches misses for a variety
of split instruction and data cache sizes and associativities. In Figure 20 we
have depicted the normalized number of instruction and data cache misses for
two-way set associative caches with cache lines of 64 bytes. The results for other
cache line sizes and for direct mapped and four-way set associative caches were
along similar lines, and are therefore not included. For 252.eon, we have omit-
ted the instruction cache misses for the two larger cache sizes, as they were too
low to be significant.

It is no surprise that there were fewer data cache misses, since the number
of data cache misses was highly correlated to the decrease in executed load
operations depicted in Figure 19. We can see that substantial savings can be
made, especially when very small caches are used.

With respect to the instruction cache misses, the results presented in the
top chart of Figure 20 are in line with the results presented by Debray et al.
[2000] and De Sutter et al. [2003]. Because of the whole-program optimiza-
tions, the working set size decreased, and therefore fewer instruction cache
misses were observed when no duplicate code elimination was applied that
introduced overhead. When duplicate code elimination is applied blindly, how-
ever, the working set size increases again, as discussed in Section 5.1.6. This
effect can be limited by using profile information to guide the duplicate code
elimination.
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Fig. 21. Relative code and data sizes of three benchmark programs compiled with the CC and the
GCC compilers, with original and split source code, before (in light gray) and after (in dark gray)
compaction with SQUEEZE++. All code and data sizes are normalized to the sizes in the base program
versions compiled with CC.

8.6 Effects of Separate Compilation and Compiler Optimization

Section 2 discussed the overhead resulting from the conservative optimization
of separate compilation, together with the additional knowledge about the com-
piled code that results from separate compilation. This additional knowledge
potentially leads to better link-time compaction. To evaluate whether or not
additional knowledge and opportunities resulting from separate compilation
and less aggressive optimization can compensate for the less efficient code gen-
erated by a compiler, we performed the following experiment.

We split the source code files of three of our benchmarks into multiple source
code files that each defined one global procedure or one global variable. Then we
compiled these split programs in the same manner as we compiled the original
programs. As a consequence of this splitting, all object code sections contained
exactly one procedure. Therefore all procedure calls were intermodular, and
all compiled procedures adhered to the calling conventions. Furthermore, each
global variable now was stored in its own object data section. For 164.gzip, the
14 original source code files were split into 163 new source files. For 175.vpr 61
original files were split into 346 new source files, and for 181.mcf 11 files were
split into 33 files. The vendor-supplied C-library code was not split, as we did
not have its source code.

The results for code and data compaction on the “split” programs are de-
picted in Figure 21. The light gray bars in the left chart indicate that the
code size of the base CC version of 164.gzip increased about 7% when all pro-
cedures and global variables were compiled separately. This did not happen
with GCC, where both versions were about 10% larger than the original CC
version.

The bottom, dark gray bars indicate that the situation has reversed after
compacting 164.gzip with SQUEEZE++: the compacted code compiled from split
source code files was smaller than the compacted code compiled from the origi-
nal source code. Much to our surprise, separately compiling all procedures and
global data resulted in an additional 4% code size reduction when SQUEEZE++
was used. This effect of more separate compilation also occurred, albeit to a
much smaller extent, with the CC version of 175.vpr. It did not occur with
181.mcf, however.
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Furthermore, the code compiled with GCC and compacted with SQUEEZE++
has become as small as the compacted code that was compiled with the CC
compiler. This resulted from the fact that the GCC generated code is easier to
analyze, and shows less variation, which results in more code abstraction.

The reason why SQUEEZE++ can sometimes compensate for the weaker com-
piler optimization in case of split source code files is twofold. First of all, the de-
tection of inaccessible data is performed at a much finer granularity. Since each
global variable now has its own object section, the worst-case assumptions that
have to be made for the detection of inaccessible data during constant propaga-
tion are now limited to single variables instead of to object sections containing
multiple variables. The finer granularity results in more data being eliminated
from the program, and since the additional eliminated data also contains dead
procedure pointers, the improved elimination of dead data also improves the
elimination of unreachable code. The right chart in Figure 21 shows that all
three programs showed increased data sizes for at least one version of the base
binaries. However, the improved link-time elimination of inaccessible data was
able to compensate for this. In the case of 175.vpr compiled with CC, the re-
sulting compacted data became a little bit smaller, and in the case of 164.gzip
the difference was substantial: the data size decreased by another 7%.

Second, and of minor importance, is the fact that some local procedures have
been made global during the source splitting process, thus resulting in code
which we can assume maintains calling conventions.

Please note that the effects of more separate compilation were most notica-
ble on 164.gzip, while they were nonexistent for 181.mcf. For 164.gzip, each
original source code file was on average split into 11.6 new files, while each
181.mfc source code file was only split into three new files.

The compaction results in Figure 21 suggest that future compilers should be
adapted to reflect the presence of a link-time optimizer or compactor down in
the tool chain. Today, by contrast, programming tool chain developers design
their compilers under the assumption that no link-time optimizations will be
applied.

On the one hand, compilers designed under this assumption only pass the
information to the linker that is necessary to do the linking job, that is, code and
data, relocation information, and symbol information [Levine 2000]. All other
types of information collected during the compilation process are thrown away
when the object files are written. This includes alias information, information
about the stack frames of procedures, and all kinds of higher-level semantic
information. Much of this information is very hard [Debray et al. 1998], if not
impossible, to recollect from the object files. It would therefore be better if
more of the information collected at compile time were passed to the optimizing
binary rewriter.

On the other hand, compilers try to optimize the code as much as they can,
since they are engineered to be the only optimization phase in the tool chain.
When a binary rewriting tool follows, however, some of the optimizations
performed by the compiler are useless or, even worse, counterproductive.
Optimizations on address computations, for example, are better applied at
link time, when the whole program layout is known. In general, compile-time
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optimizations should be disabled in the presence of link-time rewriting if
the compiler optimizations (1) can be performed by the binary rewriter as
well, (2) when they obfuscate the program to such an extent that the binary
rewriting phase cannot extract the necessary information from the object files,
and (3) when they do not allow the binary rewriter to make some important
assumptions, such as the ones mentioned in Section 7.

9. RELATED WORK

An survey of code-size reduction methods, covering a very large range of tech-
niques, was recently presented by Beszédes et al. [2003].

9.1 Squeeze

SQUEEZE++ is an evolution of SQUEEZE, which in turn was derived from ALTO

[Muth et al. 2001], a link-time optimizer for the Alpha platform optimizing
for speed. SQUEEZE in fact was ALTO minus some code size increasing optimiza-
tions, plus code abstraction. SQUEEZE was first presented by Debray et al. [2000].
The major additions and developments after that article was published are the
following:

—that SQUEEZE++ is a link-time compactor, requiring relocation and symbol
information that is available in the object files only, and not in a relocatable
executable, on which SQUEEZE operated;

—the optimization of the time-consuming analyses, as discussed in Section 4.6;
—the elimination of inaccessible data, as described in detail in by De Sutter

et al. [2001];
—the two-phase compaction as discussed in Section 4.2.4;
—the use of the unknown node for the analysis of stack behavior, as discussed

in Section 4.1;
—the elimination of duplicate identical and similar procedures, of subblock in-

struction sequences, and of duplicate read-only data as discussed in Section 5
and by De Sutter et al. [2002];

—the conditional constant propagation that extends simple constant
propagation;

—a radical change in compaction strategy: the idea by Debray et al. [2000]
was to first optimize a program as much as possible by iteratively applying
the base and extra compaction techniques; afterwards code was abstracted
at the lower granularity levels, and this was followed by another round of
base compaction techniques to remove some overhead introduced by the code
abstraction techniques; in its current state, SQUEEZE++ employs the strategy
discussed in detail in Section 6.2.

To compare the performance of SQUEEZE++ to that of SQUEEZE as presented
by Debray et al. [2000], we have applied an adapted “old” version of SQUEEZE++
on all our benchmark programs. In this adapted version, all new techniques
are disabled. Running the original version of SQUEEZE on the benchmarks is
simply not possible, because it requires too much memory to compact our largest
benchmarks on our current hardware (with 2.5 GiB of memory).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 5, September 2005.



Link-Time Binary Rewriting Techniques for Program Compaction • 937

Fig. 22. Code compaction achieved with an adapted “old” version of SQUEEZE++ that resembles the
state of SQUEEZE as presented in 2000 [Debray et al. 2000]. The middle bars indicate the progress
that has been made since then.

The code size reductions obtained with the old version of SQUEEZE++ and
with the standard version are depicted in Figure 22. The middle (light gray)
bars indicate the fraction of the program eliminated by the standard version,
but not by the old version. It is clear that the new techniques and the new
strategy result in significant additional code size reductions. Besides the data
size reductions, the new techniques in SQUEEZE++ eliminate between 3% and
19% more code. On average, the code size reductions have increase from 28%
to 36%.

The speedups resulting from the compaction with the old version of
SQUEEZE++ do not differ significantly from those achieved with the current
version.

9.2 Code Compression

There is a considerable body of work on code compression. Much of this has
focused on compressing executable files as much as possible in order to reduce
storage or transmission costs. These approaches generally produce compressed
representations that are smaller than those obtained using our approach, but
they have the drawback that they must either be decompressed to their origi-
nal size before they can be executed [Ernst et al. 1997; Franz 1997a; Franz and
Kistler 1997; Fraser 1999; Pugh 1999]—which can be problematic for limited-
memory devices—or require special hardware support for executing the com-
pressed code directly [Lekatsas et al. 2003; Kemp et al. 1998; Kirovski et al.
1997; TriMedia Technologies Inc. 2000; Corliss et al. 2003].

Using another branch of the SQUEEZE code, Debray and Evans [2002] added
code compression to already compacted binaries. They used profile data to
identify infrequently executed code fragments which they compressed to a
nonexecutable form. At run-time the fragments were decompressed into a buffer
on demand and executed. They obtained additional code size reductions of 13.7%
to 18.8% (including the decompressor and buffer). The influence on performance
ranged from a slight speedup to a 28% slowdown.

Ros and Sutton [2003] studied the influence of compiler optimizations on the
achieved compression ratio of compression schemes for the TI TMS320C6xxx
VLIW DSP family. Their conclusions are in line with our observation in
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Section 8.6 that more compaction is achieved, in particular through code ab-
straction, when following lower levels of compiler optimization.

Proebsting [1995] looked for repeated patterns in the intermediate program
representation used by the compiler. So called super-operators were chosen,
corresponding to the most frequently occurring patterns. These (application-
specific) superoperators were used to extend a virtual instruction architecture,
for which the program was compiled. At the same time, an interpreter able to
interpret the extended instruction set was generated in C, from which it could be
compiled to the original target architecture. They reported an average code size
reduction of 50%, albeit with an undesirable large impact on execution speed.

Evans and Fraser [2001] similarly described a method for producing compact,
bytecoded instruction sets and interpreters for them. Their system transforms
a grammar for programs, creating an expanded grammar that represents the
same language as the original grammar, but permits a shorter derivation of
programs. Typically the program size reductions obtained were much larger
than the increase in the size of the adapted interpreter.

Clausen et al. [2000] applied minor modifications to the Java Virtual Ma-
chine to allow it to decode macros that combine frequently recurring bytecode
instruction sequences. They reported code size reductions of 15% on average.
Our techniques do not rely on changing the underlying architecture on which
a program is executed and, within the group of statically bound languages
that are compiled directly into native machine code, are not source-language-
dependent.

The techniques discussed in this article do not require any modifications
to the compilers or the target architecture and produce programs that are
faster, rather than slower. However, being late in the tool chain, SQUEEZE++’s
implementation (not its concepts!) is highly target-architecture-dependent.
This contrasts to some of the compression techniques [Franz and Kistler
1997; Proebsting 1995] that operate on a machine-independent intermediate
program interpretation. As such, those techniques offer the additional benefit
of being target-machine-independent.

9.3 Mixed-Width Instruction Sets

Mixed-width instruction sets combine 32-bit instruction sets with 16-bit in-
struction sets. The latter will typically require more instructions to encode
some functionality, but as they are smaller, the overall code size is reduced.
The best known examples of these mixed-width instruction sets are MIPS
with MIPS16 [Kissell 1997] and ARM with Thumb [Turley 1995]. Recently,
Krishnaswamy and Gupta [2002] proposed an automated profile-guided tech-
nique to select ARM/Thumb code. When combined with Thumb extensions
[Krishnaswamy and Gupta 2005] that increase its performance, these tech-
niques can avoid the need to compromise between performance and code size.

9.4 Code Abstraction

Most of the previous work on code abstraction to yield smaller executables
has treated an executable program as a simple linear sequence of instructions
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[Baker and Manber 1998; Cooper and McIntosh 1999; Fraser et al. 1984]. It
used suffix trees to identify repeated instructions in the program and abstract
them into procedures. The size reductions they reported were modest, averaging
about 4–7%.

The use of predicated instructions for abstracting nonidentical but similar
code fragments has been studied by Cheung et al. [2003]. On the ARM archi-
tecture, the introduction of predicated execution in abstracted basic blocks is
able to improve on identical code abstraction by 28% or 37%, depending on the
compiler used to generate the original code.

The use of so called echo instructions was first proposed by Lau et al. [2003].
With echo instructions, the single copy of the abstracted code can be left in its
original place. The other copies are then replaced by an echo instruction, that
tells the processor to execute a subset of the instructions from the single copy.
An implementation of the necessary code transformations and the insertion of
echo instructions in SQUEEZE revealed that an additional 10% code size reduction
can be achieved with the use of echo instructions.

9.5 Binary Rewriting and Binary Translation

Multiple link-time binary rewriters that focus on speed optimization have been
implemented for the clean Alpha architecture. They include OM [Srivastava
and Wall 1994], Spike [Cohn et al. 1997; Flower et al. 2001], and Alto [Muth
et al. 2001].

Techniques to build a control flow graph from disassembled binary code have
been discussed in numerous articles, including Debray et al. [2000], De Sutter
et al. [2000], Kästner and Wilhelm [2002], and Snavely et al. [2003].

We know of two static binary rewriting tools for embedded systems targeting
code size. CodeCompressor (CC)17 from Raisonance is a code compactor apply-
ing inlining, code abstraction (we have found no details on their techniques),
and peephole optimizations on programs compiled for the 8051 architecture.
The creators of this commercial tool expect program size reductions of up to
25%. aiPop [Ferdinand 2001] is a more sophisticated post link-time code com-
pactor for the C16x architectures. It includes, for example, constant propaga-
tion, peephole optimizations, code abstraction, procedure tail merging, and dead
code elimination. The reported code size reductions ranged from 4% to 20%.
Besides the techniques discussed in this article, SQUEEZE++ implements a broad
range of whole-program analyses and optimizations. These include peephole op-
timization, copy propagation, load/store avoidance, constant propagation, dead
code elimination, unreachable code elimination, inaccessible data elimination,
inlining, and code layout optimizations. We refer the reader to Debray et al.
[2000] and De Sutter et al. [2001] for a more detailed discussions.

Recently, we have started developing a retargetable framework for link-time
optimization, compaction, and instrumentation called Diablo.18 Our experience
is that large parts of the whole-program analysis and optimization code can

17“Getting the Best Code Density for 8051 with Code Compressor.” Go to http://www.raisonance.

com.
18http://www.elis.ugent.be/diablo.
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be reused for multiple target architectures. However, even with a retargetable
code link-time editing framework, each architecture will always require a sep-
arate back-end.

Although the optimization and compaction techniques implemented in
Diablo are not as extensive as those implemented in SQUEEZE++, preliminary
results indicate that significant amounts of compaction and optimization can
be achieved for a wide range of architectures, including ARM [De Bus et al.
2004], MIPS [Madou et al. 2004], and IA64 [Anckaert et al. 2004]. Moreover,
these preliminary results indicate that significant amounts of compaction can
be obtained even in code-size-conscious programming environments that are
targeted specifically for the embedded market. In the Arm Developer Suite
environment, for example, code size reductions averaging around 14.6% were
obtained, while speedups up to 27% and energy reductions up to 23% were
achieved with Diablo [De Bus et al. 2004]. On MediaBench programs compiled
for the MIPS architecture and linked against the very small uClibc19 standard
C-library implementation, code size reductions averaging around 23% were
achieved [Madou et al. 2004].

There has been a great deal of interest in dynamic binary optimization (see,
for example, Hookway and Herdeg [1997] and Bala et al. [2000]). In these
approaches, however, the data structures necessary for run-time execution
monitoring and optimization incur nontrivial additional memory overheads,
and hence are not suited for the goal of this work, which is memory footprint
reduction of applications. For this reason, we do not discuss them further.

9.6 Other Program Compaction Techniques

The elimination of unused data from a program has been considered in
Srivastava and Wall [1994] and in Sweeney and Tip [1998]. Srivastava and
Wall, describing a link-time optimization technique for improving the code for
subroutine calls in Alpha executables, observed that the optimization allows
the elimination of most of the global address table entries in the executables.
However, their focus was primarily on improving execution speed, and they did
not investigate the elimination of data areas other than the global address ta-
ble. In our previous work [De Sutter et al. 2001], the same optimizations were
applied, but in a more general way and not limited to the global address table.

Sweeney and Tip [1998] focused on the removal of dead data members from
classes in C++ programs. They reported a run-time high watermark (i.e., the
largest object space needed during the execution of the program) reduction of
4.4% on the average. This was the result of the elimination of 12% of the data
members. Ananian and Rinard [2003] proposed an extended set of data member
transformations that included the transformation of instance fields into class
fields if instance fields of all instances always have the same value. For a set
of Java programs, these techniques reduced the maximum live heap size by as
much as 40%.

For object-oriented programming languages, several application extraction
techniques have been proposed to extract precisely those parts from the

19http://www.uclibc.org.
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libraries and/or run-time environments that are needed by a specific applica-
tion. For the dynamically typed language Self [Agesen and Ungar 1994], such
extraction tools obtain higher compaction levels than SQUEEZE++. The Self tools
are to some extent programming-language-specific however, and their starting
point is a program containing the whole Self run-time environment.

Tip et al. [2002] achieved results for Java programs very similar to our
results. Although most of their techniques were based on language-independent
algorithms, for example, for building a call graph of a program [Tip and
Palsberg 2000], some of the applied optimizations were language-dependent,
such as the compaction of the constant pools in Java programs. Besides
that, their techniques exploited the type information that is available in the
Java bytecode. Such information is not available in native binary programs.
Srivastava [1992] has studied the removal of unreachable procedures in object-
oriented programming environments as well.

9.7 Template Instantiation Mechanisms

If identical template instantiations occur in multiple modules from a program,
several techniques [Levine 2000] can be used to avoid linking these instantia-
tions with the program multiple times.

With incremental linking, the compiler initially generates no instantiations
at all. The linker notices that some code and/or data cannot be retrieved because
referencing symbols cannot be resolved and feeds this back to the compiler that
generates the necessary instantiations. This technique can only avoid linking
multiple identical instantiations at the source code level into a program, as it
is based on the names of symbols the linker does not find.

Another approach is the use of a so-called repository, a database consisting
of all the instantiated templates. As in relational databases, all records are
unique, thus avoiding multiple identical instances of the same template. As the
records in the repository are identified by names, these repositories have the
same limitations as incremental linking.

A third technique is used by the GNU compilers. All sections in ob-
ject files that are generated for instantiating templates have a special tag:
.gnu.linkonce.d. The linker compares these sections (again using symbol names
only) and thus avoids multiple occurrences of the same template instantiation
in the final program. Some Microsoft linkers use a comparable scheme, and in
addition they compare the code in those sections to remove duplicate procedures
with different names [Levine 2000].

It is clear that these techniques do not address the occurrence of identical or
similar procedures as SQUEEZE++ does.

Very different techniques to avoid code growth because of using template-like
language features have been extensively researched in the past, especially for
the Ada programming language and its so-called generics. Most of the proposed
techniques use polymorphism [Bray 1984; Rosenberg 1983] to avoid the need for
static specialization of the generics used. The consequence of those techniques
is that no optimized specializations are generated. On the contrary, overhead
is introduced to implement the polymorphism.
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10. CONCLUSIONS

This article presented link-time whole-program analyses and optimizations
that target the program size overhead resulting from separate compilation.
Special attention was given to the program information that a link-time com-
pactor can exploit to build a program representation on which to apply the
analyses and optimizations. To eliminate the particular overhead of duplicate
code and data, scalable duplicate elimination techniques were presented. The
cost-effectiveness of various important analyses, such as liveness analysis and
constant propagation, was evaluated by means of the prototype link-time com-
pactor SQUEEZE++.

On a set of 25 benchmark programs, consisting of all 12 SPECint2000, two
SPECfp2000, five MediaBench, and six additional C++ programs, average code
size reductions between 27% and 45% were obtained, depending on the type
of benchmark. The average statically allocated data size reductions ranged
between 6% and 27%. The highest code size reductions (up to 62%) were ob-
tained for C++ programs that use a lot of templates, because the presented
duplicate code elimination techniques work especially well on C++-template
code. Combined, the code and data size reductions resulted in executables that
were between 20% and 43% smaller. Furthermore, these size reductions could
be approximated without degrading performance by using profile information
consisting of basic block execution counts.

Finally, this article has demonstrated that a better cooperation between com-
pilers and a link-time compactor will result in even smaller programs.
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