
A Practical Interprocedural Dominance
Algorithm

BJORN DE SUTTER, LUDO VAN PUT, and KOEN DE BOSSCHERE

Ghent University

Existing algorithms for computing dominators are formulated for control flow graphs of single proce-
dures. With the rise of computing power, and the viability of whole-program analyses and optimiza-
tions, there is a growing need to extend the dominator computation algorithms to context-sensitive
interprocedural dominators. Because the transitive reduction of the interprocedural dominator
graph is not a tree, as in the intraprocedural case, it is not possible to extend existing algorithms
directly. In this article, we propose a new algorithm for computing interprocedural dominators.
Although the theoretical complexity of this new algorithm is as high as that of a straightforward
iterative solution of the data flow equations, our experimental evaluation demonstrates that the
algorithm is practically viable, even for programs consisting of several hundred thousands of basic
blocks.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
optimization; E.1 [Data Structures]: Graphs and networks; G.2.2 [Discrete Mathematics]:
Graph Theory—Graph algorithms, path and circuit problems

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Interprocedural control flow graph, dominators, interprocedu-
ral analysis

ACM Reference Format:
De Sutter, B., Van Put, L., and De Bosschere, K. 2007. A practical interprocedural dominance algo-
rithm. ACM Trans. Program. Lang. Syst. 29, 4, Article 19 (August 2007), 44 pages. DOI = 10.1145/
1255450.1255452 http://doi.acm.org/10.1145/1255450.1255452

1. INTRODUCTION

The dominator relation plays an important role in the theory and practice of
compilers. It has led, among other things, to the identification of natural loops
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[Lowry and Medlock 1969] and to the efficient construction of static single as-
signment representations [Cytron et al. 1991]. The computation of dominators
has been the subject of many papers. The fastest algorithm nowadays runs in
linear time [Alstrup et al. 1999]. The most widely used implementation is based
on the Lengauer and Tarjan [1979] algorithm, which runs in near linear time.

So far, the computation of dominators has always been formulated for single
procedures, for which the computation is applied on their control flow graph
(CFG). CFGs are directed graphs in which all paths are valid. As compiler
optimizations are mostly performed intraprocedurally, there has for a long time
been little need to extend the computation of dominators to whole programs or,
in other words, to interprocedural dominators.

With ever-rising computing power whole-program analyses have become vi-
able during the last decade however, and many useful applications have been
found. These include, among others, whole-program optimization [Wall 1986;
Muth et al. 2001; De Sutter et al. 2005; Triantafyllis et al. 2006] and automated
software verification [Agrawal 1999]. For example, verifying the sequence in
which procedures can be called in a program is a typical subject of software
verification. To enable new whole-program analyses and transformations, or
to improve or extend existing ones, there exists a growing need to extend the
computation of intraprocedural dominators to its interprocedural counterpart.
Unfortunately, all efficient intraprocedural dominator computation algorithms
exploit the fact that the transitive reduction of the intraprocedural domina-
tor graph is a tree [Allen and Cocke 1972]. Because this is not the case for
interprocedural dominators, those algorithms cannot be extended directly.

This article presents a practical algorithm to compute interprocedural dom-
inators for whole programs. This algorithm borrows ideas from the efficient
dominator set representation proposed by Cooper et al. [2001] to compute in-
traprocedural dominators, but those ideas are adapted to fit the properties of the
interprocedural dominator relationship. The remainder of the article is struc-
tured as follows. Section 2 discusses related work. Interprocedural dominators
and their properties are discussed in Section 3. A simple, but inefficient data-
flow algorithm to compute interprocedural dominators is presented in Section 4.
Section 5 presents a preorder context-sensitive depth-first-traversal ordering
of a program’s basic blocks, on which our new algorithm will be based. A base
version of that new algorithm is introduced in detail in Section 6. Important op-
timizations to the base version of the algorithm are presented in Section 7, after
which the optimized algorithm is evaluated in Section 8. Finally, conclusions
are drawn in Section 9.

2. RELATED WORK

The original formulation of the dominator relation dates back to the work by
Prosser [1959]. This relation identifies, for each node in a directed graph, the
nodes that must be traversed when starting from the root of the graph, to reach
that node.

This relation has been extremely useful in the domain of program analy-
sis and code optimization. With the dominator information, natural loops can
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be identified [Lowry and Medlock 1969]. During code motion, the dominator
information can indicate potential locations to which code can be moved such
that the code will certainly be executed [Allen and Cocke 1972]. With the ad-
vent of static single assignment code representation forms [Cytron et al. 1991],
the dominator relation has again received increased attention. During the past
decades, the computation of the dominator relation has been a hot topic and,
as can be seen from recent papers [Ramalingam 2002; Georgiadis and Tarjan
2004; Georgiadis et al. 2004], the problem still attracts the attention of the
research community.

Lowry and Medlock [1969] are acknowledged for proposing the first algo-
rithm for the calculation of the dominator relation. In their algorithm an ar-
bitrary path to a node K is considered and from this path a node is removed
repeatedly when it is discovered that another path reaches node K without going
through the node on the initial path. The remaining nodes are K’s dominators.

Later, Allen [1970] provided a data-flow solution. Her algorithm was devel-
oped in the context of graph intervals. This work was extended by Allen and
Cocke [1972]. Aho and Ullman [1977] provide a complete description of the
data-flow solution. Purdom and Moore [1972] published another algorithm, in
which they repeatedly remove single nodes from the original graph and perform
a reachability analysis on the thus created graphs. For each of these graphs,
the node that was removed dominates those nodes that become unreachable
because of its removal.

The best known work on the calculation of the dominator relation is the
work by Lengauer and Tarjan [1979]. Their algorithm is also the most widely
used in the compiler community, although there are asymptotically faster al-
gorithms available that run in linear time [Harel 1985; Alstrup et al. 1999].
The Lengauer-Tarjan algorithm is better understood, however, and has a clear
implementation.

Recently, Cooper et al. [2001] suggested that the data-flow solution for find-
ing dominators does not perform worse than near-linear time algorithms if the
underlying data structures are carefully engineered. In their paper, Cooper et
al. propose to model all dominator relations of a program during the fixed-point
computations with a tree in which each node’s parent is its estimated imme-
diate dominator. Thus, they avoid the need to store whole dominator sets for
each node. Also, computing an intersection of the estimated dominator sets of
two nodes does not require copying sets of nodes. Instead, the intersection com-
putation is limited to finding common ancestors in the estimated dominator
tree. Cooper et al. [2001] claim that their data-flow implementation outper-
forms the Lengauer-Tarjan algorithm for real-world control flow graphs that
were generated from existing Fortran programs and contain up to 744 basic
blocks. Furthermore, they found that both algorithms perform equally well for
“unrealistically large graphs” that were artificially generated and contained up
to 30,000 nodes.

Due to this renewed interest in the data-flow algorithm, Georgiadis et al.
[2004] carried out detailed measurements to compare Cooper’s algorithm with
two versions of the Lengauer-Tarjan algorithm and one new algorithm. The au-
thors concluded that for real-life procedures, the performance of the algorithms
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is similar and that no algorithm is clearly superior over the other ones. For arti-
ficial graphs of up to several hundred thousands of basic blocks, the Lengauer-
Tarjan and derived algorithms are superior.

By comparison, we will evaluate our interprocedural dominator computation
algorithm on real-life programs of up to several hundred thousand blocks.

Several applications are being conceived that can exploit interprocedural
dominator information. One example comes from the field of coverage testing.
Agrawal [1999] proposes to use interprocedural dominator information to re-
duce the minimal set of instructions of a program that needs to be executed
in order to guarantee that all instructions in the program will have been ex-
ecuted. The author suggests using interprocedural dominator information by
modifying the data-flow algorithm. He does not describe these modifications,
however, nor does he use the interprocedural dominator information because
he believes this computation to be too expensive. His motivation comes from
the high asymptotic complexity of the data-flow algorithm.

3. INTERPROCEDURAL DOMINATORS

This section first discusses the interprocedural control flow graph (ICFG) to
represent a whole program, and the valid paths contained in it. We then define a
context-sensitive, interprocedural dominator relation on the ICFG and explore
some of the differences with the intraprocedural dominator relation. To avoid
confusion, we will use the term traditional dominator relation to indicate the
intraprocedural dominator relation.

3.1 The ICFG and Valid Paths

3.1.1 Informal Description. The ICFG of a program is a graph represent-
ing the potential control flow in the program. The nodes in the ICFG are the
program’s basic blocks, and the edges model potential control flow paths. In
this article, we will refer to the nodes by using their number. A useful num-
bering scheme for the nodes will be explained later. Edges are referred to as
head → tail , in which head and tail are node numbers.

To model intraprocedural control flow, the ICFG contains the same edges
as the ordinary control flow graphs of the procedures in a program. On top of
these intraprocedural edges, two types of interprocedural edges model interpro-
cedural control flow transfers. Figure 1 depicts their use. The call edge 10 →
4 models the procedure call from procedure S to procedure T by connecting the
call-site to the entry point of procedure T. The return edge 6 → 11 models the
corresponding return from T to S by connecting the exit block 6 to the return
block 11, which corresponds with call-site 10.

In this article, we require that each procedure has a unique exit block, be-
cause this facilitates our reasoning, and because it allows for a more efficient
implementation. Although real procedures may contain multiple exit points, it
is trivial to add a virtual unique exit block to their graphs.

Furthermore, we require that each procedure has a unique entry point. This
facilitates both the clear presentation and the efficient implementation of the
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Fig. 1. An example program, and the corresponding ICFG containing call and return edges. As in
the other graphs in this article, interprocedural edges are dashed.

algorithms we propose. This requirement does not prohibit us from applying
the proposed algorithms to programs that contain multiple-entry procedures,
such as some Fortran programs, as we can easily split such multiple-entry
procedures into multiple single-entry procedures by inserting the necessary
virtual nodes and the appropriate edges. Virtual nodes and corresponding edges
are necessary to handle a broad range of programs anyway, as many programs
contain interprocedural gotos. This happens in manually-written assembler
code that is linked into compiled programs from the standard system libraries,
or in procedures on which compilers have applied tail-call optimizations. To
model indirect procedure calls, for which the targets are not always known
conservatively, as well as other anomalous control flow such as the standard
C procedures longjmp() and setjmp(), additional virtual nodes and edges can
be added to an ICFG as well. As all these virtual nodes and edges enable one
to treat such anomalous control flow as normal, they are not relevant to the
discussion in this article. We refer to Muth et al. [2001] for more details. Here,
it suffices to note that adding virtual edges and nodes to the ICFG can never
result in additional dominators being found. Instead, dominator sets can only
become smaller. Therefore the addition of such edges and nodes is conservative
in the context of dominator computations.
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It is clear that when a procedure is entered through a specific call edge, it
will be exited through the corresponding return edge.1 In other words, some
execution paths in the ICFG are invalid. For example, the execution path 1 →
2 → 3 → 4 → 5 → 6 → 11 in Figure 1 is invalid. In general, program
analyses become more precise if they only consider valid paths. This is also
the case when interprocedural dominators are computed. In Figure 1 block 11
is dominated by block 10 because block 11 cannot be executed without block
10 being executed first. Had a dominator computation considered the invalid
path 1 → 2 → 3 → 4 → 5 → 6 → 11 as valid, block 10 would not have
been considered a dominator of block 11, because the latter would have been
considered reachable from the unique entry point of the program without going
through block 10.

3.1.2 Formal Description

Definition 3.1. A directed graph G = (V , E) is composed of a set of nodes
V � {v1, v2, . . . , vn} and a set of directed edges E � {e1, e2, . . . , em} that each
connect node head(ei) ∈ V to node tail (ei) ∈ V .

Definition 3.2. The incoming edges of node v in graph G, noted inG(v), are
defined by inG(v) � {e | e ∈ E : tail (e) = v}.

Definition 3.3. The outgoing edges of node v in graph G, noted outG(v), are
defined by outG(v) � {e | e ∈ E : head(e) = v}.

In the remainder of this article, we will abuse notation by applying operations
whose domain is a set of single elements such as nodes or edges to sets of
those elements as well. In that case, the result is the union of the operation
applied on the elements of the operand set. For example, tail({e1, e2, . . . }) �⋃

ei∈{e1,e2,... }{tail(ei)}.
Definition 3.4. The predecessor nodes predG(v) of a node v are hence de-

fined by predG(v) � head(inG(v)).

Definition 3.5. The set of ancestor nodes ancG(v) of v, including v itself, is
defined by

w ∈ ancG(v) ⇔

⎧⎪⎪⎨
⎪⎪⎩

w = v,

w ∈ predG(v),

w ∈ ancG(predG(v)).

(1)

Definition 3.6. A path in a graph G = (V , E) is a sequence of edges
(e0, . . . , em) such that ∀i.0 ≤ i < m : tail(ei) = head(ei+1).

Definition 3.7. Let r and q be different elements in V , C ⊆ E be the set
of all call edges, R ⊆ E the set of all return edges, φ a bijection in C → R,

1For procedures from which control never returns, such as the C-library procedure exit, the in-
coming call edges do not have corresponding outgoing edges. We will neglect this case for the sake
of clarity. In practice, it is trivial to deal with. It suffices to add a test to line 13 of the numbering
algorithm of Figure 7 to check whether a corresponding edge exists.
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and λ a function in V → (2V \ ∅). An interprocedural control flow graph G =
(V , E, C, R, r, q, φ, λ) of a program is a directed graph in which nodes represent
basic blocks of the program and edges represent possible control flow in the
program. r is the unique program entry and q is the artificially inserted unique
program exit. φ maps call edges to their corresponding return edges. λ maps
each node v to the procedure λ(v) in which the node is located. As such, a
procedure represents a set of basic blocks.

We will call φ(e) the corresponding edge of edge e, and e the corresponding
edge of φ(e). Obviously, an edge can only be interprocedural if the edge is in C
or R. More formally, the ICFG has to satisfy the following property.

Property 3.8. ∀e.e ∈ E \ (C ∪ R) : λ(head(e)) = λ(tail(e)).

The requirements of each procedure having a unique entry and a unique exit
node can be formalized as follows:

Property 3.9. ∀e1, e2 ∈ C : λ(tail(e1)) = λ(tail(e2)) ⇒ tail(e1) = tail(e2).

Property 3.10. ∀e1, e2 ∈ R : λ(head(e1)) = λ(head(e2)) ⇒ head(e1) =
head(e2).

Definition 3.11. The set of associated heads of an edge e, denoted ahead(e),
is defined by

ahead(e) �
{{head(e)} if e /∈ R,

{head(e), head(φ−1(e))} if e ∈ R.

The sets ahead(e) will be needed later in the article to introduce context-
sensitivity in the data-flow equations of dominators. For a return edge e,
ahead(e) consists of the corresponding call-site and the exit block of the callee
of the call.

Definition 3.12. A full valid path in an ICFG G = (V , E, C, R, r, q, φ, λ) is
a path (e0, . . . , em) with head(e0) = r and tail(em) = q where

∀i.0 < i ≤ m : ei ∈ R ⇒ ∃ j .0 ≤ j < i :
(e j = φ−1(ei) ∧ (∀l . j < l < i : el ∈ R ⇒ ∃ k. j < k < l : ek = φ−1(el ))

∧ (∀l .l > i : el ∈ R ⇒ ∃ k.k < j ∨ i < k < l : ek = φ−1(el ))).

This definition reflects the fact that a procedure A that is called from within a
procedure B must return before the calling instance of procedure B can return.
The definition also implies that an exit node can only be reached through a call
edge that corresponds to one of the exit node’s successor return edges.

Definition 3.13. A valid path in an ICFG G = (V , E, C, R, r, q, φ, λ) is a
path for which there exists a full valid path that contains this path. In other
words, any subsequence of a full valid path is a valid path.

In the remainder of the article we will use the term path when we mean
a valid path and no confusion is possible. With the above definitions, we can
define the dominator relation in an ICFG.
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Fig. 2. An example ICFG with two procedures; procedure A contains the nodes 3 and 4, the function
φ and the corresponding minimal dominator graph.

Definition 3.14. Node v dominates node w in an ICFG G = (V , E, C, R, r,
q, φ, λ) if every valid path from r to w passes through v. We write v D w. The
so-called dominator set dom(w) of nodes dominating node w in graph G =
(V , E, C, R, r, q, φ, λ) is defined by

dom(w) � {v | v ∈ V ∧ v D w}.
The definition of postdominance is analogous to that of dominance. The tra-

ditional dominator relation is usually represented as a graph of which the nodes
are the nodes of the ICFG, and in which directed edges connect each node to
the nodes it dominates. It has been shown that the transitive reduction of the
traditional dominator graph is a tree [Allen and Cocke 1972].

The interprocedural dominator relation can also be represented by a graph.
Its transitive reduction is a directed acyclic graph, but it is not necessarily
a tree. The example ICFG and its transitively reduced dominator graph in
Figure 2 illustrate this. We will call the graph representation of the dominator
relation the dominator graph D. Its transitive reduction is called the minimal
dominator graph M.

THEOREM 3.15. The dominator graph is an acyclic graph.

PROOF. Suppose that the dominator graph contains a cycle v D w and w D v
for a pair of nodes v and w, with v �= w. By definition, v D w implies that there
is a path from r to w, that passes through v before it passes through w. In
turn, this implies that there is a path that reaches v before it reaches w, which
contradicts w D v. Hence the dominator graph cannot contain cycles.

THEOREM 3.16. v D w ∧ u D w �⇒ v D u ∨ u D v.
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Fig. 3. A recursive procedure on the left, its ICFG in the middle, and its φ-function and minimal
dominator graph on the right.

PROOF. We present two examples. The first can be found in the ICFG de-
picted in Figure 2. There, nodes 4 and 7, which are from different procedures,
both dominate node 8, even though neither of the two dominates the other. To
show that the two nodes u and v need not be from different procedures, we
have depicted a recursive procedure in Figure 3. In its ICFG, both nodes 2 and
3 dominate node 4, as node 4 could only be reached after at least one recursive
call was made, in block 3, and returned from, in block 2.

This theorem contrasts sharply with the well-known theorem for traditional
dominators that states that v D w ∧ u D w ⇒ v D u ∨ u D v.

As a consequence of the latter theorem for traditional dominators, each node
u in a procedure (except for the entry node) has a unique traditional immediate
dominator, which is defined as that dominator of u that is executed last of all
u’s dominators on any path to u. Because each node has a unique traditional
immediate dominator, the reduced traditional dominator graph is a tree, in
which each node’s immediate dominator is its sole predecessor.

In the interprocedural case, some nodes do not have a unique dominator that
is the last executed dominator on all paths to them. An example of this is given in
Figure 4. In the ICFG on the left of this figure, both nodes 4 and 7 dominate node
9, as can be seen in the corresponding minimal dominator graph on the right. In
the path 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9, node 7 is the last dominator
of node 9, executed. On the path 1 → 10 → 6 → 7 → 11 → 3 → 4 → 12 → 9,
node 4 is the last dominator of node 9, executed.

Consequently, introducing the notion of interprocedural immediate domi-
nators is useless. Because the Lengauer-Tarjan dominator computation algo-
rithm relies on the existence of immediate dominators, this algorithm cannot
be extended to compute interprocedural dominators. This is by far the most
important practical consequence of Theorem 3.16.

4. A DATA-FLOW SOLUTION

In this section, we introduce the data-flow equations that need to be solved
in order to compute interprocedural dominators. First, the difference with the
data-flow equations of traditional dominators is discussed. Then an iterative
algorithm to solve the interprocedural data-flow equations is presented. This
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Fig. 4. An ICFG on which the immediate dominance relation cannot be uniquely defined; the
minimal dominance graph; and the φ function.

simple, but inefficient algorithm will later serve as the basis for a much more
efficient algorithm.

In the traditional dominator computation, a maximal fixed-point solution for
the following data-flow equation needs to be found for each node v in G:

domG(v) =
⎛
⎝ ⋂

w ∈ predG (v)

domG(w)

⎞
⎠ ∪ {v}, (2)

=
( ⋂

e ∈ inG (v)

domG(head(e))

)
∪ {v}. (3)

These equations reflect that a block’s traditional dominators are the common
dominators of its predecessors in the graph, and the block itself. As we have
seen in the example graph of Figure 2, this property does not always hold for
interprocedural dominators. For example, it does not hold for nodes at the tail
of return edges. In Figure 2, node 8 is dominated by nodes 4 and 7, even though
node 7 does not dominate node 4, which is node 8’s only predecessor in the
graph.

In general, the dominators of a block at the tail of a return edge cannot be
prescribed solely in terms of the block’s predecessor nodes in the ICFG. Fun-
damentally, this follows from the fact that the exit node at the head of the
return edge may be executable in contexts other than that of the correspond-
ing call-site. For this reason, we need a context-sensitive version of the given
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Fig. 5. An iterative algorithm that directly solves the context-sensitive data-flow equations.

equations:

domG(v) =
( ⋂

e ∈ inG (v)

domG(ahead(e))

)
∪ {v}. (4)

To find the maximal fixed-point solution of the context-sensitive data-flow
equations for every node, the simple iterative algorithm in Figure 5 can be
used. In this algorithm, a node’s dominator set can change at most O(|V |)
times, since it can only get smaller with each iteration. Moreover, there are
|V | nodes. Hence O(|V |2) assignments can take place on line 10. In the worst
case, each such change requires visiting |V | blocks in one iteration of the while
loop. Hence line 8 is executed at most O(|V |3) times.

Performing a single intersection or comparison operation also requires
O(|V |) time per intersection, as we can use sorted lists or a bit-vector of length
|V | to represent the sets. On average |E|/|V | intersections are needed per node.
The asymptotic complexity of the algorithm is therefore O(|V |3|E|).

The space required is O(|V |2), as we at most need to store |V | dominator sets
containing at most |V | nodes each.

At this point, we can show why we require procedures to have a single entry
point. Part of an ICFG containing an exemplary multiple-entry procedure is
depicted in Figure 6. In this graph, there is only one execution path to reach node
5: 1 → 2 → 3 → 4 → 5. Clearly, node 2 dominates node 5. However, node 2 does
not dominate node 4, because node 4 can also be reached through 6 → 3 → 4.
Hence in this case Equation 4 does not hold, as dom(5) �= dom(ahead(4 →
5)) ∪ {5}.

Fundamentally, the problem is that whether or not some node in a multiple-
entry procedure will definitely be executed before the procedure is exited de-
pends on the calling context of that procedure. Hence the dominators of a return
node such as node 5 in the example cannot be described solely in terms of two
other independent dominators sets anymore.

While it is possible to adapt the data-flow equation in order to deal with
multiple-entry procedures, this would lead to very complex equations, and con-
sequently to a very error-prone implementation. In practice, it is simpler to split
a multiple-entry procedure into two or more single-entry procedures. For the
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Fig. 6. In the left ICFG, we have three procedures of which the middle one has two entry points.
In the right ICFG, that multiple-entry procedure is split into two procedures.

example ICFG on the left of Figure 6, the corresponding ICFG with split proce-
dures is depicted on the right of that figure. In the right ICFG, the new, virtual
node 4′ enables the use of Equation 4 to define all dominator sets. ahead(4′ → 5)
adds all nodes in dom(1) and in dom(4′) to dom(5), and ahead(4 → 4′) puts node
2 in dom(4′), and thus in dom(5). Without node 4′, node 2 would not have been
added to dom(5), as it is not present in dom(4).

Converting multiple-entry procedures to single-entry ones is trivial. Because
the solution of the dominator problem with algorithm DataFlow() is path-
insensitive, this conversion leaves the dominator relation and the computed
results unchanged.

5. CONTEXT-SENSITIVE DEPTH-FIRST TRAVERSAL

Our improved dominator algorithm will use information produced by a node
numbering scheme that is best described as a preorder context-sensitive depth-
first traversal (CSDFT). In this section, we present this CSDFT. In addition,
we prove some important properties of the CSDFT that will enable a number
of important optimizations on our algorithm.

Figure 7 depicts a nonrecursive algorithm to compute a preorder CSDFT
numbering. The numbering is done in preorder, as a node is numbered on line
8 before its successors are traversed. The CSDFT basically traverses the nodes
in the order a traditional DFT would traverse them. In this context-sensitive
version however, return edges are not traversed until their corresponding call
edges have been traversed. Note that the strange-looking condition tested on
line 20 can evaluate to true for recursive procedures.

An example of the resulting numbering is depicted in Figure 1. Note that
when the traversal arrives at node 10, there is no unvisited successor node left.
But since the edge 10 → 4 is a call edge, the traversal continues at the return
node (11) corresponding with call-site 10.

THEOREM 5.1. The algorithm CSDFT terminates.
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Fig. 7. Algorithm to compute preorder context-sensitive depth-first-traversal numbering for an
ICFG G = (V , E, C, R, r, q, φ, λ) .

PROOF. Each iteration of the while loop can only push a limited number of
nodes onto the stack (lines 13, 16, 18, and 21), after one node has been popped
(line 6) and numbered (line 8). This numbering can happen at most once per
node because of the test on line 7. Hence the number of pushes performed is
finite, as is the number of pops, and the number of iterations.

LEMMA 5.2. When CSDFT has ended,

∀e.e ∈ R : head(e) and head(φ−1(e)) are numbered ⇒ tail(e) is numbered.

PROOF. Suppose head(e) was numbered during iteration i of the while loop.
At that time, either head(φ−1(e)) was already numbered during some previous
iteration j < i, or it was not.

In the former case, node tail(e) will be pushed onto the stack on line 21 in
iteration i. Thus, it will be numbered when it is popped from the stack.

In the latter case, if head(φ−1(e)) is numbered during a later iteration k >

i, tail(e) will be pushed on the stack on line 18 in iteration k, and hence be
numbered when it is popped from the stack.

THEOREM 5.3. The algorithm CSDFT numbers all nodes that are reachable
through valid paths.

PROOF. Suppose a node v is reachable through the valid path P =
(e0, . . . , em). We will prove by induction that tail(em) will be numbered. To that
extent, we will first prove that for any ei in the path P :

(∀ j .0 ≤ j ≤ i : head(e j ) is numbered) ⇒ tail(ei) is numbered.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 19, Publication date: August 2007.



14 • B. De Sutter et al.

In other words, if the heads of all edges of a prefix of P are numbered, so will
the tail of the last edge in the prefix.

There are three possible types of edges for ei. If ei ∈ C, it is clear that when
head(ei) was numbered on line 8 of the algorithm, tail(ei) would either be found
to be already numbered (line 15), or it would be pushed on the stack (line 16),
after which it will definitely be numbered. The same reasoning holds for the
intraprocedural edges ei ∈ E \ (C ∪ R), that are handled on lines 12–13.

For edges ei ∈ R, the definition of full valid paths implies that ∃ j .0 ≤ j < i :
e j = φ−1(ei). When both head(ei) and head(φ−1(ei)) are numbered, Lemma 5.2
states that tail(ei) will be numbered as well.

Since head(e0) = r, head(e0) will definitely be numbered. By induction, all
edges ei will have their tail numbered, including tail(em).

LEMMA 5.4. When CSDFT has ended,

∀v.v ∈ (V \ {r}) : ∃ w.w ∈ predG(v) : DFT(w) < DFT(v).

PROOF. On lines 13, 16, and 21 of algorithm CSDFT, unnumbered nodes
tail(e) are pushed on the stack for which the predecessor head(e) was al-
ready numbered on line 8. On line 18, tail(φ(e)) is only pushed on the stack
if head(φ(e)) is numbered. Hence any push of a node, and by consequence that
node’s numbering, is only performed after at least one predecessor node was
already numbered.

LEMMA 5.5. When CSDFT has ended,

∀e.e ∈ R : max
x∈ahead(e)

DFT(x) < DFT(tail(e)).

PROOF. Since both the pushes on line 18 and line 21 of such a tail(e) are
performed if and only if the two nodes in ahead(e) are already numbered, tail(e)
for edges e ∈ R will be numbered later than the nodes in ahead(e). Hence their
DFT-number will be higher.

THEOREM 5.6. When CSDFT has ended,

∀v, w.v, w ∈ V : v D w ⇒ DFT(v) ≤ DFT(w).

PROOF. First, we note that whenever a node w gets numbered during the
execution of the CSDFT algorithm, there is at least one valid path to w that
only goes through nodes that have already been numbered. To prove this, let us
consider all nodes that are not yet numbered by the time node w gets numbered.
These nodes either have not been put on the stack yet, or they have been put on
the stack, but have not yet been popped. In both cases, they cannot have affected
the numbering performed by the algorithm until node w got numbered. In other
words, on a reduced graph G ′ that consists of only those nodes in V that have
already been numbered and of only those edges in E that have been traversed
during this numbering, the same numbering would have been applied to those
nodes. Theorem 5.3 thus implies that in that reduced graph G ′, there exists a
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valid path to node w. As this path is also present in G, and only includes nodes
that have already been numbered, there exists at least one valid path to w in
G, which we call Pnum, that only goes through nodes that have already been
numbered.

Since any dominator v of w needs to occur on all valid paths to w, it also
needs to occur on Pnum. As such, any proper dominator v of w must have been
numbered before w itself is numbered. And since the numbers assigned during
CSDFT only increase, any dominator v of w satisfies DFT(v) ≤ DFT(w).

6. A CONSTRAINT-BASED ALGORITHM

The iterative data-flow solution presented in Figure 5 is both easy to un-
derstand and easy to implement. In fact, it doesn’t differ much from the
simplest implementation of a traditional dominator computation [Allen and
Cocke 1972].

However, just like Cooper et al. [2001] noted for the intraprocedural version,
the base iterative algorithm is very slow. When bit-vector representations are
used to represent the dominator sets, the amount of memory required makes
the algorithm impractical. For large programs, with several hundred thousand
basic blocks, the required amount of memory even poses a problem when sparse
set representations are used based on, for example, sorted linked lists. More-
over, with such sparse set representations large amounts of time are wasted on
performing intersections on the sparsely populated sets, and on copying sets
from one node to the other:

To overcome these problems, we propose a more efficient algorithm that is
based on constraint solving and an efficient graph representation of set con-
straints. The most practical properties of this graph representation are that:

(1) the graph requires little memory;
(2) it enables efficient intersection computation for Equation 4;
(3) it does not require copying dominator sets;
(4) it enables several optimizations to the base algorithm.

In the remainder of this section, we present a base, suboptimal version of
our constraint-based algorithm, and prove its correctness. This will enable us
to focus on the basic concepts of the algorithm, instead of losing ourselves in
smaller, less fundamental optimizations. Such optimizations are discussed in
Section 7.

6.1 Dominator Set Constraints

Conceptually, our constraint-based algorithm starts with a set of rather loose
constraints on dominator set, which can be derived directly from the CSDFT
ordering of a program’s nodes. All these constraints will be of the form

domG(v) ⊆
( ⋃

{p0,... , pn}⊆V

domG(pi)

)
∪ {v}. (5)
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Fig. 8. A small ICFG on the left, and the initial constraints derived from it on the right.

This set of constraints will then be transformed iteratively by applying
Equation 4. Each time the equation is applied for a node v, a new stricter con-
straint of the same form is derived for v using previously derived constraints.
When the algorithm finishes, the constructed constraints are met by the ex-
act dominator sets. Moreover, the remaining constraints explicitly define the
dominator sets.

To illustrate this concept, we will first apply it to the simple example ICFG
depicted on the left of Figure 8. On the right, seven very simple initial con-
straints are stated, one for each node in the graph. For the top node of the
graph, the constraint is trivial. For the other six nodes, the constraints state
that the dominators of a node, excluding the node itself, should dominate one of
its predecessors. As such, these initial constraints are looser than the general
requirement stated in Equation 4. Consequently, these constraints are met
by the solution to the dominator problem. Moreover, because of Lemmas 5.4
and 5.5, these initial constraints can be constructed such that each dominator
set appearing on the right-hand side of a constraint is of a node that is num-
bered lower than the node appearing on the left hand side of the constraint.
The initial set of constraints is hence acyclic.

Using Equation 4, stricter constraints can now be constructed. For example,
Equation 4 is applied for node 5 as follows:

dom(5) = (dom(4) ∩ dom(6)) ∪ {5}
⊆ ((dom(3) ∪ {4}) ∩ (dom(3) ∪ {6})) ∪ {5}
⊆ ((dom(3) ∩ dom(3)) ∪ (dom(3) ∩ {6}) ∪ ({4} ∩ dom(3)) ∪ ({4} ∩ {6})) ∪ {5}
⊆ dom(3) ∪ {5}.

In the first step of this derivation, the dominator sets on the right hand side
of the equation are replaced by their upper bounds as stated by the existing
constraints. In the second step, distributivity is applied. In the last step, Theo-
rem 5.6 is used to deduct that dom(3)∩{4} is empty. The resulting new constraint
on node 5 is stricter than its original constraint, which is hence replaced by the
new one. When we perform a similar derivation for node 3, we end up with the
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set of constraints

dom(1) ⊆ {1},
dom(2) ⊆ dom(1) ∪ {2},
dom(3) ⊆ dom(1) ∪ {3},
dom(4) ⊆ dom(3) ∪ {4},
dom(5) ⊆ dom(3) ∪ {5},
dom(6) ⊆ dom(3) ∪ {6},
dom(7) ⊆ dom(1) ∪ {7},

which can no longer be made stricter. By construction, this final set of con-
straints is still acyclic. Consequently, the following corresponding equations
uniquely define the sets domG(v):

dom(1) = {1},
dom(2) = dom(1) ∪ {2},
dom(3) = dom(1) ∪ {3},
dom(4) = dom(3) ∪ {4},
dom(5) = dom(3) ∪ {5},
dom(6) = dom(3) ∪ {6},
dom(7) = dom(1) ∪ {7}.

As we have only replaced “⊆” by “=” in these constraints, the sets thus de-
fined are the maximal solution meeting all constraints. And because we have
applied Equation 4 on all nodes v until we could not find stricter constraints,
the dominator sets thus defined also meet Equation 4. Indeed, with these “=”
constraints for dom(4) and dom(6), the derivation for dom(5) can be repeated
with “=” instead of “⊆”. These final “=”-constraints therefore define a fixed-
point solution for Equation 4. Consequently, the derived constraints define the
maximal fixed-point solution to Equation 4.

The strength of this computation originates from the fact that, in the above
derivation of dom(5), we did not need to enumerate the nodes in dom(4) and
dom(6). Instead, we computed the intersection dom(4) ∩ dom(6) using proper-
ties of the CSDFT ordering. In order to efficiently exploit these properties during
the computation of the intersection of Equation 4, we will model all constraints
with one big graph.

6.2 The Dominator Constraint Graph

In the dominator constraint graph C, all constraints of the form of Equation 5
are represented by directed edges from nodes pi to node v. In other words, the
constraint given by Equation 5 is equivalent to predC(v) = {p0, . . . , pn}. As such,
the graph C models the following constraints on the nodes v of a program:

∀v.v ∈ V : domG(v) ⊆
⎛
⎝ ⋃

p ∈predC(v)

domG(p)

⎞
⎠ ∪ {v} = ancC(v). (6)
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Fig. 9. Three consecutive versions of the constraint graphs C of the ICFG G from Figure 8.

As we will show later, this equation is an invariant of our algorithm. Con-
sequently, the algorithm will terminate when no stricter constraints can be
generated than the ones already present in the graph. This means that the
algorithm finishes when the following property holds:

∀v.v ∈ V : domG(v) =
⎛
⎝ ⋃

p ∈ predC(v)

domG(p)

⎞
⎠ ∪ {v} = ancC(v). (7)

The final graph C that is produced by our algorithm will be equivalent to the
minimal dominator graph M , for which the following, very similar, property
holds:

∀v.v ∈ V : domG(v) =
⎛
⎝ ⋃

p ∈ predM (v)

domG(p)

⎞
⎠ ∪ {v} = ancM (v). (8)

For the initial constraints on the right of Figure 8, the corresponding graph
C is depicted in Figure 9(a). Now instead of rewriting Equation 4 as in the
derivation of the new constraint for dom(5) in Section 6.1, we will rewrite the
intersection dom(4)∩dom(6) by computing ancC(4)∩ancC(6) and by selecting a
set of nodes from that intersection of which the ancestors equal the intersection.
In the example, this results in the set {3}, with ancC(3) = ancC(4)∩ancC(6). The
replacement of the old constraint on dom(5) by the new constraint dom(5) ⊆
dom(3) ∪ {5} is then reflected by redrawing the graph such that predC(5) = {3}
as in Figure 9(b). After a new constraint for dom(3) has been derived similarly,
we obtain the final C from Figure 9(c), which in this case equals the minimal
dominator graph M .

It is important to note that the set of nodes that will become the new
predC(v) for node v for which a new constraint is derived, needs to meet more
requirements than simply including a descendant of all nodes in the com-
puted intersection. For example, consider the ICFG in Figure 10(a) and its
corresponding initial C in Figure 10(b). How this initial graph is obtained
is discussed in Section 6.3. When we derive a new constraint for node 6, we
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Fig. 10. On the left, an example ICFG G in which procedure A calls procedure B at two call-sites,
namely nodes 1 and 5. In the middle, the initial graph C is depicted, and on the right the adapted
graph after the constraint for dom(6) was recomputed incorrectly as dom(6) ⊆ dom(5) ∪ {6}.

might compute the intersection ancC(ahead(7 → 6)) ∩ ancC(ahead(3 → 6)) =
ancC(7) ∩ (ancC(5) ∪ ancC(3)) = {0, 1, 2, 3, 4, 5}. In the current graph, ancC(5)
equals {0, 1, 2, 3, 4, 5}, so we might want to set predC(6) to {5}, thus modeling
a new constraint dom(6) ⊆ dom(5) ∪ {6} as reflected in the updated constraint
graph in Figure 10(c).

However, this is not the constraint we would have derived by applying Equa-
tion 4 on existing constraints. With those, we would have made the following
derivation:

dom(6) = (dom(7) ∩ (dom(5) ∪ dom(3))) ∪ {6},
⊆ ((dom(6) ∪ {7}) ∩ (dom(5) ∪ dom(3))) ∪ {6},
⊆ (dom(6) ∩ (dom(5) ∪ dom(3))) ∪ {6},
⊆ ((dom(5) ∪ dom(3) ∪ {6}) ∩ (dom(5) ∪ dom(3))) ∪ {6},
⊆ ((dom(5) ∪ dom(3)) ∩ (dom(5) ∪ dom(3))) ∪ {6},
⊆ (dom(5) ∪ dom(3)) ∪ {6}.

Clearly the constraint dom(6) ⊆ dom(5) ∪ {6} is stricter than dom(6) ⊆
dom(5) ∪ dom(3) ∪ {6}. In fact, the former constraint is too strict, and incor-
rect, as it is obvious from the ICFG that node 3 does dominate node 6, while
it does not dominate node 5. The former constraint is too strict because, in or-
der to derive such a constraint, we need to assume that dom(3) ⊆ dom(5), as
it is only under that assumption that the above derivation of dom(6) can be
continued to result in dom(6) ⊆ dom(5) ∪ {6}. Now while the current graph C
in Figure 10(b) suggests that indeed dom(3) ⊆ dom(5), as there is a path from
node 3 to node 5 via node 4, this suggestion cannot be backed up with already
derived constraints. To the contrary, if we would have computed a new con-
straint for dom(4) before recomputing the constraint on dom(6), the graph C
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Fig. 11. The constraint graph C when the constraint on dom(4) has been recomputed correctly as
dom(4) ⊆ dom(0) ∪ {4}, and the constraint on dom(6) has not yet been recomputed.

would have looked as depicted in Figure 11. This graph does not at all suggest
that dom(3) ⊆ dom(5).

Note that because dom(4) does not appear in the above derivation, this
derivation does not depend on whether or not the constraint for dom(4) was
recomputed first. Between the graphs in Figure 10(b) and in Figure 11, the set
of nodes in the intersection ancC(ahead(7 → 6)) ∩ ancC(ahead(3 → 6)) does not
change either, as it still equals ancC(7) ∩ (ancC(5) ∪ ancC(3)) = {0, 1, 2, 3, 4, 5}.
On this graph, however, ancC(5) �= {0, 1, 2, 3, 4, 5}. Instead ancC(5)∪ancC(3) =
{0, 1, 2, 3, 4, 5}, as we derived by rewriting the equations.

Now while it may seem that the constraint we derived incorrectly at the top
of this page was only obtained because we computed the constraints of dom(4)
and dom(6) in the wrong order, this is not true. There exist graphs, that are
too large and too complex to illustrate in this article, in which any order of
constraint computation on the graph C goes wrong if no special precautions are
taken on how to select nodes from the computed intersection to become a node’s
new predecessors in C. What these precautions should be in order to ensure
that no incorrect constraints are ever derived when computing the intersection
of Equation 4, is discussed more formally in Section 6.5. But first we formally
discuss the construction of the initial constraint graph C and the basics of our
constraint-based algorithm.

6.3 Initializing the Dominator Constraint Graph

To start our dominator computation algorithm, we need to initialize the graph
C with a set of constraints on dominator sets that we can derive from the pro-
gram. These initial constraints must meet two requirements. Most importantly,
they need to be met by the correct solution to the dominator problem. Hence
the initial graph will need to respect the invariant stated in Equation 6. Fur-
thermore, these constraints should be such that the initial constraint graph C
is acyclic.

For deriving such initial constraints from the program, we will exploit the
property that (domG(v) \ {v}) ⊆ domG(ahead(e)) for each of v’s incoming edges
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e, and in particular for that incoming edge emin with the lowest numbered
head. Because of Lemmas 5.4 and 5.5, and Theorem 5.6, initializing predC(v)
to ahead(emin) of that edge emin, meets the aforementioned requirements on the
initial constraints. Concretely, we can initialize the graph by assigning a set
init(v) to predC(v) for each v, that is computed as follows.

First, we need to determine v’s predecessor with the smallest number. For
edges other than return edges, this node’s number is given by the value min �R(v):

min�R(v) �
{

mine∈(inG (v)\R) DFT(head(e)) if (inG(v) \ R) �= ∅,

∞ otherwise.

For return edges, that can only be reached after their corresponding call-sites
have been reached, we look for the corresponding call-site with the lowest num-
ber, which is captured in the value aminR(v):

aminR(v) �
{

mine∈(inG (v)∩R) DFT(head(φ−1(e))) if (inG(v) ∩ R) �= ∅,

∞ otherwise.

Of the two computed numbers, the smallest will be put in the set init(v). Now if
the smallest number corresponds to a return edge, we not only need to add the
call-site, but we also need to add the exit-node at the head of the return edge.
This is captured in the set minR(v):

minR(v) � head({e | e ∈ (inG(v) ∩ R) ∧ DFT(head(φ(e))) = aminR(v)}).
Thus, all nodes are initialized with

init(v) �
{{DFT−1(min �R(v))} if min �R(v) ≤ aminR(v),

{DFT−1(aminR(v))} ∪ minR(v) otherwise.

Finally, we should note that it is possible that min �R(v) = aminR(v). This occurs
for example, with conditional procedure calls, for which both a pair of call and
return edges, and a fall-through path, connect the call-site to the return node.
In such cases, we prefer to go with min�R(v), as this results in the strictest initial
constraint.

Figure 10(a) shows an ICFG of which the initial constraint graph C is de-
picted in Figure 10(b). For example, the initial constraint for node 4 is computed
as follows:

min�R(4) = min
e∈{8→4}

DFT(head(e)) = 8,

aminR(4) = min
e∈{3→4}

DFT(head(φ(e))) = 1,

minR(4) = head({e | e ∈ {3 → 4} ∧ DFT(head(φ(e))) = aminR(4)}) = {3}.
Because aminR(4) < min �R(4), the initial constraint for node 4 becomes
domG(4) ⊆ domG(1) ∪ domG(3) ∪ {4}. This is modeled in C with the edges 1 → 4
and 3 → 4.
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Fig. 12. The base version of our practical algorithm to compute interprocedural dominators.

6.4 The Basic Algorithm

Figure 12 depicts the base version of the constraint-based dominator computa-
tion algorithm, in which C is first initialized, and then iteratively updated with
the function CompConstraint. Conceptually, CompConstraint takes Equation 4,
in which all sets domG(ahead(e)) are substituted using their corresponding ex-
isting constraints, and generates a new constraint for domG(v). Formally, the
function CompConstraint(v) is defined by the following equation:⋂

e ∈ inG (v)

ancC(ahead(e)) =
⋃

p ∈ CompConstraint(v)

ancC(p). (9)

Assuming the invariant of Equation 6 holds before CompConstraint is called,
this implicit definition of CompConstraint results in a new constraint as follows:

domG(v) =
( ⋂

e ∈ inG (v)

domG(ahead(e))

)
∪ {v} (because of Eq. 4),

⊆
( ⋂

e ∈ inG (v)

ancC(ahead(e))

)
∪ {v} (because of Eq. 6),

⊆
( ⋃

p ∈ CompConstraint(v)

ancC(p)

)
∪ {v} (because of Eq. 9),

⊆
⎛
⎝ ⋃

p ∈ predC(v)

ancC(p)

⎞
⎠ ∪ {v} (after the assignment on line 8).

If the computed set CompConstraint(v) differs from v’s current set of prede-
cessors predC(v), the graph is updated accordingly on line 8 of the algorithm.

The above derivation proves that, given that the invariant of Equation 6
holds before the computation of CompConstraint(v), the invariant holds at
least for the node v of which predC(v) is updated with the assignment on
line 8.

This does not prove that Equation 6 is an invariant for all nodes in G however.
Changing the predecessors of v on line 8 of the algorithm not only changes
ancC(v), but potentially it also changes the sets ancC(w) of descendants w of
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Fig. 13. The computation of a new constraint, based on the iterative pair-wise intersection over
all edges coming into node v.

v in C. Hence the assignment on line 8 might invalidate Equation 6 for such
nodes w.

In order to prohibit this invalidation from happening, each newly computed
constraint needs to be such that no future assignment to a set predC[v′] of any
(other) node v′ will ever be able to invalidate the invariant for node v. If this is
the case, it is guaranteed that the final solution meets all constraints modeled
in C at any time during the computations. To achieve this, we need to impose
additional restrictions on constraints generated by CompConstraint(v).

In our algorithm, we will ensure this by requiring, and guaranteeing, that
a computed set of nodes CompConstraint(v) = {p0, . . . , pn} is computed com-
pletely independently of the sets ancC(pi). When this requirement is met, no
future change to any such set ancC(pi) can invalidate the invariant.2 We call
this requirement the independent constraint requirement. If this requirement
is met, any newly derived constraint will be based on constraints that have
been proved to be correct earlier, but it will not be based on other, accidental
properties of the current graph C that may later prove to be invalid. In the next
section, we present a CompConstraint that meets the independent constraint
requirement.

6.5 Construction of New Constraints

CompConstraint’s main job is to compute a set that meets Equation 9. As such,
it must rewrite the intersection of Equation 4 as a union. One way to do so would
be to generate the sets ancC, compute the set that constitutes the intersection in
a first step, and then rewrite this set as a union of ancestor sets in a second step.
In practice, however, this two-step approach would be a very time-consuming
operation.

Instead, we have developed an efficient algorithm that combines both steps
without needing to explicitly compute the intersection. This algorithm, which
performs iterative pair-wise computations on all elements in ahead(inG(v)), is
presented in Figures 13 and 14. Figure 13 shows the outer loop that iterates
over the elements in ahead(inG(v)), and Figure 14 displays the actual pair-
wise computation that in essence computes the intersection of the two sets
of ancestors of its two arguments. But instead of returning the intersection
itself, this computation returns a set of nodes of which the ancestors form the

2While there might exist more relaxed sufficient restrictions on CompConstraint(v) that, for exam-
ple, make its computations depend on the descendants w of v, we believe that the implemention of
such restrictions will be very inefficient and difficult in practice, if at all possible.
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Fig. 14. The pair-wise intersection computation to compute the new predecessors of a node.

intersection. Indeed, algorithm Intersect is implicitly defined such that

ancC(Intersect(s1, s2)) = ancC(s1) ∩ ancC(s2).

As the ancestor relation is transitive, the resulting set CompConstraint(v) ob-
viously satisfies Equation 9.

First, Intersect marks s2’s ancestors in C on line 3 of this algorithm.3 Then
the algorithm iteratively traverses C in an upwards direction, starting from the
nodes in s1. This traversal ends when a marked node is visited. Because any
node in C can have multiple predecessors, this algorithm might have to traverse
multiple paths. Each of these paths needs to be traversed until a marked node
is reached, and all of these marked nodes need to be included in the result of
Intersect(s1, s2).

This implementation of Intersect clearly meets the independent constraint
requirement stated in the previous section, as none of the elements in ancC(v)
of nodes v that end up in the final result pred (on line 9) are traversed. In other
words, the constraint generated by Intersect is independent of the ancestor sets
of elements in the resulting pred set.

It is important to observe that the thus computed set CompConstraint(v) is
not necessarily the smallest set that satisfies Equation 9 in the current graph
C. It may in fact happen that CompConstraint(v) includes two nodes p1 and p2
of which p1 ∈ ancC(p2), as was the case with nodes 3 and 5 when the constraint
for dom(6) was recomputed before recomputing that of dom(4) in Section 6.2.
In such a case, node p1 can clearly be omitted from CompConstraint(v) without
violating Equation 9. This removal violates the independent constraint require-
ment, so it can lead to incorrect solutions, as demonstrated in Section 6.2.

A direct consequence of this observation is that the derived graph C will
usually not equal the minimal dominator graph M . Instead C will only be an

3Note that unmarking all nodes in a graph, as on line 2 of algorithm Intersect, is a con-
stant time operation if we use an integer attribute for marking nodes. For example, if the
attribute is mark(v), then IsMarked(v) � mark(v) = global marking number and Mark(v) �
mark(v) ← global marking number. Unmarking all nodes then simply consists of incrementing
global marking number and checking for overflow.
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Fig. 15. The constraint graph C of the ICFG G, which is derived from the incorrect graph in
Figure 10(c) after we have also recomputed the constraint for dom(4).

approximation of M that still needs to be reduced to obtain M after its iterative
redrawing has converged. In our basic algorithm PracticalDomCompBase, this
reduction is added on line 10.

Now one might think that the independent constraint requirement is not
fundamental. After all, the invariant of our algorithm and the resulting inde-
pendent constraint requirement have so far only been used to prove our algo-
rithm correct. They have not been set forward as necessary conditions, so why
don’t we just base our correctness proof on other invariants?

In practice, it is problematic if Equation 6 does not hold invariably during
the computations. For example, it is impossible to later include node 3 in the
ancestors of node 6 once the incorrect constraint on dom(6) was computed in
Section 6.2 and the graph C was adapted incorrectly. The reason is that, once the
constraint for dom(4) has been recomputed and the graph updated accordingly,
as in Figure 15, CompConstraint(6) will be computed as Intersect({7}, {3, 5}), in
which node 3 is no longer an ancestor of node 7. Consequently, node 3 can never
again become an ancestor of node 6.

While developing our algorithm, we have tried many ways to reduce the
size of the computed CompConstraint() sets without breaking the invariant.
Some of the techniques we tried involved backtracking mechanisms that allow
speculating which nodes may be omitted from CompConstraint() sets. None of
these techniques proved to be worthwhile, however, mainly because speculated
decisions often propagate very far into the computations before being detected
as incorrect.

Fortunately, the sets predC(v) in our algorithm still remain much smaller
than the dominator sets computed in the data-flow algorithm, even though
we do not compute the minimal dominator graph M directly. Hence our new
algorithm will still prove to be much more efficient.

To finish this discussion of our implementation of the intersection operation,
we should note that the traversal of the graph in Intersect is very similar to
the two-finger algorithm described by Cooper et al. [2001]. The latter is used
as a meet operator for traditional dominator computation, where one uses two
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fingers to point at two nodes in the intermediate dominator tree and then moves
the fingers upwards until a common ancestor of the two nodes is found. The
difference with our algorithm is that we require more fingers, as our contraint
graph is not a tree.

6.6 Algorithm Termination

Now that we have presented the base algorithm PracticalDomCompBase in de-
tail; we will discuss its termination. Because a formal proof of the monotonicity
and termination of the algorithm is very cumbersome, we will only outline some
of the arguments.

6.6.1 Monotonicity. Just like the data-flow algorithm, our constraint-
based algorithm operates on sets that model dominator sets. In the constraint-
based algorithm, these are the ancC(v) sets. It is obvious that the sets ancC(v)
can only shrink with every application of CompConstraint(v), just like the dom-
inator sets only shrink in the data-flow algorithm. The sets ancC(v) converge
toward their lower bound set by Equation 6.

6.6.2 Termination. Because the stop criterion of our constraint-based al-
gorithm is based on a comparison of sets predC(v) instead of sets ancC(v), the
monotonicity of the ancC(v) sets by itself does not guarantee termination.

We note that the function Intersect(s1, s2) does not depend on the way ancC(s2)
is computed. It hence does not depend on the precise set predC(s2). Therefore
the computations in CompConstraint(v) only depend on ancestors sets, and on
at most two specific predecessor sets, namely those of ahead (s) of the edge s
that is chosen on line 0 of the code depicted in Figure 13.

We can easily impose the restriction that the selection of the edge s should be
deterministic (which is trivially so when implemented in a deterministic pro-
gramming language), such that max(DFT(ahead(s))) < DFT(v). This is possible
because of Lemmas 5.4 and 5.5. Once the ancC() sets have become fixed, the
computation of a set CompConstraint(v) only depends on sets predC(w) of nodes
w of which DFT(w) < DFT(v).

If the main while loop in algorithm PracticalDomCompBase iterates over
the nodes in preorder CSDFT, this means that as soon as all ancC() sets have
reached their fixed point, the predC() sets will become fixed as well, thus guar-
anteeing termination of the algorithm. At that point, the constraints are still
acyclic, hence they define the correct dominator sets directly, as indicated for
the example in Section 6.1.

6.7 Complexity

Our constraint-based algorithm does not reduce the worst-case running time
complexity of the dominator computation. The algorithm is derived from the
data-flow implementation, and no underlying assumptions to calculate the
worst-case time complexity have changed: each of the |V | sets ancC(vi) can
be made smaller at most |V | times. Since at least one ancC(vi) becomes smaller
with every iteration over all |V | nodes in the outer loop of the algorithm,
at most |V |3 invocations of CompConstraint() can be required. Executions of
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CompConstraint(vi) on average will need to invoke Intersect() |E|/|V | times.
And each computation of Intersect() requires marking at most |V | nodes. Hence
the theoretic time complexity is still O(|V |3|E|). Furthermore, the space com-
plexity remains O(|V |2). This follows from the assumption that the number of
call-sites in a program is linear to the number of basic blocks |V |, and from the
fact that each of the |V | nodes in G theoretically can have all the procedure exit
blocks as predecessors.

Even though the theoretic complexities are identical for both algorithms,
the constraint-based algorithm will prove to be much faster than the data-flow
algorithm. This is particularly so when the optimizations discussed in the next
section are applied to the base algorithm.

7. FURTHER OPTIMIZATIONS

In this section, we present a number of important optimizations to the base
algorithm.

7.1 Optimizing the Intersection—Part 1

When the preorder CSDFT numbering is used, we observe that when a node v
is removed from the to visit set on line 6 of the algorithm Intersect, the nodes
added on line 11 will all have smaller DFT-numbers. In other words, during the
execution of this part of the algorithm, the value minx∈(to visit∪visited) DFT(x) only
decreases. Furthermore, no node v with DFT(v) < minx∈(to visit∪visited) DFT(x)
will ever be added to pred on line 9 of the algorithm. Having nodes marked
with numbers lower than minx∈(to visit∪visited) is therefore of no use during the
algorithm.

This can be exploited because the iterative marking of ancC(s2) also iterates
over ever decreasing numbers. Instead of immediately marking all nodes in
ancC(s2), it initially suffices to mark all nodes in ancC(s2) that have numbers
higher than minx∈s2DFT(x). Later on, additional marking can be performed
whenever minx∈(to visit∪visited) changes. Often at least parts of the original mark-
ing can thus be avoided. The new, optimized algorithm is depicted in Figure 16.

To demonstrate how this optimization works, consider how we apply the
intersection computation on node 5 of the ICFG in Figure 8. For this node the
algorithm invokes Intersect({4}, {6}) and on line 3 of that computation nodes 6,
3, 2, and 1 are marked as ancestors of node 6 in the original constraint graph
depicted in Figure 9(a). In the optimized version, CSDFTIntersect({4}, {6}) first
assigns the value 4 to min dft on line 3. Then on line 4, no nodes are initially
marked at all. Node 4 is taken from the to visit set on line 6 and added to the
visited set on line 7. Then the nodes in predC[4] are considerd on line 12, and
min dft is updated to min(4, 3) = 3, and node 3 is marked on line 13. On line
14, node 3 is added to to visit, and in the next iteration the loop is exited after
node 3 is added to the pred set. So in this optimized version, only node 3 needs
to be marked.

In this example, the optimization might seem somewhat of an overkill, be-
cause the initial savings due to the reduced initial marking seem minimal and
the inner while loop of the computation has become significantly more complex.
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Fig. 16. The CSDFT-optimized algorithm to compute the pair-wise intersection. The dots on the
left mark lines that have changed compared to the original code in Figure 14.

On large programs, however, the initial savings become much larger, especially
because the initial marking does not pollute the cache with nodes that will not
later be visited in the inner loop. Furthermore, the average number of executed
iterations of the while loop in CSDFTIntersect increases much more slowly as
programs become larger, than the increase in the average number of nodes in
ancestor sets. So for large programs, the cost of the complicated while loop is
very small compared to the cost of the initial marking in the original Intersect()
algorithm. Slowing down the while loop, even considerably, is therefore more
than compensated by the speedup of the initial marking.

As we mentioned in Section 6.5, our intersection computation borrows ideas
from the two-finger algorithm described by Cooper et al. [2001]. With this op-
timization, the resemblance becomes total. Just as in the algorithm by Cooper
et al. [2001], fingers are moved conditionally, when the position of the other
fingers indicates it may be useful.

7.2 Optimizing the Intersection—Part 2

Another optimization of the intersection computation relates to leaf procedures,
and what we will call pseudo-leaf procedures. To illustrate this, consider the ex-
ample ICFG in Figure 17 and suppose we need to compute CompConstraint(3).
During this computation, CSDFTIntersect({2}, {7}) will be invoked, in which the
initial marking on line 4 would need to mark nodes 7, 6, 5, and 4.

In this example, marking nodes 5 and 6 is clearly useless. Because procedure
G() is a leaf procedure whose nodes all have higher numbers than node 3 for
which we are computing the intersection, we know beforehand that no domi-
nators of node 3 will be found during the traversal of nodes in procedure G().
Hence the marking of nodes 5 and 6 could have been skipped.

In general, a necessary condition to skip marking the nodes in a procedure
F during the computation of CompConstraint(v) is the existence of at least one
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Fig. 17. On the left, the relevant parts of the source code of two procedures. The labels identify
their preorder CS-DFT numbers. In the middle, the corresponding ICFG is depicted, and on the
right the initial constraint graph.

path through F (including its callees) on which all nodes are numbered higher
than v. Because testing this condition is complex and very time-consuming,
we do not compute this necessary condition, but instead fall back on any of the
following, much simpler sufficient conditions (in increasing order of complexity):

—there are no nodes in F or any of the callees in its call chain that are numbered
lower than v,

—F does have callees with lower numbered nodes, but there exists an execution
path through F on which no such callees are called,

—F does have callees with lower numbered nodes; those callees are called on
every path through F , but there exist paths in those callees that do not pass
through nodes with those lower numbers.

From a dominator computation point of view, procedures that meet any of
these conditions can be treated as if they were leaf procedures, hence we call
them pseudo-leaf procedures. In practice, we can precompute for each pseudo-
leaf procedure the lowest numbered node that will certainly be executed when
the procedure is invoked. This can be done with varying levels of complexity,
depending on which of the above sufficient conditions one is willing to consider.
In our implementation, we opted for the former two conditions, because com-
puting the latter consumed more additional execution time than it saved by
speeding up the intersection computations.

Once this precomputation is done, all nodes v in the graph are given a new at-
tribute, say lowest callee dft(v). For nodes that are not exit blocks of pseudo-leaf
procedures, this attribute is set to −1. For exit nodes of pseudo-leaf procedures,
this attribute is set to the precomputed number of their procedure.

With this new attribute, the algorithm CSDFTIntersect(s1, s2) is adapted to
the version in Figure 18. Note that it now takes an additional argument, namely
the node n, for which the computations are being performed.
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Fig. 18. The CSDFT-optimized algorithm to compute the pair-wise intersection that skips the
unnecessary marking of nodes in pseudo-leaf procedures.

Fig. 19. On the right a small ICFG, on the left its initial constraint graph.

In this new version, the iterative marking of nodes on lines 4 and 14 is now
limited by the additional conditions on lines 5 and 15. During that iterative
marking, no exit nodes of leaf or pseudo-leaf procedures with a sufficiently
high attribute lowest callee dft(w) will be traversed.

7.3 Eliminating Redundant Intersections

Besides optimizing the intersection computation itself, we can also minimize
the number of pair-wise intersections that needs to be performed. When we look
back at the intersection algorithm, we can observe that it is of no use to include
an edge e ∈ inG(v) in the intersection if there exists another edge e′ ∈ inG(v)
such that ahead(e′) ⊆ ancC(ahead(e′)) ⊆ ancC(ahead(e)). In that case, the final
result of the meet operation will remain unchanged whether or not we included
the edge e.

As an example, consider the simple example graph in Figure 19(a), and its
correponding initial constraint graph in Figure 19(b). When a new constraint for
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node 2 needs to be computed, we essentially compute ancC(1)∩ancC(3)∩ancC(4),
by means of CSDFTIntersectSkip(CSDFTIntersectSkip({1}, {3}, 2), {4}, 2). Now
from the constraint graph C, it is obvious that ancC(3)∩ancC(4) = ancC(3). So in
fact, we only need to compute CSDFTIntersectSkip({1}, {3}, 2). In the constraint
graph of this example, node 1 is rather close to nodes 3 and 4, so the one invo-
cation of CSDFTIntersectSkip() that we can avoid by first comparing ancC(3) to
ancC(4) will not save us very much computation time. On larger graphs, how-
ever, it can be worthwhile to avoid redundant computations by first performing
some additional tests.

To test which edges in inG(v) can be skipped, we can first iteratively mark
all proper descendants in C of each node in ahead(inG(v)). All edges e for which
the nodes in ahead(e) got marked can then be skipped in the meet operation of
the original algorithm. However, simply iterating over a node’s descendants in
an (approximate) minimal dominator graph is a rather expensive operation on
average. So with this method, we would spend a lot of time in the tests.

Fortunately, even though the minimal dominator graph is not a tree but a
graph, it usually looks much more like a tree than like an inverted tree because
most nonleaf nodes have fewer predecessors than successors. Consequently,
iterating over, or marking, all ancestors of a set of nodes is on average much
cheaper than iterating over, or marking, all its descendants.

So to avoid the high cost of iterating over all proper descendants of all nodes
in ahead(inG(v)), we can first mark all nodes w ∈ ancC(ahead(e)) for which
DFT(w) > minx∈ahead(inG (v)) DFT(x), which can be done very efficiently. There-
after, we only need to unmark the proper descendants of nodes in ahead(inG(v))
that were previously marked, which is a much smaller set of descendants.

Furthermore, we have observed that this optimization should be applied
only for nodes v that have a large number of incoming edges, and that have no
incoming return edges. Otherwise, the additional cost of finding the edges to
skip is not compensated by the avoided invocations of CSDFTIntersectSkip().

The resulting optimized algorithm CompConstraintSkip(v) is depicted in
Figure 20. The bottom of the figure depicts the pseudo-code for the auxiliary
function ComputeEdgesToBeIntersected, in which desc+(v) denotes the set of
proper descendants of node v; the set of descendants excluding v itself.

It is important to note that this optimization does not break the indepen-
dent constraint requirement. When it is invoked, CompConstraintSkip() only
exploits properties of the current graph C to optimize its computations. The
resulting set does not change however.

7.4 A Work-List Algorithm

The most fundamental optimization to the base algorithm involves the addition
of a work-list. With a work-list, much fewer nodes need to be visited during later
iterations of the while loop in algorithm PracticalDomCompBase, which allows
for a considerable speedup.

In order to see how we can get to a work-list algorithm, we need to study the
consequences of the assignment on line 8 of algorithm PracticalDomCompBase
(see Figure 12). Every time predC[v] gets assigned on line 8, the ancestor set
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Fig. 20. The optimized computation of a new constraint in which unnecessary intersections are
skipped.

ancC(v) of node v shrinks or remains identical. In other words, the possibly
empty set removed(v) � anc−

C(v) \ anc+
C(v) is removed from ancC(v). Here, the

superscript + is used to denote a set immediately after an assignment on line
8 of the algorithm, while a superscript − denotes a set just prior to such an
assignment. Implicitly, the sets ancC(w) of nodes w ∈ descC(v) are reduced as
well. Obviously, this implicit reduction can only involve nodes in removed(v).

Conceptually, removing the nodes removed(v) from ancC(v) corresponds to
v’s constraint being made stricter. As a consequence of this operation, new
opportunities might be created to make other constraints stricter as well, either
during this iteration of the while loop, or during the next iteration.

Hence to come to a work-list algorithm, we need to answer the following
question:

When we have made the constraints for all nodes as strict as possible,
except for the constraint of one node v, how might replacing that
constraint create new opportunities to restrict other constraints? In
other words, if we replace the set pred−

C(v) by pred+
C(v), which nodes

could require the recomputation of CompConstraint(v)?

Algorithm PracticalDomCompBase is implemented as if the best answer to
this question is the set V of all nodes: whenever a set predC(v) changes in
one iteration of the while loop, all sets predC(w) for all nodes w ∈ V will be
recomputed in the next iteration of the while loop. This section presents a
conservative, but more aggressive answer to the above question, and an efficient
method to compute the answer on the fly.

Obviously, the replacement of pred−
C(v) by pred+

C(v), and the corresponding
removal of removed(v) from ancC(v), can only influence the computation of
CompConstraint(w) for nodes w that can be reached from v in the ICFG. A
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Fig. 21. The version of our practical algorithm to compute interprocedural dominators that avoids
unnecessary recomputations of predC[v] by using a work list.

necessary condition for this to hold is that

DFT(v) ≤ max pred(w) � max
x ∈ ahead(inG (w))

DFT(x).

As max pred(w) can be precomputed for every node w before the main loop in
PracticalDomCompBase starts, testing this condition during the algorithm is
very cheap.

Furthermore, the removal of removed(v) from anc−
C(v) can only result in the

need to remove nodes from anc+
C(w) when removed(v)∩anc+

C(w) �= ∅. In a slightly
different form, it is required that w ∈ descC(removed(v)).

Figure 21 depicts algorithm PracticalDomCompWorkList, in which these two
requirements are implemented. In this algorithm, the variable need to redo
holds the set of nodes for which recomputation is required because their corre-
sponding constraint can still potentially be made stricter.

The array smallest change is used to store the value min{v|w∈removed(v)} DFT(v)
for each node w, for each iteration of the while loop. These values are computed
during each iteration of the while loop by updating them on line 14 each time
a node w is removed from a set ancC(v).

At the end of each iteration of the while loop, the stored values are used on
line 20 of the new algorithm to verify whether the two necessary conditions hold
for a node w. This verification can be limited to the successors in C of nodes
v who’s value smallest change[v] was set, because it is through these nodes,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 4, Article 19, Publication date: August 2007.



34 • B. De Sutter et al.

according to Equation 7, that the nodes v may influence the ancestor sets of
other nodes.

To end the discussion of this optimization, we would like to note that the
proposed transformation of the base algorithm into a work-list algorithm can
also be applied to the traditional dominator algorithm proposed by Cooper et al.
[2001]. We have not yet studied the potential of this optimization in that context.

7.5 Exploiting A Priori Known Information

A final optimization to our algorithm exploits the fact that we can esti-
mate the strictest constraints a priori. More precisely, for nodes with only
one incoming edge, we don’t need to recompute anything during the itera-
tive computation of the constraint graph C. For such nodes v, predC(v) =
ahead(inG(v)) during the whole computation. To implement this in algorithm
PracticalDomCompWorkList, it suffices to tag these nodes, and to never add
them to need to redo. As this is trivial, we do not depict the corresponding
pseudo-code.

We should note however that it may still be necessary to remove elements
from predC(v) of such nodes during the final reduction of C on line 23 of algo-
rithm PracticalDomCompWorkList. This is necessary, for example, for nodes v
whose only incoming edge is a return edge. In such cases, ahead(inG(v)) con-
tains two nodes, of which one can dominate the other. Whether or not this is
the case only becomes known at the end of the while-loop. If that is the case,
the transitive reduction will remove one of the nodes from predC(v).

8. EXPERIMENTAL EVALUATION

To evaluate the constraint-based algorithm, we have implemented it, together
with the data-flow algorithm, in Diablo [De Bus et al. 2004], a framework for
link-time program rewriting, and applied it on a number of real-life programs
covering a broad range in program sizes.

8.1 The Benchmarks

The benchmark programs and their most important properties are presented
in Table I. All programs were compiled on a Gentoo Linux x86 system with
GCC 3.3.x compilers, and statically linked against the glibc standard system
libraries.

With the exception of the gcc benchmarks,4 the ratio edges/blocks in the
programs ICFG is pretty invariant. The most obvious reason for the increased
ratio is found in the number of switch edges in the program. As can be seen
from Table I, the fraction of edges that represents cases in a switch statement
is much higher in the gcc benchmarks than in any other benchmark. As can be
expected, this property will heavily influence the computation time.

In order to facilitate the interpretation of the execution time and memory
requirements of the algorithms, Tables II and III present six properties of the

4The smallest of the two gcc benchmarks is the reduced version included in the SPECint2000
benchmark suite, the other version is distributed on http://gcc.gnu.org.
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Table I.
Our set of benchmark programs, with the numbers of nodes and edges in their ICFGs, their

ratio, and the fraction of edges that originates from switch statements.

Table II.
The distribution of the in-degree in the minimal dominator graph. The last column shows the

maximum in-degree for each benchmark.

minimal dominator graphs of these programs. For each benchmark, Table II
presents the histogram of the in-degrees of the nodes in the minimal dominator
graph. It can be seen that for larger programs, the in-degrees can become quite
large. For gimp, for example, a maximal in-degree of 32 means that one basic
block is dominated by at least 32 procedure exit nodes that do not dominate
each other. In other words, at least 32 procedures are executed before that basic
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Table III.
The average minimum depth and maximum depth of a node in the minimal

dominator graph (the minimal and maximal distance to the root), the average
number of paths leading from the root to a node in the minimal dominator graph,

the average number of dominators per node, and the average number of edges
per node in the minimal dominator graph.

block is executed, but there is no fixed order in which any pair out of those 32
procedures is executed. Clearly, one expects that higher in-degrees occurring
in a graph corresponds to more paths being traversed in the constraint graph
C during the intersection computations.

Table III presents five more statistics on the minimal dominator graphs of
the benchmark programs. These are the average minimum depth of a node in
the graph, the average maximal depth, the average number of paths leading to
a node, the average cardinality of the dominator sets of all nodes, and the ratio
between the number of edges and the number of nodes in the graph. In each
case, one expects that larger numbers indicate that more work will need to be
done during the iterative computation of this graph.

We observe that the variation on the average minimal depth is relatively
small. This follows from the fact that all programs are linked against the same
standard library, and that the first code executed in all programs consists of ini-
tialization code of that library. The other numbers in the table depend more on
the actual program itself, and for those numbers, huge variations are observed.

It is important to note that the Linux kernel is a special case in this table.
We have included this benchmark because it is the largest program we could
find that is handled correctly with Diablo [Chanet et al. 2006]; but to make it
this large, we had to configure the kernel to include all possible drivers. Most, if
not all, of the driver code is called through function-pointers that are stored in
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large tables. In Diablo, such calls are modeled by calls to a so-called unknown
node [Muth et al. 2001], which in turn calls all procedures for which the address
is either stored in the statically allocated data or computed in the code. Because,
calls to this unknown node happen quite early in the program, most, if not all,
drivers are considered reachable very early in the program. As a result, the
minimal dominator graph has a very small average depth.

It is difficult to tell how more precise models of indirect control flow, that,
for example, use type information, would influence the properties in Table III
and the computation of dominators. On the one hand, the average depth of the
nodes in the minimal dominator graph would certainly increase, thus slowing
down the dominator computation. On the other hand, fewer blocks would be
dominated by this one low-numbered unknown node; thus fewer paths to the
unknown node would need to be traversed during the computation of intersec-
tions in our algorithm.

8.2 Execution Time

Because some of the programs are very large, one cannot expect that all com-
puted data will fit into a processor’s cache. For the larger programs, cache behav-
ior will deteriorate and thus increase execution time. It hence does not suffice to
look at clock-wall execution times to obtain insights in the practical complexity
of our algorithm. For that reason this section presents both execution times
and executed instruction counts. The execution times were measured by means
of the standard C-library procedure clock(), and the instruction counts were
obtained using the performance counters of the processor in our evaluation
system.

For these experiments, each algorithm was executed five times on each bench-
mark, on an otherwise unloaded system comprising a hyper-threaded 3.4GHz
Intel Pentium IV processor with a 16KB L1 data cache, a 1MB unified L2 cache,
and 4GB of memory connected to a 400MHz front side bus. This system runs
Gentoo Linux based on a 2.6.10 Linux kernel. We present the fastest of the five
runs. We believe this to be the best solution, because the algorithms are deter-
ministic, and because longer execution times can hence only be caused by inter-
ference with other coincidental processes running on the evaluation machine.

The numeric results of our experiments are presented in Tables IV and V,
while Figure 22 presents a graphical representation. Note that the scales of the
axes of this chart are logarithmic.

Most importantly, the constraint-based algorithm is an order of magnitude
faster than the data-flow algorithm. The speedup varies between factors 11.88
and 58.99, averaging at a factor of 23.99. There seems to be no correlation
between the obtained speedup and the size of the benchmark programs.

We believe that the execution times of our new algorithm show that inter-
procedural dominator computation has become practically viable even for pro-
grams of up to several hundred thousand basic blocks. Obviously, execution
times on the order of tens of seconds are not viable in traditional compilers.
In whole-program analyses and optimizations, however, such times are often
acceptable.
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Table IV.
The number of executed instructions, the running time, and the maximal memory consumption

for both the improved algorithm and the data-flow algorithm, as well as their ratios.

Table V.
The number of cache misses per executed instruction and the execution time
per instruction, for both the improved algorithm and the data flow algorithm.
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Fig. 22. The number of executed instructions and the running time for the data-flow algorithm
and the improved algorithm.

When we look at the number of executed instructions, the constraint-based
algorithm is between 10.72 times and 66.22 times lower than the data-flow
algorithm. On average, the data-flow algorithm executes 26.39 times more in-
structions than the constrained-based algorithm. In the case of executed in-
structions, the ratio does tend to become smaller with increasing program size.
In terms of executed instructions, the data-flow algorithm in practice hence
seems to scale somewhat better than our constraint-based algorithm.

However, the data-flow algorithm requires much more memory (see
Section 8.4). Consequently it suffers more from deteriorating cache behavior
when the programs become larger. This can be seen in the widening gap between
the number of executed instructions and the execution time of the data-flow al-
gorithm in Figure 22. No such widening is apparent for the constraint-based
algorithm, as can be seen by the numbers in Table V. First, these numbers
show the strong relationship between the number of cache misses and the part
of the execution time that is not accounted for by just the number of executed
instructions. Furthermore, these numbers show that, whereas the number of
cache misses clearly increases with the program size for the data-flow algo-
rithm, this is not the case for the constraint-based algorithm. We can conclude
that in terms of execution time our constraint-based algorithm scales at least
as well as the data-flow algorithm. To a large extent, this is due to the that fact
the cache behavior scales better.

Besides being an order of magnitude faster, the execution time of the
constraint-based algorithm also seems more predictable, as the peaks and lows
in its timing results are less pronounced.

With respect to those peaks and lows in the execution times, it is clear that
our algorithm is sensitive to the properties of paths in the minimal dominator
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graph. As we explained in Section 8.1, the computation of the intersections
of ancestor sets on average becomes more expensive in our algorithm, with
growing values of the statistics presented in Table III. Benchmarks such as gs,
gtk-pixbuf-demo, gtk-demo, vim, and Linux, which constitute the lows in the
execution time charts, have the flattest minimal dominator graphs, whereas
gcc, qt-designer, and lyx, which all have deeper graphs or relatively more paths,
constitute the main peaks.

Most often, there is a close correlation between these properties and the
average size of dominator sets. As a result, the peaks and lows in the execution
times of both algorithms are highly correlated as well. That said, it does seem
that the constraint-based algorithm is more sensitive to the number of paths in
the minimal dominator graph. For example, qt-designer and lyx are comparable
in size, and the statistical properties of their minimal dominator graphs are
very similar as well, with the exception of the average number of paths from
the root node of the minimal dominator graph to other nodes. For qt-designer,
it is 5140, which is almost twice as high as that of lyx, which is 2626. For the
data-flow algorithm, this difference does not result in different execution times.
For the constraint-based algorithm, it does make a big difference, however, as
the algorithm requires almost two times more computation time for qt-designer.
Most of this additional computation time is not due to an increase in executed
instructions however. Instead, it results from deteriorated cache behavior, as
can be seen in Table V. Unfortunately, we cannot conclude from this that there
is a direct link between cache behavior and dominator graph properties. Like
qt-designer and lyx, the two gcc versions also have a high number of paths in the
minimal dominator graph, but for both gcc versions, the number of cache misses
is very low. In summary, we can assume that there exists a relationship between
minimal dominator graph properties and execution time, but we cannot be
conclusive on the exact nature of this relationship.

8.3 Optimizations

To assess the contribution of the different optimizations discussed in Section 7
to the overall speedup obtained with the constraint-based algorithm, we have
measured the incremental speedups obtained by enabling the optimizations
one after the other. The results of these experiments are shown in Figure 23.
Each single block in the bars indicates the difference in speedup obtained (com-
pared to the data-flow algorithm) with and without the additional optimization
enabled.

The large white blocks indicate that the base version of our constraint-based
algorithm already improves the execution significantly. On average, the base
constraint-based algorithm is already 7 times faster than the data-flow version.

When the intersection computation is first optimized by incrementally mark-
ing nodes in the dominator constraint graph, as discussed in Section 7.1, the
speedup on average increases to over 9. On average, this optimization is there-
fore rather marginal. But on some programs, such as vortex and mplayer, it does
contribute significantly to the overal speedup obtained with the fully optimized
algorithm.
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Fig. 23. The speedup in execution time for the optimizations, applied incrementally in the order
as layed out in Section 7. The speedup is expressed in factors of the execution time of the data-flow
algorithm. Negative numbers indicate that the execution time increased when the optimization
was added. The final speedup is shown using a bullet.

The second intersection optimization, based on the notion of leaf procedures
(see Section 7.2) is more successful than the first. In fact, this optimization
is the major contributor to the maximal speedup obtained over the data-flow
algorithm. With this optimization enabled, the average speedup becomes 16.2.

Avoiding intersection operations altogether, as explained in Section 7.3, pro-
vides a minor contribution to the final speedup. In some cases it even slows
down the algorithm, as is the case for the Linux kernel. For other programs,
such as gimp, however, this optimization is a large contributor to the total
speedup obtained. As indicated in Section 7.3, this optimization is applied on
nodes with a lot of incoming edges in the ICFG. To determine a threshold, we
performed a number of experiments, ranging the number of incoming edges
threshold from 3 to 1000. A threshold of 200 proved to give the best results on
average. Unfortunately, we found no threshold at which the computation for
all programs was improved while still obtaining a significant average speedup.
While we believe that our simple heuristic based on a number of incoming edges
threshold can probably be improved by making it depend on other properties of
the ICFG in combination with the CSDFT numbering, we have not yet found
such heuristics.

The second most successful optimization to our constraint-based algorithm is
the move to a work-list (see Section 7.4). This optimization gives an additional
speedup of 5.85 on average. It is by far the most successful optimization for
Linux.

Finally, the last optimization for nodes with only one predecessor in the ICFG
(Section 7.5) speeds up the algorithm by only a minimal factor. It is the only
optimization that is not a major contributor in any of the benchmarks. All other
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Fig. 24. The maximum memory usage (in megabytes) for the data-flow algorithm and the new
algorithm.

optimizations play an important role in speeding up the computation for at least
one benchmark.

8.4 Memory Consumption

Besides the execution times, we have also measured the required amount of
heap memory of both the data-flow and the optimized algorithm. This was done
by instrumenting the standard C-libray malloc(), calloc(), free(), and realloc()
routines. The results of this experiment are shown in Figure 24 on a chart of
which the axes have logarithmic scales.

First, we should note that the memory requirements of the data-flow algo-
rithm are highly correlated to its execution times, as can be seen by comparing
the peaks and lows of the curves in Figures 22 and 24. This should not come as
a surprise, since almost all execution time in the data-flow algorithm is spent
walking and copying the memory allocated to store the dominator sets.

This situation is completely different with our constraint-based algorithm.
For this algorithm, the memory complexity is clearly linear in practice. This
corresponds with the in-degree histograms being very skewed towards 1 and 2,
and the fact that the ratio between the number of edges in a program’s minimal
dominator graph and the number of basic blocks in the program itself varies
very little. Indeed, the latter ratio only ranges from 1.10 to 1.26 (see Table III
for our entire benchmark suite. So far, we have found no theoretical arguments
based on, for example, software complexity measures to explain this behavior.

All in all, our constraint-based algorithm on average requires 13.64 times
less memory than the data-flow solution, ranging from 4.22 times to 62.93
times less.
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9. CONCLUSION

In this article, we have shown that the interprocedural dominance relation has
other properties than the traditional, intraprocedural dominance relation. As
a consequence, existing work for the intraprocedural case cannot be directly
extended for the interprocedural case.

We have presented a new, constraint-based algorithm for the computation of
interprocedural dominators. This practical algorithm achieves its low computa-
tion time because it operates on efficient data structures that exploit a number
of properties of a preorder context-sensitive depth-first basic blocks ordering.

Most importantly, the presented algorithm is an order of magnitude faster
than the iterative data-flow solution. Even though the theoretical time com-
plexity of the constraint-based algorithm is not better than that of the data-flow
solution, the observed execution times for real-life programs of up to several
hundred thousand basic blocks show that the computation of interprocedural
dominators has become practically viable. In practice, the memory consumption
of the presented algorithm is linear. On average, it is an order of magnitude
smaller than the memory consumption of a straightforward iterative data-flow
solution.
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