
Link-Time Compaction and Optimization
of ARM Executables

BJORN DE SUTTER, LUDO VAN PUT, DOMINIQUE CHANET, BRUNO DE BUS,
and KOEN DE BOSSCHERE

Ghent University

The overhead in terms of code size, power consumption, and execution time caused by the use

of precompiled libraries and separate compilation is often unacceptable in the embedded world,

where real-time constraints, battery life-time, and production costs are of critical importance. In

this paper, we present our link-time optimizer for the ARM architecture. We discuss how we can

deal with the peculiarities of the ARM architecture related to its visible program counter and how

the introduced overhead can to a large extent be eliminated. Our link-time optimizer is evaluated

with four tool chains, two proprietary ones from ARM and two open ones based on GNU GCC. When

used with proprietary tool chains from ARM Ltd., our link-time optimizer achieved average code

size reductions of 16.0 and 18.5%, while the programs have become 12.8 and 12.3% faster, and 10.7

to 10.1% more energy efficient. Finally, we show how the incorporation of link-time optimization

in tool chains may influence library interface design.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code gener-
ation, compilers, optimization

General Terms: Experimentation, Performance

Additional Key Words and Phrases: Performance, compaction, linker, optimization

ACM Reference Format:
De Sutter, B., van Put, L., Chanet, D., De Bus, B., and De Bosschere, K. 2007. Link-time compaction

and optimization of ARM executables. ACM Trans. Embedd. Comput. Syst. 6, 1, Article 5 (February

2007), 43 pages. DOI = 10.1145/1210268.1210273 http://doi.acm.org/ 10.1145/1210268.1210273.

1. INTRODUCTION

The use of compilers to replace manual assembler writing and the use of
reusable code libraries have long become commonplace in the general-purpose
computing world. These and more advanced software engineering techniques
improve programmer productivity, shorten time-to-market, and increase sys-

Authors’ addresses: Bjorn De Sutter, Ludo Van Put, Dominique Chanet, Bruno De Bus,

and Koen De Bosschere, Electronics and Information Systems Department, Ghent University,

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; email: brdsutte,lvanput,dchanet,bdebus,kdb

@elis.ugent.be

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1539-9087/2007/02-ART5 $5.00 DOI 10.1145/1210268.1210273 http://doi.acm.org/

10.1145/1210268.1210273

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



2 • B. De Sutter et al.

tem reliability. An unfortunate, but noncritical drawback is the code size, ex-
ecution time, and power consumption overhead these techniques introduce in
the generated programs.

In the embedded world, the situation is somewhat different. There, the more
critical factors include hardware production cost, real-time constraints, and
battery lifetime. As a result the overhead introduced by software engineering
techniques is often unacceptable. In this paper we target the overhead intro-
duced by separate compilation and the use of precompiled (system) libraries on
the ARM platform.

This overhead has several causes. Most importantly, compilers are unable
to apply aggressive whole-program optimizations. This is particularly impor-
tant for address computations: since the linker decides on the final addresses
of the code and data in a program, these addresses are unknown at compile
time. A compiler therefore has to generate relocatable code, which is most often
suboptimal.

Second, ordinary linkers most often link too much library code into (statically
linked) programs, as they lack the ability to detect precisely which library code
is needed in a specific program. Also, the library code is not optimized for any
single application.

Finally, compilers rely on calling conventions to enable cooperation between
separately compiled source code files and library code. While calling conven-
tions are designed to optimize the “the average procedure call,” they rarely are
optimal for a specific caller–callee pair in a program.

Optimizing linkers try to eliminate the resulting overhead by adding a link-
time optimization pass to the tool chain. Optimizing linkers have a whole-
program overview over the compiled object files and precompiled code libraries
and optimize them together to produce smaller, faster, or less power-hungry ex-
ecutable binaries. Existing research prototypes such as Squeeze++ [De Sutter
et al. 2002, 2005b; Debray et al. 2000 and alto [Muth et al. 2001], and commer-
cial tools such as OM [Srivastava and Wall 1994] and Spike [Cohn et al. 1997]
have shown that significant code size reductions and speedups can indeed be
obtained with link-time optimization. Unfortunately for the embedded systems
community, these tools all operate in the Tru64Unix workstation and server en-
vironment. In this environment, the tool chains are, by and large, focused on
execution speed, and not at all on code size or power consumption. Most impor-
tant, the system libraries included in the native Tru64Unix tool chain are not
at all engineered for generating small programs. Instead they focus on general
applicability.

Consequently, the merits of link-time optimization have not yet been eval-
uated in the context of true embedded software tool chains in which all com-
ponents focus on code size and energy efficiency. To fill this hole, this paper
presents and evaluates our link-time optimizer for the embedded ARM plat-
form. Our main contributions are as follows.

� We demonstrate that significant program size/execution time/energy con-
sumption reductions can be obtained on top of state-of-the-art embedded tool
chains. This is achieved by adding an optimizing linker to two generations

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 3

Fig. 1. The stack layers that make up the Diablo link-time rewriting framework, with the front-end

of our ARM link-time optimizer on top. Core Diablo components are colored in gray.

of ARM’s proprietary tool chain: the Arm Developer Suite 1.1 (ADS 1.1), and
its recent evolution, the Realview Compiler Tools 2.1 (RVCT 2.1). These tool
chains are known for producing very compact and efficient programs and
thus serve as an excellent testing bed. In addition, we also evaluate our tool
as an add-on to two tool chains based on the open-source GNU GCC compiler.
Thus, we demonstrate the retargeting of our link-time optimizer to multiple
tool chains.

� We show how to deal efficiently and effectively with the PC-relative address
computations that are omnipresent in ARM binaries.

� We demonstrate how link-time optimization can not only remove overhead
introduced by separate compilation, but also how its incorporation in tool
chains may affect the design of library interfaces.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the operation of our link-time optimizer. Section 3 discusses the pe-
culiarities of the ARM architecture for link-time optimization, and how we deal
with them in our internal program representation. Section 4 discusses some
interesting link-time optimizations for the ARM. Section 5 introduces a new
set of address computation optimizations. The performance of the presented
techniques is evaluated in Section 6, after which related work is discussed in
Section 7, and conclusions are drawn in Section 8.

2. LINK-TIME OPTIMIZER OVERVIEW

Our ARM link-time optimizer is implemented as a front-end to Diablo [De Bus
2005] (http://www.elis.ugent.be/diablo), a portable, retargetable framework we
developed for link-time code rewriting. Diablo consists of a core framework, im-
plemented as the software stack depicted on the left half of Figure 1; extensions
consisting of different object-file format back-ends, architecture back-ends, and
linker descriptions are depicted on the right one-half of the figure. In the re-
mainder of this section, we summarize how the elements of this stack cooperate
to rewrite a program at link-time.

Whenever the Diablo framework is used to apply link-time optimization

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



4 • B. De Sutter et al.

on programs,1 several internal program transformation steps can be distin-
guished. These are depicted in Figure 2.

2.1 Linking

First, the appropriate file-format back-end links the program and library object
files. The different sections extracted from the object files are combined into
larger sections in the linked program. These are marked in different shades of
gray in Figure 2.

Diablo always checks whether exactly the same binary executable is pro-
duced as the native linker has done. This way, the file-format back-end is able
to verify that all information extracted from the object files, such as relocation
and symbol information, is interpreted correctly. Together with the fact that
the operation of different native linkers is implemented via a linker description
file in a linker description language, this checking enables easy retargeting of
Diablo to new additional tool chains. For the evaluation of the optimization tech-
niques discussed in this paper, two linker description files had to be provided
for two families of tool chains. One description was needed for two generations
of ARM’s proprietary compiler tool chains and one description was needed for
the tool chains based on GCC and binutils (http://www.gnu.org).

2.2 Disassembling

After a program has been linked, an internal instruction representation is built
by means of a disassembler. The internal representation in Diablo consists
of both architecture-independent and dependent information. Both types of
information are gathered via call-backs to the appropriate architecture back-
end. For the rather clean RISC ARM architecture, we chose an architecture-
dependent instruction description that maps each ARM instruction to one ARM
Diablo instruction. Some important aspects of the disassembler process are
detailed in Section 3.

2.3 AWPCFG Construction

After the code is disassembled, an augmented whole-program control-flow
graph (AWPCFG) is constructed by the low-level graph support code, which is
assisted by the architecture back-end via call-backs. In Diablo, the AWPCFG
not only contains the code constituting the program, but it also contains
all data sections from the object files linked into the program. Thus, both
the code and data constituting a program can be transformed. In Figure 2,
continuous edges denote ordinary control-flow edges between the basic blocks
of a program, while dotted edges denote references to and from both code and
data through relocatable pointers.

As the AWPCFG is a nonlinear representation of the program code and data,
addresses have no meaning in this representation. Therefore, all addresses

1It is important to note that Diablo’s application is currently limited to statically linked programs

that do not contain self-modifying code. This is an implementation issue, rather than a fundamental

limitation.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 5

Fig. 2. The six steps in which a program is optimized by our link-time optimizer.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



6 • B. De Sutter et al.

occurring in the code are replaced by a more symbolic representation that re-
sembles the representation of relocations and symbols in object files. This pro-
cess is described in more detail in Section 3.

2.4 AWPCFG Optimization

Program analyses and optimizations are applied on the AWPCFG. Some of the
analyses and optimizations only require architecture-independent information.
This is, for example, the case for unreachable code elimination or liveness anal-
ysis. The latter, for example, only uses an architecture-independent bit-vector
representation of used and defined registers of instructions. Such analyses are
implemented in the core Diablo layers.

Other generic analyses and optimizations are implemented in the core of
Diablo, but depend on call-backs to the appropriate architecture back-end.
This is the case, for example, for semantics-based analyses, such as constant
propagation.

Still other analyses, that are fully architecture-dependent, such as the ex-
ploitation of conditional execution, or peephole optimizations, need to be imple-
mented separately for each architecture.

In order to facilitate the implementation of new analyses and transforma-
tions, a high-level graph support layer in Diablo provides functionality, such as
the duplication of procedures or basic blocks, the merging of basic blocks, etc.
This layer operates on top of the low-level layer that implements the creation
and deletion of nodes, edges, instructions, etc.

The analyses and optimizations applied by our ARM link-time optimizer are
discussed in Section 4.

2.5 Code and Data Layout

After the program is transformed, the AWPCFG is relinearized. This means
that all code and data is laid out in memory and final addresses are assigned
to all nodes of the AWPCFG.

During this step, all symbolic representations of addresses occurring in both
the code and data blocks of a program need to be translated into real addresses
in binary code again. As this is all but trivial on the ARM architecture, we have
devoted a separate section (Section 5), to this step.

2.6 Assembling

Finally, the linearized sequence of instructions is assembled, and the final pro-
gram is written to disk. This is again performed through call-backs to the ap-
propriate back-ends.

3. INTERNAL PROGRAM REPRESENTATION

In this section, we discuss how we create our internal program representation,
starting from the binary code in the linked program. In particular, we discuss
some of the ARM architecture peculiarities and how to deal with them in our
internal program representation.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 7

3.1 ARM Architecture

The ARM architecture [Furber 1996] is one of the most popular architectures
in embedded systems. All ARM processors support the 32- bit RISC ARM in-
struction set and many of the recent implementations also support a 16-bit
instruction set extension called Thumb [ARM Ltd. 1995]. The Thumb instruc-
tion set features a subset of the most commonly used 32-bit ARM instructions,
compressed into 16 bits for code size optimization purposes. As our current
link-time optimizer has as yet no Thumb back-end, we focus on the ARM archi-
tecture and code in this paper.

From our perspective, the most interesting features of the ARM architecture
are the following:

� There are 15 general-purpose registers, one of which is dedicated to the stack
pointer and another to store return addresses.

� The program counter (PC) is the 16th architectural register. This register can
be read (to store return addresses or for PC-relative address computations
and data accesses) and written (to implement indirect control-flow, including
procedure returns).

� Almost all instructions can be predicated with condition codes.
� Most arithmetic and logic instructions can shift or rotate one of the source

operands.
� Immediate instruction operands consist of an 8-bit constant value

and a 4-bit rotate value that describes how the constant should be
rotated.

These features result in a dense instruction set, ideally suited to generate
small programs. This is important, since production cost and power consump-
tion constraints on embedded systems often limit the available amount of mem-
ory in such systems.

Unfortunately these features also have some drawbacks. Since the predicates
take up 4 of the 32 bits in the instruction opcodes, there are, at most, 12 bits left
to specify immediate operands, such as offsets in indexed memory accesses or
in PC-relative computations. In order to access statically allocated global data
or code, first the address of that data or code needs to be produced in a register,
and then the access itself can be performed.

On most general-purpose architectures, this problem is solved by using a so-
called global offset table (GOT) and a special-purpose register, the global pointer
(GP). The GP always holds a pointer to the GOT, in which the addresses of all
statically allocated data and code are stored. If such data or code needs to be
accessed, its address is loaded from the GOT by a load instruction that indexes
the GP with an immediate operand.

On the ARM architecture, such an approach has two drawbacks: given that
there are only 15 general-purpose registers, sacrificing one of them to become a
GP is not preferable. Moreover, since the immediate operands that can be used
on the ARM are very small, the GOT would not be able to store many addresses.
While this is not a fundamental problem, it can not be solved efficiently with a
single GOT.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



8 • B. De Sutter et al.

Fig. 3. Example of the use of address pools and PC-relative data accesses.

On the ARM, with its visible PC, another solution is used. Instead of hav-
ing a single GOT, several address pools are stored in between the code and
they are accessed through PC-relative loads. Figure 3 depicts how statically
allocated data can be accessed through such address pools. The instruction on
address 0x0101b4 in the code section needs access to the data stored at address
0x12e568 in the data section.

While the compiler knows the data to which the instruction needs access,
it does not know where the instruction or the data will be placed in the final
program. In order to generate code that will operate correctly with any possible
address, the compiler will implement this access by adding an address pool
(depicted in gray) in between the code, and by inserting an instruction (on
address 0x101b0) that loads the final address from the address pool.

Just like uses of single GOTs offer a lot of optimization possibilities for link-
time optimizers [Srivastava and Wall 1994; Haber et al. 2003], so do address
pools on the ARM. In Figure 3, for example, if register r1 is not written between
the second and the third load, the indirection through the address pool can
be eliminated by replacing the load on address 0x0103a0 by an addition that
adds 0x98 (the displacement between the two addresses in the data section)
to register r1. Alternatively, the load instruction on address 0x0103a0 can be
removed altogether, if we change the immediate operand of the fourth load to
0x98.

Unfortunately, representing the PC-relative load instructions in an AW-
PCFG at link-time is not straightforward. In an AWPCFG, there is no such
value as the PC-value: instructions have no fixed location and, therefore, no
meaningful address. As a result, there is also no meaningful value for PC-
relative offsets. How we deal with this problem is discussed in Section 3.3.

First, we will deal with another problem the ARM architecture presents
us with. If we want to build a precise AWPCFG of a program at link time,

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 9

we need to know which data in the program represents instructions, which
instructions in the program implement procedure calls and procedure returns,
and which instructions implement other forms of indirect control-flow. Consider
the instruction at address 0x010500 in Figure 3. The value in register r4 is
copied into the PC. The result is an indirect control-flow transfer. However, is
it a procedure call, or a return?

3.2 Building the AWPCFG

The AWPCFG is a fundamental data structure for link-time optimization. Not
only is it needed by many of the analyses performed at link time, but it also
provides a view of the program that is free of code addresses. This address-
free representation is much easier to manipulate than a linear assembly list
of instructions: instructions can be inserted and deleted without the need to
update all addresses in the program.

Constructing a control-flow graph from a linear list of (disassembled) in-
structions is a well-studied problem [Muth et al. 2001] and is straightfor-
ward for most RISC architectures. The only real problem concerns the sep-
aration of real code, being actual instructions, and read-only data that is
stored in between that code. Although many heuristics have been devel-
oped to perform this separation, this problem is, in general, undecidable. In
fact, it is not difficult to see that clever assembler programmers can write
programs in which binary code fragments are also consumed as data. As
most programs do not contain such code/data fragments, however, we neglect
them.

Still, we need to differentiate true data from true code. Instead of imple-
menting complex heuristics and conservative treatment of undecidable cases,
we have opted to solve this problem by relying on the compilers or assemblers
in the tool chains used with Diablo. More precisely, we require that the com-
piler or assembler used to generate the object files annotates all data in the
code sections with so-called mapping symbols. ARM’s proprietary compilers
already generate them, as they add $d symbols at the start of data fragments
and $a symbols at the start of ARM code fragments. Since version 2.15, the
GNU binutils assembler does the same. In fact, these symbols are part of the
ARM application binary interface (ABI) [ARM Ltd. 2005], because they facil-
itate the retargeting of programs to different endianess architectures in the
linker. Hence, we believe this use of mapping symbols to be a valid solution for
the problem of separation of code and data.

Once real code has been separated from read-only data, basic blocks are
identified by marking all targets of direct control-flow transfers and the in-
structions following control-flow transfers as so-called leaders or basic block
entry points. To find the possible targets of indirect control-flow transfers, the
relocation information in the object files can be used. After a linker determines
the final program layout, computed or stored addresses need to be adapted to
the final program locations. The linker identifies such computations and ad-
dresses by using the relocation information generated by the compiler [Levine
2000; De Sutter et al. 2005a]. In other words, the relocation information

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



10 • B. De Sutter et al.

identifies all computed and stored addresses.2 Since the set of possible tar-
gets of indirect control-flow transfers is a subset of the set of all computed and
stored addresses, relocation information also identifies all possible targets of
indirect control-flow. As such, leader detection is easy on the ARM architecture.

Once the basic blocks are discovered, they are connected by the appropriate
control-flow edges. These depend on the type of control-flow instructions: for
a conditional branch, a jump edge and a fall-through edge are added, for a
call instruction, a call edge is added, for return instruction, return edges are
added, etc.

Generating the correct control-flow edges is more difficult, however, since the
control-flow semantics of instructions that set the PC are not always immedi-
ately clear from the instructions themselves. A load into the PC, for example,
can be a call, a return, a C-style switch, or an indirect jump.

In theory, it is always possible to construct a conservative AWPCFG by adding
more edges than necessary. It suffices to add an extra node, which we call
the unknown node, to the AWPCFG to model all unknown control-flow. This
unknown node has incoming edges for all the indirect control-flow transfers for
which the target is unknown and outgoing edges to all basic blocks that can be
the target of (unknown) indirect control-flow transfers.

In practice, however, simply relying on the conservative unknown node for all
indirect control-flow instructions would seriously hamper our link-time analy-
ses and optimizations. On the ARM architecture with its PC register, there are
just too many indirect control-flow transfers. As with many program analyses,
requiring absolute conservatism would result in information that is too impre-
cise to be useful. A more practical solution, that we conjecture to be conservative
under the realistic assumption that compiler-generated code adheres to a num-
ber of conventions, involves pattern matching of instruction sequences. In the
past pattern matching of program slices was used to detect targets of C-style
switch statements and other indirect control-flow [Kästner and Wilhelm 2002;
De Sutter et al. 2000]. Possible alternatives to pattern matching, which all lead
to less precise graphs, are discussed in detail by De Bus [2005].

There are four types of indirect control-flow on the ARM that we handle
with pattern matching: (1) indirect jumps that implement switch statements
by means of address tables, (2) procedure calls, (3) procedure returns, and (4)
computed jumps, such as indirect jumps, that implement switch statements by
means of branch tables.3

For case (1), pattern matching is conservative in the sense that matching a
jumps program slice to a pattern results in a more precise, but conservative
graph, while not being able to match such a jump to a pattern results in a
graph that is a less precise, conservative graph. Hence we are always on the
safe side. The reason is that such switch statements are implemented with

2In theory, compilers do not need to annotate position-independent computations on code addresses

with relocations. In practice, such computations are extremely rare, however, and, so far, have not

posed problems for our optimizer.
3With address tables, an address is loaded from a table and then jumped to. With branch tables, a

branch in a table is jumped to and then that jump is executed to reach the wanted target.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 11

instruction sequences that include bounds checks for accessing the address
table. When a pattern is matched to such a sequence, the constant operands in
the bounds tests in the matched slice allow one to compute the bounds of the
referenced address table. Thus, all potential target addresses of the jump are
detected in the table and the appropriate edges can be added to the graph. If
we can determine that the table is only referenced by the matched sequence,
no additional edges are needed, because we have determined exactly how the
addresses in the table can be used in the program: for one indirect jump. In case
we cannot determine this, however, or in case such a jump cannot be matched to
a known pattern, the addresses in the table most be considered to be potential
targets of all (unmatched) indirect control-flow transfers. For those, it suffices
to add edges from those transfers to the unknown node, and from the unknown
node to the instructions at the addresses in the table. Note that this is possible
because, even if we do not detect the exact tables, the relocation information
informs us about all addresses that can be contained in such tables. Finally,
we need to note that not being able to match such a pattern is not detrimental
for link-time program optimization or compaction because the frequency with
which these constructs occur and the number of target addresses involved in
them are rather low. Thus, relatively little edges to and from the unknown node
need to be added.

For cases (2) and (3), the latter remark does not hold. If we would be unable
to detect that the indirect transfers that implement calls and returns imple-
ment exactly those semantics, the call-graph of our program would contain so
many additional edges that no interprocedural data flow analysis or control
flow analysis could produce useful information. While we believe that it could
be feasible to develop conservative analyses that can resolve most of all calls
and returns, we have currently not experienced a need for developing them.
Instead, we have, so far, relied on relatively simple pattern matching.

On the ARM architecture, the patterns used to detect indirect calls and re-
turns are variants of three schemes. First, when the instruction preceding an
indirect jump moves the PC + 8 into the return address register, the jump is
treated as a call. Second, a move from the return address register into the PC
is considered a return. Finally, an instruction loading the PC from the stack is
also considered a return.

While this pattern matching is, in theory, not conservative, we have not yet
seen any case where our approach resulted in an incorrect AWPCFG. Moreover,
compilers have no reason to generate “nonconventional” code. In fact, quite the
opposite is true. Since the return address prediction stack on modern ARM
processor implementations uses the same patterns to differentiate calls and
returns from other control-flow on modern implementations of the ARM, the
compiler is encouraged to follow these patterns. For these reasons, we believe
our approach to be safe for compiler-generated code.

For non-compiler-generated code, such as in manually written assembler
files, or in inline assembler code, we again rely on the compiler or assembler to
generate mapping symbols, as we did for differentiating data from code. This
time, we require the compiler to generate additional mapping symbols at the
beginning and end of inline assembler code fragments.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



12 • B. De Sutter et al.

For the GNU binutils assembler, this required a very simple patch of only
eight lines. Moreover, the overhead on the generated code is little for object files
and nonexisting for most binary executables. For the uClibc implementation of
the standard C-library, for example, that is targeted specifically at embedded
systems with limited amounts of memory, the size of the library increased with
less than 2% when the mapping symbols to identify inline assembler were
added. Knowing that this library is a system library, that contains much more
assembly code than regular C programs, is it obvious that the overhead of the
additional mapping symbols is negligible. Furthermore, as these are only sym-
bols, which are neither part of the executable code, nor of the statically allocated
data, they do not increase the memory footprint of programs. In fact, they are
not even present in most binary executables, from which symbol information
usually has been stripped. Hence, we believe that the use of mapping symbols
to differentiate inline assembly code from compiled code is valid and that it
should be trivial to implement it in any tool chain.

With the additional mapping symbols, Diablo can conservatively treat any
code between such symbols as nonconventional. This is also trivially the case
for non-conventional code that originates from full assembler files, as all object
files using the ELF object file format include the name of the source code file
from which they originate. Looking at the extension of this file name suffices to
decide whether the file contains conventional, compiler-generated code (.C, .c,
.f), or whether it contains (potentially) unconventional hand-written assembler
code (.s, .S).

Since, in most programs, the fraction of the code that is unconventional in
this way is very limited, treating this code very conservatively by means of
additional edges to the unknown node poses no problems.

With respect to the computed jumps of case (4), the same reasoning holds as
for case (1), in the sense that matched patterns result in conservative graphs,
because the bounds of the address tables become known when the instruc-
tion sequence is matched. Unlike case (1) however, not being able to match a
computed results in very conservative graphs, because potentially all instruc-
tions of the program become possible targets of all unmatched jumps.

In case any indirect jump remains unmatched, we must conservatively as-
sume it is a computed jump. In practice, our link-time optimizer simply backs
off, and informs the user/developer of the unmatched jump. This allows the
developer to implement additional patterns in the link-time optimizer. With
the exception of the nonconservative patterns for function calls and returns;
we have, so far, not experienced any patterns for which we could not write a
conservative pattern matcher.

Finally, there is one more type of nonconventional code that needs to be de-
tected: the so-called built-in procedures. These are procedures that compilers
add to programs to implement frequently occurring operations that cannot be
implemented in single instructions or in short instruction sequences. For ex-
ample, for architectures that do not provide integer division instructions, most
compilers include small procedures that implement integer division. Code size
is the reason why separate procedures are used to implement such functional-
ity: if the required instruction sequence is longer than a couple of instructions,

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 13

inlining the sequence at every point where the operation is required would oth-
erwise lead to code bloat. To avoid the overhead of overly conservative calling
conventions, however, these procedures are not linked in from libraries, but
generated by compilers themselves—hence the name built-in procedures.

To avoid being overly conservative in our program analyses, we want to be
able to assume that most ordinary procedures in a program respect the calling
conventions. In short, global procedures respect the calling conventions because
they can be called by external code that expects the global procedure to respect
the calling conventions.4 For a compiler-generated procedure, it suffices to test
whether the procedure is global, meaning that the procedure is defined by a
global symbol [Levine 2000], to decide whether or not the procedure maintains
the calling conventions. Unfortunately, this requirement is most often also met
by the built-in procedures, even though they do not respect the calling conven-
tions. In order to deal with this exception correctly, we simply require the user
of Diablo to provide a list of the built-in functions of his compiler.

3.3 Modeling Address Computations

In an address-less program representation, like the constructed AWPCFG, in-
structions that compute or load data addresses or code addresses, and instruc-
tions that use PC-relative values are meaningless. Therefore we replace such
instructions by pseudo instructions, so-called address producers. These instruc-
tions simply produce a symbolic, relocatable address and store it in a register.

For an example, we look back at Figure 3. If we assume the object file section
that contains address 0x12e568 in the linked program was the .data section
of the object file main.o, and if this section starts at 0x100000 in the linked
program, than the first load instruction in the figure will be replaced with
an address producer that moves the symbolic address start of main.o.data +
0x2e568 into register r1. The value of this relocatable address will remain
unknown until the final program layout is determined after the link-time
optimizations.

All analyses and optimizations in our link-time optimizer that propagate reg-
ister contents can handle these relocatable addresses. Constant propagation,
for example, will propagate constant values, such as 0x10 and 0x16 from pro-
ducers to consumers, as well as the relocatable addresses start of main.o.data
+ 0x2e568 and start of main.o.data + 0x2e600. When some instruction adds
a constant to the latter symbolic address, say 0x20, constant propagation will
propagate the relocatable address start of main.o.data + 0x2e620 from that
point on, just like it propagates the constant 0x70 after 0x50 gets added to
0x20.

If all instructions that load addresses from some address pool are converted
into address producers, that address pool is no longer accessed, and Diablo
will remove it from the program by the optimization described in Section 4.2.
Instead, reference edges will be added to the AWPCFG, connecting generated
address producers to the blocks of code or data they refer to. Likewise, reference

4A more concise discussion of the requirements under which a procedures can be safely assumed

to respect the calling conventions is described in detail in De Sutter et al. [2005b].

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



14 • B. De Sutter et al.

edges are added to the AWPCFG from data blocks containing code or data
pointers, pointing to the code or data blocks they refer to.

Eventually, when all optimizations are applied and the AWPCFG is con-
verted back to a linear list of instructions, we know all the final addresses and
translate all address producers back to real ARM instructions. This is discussed
in Section 5.

4. CODE OPTIMIZATION

Our link-time optimizer deploys analyses and optimizations that target code
size, execution speed, and energy consumption. The analyses and optimiza-
tions are applied in several phases with a decreasing dependency on the calling
conventions. In each phase, the optimizer applies code compacting transforma-
tions on top of which some profile-guided optimizations are applied, which have
a minimal impact on code size.

First we describe how the applied optimizations are divided over a number of
phases with increasing optimization aggressiveness. We then describe the most
effective whole-program optimizations targeting code size reduction in Sections
4.2–7. The profile guided optimizations will be discussed in Section 4.8.

4.1 Optimization Phases

The data-flow analyses in Diablo compute information about registers. Com-
pared to compile-time data-flow analyses on variables, link-time analyses are
simplified by the fact that no pointers to register exist, and, hence, no aliasing
between registers is possible.

On the other hand, link-time analysis is hampered by the fact that registers
are frequently spilled to memory, in general, and onto the stack, in particular.
If this spilling is not appropriately modeled, analyses become less precise.

While stack analyses can be used to track data spilled onto the stack, such
analyses have never proved to be very precise. Fortunately, however, infor-
mation derived from the fact that calling conventions are respected by global
functions can be exploited to improve the precision of existing stack analyses.
Calling conventions, for example, prescribe which callee-saved registers are
spilled to the stack upon entry to a procedure. Calling convention information
needs to be handled with care, however, and, to do so, we have split the program
analyses and optimizations in our link-time optimizer in three phases.

During the first phase, aggressive program analysis is favored over aggres-
sive optimization. Analyses and optimizations are performed iteratively (as
there are mutual dependencies) and information that can be extracted from
calling-convention adherence is exploited to improve the analyses. As a result,
we can present very precise whole-program analysis information to the pro-
gram optimizations. During this first phase, the optimizations are limited to
transformations that do not result in code disrespecting the calling conventions,
which we will further call unconventional code. This way, subsequent analyses
in this first phase can still safely rely on calling convention information.

In the second optimization phase, calling convention information has to be
used with care. During this phase, the calling conventions are being used to

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 15

extract information from the program, but the optimizations that are applied
may produce code that is unconventional up to a certain degree. As the analyses
and optimizations in this phase are being applied iteratively as well, we have to
ensure that the information extracted from the program does not result in faulty
optimizations. Therefore, we limit the code that violates the calling conventions
to instructions that operate on registers containing dead values, and we take
care not to extend the lifetime of a register, for example, by using a value from a
dead register during constant propagation optimizations. Section 4.6 explains
in more detail why we added this second phase.

In the last optimization phase, no calling convention information is used
in the analyses and the optimizations may transform the program in any
(semantics-preserving) way, disregarding the calling conventions completely.

The benefit of using multiple optimization phases, with a decreasing ad-
herence to the calling conventions, is the simplification of the implementation
of additional analyses and optimizations. For analyses that we want to run
in all phases, we only need to implement the possibility to disable the use of
calling convention information. For optimizations that we want to apply in all
phases, we only need to implement the possibility to (partially) disable calling-
convention disregarding transformations.

The alternative would have been to make all transformations update the
information describing how procedures adhere to calling conventions and to
have all analyses take this information into account. As a consequence, the
transformations still would need to differentiate between cases that result in
conventional code or unconventional code, and analyses would still need to be
able to work with and without calling convention adherence.

Clearly our simple three-phase approach, in which no information needs to
be updated, is much simpler and less error-prone. Moreover, in practice, we
have experienced that the number of cases in which a more refined approach
would be useful is very limited.

4.2 Unreachable Code and Data Removal

Unreachable code and data elimination is used to identify parts of the AWPCFG
and the statically allocated data that cannot be executed or accessed. To do this
our optimizer applies a simplified, architecture-independent implementation
of the algorithm proposed by De Sutter et al. [2001].

As described in Section 2.3, the AWPCFG contains code as well as all data
sections. Our fixpoint algorithm iteratively marks basic blocks and data sec-
tions as reachable and accessible. Basic blocks are marked reachable when
there exists a path from the entry point of the program to the basic block. An
object file data section is considered accessible if a pointer that can be used
to access the data (this information can be derived from relocation informa-
tion [De Sutter et al. 2001]) is produced in one of the already reachable basic
blocks or if a pointer to this section is stored in one of the already accessible data
sections.

Indirect calls and jumps are treated exceptionally, in that their edges to the
unknown node are not traversed. Instead, reference edges in the AWPCFG are

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



16 • B. De Sutter et al.

traversed, and indirect calls or jumps make all blocks reachable to which a
pointer is produced in reachable code or data.

4.3 Useless Code Elimination

Our link-time optimizer includes a context-sensitive interprocedural liveness
analysis that is based on the implementation by Muth [1999]. With this anal-
ysis, useless instructions can be determined and eliminated, i.e, instructions
that produce dead values and have no side effect.

4.4 Constant and Address Optimizations

Constant propagation is used to detect which registers hold constant values.
This is done using a fixpoint computation that propagates register contents
forward through the program. Instructions produce constants if (a) their source
operands have constant values, and (b) the processor’s condition flags are known
in case of conditional instruction execution, and (c) for load operations, the
(constant) memory locations from which data is loaded are part of the read-
only data sections of the program.

During the different optimization phases, code and data addresses are not
fixed. However, as we have discussed in Section 3.3, addresses produced by
address producers and addresses loaded from fixed locations in read-only data,
can be treated as if they are constants by propagating a symbolic value which
references the corresponding memory location.

The results of constant propagation are used in a number of ways:

� Unreachable paths following conditional branches that always evaluate in
the same direction are eliminated.

� Constant values are encoded as immediate operands of instructions whenever
this is possible.

� Conditional instructions whose condition always evaluates to true or false
are either unconditionalized or eliminated.

� Expensive instructions, such as loads or instructions that consume more
operands than necessary to produce easy-to-produce constants, are replaced
by simpler instructions.

A symbolic address that is propagated through the program can be used to
optimize address producers. If an address in some register at some program
point refers to the same object data section as the address producer at that
point, and the offset between the two addresses is small enough, the address
producer can be replaced by a simple addition: the address it needs to produce
is computed from the already available address instead of producing it from
scratch (and possibly loading it). Note that in order to exploit all opportunities
for this optimization, dead values have to be propagated as well. In the example
of Figure 3, the register r1 is dead prior to the load at address 0x103a0. To
detect that the load can be replaced by an add instruction, however, we need to
propagate the value of r1 to that load instruction. This differs from compile-time
constant propagation, where propagated values, because they are propagated
from producers to consumers, are live by definition.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 17

4.5 Inlining and Factoring

A compiler applies inlining to eliminate the procedure call overhead and to
speed up program execution. We apply inlining as an optimization to reduce
the code size and we consider the speedup a beneficial side effect. With this
different goal in mind, the opportunities to inline a function are limited to two
cases.

In the first case, we inline a function if it has only one call site. Contrary to the
compiler, a link-time optimizer can locate all possible call sites of an exported
(or, in other words, global) function and use this information to remove the
procedure call overhead by inlining the function at the call site.

In the second case, we perform inlining on functions with multiple call
sites for which the procedure call (code size) overhead is larger than or equal
to the computational body of the function. In this case, inlining reduces the
code size or leaves it unchanged. In the latter case, the program still be-
comes faster, however, as the number of execution instructions can only become
smaller.

For program compaction, we also apply the inverse operation of inlining,
so-called code factoring or procedure abstraction. During this optimization, the
AWPCFG is scanned for identical fragments in order to remove the redundancy.
In our current implementation, the fragments can consist of either single basic
blocks or of whole functions. These are the types of fragments that provide the
best cost/benefit ratios. This is important, because searching for identical code
fragments is a time-consuming task [De Sutter et al. 2005a].

When execution speed is one of the optimization goals, basic block factoring
needs to be applied cautiously. When identical basic blocks are factored, a new
function is created, whose body is a copy of those basic blocks, and to which calls
are inserted in the program to replace the original occurrences of the identical
blocks. The inserted calls, returns, and necessary spill-code, add execution over-
head to the program. In order to be beneficial for code size, the identical blocks
need to be larger than the procedure call overhead they will induce. Not to cost
too much in terms of performance, the application of factoring must be limited
to cold code [De Sutter et al. 2003], however, by using profile information.

In the case of whole-function factoring, all direct calls to the identical func-
tions are replaced by calls to just one of these functions, so that all but one
occurrence can be removed from the program. In this case, there is no execu-
tion overhead.

Indirect calls through function pointers are not touched, because we conser-
vatively need to assume that the function pointers can also be used in com-
parison operations. In the original program, it might happen that two pointers
to two instances of identical functions are compared, which evaluates to false.
Should we replace one function pointer by the other, simply because the bodies of
the two procedures are identical, this comparison would evaluate to true, thus
clearly changing the program behavior. Still, even with calls through function
pointers, we can eliminate most of the duplicate functions. Indeed, it suffices
to replace all but one of the duplicate function bodies by a jump to the one
remaining function body.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



18 • B. De Sutter et al.

When used judiciously, the use of both inlining and factoring can serve the
goal of optimizing for both code size and execution speed at the same time, even
though the optimizations are each other’s opposites.

4.6 Eliminating Calling-Convention Overhead

Compilers need to ensure that separately compiled parts of programs, including
prebuilt components, can cooperate. For this reason, most compiled code needs
to meet calling conventions that dictate how registers can be used and how
data is passed between different functions. In particular, a function needs to
maintain the calling conventions whenever there may be unknown call sites at
compile time. This means that for exported functions, a compiler has to generate
code that adheres to calling conventions, and insert spill code to preserve the
value of callee-saved registers.

At link time, the whole program is known and, for most functions, we can de-
termine all the possible call sites. For those functions, there is no need to main-
tain the calling conventions during our optimization of the program. Hence, for
those functions, we can try to avoid the costly spilling of registers to the stack.
Furthermore, we can try to alter the way arguments are passed to a callee. This
section describes some transformations that result in unconventional code, the
first of which is spill code removal.

As stated before, we apply the optimizations of a program in three phases.
At the start of the second phase, the calling conventions are assumed to be
maintained, but the code optimizations can neglect them. In the third phase, no
calling conventions whatsoever are taken into account. The second phase allows
for an aggressive analysis while the optimization opportunities are (nearly)
unbounded. During this phase, we have implemented a spill code optimization.

Using a context-sensitive liveness analysis, augmented with calling-
convention information, spilling of dead registers on the stack is detected. On
the ARM architecture, register spills at the beginning of a function are usually
implemented using so-called store multiple instructions, which can copy several
registers to memory while incrementing or decrementing the base register, in
this case the stack pointer. Simply adapting these store multiple instructions,
together with their load multiple counterparts that restore the spilled regis-
ters in the function epilogues, to spill fewer registers cannot be done without
changing the stack frame layout. To do so conservatively, additional analyses
of, and adaptations to, other stack-accessing instructions are needed.

If, for some reason, no accurate information about the stack use is avail-
able, or we are not able to adapt all stack-accessing instructions that need to
be adapted to the new layout, we could try to insert additional instructions
that mimic the stack pointer adjustment corresponding to each eliminated
spill. However, since such compensating instructions need to be inserted af-
ter each adapted store multiple and load multiple instruction, they are usually
not worthwhile.

When the stack usage can be analyzed, we can avoid inserting additional
instructions if all relevant instructions in the function are adjusted to reflect
the new layout of the stack frame. To that extent, we have implemented an

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 19

analysis that can extract the necessary information to safely avoid dead register
spills.

Our stack analysis is based on partial evaluation and is a forward fixpoint
algorithm. Upon entry to a function, its stack pointer is set to a symbolic value,
which is then propagated through the function’s flow graph. As long as the stack
pointer is increased or decreased with a known offset, propagation continues
with known values; otherwise the stack pointer is set to “unknown.” When the
stack pointer proves to hold the starting value at every exit point of a function,
this function is marked as a candidate for spill code removal. During the fixpoint
computation, all stack uses have been recorded and stored for later analysis.
The functions that are marked for spill code removal are further investigated to
look for spills of dead registers and, subsequently, to evaluate all stack pointer
uses.

Assuming calling conventions are valid, most stack pointer uses can be clas-
sified with pattern detection and, in cases the stack is used in an unusual way,
the function is dropped as a candidate in order to preserve correctness.

Using the results of the stack analysis, spilled registers can be removed from
the spill instructions without the overhead of additional instructions. However,
if the spilled register is overwritten inside the function, for example, to hold a
temporary variable, the resulting code no longer respects calling conventions.
Indeed, calling conventions dictate that callee-saved registers must preserve
their value over a function call. If not spilled, the value in the register will have
changed. Since the value in the register was dead before and after the function
call, this will not influence program semantics. We should, however, be careful
not to extend the lifetime of the value over a function call.

In the third phase, no calling conventions must be respected, which results
in additional optimization opportunities at the cost of less precise analyses.
Code that immediately preceeds a function call mostly contains copy operations
to move the arguments to the argument registers, as defined by the calling
conventions. When, at multiple call sites, the arguments are set in an identical
way, this copy code can be moved (sunk) into the callee, hereby saving space.
Using copy propagation, the copy operations can be removed completely by
renaming registers in the callee. If the argument set gets too large and it is
passed via the stack, load-store avoidance can be used to remove some of the
memory operations.

4.7 Copy Propagation and Elimination

Optimizing the overhead of calling conventions is not the only use of copy elim-
ination. Obviously, other copy operations than those preparing arguments for
function calls are candidates for copy elimination as well.

To create additional opportunities for copy propagation and elimination, our
link-time optimizer inverts copy operations between different iterations of our
data-flow analyses.

For example, consider the instruction sequence LDR r1,[r2,0x10]; MOV
r3,r1; which first loads a value in register r1 and then copies it into r3. In the
first iteration over our data-flow analyses and the corresponding optimizations,

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



20 • B. De Sutter et al.

we will simply try to rename all uses of r3 to r1, which may turn the move into
a useless instruction.

If this does not happen, for example because not all uses can be con-
verted, we simply replace the above sequence with the equivalent sequence
LDR r3,[r2,0x10]; MOV r1,r3, after which we try to rename all uses of r1 to
r3. If this does not succeed either, than we cannot remove the copy instruction.

4.8 Profile-Guided Optimizations

When profiles are available, a link-time optimizer can achieve significant speed
improvements with little impact on the code size. Our link-time optimizer per-
forms loop-invariant code motion when this is beneficial and performs loop
unrolling and branch inversion to decrease the number of branch mispredicts
in hot loops.

4.8.1 Loop-Invariant Code Motion. In general, hoisting loop-invariant
computations out of loops does not increase code size. In the case the loop-
invariant instruction sets a condition that is consumed in a conditional branch,
however, we can try to hoist the loop-invariant instruction together with the con-
ditional branch. In that case, the loop is duplicated. The original copy reached
via the fall-through path of the hoisted conditional branch and the other is
reached via the taken path. In the original copy of the loop, the conditional
branch is removed; in the other copy, the branch is unconditionalized.

Unlike the hoisting of ordinary instructions, the loop duplication required
to hoist loop invariant conditional branches does increase code size. In our
link-time optimizer, we, therefore, limit this special type of loop-invariant
code motion to hot loops and we only apply it when profile information is
available.

4.8.2 Loop Unrolling. Although loop unrolling is a typical compiler opti-
mization, we do find opportunities for loop unrolling at link-time. This is be-
cause most compilers, when instructed to optimize for code size, do not unroll
loops. This follows from the fact that they treat profile information per object
file and, hence, have no overview of all execution counts. Such an overview is,
of course, necessary to decide which loop is hot and which loop is not.

In the case of a link-time optimizer, we do not need to take the black or white
approach of unrolling many loops, or unrolling no loops. Instead, we can limit
the unrolling to the hottest loops. Thus, we can obtain significant speed-ups
while still limiting the negative effect on code size.

4.8.3 Branch Optimization. Inverting conditional branches to decrease
the number of branch mispredictions and adapting the basic block layout to de-
crease the number of executed unconditional branches are well-known profile-
guided optimization techniques. Our link-time optimizer applies them when-
ever possible.

4.8.4 Optimizing Conditional Execution. Conditional execution of instruc-
tions can be used to eliminate conditional branches and to limit the number of
unconditional branches that need to be inserted in a program. This may reduce

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 21

Fig. 4. Two equivalent code fragments, one with and one without conditional execution.

code size, execution time, and energy consumption at the same time. However,
it may also increase the execution time and energy consumption.

For example, the AWPCFG fragment in Figure 4a contains a conditional add
instruction. By using a conditional instruction, the additional unconditional
jump in the middle block of Figure 4b can be avoided. In case the fall-through
path from the block at address 0x0f3c is taken much more often than the taken
path, the code fragment with conditional execution will incur the run-time over-
head of having to load the addle (add if less or equal condition flags set) instruc-
tion needlessly, without having the benefit of the avoided unconditional jump.

To eliminate this type of overhead, our program profiles not only include basic
block execution counts, but also execution counts of conditional instructions.
From these, we can exactly derive all edge counts. If the profile information
indicates this to be beneficial, we convert the code fragment of Figure 4a into the
more efficient version in Figure 4b. As it increases code size, this optimization
is only applied on hot code fragments.

Furthermore, we can use the same execution counts of conditionally executed
instructions to extract sequences of rarely executed conditional instructions
from hot blocks. In this case, the extracted sequence is replaced with a condi-
tional branch to a new block that contains the unconditionalized instructions.
Again this increases code size, so we only apply this to hot code, of which the
profile information indicates that the transformation is worthwhile for perfor-
mance reasons.

5. LINEARIZING THE AWPCFG

Once the AWPCFG has been optimized, it has to be converted into a linear list
of code and data at fixed memory addresses. Furthermore, all addresses stored
in the data sections need to be relocated, and all address producers in the code
need to be converted into (sequences of) real ARM instructions.

Except for load instructions, the immediate operands of ARM instruc-
tions consist of an 8-bit constant value and a 4-bit shift or rotate value
that describes how the constant should be shifted or rotated. Because of
this peculiar way of encoding immediate operands, most of the absolute ad-
dresses that need to be produced in the code cannot be encoded as immedi-
ate operands of single instructions. Instead, PC-relative load instructions will
load those absolute addresses from so-called address pools. These are blocks of
data—the absolute addresses—in between the code. This indirection through

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



22 • B. De Sutter et al.

address pools shows significant resemblance with the use of GOTs on other
architectures.

With respect to GOTs, several researchers have observed that the indirec-
tions through them may pose a significant overhead [Srivastava and Wall 1994;
Haber et al. 2003]. Obviously, the same overhead is incurred with address pools.
Not only does each load consume additional energy and execution time, address
pools also consume additional memory, all of which are precious resources on
many embedded systems.

In order to avoid the need to load addresses from address pools, four options
are available:

1. We can try to get rid of the need to produce an absolute address in the first
place, for example, by propagating constants and eliminating useless code.
This option is, in fact, handled by the optimizations discussed in the previous
section, and, hence, will not be discussed in this section.

2. We can try to put data or code, of which the addresses need to be pro-
duced, at addresses that can be produced in one instruction. Because
of the peculiar implementation of immediate operands on the ARM ISA
through shift and rotate operations, the range of absolute addresses that
can be produced in one nonloading instruction is noncontiguous. Hence,
we believe that this option would either require very complex optimiza-
tion heuristics, or that it would likely introduce holes in the code and
data of a program, thus increasing its size. Because program size is one
of our most important considerations, we do not consider this option any
further.

3. We can try to produce absolute addresses in one (nonload) instruction by
encoding PC-relative addresses instead of absolute addresses in the imme-
diate operands. Because the PC is visible on the ARM architecture, this
option corresponds to optimizing the displacements between producers and
the addresses they produce.

4. We can try to implement the production of an absolute address in a sequence
of instructions. Obviously, replacing a load of an address by two (or even
more) instructions is not going to save us much. As both instructions and
absolute addresses have the same width, both consume the same amount of
memory, and both require two transfers over processor buses. In the case of
one load instruction, the instruction is loaded from the instruction cache and
the address is loaded from the data cache, in the case of two instructions,
both instructions need to be loaded from the instruction cache. If the second
instruction is already present in the program, however, this options can
allow us to save space, time, and power.

The remainder of this section explores options 3 and 4.

5.1 Using PC-Relative Addresses

The first address producer optimization we have implemented relates to the use
of PC-relative addresses. Instead of producing absolute addresses from scratch
by loading them from address pools, we try to produce them by adding a relative

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 23

Fig. 5. Four basic blocks, of which two contain address producers, in a predetermined order.

address that can be encoded in the immediate operand of one instruction to the
program counter.

Unfortunately, this optimization is hampered by the noncontiguous encoding
of immediate operands. For example, from 0 to 255 we can encode all numbers,
but between 256 and 1024, only multiples of 4 can be encoded. This corresponds
to 0 to 255, shifted to the left over 2 bits. Likewise, between 1024–4096, only
multiples of 16 can be encoded, and so on.

As an example, we consider the four basic blocks in Figure 5, in which an
instruction in the block at (temporary) address C needs to produce address
A and an instruction in the block at address B needs to produce address D.
Furthermore, suppose that the order of all code and data is already determined
as A < B < C < D. Unless we are willing to add no-ops to the code to enforce
the alignment of the involved addresses, the displacement between B and D
depends on the size of the implementation of the address producer in block C
and the displacement between A and C depends on the size of the implementa-
tion of the address producer in block B. If the displacements between A and C
and between B and D are both over 255, the implementations of the two address
producers both depend on both the displacements and, hence, the implemen-
tations of the two address producers depend on each other. As demonstrated
with this example, the problem of address producer optimization through the
use of PC-relative computations is a complex global optimization problem,
even when the solution is limited to a predetermined ordering of the code and
data.

Instead of trying to solve this complex problem, we have implemented a
solution to a simplified version. In this simplified problem, we assume that all
4-byte aligned displacements between −1024 and +1024 can be encoded, as
well as all displacements between −255 and +255. Other displacements are
assumed to be unencodable. Thus, the PC-relative ranges of addressable code
or data can be assumed contiguous.

Given an ordering of the code and data (see later in Section 5.3) and the
above simplification, we compute the sizes of the implementations of address
producers by first reserving space for the most conservative implementation
consisting of loads and corresponding address pool entries. From this conser-
vative estimate, which allows us to assign temporary addresses that set an
upper bound for the real final address, we then iteratively remove unnecessary
address pool entries.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



24 • B. De Sutter et al.

The conservative initialization works as follows. Initially, we conservatively
assume that all address producers will require two 4-byte words: one for the
load instruction and one to store the address to be loaded in an address pool.
The location of the address pool from which a particular address producer loads
is determined while iterating over all address producers in the code section in
order of increasing addresses.

When the first address producer at temporary address X is visited, the high-
est address Y at which its corresponding address pool entry can be stored is
determined. This is the furthest point in the code following a basic block with-
out fall-through path (possibly a block of read-only data) that is guaranteed to
be accessible from the address of the address producer. Since 12-bit offsets can
be encoded in load instructions, this means that we look for the furthest valid
point within a 4096 byte range, which corresponds to 1024 instructions.5 At
that point Y , a 4-byte address pool entry is reserved.

When the next address producer is visited at an address Z ≥ X +4, for which
Z < Y , the location Y +4 is certainly a valid location for this address producer’s
address pool entry. This is also the case if Z > Y , but Z − (Y + 4) < 4096. In
these cases, we reserve an address pool entry at address Y + 4 for the address
producer at address Z . Otherwise, a new address pool location is determined
in the same way as we did for the first address producer.

This process continues until all address producers have been visited, and
address pool entries were reserved for all of them. As such, enough space has
been reserved to implement all address producers and we can assign temporary
addresses to all code and data in the program.

At that point, we can start removing unnecessary address pool entries. Since
removing an address pool can only decrease the displacement between an ad-
dress producer and the address it produces, and since the simplified problem
only considers contiguous ranges of addressable memory, this is a monotone
process.

Simply stated, reserved address pool entries are removed as long as address
producers are found that are close enough to the addresses they produce. All of
these producers are then implemented with a simple addition (or subtraction) to
the program counter. Moreover, duplicate entries can be removed from address
pool entries as well.

5.2 Using Instruction Sequences

The second address producer optimization that we have implemented consists
of simplifying the addresses that need to be produced by modifying instructions
that follow the address producer.

In particular, we have observed that many address producers are followed
by either a load from or a store to the produced address. If that load or
store is the only consumer of the produced address, the least-significant 12
bits of the produced address can be encoded in the immediate offset of that
load or store instruction instead of in the address producer itself. Formally,
instead of producing address X , the address producer now only needs to

5If no valid point is found, one is created by inserting an unconditional branch in the program.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 25

produce X & 0xfffff000, and the offset of the load or store instruction be-
comes X & 0x00000fff. Obviously, this optimization can be extended to loads
and stores whose original offset was not 0.

More importantly, this optimization can also be extended to cases in which
the load or store following the address producer cannot be assumed to be the
only consumer of the produced address. Load and store instructions on the
ARM architecture provide write-back possibility, in which case the original
base address of the load or store is replaced by the base address + offset.
If write-back is enabled on the load or store following the address producer,
the produced address X & 0xfffff000 will be replaced by (X & 0xfffff000) +
(X & 0x00000fff) = X by the load or store, thus effectively putting the original
address X in place again.

In practice this optimization is implemented together with the use of PC-
relative addresses. In a prepass, we first detect and mark instructions that are
followed by a load or store that can be adapted. During the iterative removal
of unnecessary data pool entries, we can now also remove entries for abso-
lute addresses or PC-relative addresses that are smaller than 220 = 1M . For
the benchmark programs used in this paper, this boundary proved to be large
enough for all address producers that were followed by an adaptable load or
store.

5.3 Code and Data-Ordering Heuristics

The constraints that have to be met by any ordering of the code and data in the
final program are the following:

� two basic blocks with a fall-through path connecting them in the AWPCFG
should be placed after each other. This includes call sites and the correspond-
ing return sites.

� object file sections with certain attributes should be grouped in single pro-
gram sections with the same attributes (read-only, mutable, zero-initialized,
executable, etc.) in the final program, as illustrated in the linking and lay-
out steps in Figure 2. Although this is not a fundamental constraint, it is
generally accepted to simplify program loading and memory protection.

Knowing which optimizations can be applied to replace loads by other in-
structions, we now discuss how we reorder code and data in the AWPCFG in
order to create additional opportunities for these optimizations.

First, chains of basic blocks with fall-through paths need to be created. In
this phase of the program transformation, we do not consider modifications to
the branches in the program. Instead, we assume that the branch optimizations
in the optimization phase (Section 4) of Diablo have done a good job. Obviously,
chunks of data in the code section form separate chains by themselves, as do
the data sections from the original object files.

These chains are then partitioned into the final program sections. These
sections are ordered as follows: code section, (optional) read-only data sections,
mutable data sections, zero-initialized data sections.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



26 • B. De Sutter et al.

Finally, all chains are ordered within their program section to create ad-
ditional address producer optimization opportunities. Since we have observed
that the 1M boundary of the optimization, discussed in Section 5.2, suffices to
optimize all candidates for that optimization, regardless of the order, we ignore
such candidates in the heuristics used to determine the ordering of chains. To
optimize the other address producers, we implemented the following greedy
ordering heuristics:

1. Frequently executed producers of data addresses are put at the end of the
code section if the object file data section, of which the address is produced,
can be put close enough to it. This increases the chance that such address
producers can be implemented with a PC-relative computation. This
optimization bares resemblance to the data layout optimization proposed
by Haber et al. [2003], in which often executed code is put close to the GOT,
in order to access that data directly from the global pointer instead of going
through the GOT.

2. Address producers that produce addresses contained in the code section
(either of code or of read-only data in the code section) are put nearby the
code or data of which they produce the address. This happens greedily,
starting with the most frequently executed address producers. Again, this
heuristic may create additional opportunities for generating PC-relative
computations instead of loads.

3. Address producers that produce the same address are put nearby each
other. This increases the chance that an address pool entry can be shared
by the address producers in case they need to be implemented by means of
load instructions.

We should note that these ordering heuristics do not take into account in-
struction cache behavior. Given the relatively small size of the embedded bench-
marks we have worked with so far, this has not posed any problems. For larger
programs, an extension of these heuristics might be necessary to take cache
behavior into account.

6. EXPERIMENTAL EVALUATION

To evaluate our link-time optimizer implemented on top of the link-time rewrit-
ing framework Diablo (http://www.elis.ugent.be/diablo), we applied it on a num-
ber of standard benchmark programs. Furthermore, we evaluated its effect on
an example program to illustrate the influence link-time optimization may have
on interface design.

6.1 Standard Benchmarks

We applied our link-time optimizer on 10 benchmark programs. In addition
to eight programs from the MediaBench benchmark suite, we included crc
from the MiBench suite, and vortex from the SPECint2000 benchmark suite.
While the first nine programs represent embedded applications, vortex is a
good example of a larger application.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 27

Table I. Original Sizes (in Bytes) of the Code Section of the

Benchmarks Programsa

aThis section includes all the code, address pools and, for the proprietary ARM
tool chains, constant data stored in between the code.

All programs were compiled and (statically) linked with two versions of
ARM’s proprietary tool chain and two versions of the open-source GNU GCC
tool chain, for two slightly different platforms. First we used ADS 1.1 and its
more recent evolution RVCT 2.1 to generate size-optimized binaries (with the
-Os flag) for the StrongARM ARM Firmware Suite platform. This is a plat-
form with a minimal amount of OS functionality. Second, we used GCC 3.3.2 to
compile binaries for the StrongARM/Elf Linux platform. These binaries were
compiled with the -O3 flag and profile feedback for optimal performance.6 The
GCC binaries were further linked against two different libraries. First, we
linked them against the GNU implementation of the standard C-library, glibc
2.3.2 (www.gnu.org). Second, we linked them against a snapshot version of
uClibc 0.9.26 (www.uclibc.org). uClibc is a compact implementation of the core
functionality of the C-library for Linux. uClibc specifically targets embedded
systems.

Whereas Linux provides a lot of OS functionality to applications through
system calls, most of that functionality needs to be included in the applications
themselves on the ARM Firmware platform. Even so, because ARM’s propri-
etary compilers produce extremely compact code, and because their standard
library implementations are engineered for small code size, the ADS 1.1 and
RVCT 2.1 binaries are, on average, much smaller than the GCC-glibc binaries
and, in most cases, even smaller than the GCC-uClibc binaries. This can be
seen in Table I. Together with the GCC-uClibc binaries, the ADS 1.1 and RVCT
2.1 binaries are, therefore, ideal candidates to test the program compaction
capabilities of our link-time optimizer.

Even though the RVCT 2.1 license agreement prohibits us from present-
ing the exact program sizes for the RVCT 2.1 binaries, it is important for the

6Note that for most of the programs, compiling with GCC and the -O3 flag produced the same

binaries as when the flags -Os or -O2 were used. For some benchmarks, there were small differences,

but the binaries compiled with -O3 were never more than 1% larger. This comes, in part, from the

fact that the libraries are compiled with the (default) -O2 flag.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



28 • B. De Sutter et al.

remainder of this evaluation to note that the compiled RVCT 2.1 binaries are
significantly smaller than the ADS 1.1 binaries. This reduction can mostly be
attributed to a reorganization of the system libraries in ARM’s tool chain. For
example, the library code used to convert numerical values to a string represen-
tation, such as needed for string formatters used with printf, was refactored
and partitioned into independent parts performing different types of conver-
sion. Combined with a specific compiler analysis of string formatters occurring
in the source code of a program, the result is that programs that do not need to
format, for example, floating-point numbers, no longer needlessly contain the
support for them. In the ADS 1.1 libraries, there was no such partitioning or
compiler analysis. Consequently, a lot less library code is linked into the bina-
ries by RVCT 2.1. We have strong indications that this reorganization was at
least in part based on insights obtained from our initial results on the ADS
1.1 tool chain. This is important information that will enable us to to assess
whether or not good library engineering can overcome the need for link-time
optimization.

Note that we compiled all code into 32-bit ARM code and not into its 16-bit
subset called Thumb. Typically, a mixed use of Thumb and ARM can result in
significant code-size reductions, with only small losses in performance. We be-
lieve that link-time optimization and the use of Thumb are orthogonal, however,
and that similar link-time improvements as the one we report here on ARM
code, can be achieved on mixed ARM–Thumb code. For example, unreachable
code elimination is no different for Thumb than for ARM code. For the moment,
however, we cannot validate this belief with experiments, as our link-time op-
timizer does not yet support dual-width instruction sets. Moreover, the target
platform we used in this evaluation does not provide Thumb either.

To evaluate the performance of our link-time optimizer, we ran it on all 40
programs, with and without profile-guided link-time optimizations. To collect
execution time and energy consumption results, all original and optimized bi-
naries were simulated with sim-panalyzer (a power simulator built on top of
the SimpleScalar simulator suite [Austin et al. 2002]), which was configured as
an SA1100 StrongARM processor.7 In order to simulate ADS 1.1 and RVCT 2.1
binaries, we first adopted SimpleScalar to correctly handle the system calls of
the ARM Firmware platform.

The input sets used for collecting profiles (both for GCC and for our link-time
optimizer) always differ from the input sets used for the performance measure-
ments. For the profile-guided link-time optimizations, we collected instruction
execution counts for conditionally executed instructions, besides simple basic
blocks execution counts. Both types of profile information were collected with
the instrumentation infrastructure of FIT [De Bus et al. 2004].

In our experiments without profile information, no loop unrolling, and no
code motion is performed that may introduce additional branches. Also, no

7We opted for this ARM processor because it is the only one of which the simulator authors claim to

have validated their timing models. The power models have not been validated so far and, although

many researchers have used sim-panalyzer so far, it is unknown how precise the power simulator

really is.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 29

Table II. Optimization of the “Address Producers” after Profile-Guided

Optimization for Our Four ToolChainsa

aThe first column for each tool-chain shows the fraction of address producers remaining af-

ter the link-time optimization. The second column shows the fraction of address producers

that load an address (instead of computing it) remaining after link-time optimization. The

third column indicates the fraction of address pool entries that remains after link-time opti-

mization. The fourth column indicates the compaction ratio of the code section obtained with

the optimization of address pool. Finally, the last column indicates the fraction of the total

code size reduction (as presented in Table IIIa) that is because of the optimization of address

pools.

conditional branches are inverted to improve the branch prediction. In the case
of the GCC compiler, the latter should not make any difference, since the com-
piler has already optimized the branches. Finally, it is important to note that in
our current link-time optimizer, inlining is never profile-guided: inlining is per-
formed only when it benefits code size. This is the case if a procedure has only
one callsite, or when the procedure body is smaller than or equal to two instruc-
tions. The latter number is the number of instructions necessary to implement
the call and return.

The results of our link-time optimizations are presented in Tables II and III.

6.2 Address Producer Optimization

As depicted in Figure 2, our link-time optimizer succeeds in eliminating much
of the address producers in the original programs. Depending on the tool chain
and the libraries used, between 28 and 42% of the address producers are elim-
inated, on average. These percentages are higher than what is obtained on all
instructions (see Section 6.3). This should not come as a surprise. As address
producers produce known (albeit not yet constant) values, they are good candi-
dates for optimizations based on copy propagation, constant propagation, and
other data-flow analyses.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



30 • B. De Sutter et al.

Table III. Improvements in the Characteristics of the Link-Time Optimized Programsa

aEach fraction denotes the value of the optimized program normalized to the corresponding value of the

original program. From left to right, the six columns for each program version indicate (1) code size, (2)

execution time, (3) energy consumption ratio and ratios of the number of executed (4) instructions, (5) load

instructions, and (6) control-flow transfers.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 31

Furthermore, of the address producers that load addresses instead of com-
puting them, even more are either eliminated or converted to more efficient
instructions: the average fraction of eliminated or converted loads ranges from
45.9% for the RVCT 2.1 tool chain to 63.9% for the combination GCC–GLIBC.
This shows that our address producer optimization presented in Section 5 is
quite effective.

Finally, the remaining address-producing loads require even less address
pool entries: on average, the size of the address pools drops with between 65.8
and 69.5%. The reason we are able to remove even more address pool entries
than we can remove address-producing loads is that address pool entries in
the optimized program can be shared by address producers originating from
multiple object files. The original object files that were separately generated by
the compiler, each contained their own address pool, of which many contained
the same addresses. However, since the compiler did not have a whole-program
overview, it could not eliminate the duplicate entries.

The effect on the total code size of the applications of the removal of entries
from the address pools is significant, but not very large: the averages per tool
chain vary between 0.7 and 2.7%. Looking forward to the results discussed in
Section 6.3, this means that, on average, between 5 and 16% of the obtained
compaction is because of the optimization of address producers and address
pools. It should be noted that the numbers presented in the last columns in
Figure 2 only include the code size reduction resulting from eliminating address
pool entries, but not of eliminating address producers themselves. We excluded
the latter because those eliminations result from other data-flow optimizations,
such as constant propagation, that make address producers redundant, but
they do not directly result from the actual optimization of address producers
themselves, as discussed in Section 5.

Besides the overall, average numbers, there is one important observation
to be made. For the cjpeg and djpeg benchmarks, a much lower fraction of the
address producers is eliminated than for the other programs. Yet the remain-
ing fraction of address producers that load addresses is similar to, or, in the
case of ADS 1.1, even lower than that of other benchmarks. The reason is that
cjpeg and djpeg contain a lot of address producers that produce procedure point-
ers that are written to memory. Because the produced pointers are written to
memory, we cannot eliminate their producers. However, because they are pro-
cedure pointers, our code and data layout heuristics are able to find layouts
in which a lot of these procedure pointers can be produced with PC-relative
computations.

Please note that this optimization is not directly applicable to read-only data.
As noted by De Sutter et al. [2001], data can only be removed from programs
at link-time per object file section. If a whole section is inaccessible, it can
be removed. For object file sections that do contain accessible data, however,
it is most often impossible to detect which parts of the sections could still be
inaccessible. This follows from the fact that a compiler can have applied base-
pointer optimizations for data accesses within one such section, without having
to annotate the resulting code with relocation information. Consequently, we
cannot easily detect such optimized pointer accesses easily at link time. The

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



32 • B. De Sutter et al.

one exception to this rule is that of address pools, because those have a very
specific use in the compiler-generated code.

6.3 Code Compaction

The compaction results obtained with our link-time optimizer and profile infor-
mation are depicted in Table IIIa. The results obtained without profile-guided
optimizations are depicted in Table IIIb.

Using profile information, an average of 16.0% of the code gets eliminated
from the ADS 1.1 binaries. On the RVCT 2.1 binaries, the average code size
reduction even reaches 18.5%, despite the fact that the RVCT 2.1 compiler-
generated binaries were already smaller than their ADS 1.1 counterparts.

This shows that good library engineering is not a silver bullet that can undo
the merits of link-time optimization. This is not surprising. Part of the re-
structuring effort performed on ARM’s system libraries involved removing un-
necessary complex schemes of references between different library object files.
It was to a large degree precisely those same complex schemes that compli-
cated obtaining precise data flow analysis results. Consequently, reducing the
complexity of those schemes not only reduces the size of the library code linked
into a program, but it also allows our link-time optimizer to perform a better
job on the remaining code.

On three benchmarks program the results differ significantly from the aver-
age numbers. On the one hand, cjpeg and djpeg, which are two similar appli-
cations compiled from largely the same code base, show much lower code-size
reduction results of around 5.5%. This results from the fact that a very large
fraction of all procedure calls are through procedure pointers that are stored
in memory, as we mentioned in Section 6.2. Our link-time optimizer therefore
fails to construct a precise AWPCFG and, accordingly, to eliminate much code.

On the other hand, our link-time optimizer scores much better on unepic,
a program compiled from the same code base as epic. The reason is that a
large part of the code linked into both applications by the ARM linkers is un-
used in unepic. Unlike the ARM linkers, our link-time optimizer successfully
eliminates this unused code from the program.

For the GCC-GLIBC and GCC-UCLIBC programs, the results are along sim-
ilar lines, despite the fact that the original GCC-GLIBC programs were much
larger than the ADS 1.1, RVCT 2.1, or GCC-UCLIBC programs. The reason can
again be found in the structure of the glibc implementation of the standard C-
library. The main culprit, in this case, is that the glibc implementation contains
a number of function pointer tables that store the addresses of functions, such
as malloc, and that a user can override by specifying alternative implementa-
tions in his execution environment. Our link-time optimizer cannot (yet) detect
which elements from such tables will actually be used by a program and which
will not be used. Hence our optimizer cannot eliminate the unused procedures.
Note that it is also because of these tables that much more code is linked into
the programs in the first place.

From these results, we can conclude that neither careful library engineer-
ing, nor link-time optimization, are the silver bullet for code compaction. As

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 33

our results for GCC programs illustrate, the effects on code size of libraries
that were engineered for flexibility rather than for code size cannot be undone
completely at link time. On the other hand, we can conclude that link-time
optimization can significantly reduce the size of programs, even in tool chains
that are considered world-class when it comes to generating small programs.

The code size reductions obtained without the use of profile information
are very similar to those obtained with profile-guided optimizations. With our
current code size/execution speed thresholds, at most 1% of code size reduction
can be gained by disabling optimizations that increase the size of frequently
executed code. The conclusion of this observation is very simple: using pro-
file information to improve the performance of programs, as evaluated in the
next sections, does not need to increase program size significantly. Of course,
the restricted application of performance-benefiting transformations that in-
crease the size of the hot code can only be performed by optimizers that have
an overview of all execution counts of a program. Traditional compilers lack
this overview.

6.4 Execution Time

First, the raw numbers, are depicted in Table IIIa.8 For ARM’s proprietary
compilers, we observe average speed-ups of 12.8 and 12.3%, for the ADS 1.1 and
RVCT 2.1 generations, respectively. For the GCC tool chains, average speed-ups
of 17.4 and 8.1% are observed.

The main culprit for the differences in these average speed-ups is crc, for
which the obtained speed-ups range from 0 (zero) to 59.3%. Had we not included
crc in our benchmark suite, the average speed-ups would only have ranged from
9.0% for GCC-uClibc, over 11.0% for ARM’s proprietary tool chains, to 13% for
the GCC–glibc combination. The large variation in speed-ups obtained for crc
relates to the inlining of library functions. The crc benchmark contains only
one, rather small, hot loop, in which the standard C-library procedure getc() is
called in every iteration. With ADS 1.1, RVCT 2.1, and GCC–glibc, our link-time
optimizer is able to inline this procedure in the loop, thus speeding up this loop
tremendously. With GCC–glibc, even some callees of getc() itself are inlined
into the loop, thus achieving the remarkable speed-up of 59.3%. By contrast,
no speed-up is achieved for crc with uClibc. In uClibc, getc() is implemented
as a macro. Consequently, the code body of getc() was previously inlined into
the hot crc loop by the C-preprocessor.

As neither of the proprietary ARM tool chains uses profile information, it was
to be expected that significant execution time improvements could be achieved
with our profile-guided link-time optimizer. On a processor with a simple branch
predictor that always predicts “not taken,” such as the StrongARM, the profile-
guided optimization of code layout and conditional branches is very important.

8Note that we are not allowed to publish absolute execution time or power consumption numbers

for the RVCT 2.1 tool chain. Furthermore, since the ARM Firmware platform library code does not

implement all the functionality implemented in the uClibc or glibc libraries, comparing absolute

numbers of those versions is also useless. For those reasons, we only discuss relative numbers in

this paper.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



34 • B. De Sutter et al.

It is to be expected that this optimization is less important on processors with
more advanced branch predictors, such as the XScale processors.

However, profile-guided code layout and branch optimization are not the
only source of the obtained speed-ups. The GCC tool chains did use basic block
execution count and edge count information to compile the programs, but our
link-time optimizer still obtains average speed-ups of 17.4 and 8.1%.

Three other important profile-guided optimizations proved to be (1) the more
efficient use of conditional execution, (2) loop unrolling of small loops, and (3)
the hoisting of invariant conditional branches in hot loops. These are three opti-
mizations that increase the size of hot code, but as we have seen in Section 6.3,
the influence on overall code size is rather limited, if not totally insignificant.
As with the profile-guided optimization of conditional branches and the code
layout, the importance of these optimizations will probably drop for processors
with more advanced branch predictors.

Still significant speed-ups would be achieved, however, as can be seen from
the drop in number of instructions and loads executed. For the different tool
chains, this drop on average varies between 4.5 and 12%. These reductions
in the number of executed instructions would obviously remain the same for
more advanced processors implementing the same architecture. In fact, the
number of executed instructions would change slightly because some of Diablo’s
heuristics, such as the one used to decide on the use of conditional execution,
take branch prediction parameters into account.

Before moving to the results obtained without the use of profile-information,
we need to note that the number of executed jumps increases for some bench-
marks because infrequently executed conditional instruction sequences in fre-
quently executed code are replaced by separate basic blocks and conditional
branches. The number of conditional branches thus increases, but the number
of mispredicted branches does not.

When no profile information is provided, the latter optimization is obviously
not applied. Still the number of control-flow transfers executed increases for
some benchmarks, as can be seen in Table III. In this case, this is because of the
unlimited factoring of code. Without profile information, even hot basic blocks
may be factored into separate procedures. Obviously the calls and returns to
and from those procedures constitute additional overhead, not only because
of these control-flow transfers themselves, but also because a return address
needs to be spilled to the stack. For the epic benchmark compiled with the GCC
tool chain, this even results in slow-downs of 64.8 and 72.6%, depending on the
library used.

In general, not only the lack of profile-guided optimizations, but also the
unlimited factoring of duplicate basic blocks leads to much reduced performance
gains. For ARM’s proprietary tool chains, the average speed-ups are now limited
to 3.1 and 2.8%, decreasing from 12.8 and 12.3% when profile information was
used. Because of the bad effects on epic, our link-time optimizer, on average,
even slows down the GCC benchmarks. This is particularly visible when the
uClibc library is used, where there is no speed-up for crc that can compensate
for the slow-down of epic. As a result, the average slow-down with GCC-uClibc
even approached 6.3%.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 35

Once and again, this discussion indicates how useful profile information is
for link-time compaction.

6.5 Energy Consumption

With profile-guided link-time optimization, the average energy savings range
from 10.7 to 10.1% for ARM’s proprietary compilers and from 16.2 to 7.9%
for the GCC tool chains. Again, the difference between these averages results
from the large differences observed for the crc program. As such, these energy
consumption reductions closely follow the execution time improvements, albeit
that the energy reductions are less outspoken. The reason relates to branch
prediction.

With each mispredicted branch in a program, a bubble passes through the
processor pipeline that accounts for the branch misprediction latency. This bub-
ble consumes very little energy. Because of the profile-guided branch optimiza-
tion, relatively fewer cycles are wasted on bubbles in the optimized program.
This not only causes the program to execute faster, but it also increases the
average power dissipation per cycle. Hence, the obtained energy reduction is
lower than the execution time reduction. This effect is most outspoken for the
programs compiled with ARM’s proprietary compilers, as the lack of profile-
guided optimization resulted in more link-time branch prediction optimization
opportunities than on the GCC-compiled programs.

Moreover, on the GCC-compiled programs, the elimination of spill code and
other load/store instructions, including loading address producers, proved to be
much more effective than on the programs compiled with ARM’s tool chains.
Indeed, Table IIIa shows that only 4.8 and 5.1% of the loads are eliminated on
the binaries produced with ARM’s compilers. For the GCC-compiled programs,
15.6 and 14.5% of the executed loads are eliminated. As loads and stores are
some of the most power-consuming instructions, this means that, on average,
more power is saved on the GCC-compiled benchmarks.

To a large extent, the latter effect of eliminating more expensive loads and
stores compensates for the effect of having fewer cheap branch mispredictions.
As a result, the average speed-up and energy savings are much closer to each
other for the GCC programs.

The one exception with respect to the elimination of loads is crc. When this
program was compiled with ARM’s proprietary compilers or linked against
uClibc, no frequently executed loads were eliminated at all. When crc is
linked against glibc, the fraction of executed loads that got eliminated is also
much lower than the fraction of all instructions. Consequently, the reduction
in crc’s energy consumption is much lower than its reduction in execution
cycles.

Finally, when the link-time optimization is performed without profile in-
formation, the same reasoning holds with respect to the number of eliminated
loads and stores. This translates in similar differences between saved cycles and
saved energy. However, for the GCC-compiled programs, the extensive elimi-
nation of the power-hungry loads and stores, this time, results in more energy
than cycle savings.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



36 • B. De Sutter et al.

Table IV. Link-Time Optimization (time in s) for the

Profile-Guided Optimization

6.6 Link-Time Optimization Times

Having discussed the optimization results achieved by our optimizer, we now
show that the compile-time, or rather link-time, overhead caused by invoking a
link-time optimizer is rather limited, as can be seen in the link-time optimizer
execution times displayed in Table IV. These execution times were obtained by
executing our link-time optimizer on a 2 GHz Pentium 4 with 1 GB of main
memory.

We believe the execution times are certainly within acceptable bounds, rang-
ing from a couple of seconds to about 20 min for the largest application. While
the link-time optimization does not scale linearly, we feel it still scales rather
well.

Please note that our current link-time optimizer is implemented on top of
the Diablo link-time rewriting framework that was engineered for reusability,
retargetability, and reliability rather than optimization speed [De Bus 2005]. As
such, we believe that considerably faster optimization times can be achieved by
spending more effort on the optimization of our current implementation. This
belief is supported by our experience with a previous proof-of-concept link-time
optimizer developed by us—Squeeze++ (http://www.elis.ugent.be/squeeze++).
Squeeze++ was reengineered to a large extent for optimization speed. As a
result, we could obtain comparable optimization results on programs that were
up to 6 times larger, in about 16 min [De Sutter et al. 2005a].

6.7 Influence on Interface Design

In the evaluation of our link-time compactor on a number of benchmarks, the
enormous performance improvement achieved for the crc benchmark jumps
out. The reason is that the compiler was not able optimize the single hot loop in
crc, because it contains a call to the precompiled standard C-library procedure
getc(). The resulting overhead proved an ideal optimization candidate for our
link-time optimizer.

At first sight, this situation in crc might seem a rare case. But to the
contrary, this situation is an example of a problem that occurs quite often
in embedded systems. It occurs particularly in data streaming multimedia
applications in which data streams through a number of subsequent filters.
Ideally, we would like to develop (and compile) such filters as independent
components.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 37

Any cooperation between separately compiled components will involve the
overhead discussed in the introduction. To minimize this overhead, it is im-
portant to design the interfaces between the components appropriately. One
particular design choice concerns data passing: will we use buffered or un-
buffered data passing between two components? With buffered data passing,
the communication (procedure call) overhead is limited because the communi-
cation between two components takes place once per filled buffer, instead of once
per buffer element. Unfortunately, buffered data passing comes with a major
disadvantage: one component will have to fill a buffer, and the other will have
to empty it. In practice, buffering happens in power-hungry (and often slower)
data memory. Filling and emptying a buffer will, therefore, constitute its own
overhead. This contrasts with unbuffered data passing, where data often can be
passed through registers. As a final consideration, real-time constrains might
need to be taken into account, as in some cases buffered data passing may result
in longer latencies.

In each embedded application, the advantages and disadvantages of using
buffers need to be carefully balanced. In Figure 6 depicts two source code files
that model two components. The component in file2.c provides some (contrived)
functionality to the component in file1.c. This functionality is provided through
an unbuffered and through a buffered interface. With the sim-panalyzer simula-
tor, we have measured the performance of both interfaces, both before and after
link-time optimization. The results for unbuffered data passing and buffers of
different sizes are depicted in Figure 7.

In the top chart of Figure 7, we notice that both power consumption and exe-
cution time are optimal when buffered data passing is used with large buffers.
As soon as the buffer size exceeds 16, the buffered interface performs better
than the unbuffered solution. At that point, the communication overhead of
the unbuffered communication is higher than the overhead of filling and emp-
tying the buffer.

After link-time optimization, the situation is completely different. In the bot-
tom chart of Figure 7, it becomes clear that our link-time optimizer was able to
remove the communication (procedure call) overhead. No communication over-
head remains in the unbuffered case. By contrast, the overhead of filling and
emptying the buffer could not be removed. In the end, the link-time optimized
unbuffered interface proves to be the best choice.

While the discussed example is certainly contrived, it shows how adding
link-time optimization may severely shift the balance between different design
options. Our experience with link-time optimization so far shows that compo-
nent communication overhead is much more effectively removed by a link-time
optimizer than other types of program overhead, such as the filling and empty-
ing of buffers. When using a link-time optimizer, a programmer will, therefore,
not only generate better performing programs, she will also need to reconsider
some design decisions in the light of the link-time optimizations. In practice, the
need for special interface constructs that try to avoid communication overhead
between components will be eliminated.

To summarize, link-time optimization not only optimizes existing programs
and component interfaces, it also enables the use of more efficient interfaces.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



38 • B. De Sutter et al.

Fig. 6. Example code to illustrate the effects of link-time optimization on buffered data passing.

7. RELATED WORK

7.1 Program Size Reduction

An extensive survey on code compression and code compaction techniques was
presented by Beszédes et al. [2003]. In this section, we only discuss previous
post-compile-time code compaction techniques, as opposed to code compression
techniques, that leave the whole program in a directly executable format and
that does not require run-time decompression and, hence, does not incur the
related overhead.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 39

Fig. 7. Execution time and power consumption for the code of Figure 6, normalized to the original

unbuffered program. The horizontal axes indicate buffer sizes, with 1 meaning unbuffered.

Whereas our optimizer deals with object code, aiPop [Kästner 2000; De Bus
et al. 2003] applies postpass optimization on the assembly code of a whole
program. With aiPop, code size reductions ranging from 5 to 20% have been
achieved on real-life customer applications. At the assembly level, more infor-
mation is available than at link time. However, a major drawback of assembly-
level postpass optimization is the adaptation required to integrate the postpass
optimizer into an existing tool chain. Postpass assembly optimization does not
work on library code that is precompiled into object code. By contrast, our link-
time optimizer also optimizes ADS library object code.

Other work on link-time optimization has targeted program size on the Alpha
platform [Debray et al. 2000; De Sutter et al. 2002, 2005b]. In that work, an
average code size reduction of 27% was achieved on benchmarks similar to
those used in this paper. However, on the Alpha architecture, which was not
targeted at embedded platforms, code size was not at all a priority of the tool

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



40 • B. De Sutter et al.

chain. Whereas this work could be seen as a proof of concept, we are the first
to show that significant compaction can be achieved at link time in a tool chain
that is already well known for producing extremely small binaries, such as the
proprietary ARM tool chains used in this paper.

Complementary to this paper, which focuses on properties of the embedded
ARM architecture and the application of link-time optimization in addition to
its specialized, code-size-conscious tool chains, De Sutter et al. [2005b] focus on
the enabling methods behind link time optimizations. To that extent, De Sutter
et al. [2005a] extensively discuss the semantic information available at link
time, the validity of many assumptions on this information (such as the effects
on stack unwind information and limitations imposed by its presence), and
the engineering of scalable whole-program analyses and transformations that
exploit the available information. Furthermore, De Sutter et al. [2005b] present
an extended performance evaluation in which the benefits and cost of several
key analysis and transformations at different levels of complexity (for example,
context-sensitive versus context-insensitive analyses) are evaluated.

Chanet et al. [2005] use the Diablo framework to develop a link-time com-
pactor and specializer for the Linux kernel for both the ARM and the i386
platform. As an operating system kernel contains much more unconventional
hand-written assembler code than regular user space programs, the tool chain
extensions described in Section 3.2 for distinguishing compiler-generated code
from handwritten code prove invaluable to obtain precise analysis results.

Extensive research has been done in the field of code compression. These
techniques reduce the program size through compression of parts of the pro-
gram code and data. At run-time, the compressed information has to be decom-
pressed. This is either done through specialized hardware [Lekatsas et al. 2003;
Kemp et al. 1998; Kirovski et al. 1997; Corliss et al. 2003], or through software
decompression [Ernst et al. 1997; Franz 1997; Franz and Kistler 1997; Fraser
1999; Pugh 1999]. The latter option typically incurs a performance penalty. As
our work focuses on improving both program size and performance, without
requiring modified hardware, we feel these techniques are not suitable for our
goals.

7.2 Address Computation Optimization

Srivastava and Wall [1994] discuss the overhead of using a GOT on the 64-bit
Alpha architecture. They eliminate part of this overhead at link time when
it turns out that one GOT suffices to address all data in the program. Their
link-time optimized code also accesses the data that is in the scope of the GP
directly, avoiding the indirection through the GOT. Their link-time code modifi-
cation system improves performance of statically linked programs by 3.8% and
compacts programs with 10%. Haber et al. [2003] improved upon this work by
reordering the global data based on feedback information. Frequently accessed
data is moved closer to the GP so that it is in scope for direct accessing. This
speeds up programs by 3% on average, and reduces memory references by 2.1%
on average. As far as we know, we are the first to apply similar techniques to
noncontiguous address pools.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 41

Chen and Kandemir [2005] discuss a compiler technique for optimizing
the address computation code on DSP architectures. Operating on a high-
level intermediate representation of the program, their technique restruc-
tures code and array data so that better use can be made of the autoincre-
ment and autodecrement addressing modes provided by many DSP’s address
generation units. This is related to the “writeback” optimization described in
Section 5.2.

7.3 Postpass Program Performance Optimization

Link-time optimization targeted at performance has been done for the Al-
pha [Muth et al. 2001; Cohn et al. 1997] and more recently for the IA64 [Luk
et al. 2004] architecture. These optimizers basically apply the performance-
improving techniques that were also discussed in this paper. However, as they
focus on execution speed, code size increasing techniques are applied more
aggressively.

Angiolini et al. [2004] discuss a technique for mapping code segments to
scratchpad memory on embedded systems that provide this facility. This is done
in a binary rewriter that relocates code to the scratchpad memory with basic
block granularity. The decision which code has to be moved is based on program
execution traces. The proposed techniques are evaluated for the ARM platform
and the authors note that there are some problems with moving code that ex-
plicitly references the PC register, for which workarounds are proposed. These
“difficult” instructions are precisely those that are abstracted into address pro-
ducers in our framework and said problems would not occur if this technique
had been applied at link-time in a framework similar to ours, as opposed to a
postlink binary rewriter.

Lattner and Adve [2004] introduce LLVM, a framework for lifelong program
optimization. Their approach is based on a tool chain (derived from GCC) that
compiles source code into a low-level intermediate representation. Linking is
done at this level, instead of at machine code level, and whole-program analysis
and optimization is done at link time. The linker produces executable machine
code, but the code in LLVM format is also stored in the resulting binaries,
allowing for reoptimization of the program either at run time or offline, when
more information about real-life usage of the program is available.

8. CONCLUSIONS

Using heuristics to deal with indirect control-flow and pseudo-instructions to
replace PC-relative address computations, we have shown that link-time opti-
mization can be applied successfully on the ARM platform.

When evaluated in the ARM Developer Suite, a tool chain known for the
small, high-quality code it produces, our link-time optimizer is able to obtain
code size reductions averaging around 14.6%. Execution time and power con-
sumption, on average, decrease with 8.3%, on average, and energy consumption
with 7.3%. With the GCC tool chain, an average code size reduction of 16.6%
was achieved, while execution time and power consumption dropped 12.3 and
11.5%.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



42 • B. De Sutter et al.

Finally, we have illustrated how the incorporation of link-time optimization
in tool chains may influence library interface design and lead to better perform-
ing library interfaces.

ACKNOWLEDGMENTS

Bjorn De Sutter, as a Postdoctoral Research Fellow, and Dominique Chanet,
being a PhD. student, are supported by the Fund for Scientific Research - Bel-
gium - Flanders (FWO). Bruno De Bus and Ludo Van Put are supported by the
Institute for the Promotion of Innovation by Science and Technology in Flan-
ders (IWT). This research is also partially supported by Ghent University, and
the European HiPEAC network.

REFERENCES

ANGIOLINI, F., MENICHELLI, F., FERRERO, A., BENINI, L., AND OLIVIERI, M. 2004. A post-compiler ap-

proach to scratchpad mapping of code. In Proceedings of the 2004 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems. 259–267.

ARM Ltd. 1995. An Introduction to Thumb. ARM Ltd.

ARM Ltd. 2005. ELF for the ARM Architecture. ARM Ltd.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system

modeling. Computer 35, 2, 59–67.

BESZÉDES, A., FERENC, R., GYIMÓTHY, T., DOLENC, A., AND KARSISTO, K. 2003. Survey of code-size

reduction methods. ACM Comput. Surv. 35, 3, 223–267.

CHANET, D., DE SUTTER, B., DE BUS, B., VAN PUT, L., AND DE BOSSCHERE, K. 2005. System-wide

compaction and specialization of the Linux kernel. In Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES).
95–104, ACM Press.

CHEN, G. AND KANDEMIR, M. 2005. Optimizing address code generation for array-intensive DSP

applications. In Proc. of the International Symposium on Code Generation and Optimization.

141–152.

COHN, R., GOODWIN, D., LOWNEY, P., AND RUBIN, N. 1997. Spike: An optimizer for Alpha/NT exe-

cutables. In Proceedings of the USENIX Windows NT Workshop. 17–24.

CORLISS, M., LEWIS, E., AND ROTH, A. 2003. A DISE implementation of dynamic code decompres-

sion. In Proceedings of the ACM SIGPLAN 2003 Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES’03). 232–243.

DE BUS, B. 2005. Reliable, retargetable and extensible link-time program rewriting. Ph.D. thesis,

Ghent University.

DE BUS, B., KÄSTNER, D., CHANET, D., VAN PUT, L., AND DE SUTTER, B. 2003. Post-pass compaction

techniques. Communications of the ACM 46, 8 (8), 41–46.

DE BUS, B., CHANET, D., DE SUTTER, B., VAN PUT, L., AND DE BOSSCHERE, K. 2004. The design of

FIT, a flexible instrumentation toolkit. In Proceedings of the 2004 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE’04). 29–34.

DE SUTTER, B., DE BUS, B., DE BOSSCHERE, K., KEYNGNAERT, P., AND DEMOEN, B. 2000. On the static

analysis of indirect control transfers in binaries. In Proc. of the International Conference on
Parallel and Distributed Processing Techniques and Applications. 1013–1019.

DE SUTTER, B., DE BUS, B., DE BOSSCHERE, K., AND DEBRAY, S. 2001. Combining global code and

data compaction. In Proc. of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems. 29–38.

DE SUTTER, B., DE BUS, B., AND DE BOSSCHERE, K. 2002. Sifting out the mud: low level C++ code

reuse. In Proceedings of the 17th ACM SIGPLAN conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). 275–291.

DE SUTTER, B., DE BUS, B., AND DE BOSSCHERE, K. 2005b. Bidirectional liveness analysis, or how

less than half of the alpha’s registers are used. Journal of Systems Architecture, Elsevier, 52(10),

535–548. October 2006.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.



Link-Time Compaction and Optimization of ARM Executables • 43

DE SUTTER, B., DE BUS, B., AND DE BOSSCHERE, K. 2005a. Link-time binary rewriting techniques

for program compaction. ACM Transactions on Programming Languages and Systems 27, 5 (9),

882–945.

DE SUTTER, B., VANDIERENDONCK, H., DE BUS, B., AND DE BOSSCHERE, K. 2003. On the side-effects of

code abstraction. In Proceedings of the 2003 ACM SIGPLAN Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES’03). 245–253.

DEBRAY, S., EVANS, W., MUTH, R., AND DE SUTTER, B. 2000. Compiler techniques for code compaction.

ACM Transactions on Programming Languages and Systems 22, 2 (3), 378–415.

ERNST, J., EVANS, W., FRASER, C., LUCCO, S., AND PROEBSTING, T. 1997. Code compression. In Pro-
ceedings of the 1997 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’97). 358–365.

FRANZ, M. 1997. Adaptive compression of syntax trees and iterative dynamic code optimization:

Two basic technologies for mobile-object systems. In Mobile Object Systems: Towards the Pro-
grammable Internet, J. Vitek and C. Tschudin, Eds. Number 1222 in LNCS. Springer, New York.

263–276.

FRANZ, M. AND KISTLER, T. 1997. Slim binaries. Communications of the ACM 40, 12 (Dec.), 87–94.

FRASER, C. 1999. Automatic inference of models for statistical code compression. In Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementation
(PLDI’99). 242–246.

FURBER, S. 1996. ARM System Architecture. Addison Wesley, Reading, MA.

HABER, G., KLAUSNER, M., EISENBERG, V., MENDELSON, B., AND GUREVICH, M. 2003. Optimization

opportunities created by global data reordering. In Proc. of the International Symposium on
Code Generation and Optimization. 228–237.

KÄSTNER, D. 2000. PROPAN: A retargetable system for postpass optimizations and analyses.

In Proceedings of the 2000 ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems (LCTES’00).

KÄSTNER, D. AND WILHELM, S. 2002. Generic control-flow reconstruction from assembly code. In

Proceedings of the joint conference on Languages, Compilers and Tools for Embedded Systems
(LCTES): Software and Compilers for Embedded Systems (SCOPES). 46–55.

KEMP, T. M., MONTOYE, R. M., HARPER, J. D., PALMER, J. D., AND AUERBACH, D. J. 1998. A decompres-

sion core for PowerPC. IBM J. Research and Development 42, 6 (Nov.).

KIROVSKI, D., KIN, J., AND MANGIONE-SMITH, W. H. 1997. Procedure based program compression.

In Proceedings of the 30th Annual International Symposium on Microarchitecture (MICRO-30).
LATTNER, C. AND ADVE, V. 2004. LLVM: A compilation framework for lifelong program analysis &

transformation. In Proc. of the International Symposium on Code Generation and Optimization.

75–86.

LEKATSAS, H., HENKEL, J., CHAKRADHAR, S., JAKKULA, V., AND SANKARADASS, M. 2003. Coco: a hard-

ware/software platform for rapid prototyping of code compression technologies. In Proceedings of
the 40th conference on Design Automation (DAC). 306–311.

LEVINE, J. 2000. Linkers & Loaders. Morgan Kaufmann Publishers, San Mateo, CA.

LUK, C.-K., MUTH, R., PATIL, H., COHN, R., AND LOWNEY, G. 2004. Ispike: A post-link optimizer for

the Intel Itanium architecture. In Proc. of the International Symposium on Code Generation and
Optimization. 15–26.

MUTH, R. 1999. Alto: A platform for object code modification. Ph.D. thesis, University Of Arizona.

MUTH, R., DEBRAY, S. K., WATTERSON, S. A., AND DE BOSSCHERE, K. 2001. alto: a link-time optimizer

for the Compaq Alpha. Software—Practice and Experience 31, 1, 67–101.

PUGH, W. 1999. Compressing Java class files. In Proceedings of the 1999 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI’99). 247–258.

SRIVASTAVA, A. AND WALL, D. W. 1994. Link-time optimization of address calculation on a 64-bit

architecture. In Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 49–60.

Received June 2005; revised August 2005 and December 2005; accepted January 2006

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 1, Article 5, Publication date: February 2007.


