
Architecture Enhancements for the ADRES
Coarse-Grained Reconfigurable Array

Frank Bouwens1,2, Mladen Berekovic1,2, Bjorn De Sutter1,
and Georgi Gaydadjiev2

1 IMEC vzw, DESICS
Kapeldreef 75, B-3001 Leuven, Belgium

{bouwens,berekovic,desutter}@imec.be
2 Delft University of Technology, Computer Engineering

Mekelweg 4, 2628 CD, Delft, The Netherlands
g.n.gaydadjiev@its.tudelft.nl

Abstract. Reconfigurable architectures provide power efficiency, flexibility and
high performance for next generation embedded multimedia devices. ADRES,
the IMEC Coarse-Grained Reconfigurable Array architecture and its compiler
DRESC enable the design of reconfigurable 2D array processors with arbitrary
functional units, register file organizations and interconnection topologies. This
creates an enormous design space making it difficult to find optimized archi-
tectures. Therefore, architectural explorations aiming at energy and performance
trade-offs become a major effort. In this paper we investigate the influence of reg-
ister file partitions, register file sizes and the interconnection topology of ADRES.
We analyze power, performance and energy delay trade-offs using IDCT and FFT
as benchmarks while targeting 90nm technology. We also explore quantitatively
the influences of several hierarchical optimizations for power by applying spe-
cific hardware techniques, i.e. clock gating and operand isolation. As a result, we
propose an enhanced architecture instantiation that improves performance by 60
- 70% and reduces energy by 50%.

1 Introduction

Power and performance requirements for next generation multi-media mobile devices
are becoming more relevant. The search for high performance, low power solutions
focuses on novel architectures that provide multi-program execution with minimum
non-recurring engineering costs and short time-to-market. IMEC’s coarse-grained re-
configurable architecture (CGRA) called Architecture for Dynamically Reconfigurable
Embedded Systems (ADRES) [1] is expected to deliver superior energy eficiency of
60MOPS/mW based on 90nm technology.

Several CGRAs are proposed in the past and applied in a variety of fields. The
KressArray [2] has a flexible architecture and is ideal for pure dataflow organizations.
SiliconHive [3] provides an automated flow to create reconfigurable architectures. Their
architectures can switch between standard DSP mode and pure dataflow. The DSP
mode fetches several instructions in parallel, which requires a wide program memory.
In pure dataflow mode these instructions are executed in a single cycle. PACT XPP [4]

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 66–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 67

is a commercial reconfigurable architecture designed for multi-media and telecommu-
nication applications. The architecture is fixed to 64 ALUs, which means the kernel
mapping is constrained by these ALUs. MorphoSys [5] is a typical CGRA consisting
of 8x8 basic units split-up into 4 tiles of 4x4 reconfigurable cells. Each cell in a tile
is connected to all cells in the same row and column. There are also connections be-
tween the different tiles. The array speeds up the kernel, while a TinyRISC is utilized
for the control section of the code. A more extensive overview of CGRAs is provided
by Hartenstein in [6].

The ADRES template enables the designer to configure the architecture based on
a variable number of functional units, register files and interconnections allowing ad-
vanced power and performance optimizations. Finding the optimal architecture for the
customizable processor is not trivial task as there is a huge space of possible design
points. Architectural explorations are mandatory to empirically find the architecture
that best balances power, performance and cost characteristics.

Previous architectural explorations of ADRES were performed [7], [8] to find an op-
timal interconnection scheme for a good performance and power ratio. The architecture
template obtained in [8] will function as the starting point of this work. This base tem-
plate consists of a 4x4 array of FUs and local data register files. All these components
are vertically, horizontally and diagonally interconnected.

The architecture in [8] showed the importance of not only interconnections, but also
the register files of the coarse-grained array (CGA) of ADRES as these have a signif-
icant influence on power and performance. Kwok et al. [9] performed initial analysis
of architectural explorations for the register file (RF) sizes and under utilization of the
CGA, which motivated the drastic RF size reduction. As the DRESC CGA compiler
and ADRES architectural template evolved the CGA utilization improved considerably
making Kwok’s results outdated for the latest compiler version (DRESC2.x).

This paper elaborates on the results of [8] on the interconnect and component level
optimizations as the data sharing among functional units and register files can be im-
proved significantly. We show the relevance of explorations to derive an efficient design
for two widely used wireless and multi-media kernels (FFT and IDCT). We also show
the fallacy that a system with distributed, fully interconnected register files is the best
in terms of energy-delay. Our ADRES architectural proposal is modified by decreasing
the sizes of the local register files.

The main contributions of this paper are:

– Careful architectural exploration of the register file distribution, interconnection
topology and register file sizes for the CGRA;

– Empirical study of power, performance and energy-delay of all proposed interme-
diate and the final architectures;

– Quantitative evaluation of specific optimizations such as clock gating, operand iso-
lation and pipelining;

– Determination of an energy optimized architecture for IDCT and FFT;
– Array size modifications of the proposed architecture for energy-delay analysis.

This paper is organized as follows. Section 2 briefly describes the ADRES architecture
and the programming model. Section 3 presents the utilized tool flow during the explo-
rations. Three different optimizations are described and benchmarked in Section 4 to

68 F. Bouwens et al.

select the final architecture based on power and energy-delay results. Section 5 presents
the intermediate and final implemented results of the created architecture instances. The
conclusions section finalizes this paper.

2 ADRES Base Architecture and Programming Model

The ADRES architecture based on its template [1] is a tightly-coupled architecture that
can operate in either VLIW or CGA mode. Figure 1 shows the selected 4x4 ADRES
base architecture of [8] including data and instruction memories. When the architec-
ture is operating in VLIW mode the performance is improved due to instruction level
parallelism. In CGA mode performance is improved by parallelizing loops on the array
(loop level parallelism). ADRES based systems are programmed in ANSI-C language.
Any existing ANSI-C program can be modified to suit the ADRESS CGA by modifying
the if-conversions and removing all nested loops as described in [1]. No additional in-
structions in the source code are needed for the compiler to map the loops to the CGA.
Code that could not be mapped on the array is executed on the VLIW relying only on
instruction level parallelism.

VLIW CU

Global PRF

Global DRF

IC
ac

he

C
on

fig
ur

at
io

n
M

em
or

ie
s

VLIW View

Inst. Fetch

Branch ctrl
Inst. Dispatch

DMEM

CGA View

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU FU FU FU

Mode ctrl
CGA & VLIW

V
LI

W
S

ec
tio

n
C

G
A

S
ec

tio
n

Fig. 1. ADRES Instance example

The VLIW control unit (CU) controls the program counter (PC) and is responsible
for fetching instructions from the instruction cache. The switch between VLIW and
CGA modes is directed by the same VLIW CU by fetching a CGA instruction in VLIW
mode. The configuration memories (CM) are addressed by a control unit and provide
instructions and routing data for the entire array during CGA operation.

Communication between the two modes goes via the multi-port global Data Register
File (DRF) or data memory (DMEM). The VLIW functional units (FU) communicate

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 69

through the global DRF with eachother. The CGA FUs communicate through the global
DRF, local data and predicate register files (PRF) and the dedicated interconnections.
The predicate register files or busses handle branches, loop prologue and epilogue for
proper control flow.

The VLIW section of the base architecture has a four instructions issue width, while
the CGA section has an issue width of 4 by 3 (12) instructions. The template consists of
mesh, mesh plus and diagonal interconnections [8] between FUs and local DRFs. This
resulted in good routing capabilities in the array, but can be improved as researched in
this paper.

3 Tool Flow

The tool flow used in this architecture exploration study is the same as used in [8].
It provides the necessary results in terms of performance, power and energy usage. A
simplified representation of this flow is depicted in Figure 2.

1) Compile and Assemble

ANSI-C files

XML
Architecture

Files

Synthesize ADRES
Architecture with
Synopsys tools

Calculate Power

Toggle File

Performance Results Physical CharacteristicsPower Results

2) Synthesize3) Simulate

= IMEC Tools

TSMC Libraries
Binary files Create Esterel

Simulator

C-code
transformation,

IMPACT,
DRESC &
Assembly

Gate level
Design

= External Tools

Fig. 2. Simple representation of Tool Flow

All three steps in the figure (Compile and Assemble, Synthesize and Simulate) use
the same ADRES XML architecture file as input. The first step, Compile and Assemble,
maps ANSI-C code on either the CGA or the VLIW architecture views. This step gener-
ates the program binary files needed for the HDL simulation stage, but also provides the
number of instructions and cycles. The latter are used to calculate performance using
high-level simulations of the applications on a given architectural instance.

The second step, Synthesize, translates the XML file into a top-level VHDL file and
synthesizes the architecture using 90nm TSMC libraries. Physical characteristics are
obtained from the gate-level architecture with 90nm, regular-Vt (1V, 25◦C) general pur-
pose libraries. The final architecture is also placed and routed to obtain the circuit layout.

The third step, Simulation, utilizes either the enhanced Esterel [10] or the ModelSim
v6.0a simulator for HDL verification and analysis. The Esterel simulator provides faster
results compared to ModelSim without significant loss of accuracy [8]. Annotating the
captured switching activity of the HDL simulations onto the gate-level design results in
power figures.

70 F. Bouwens et al.

4 Architectural Explorations

The architecture explorations in the following sections start from the base architecture
presented in Figure 1 that was analyzed for energy efficiency in [8]. The power dis-
tribution of the base architecture for IDCT are depicted in Figure 3. The components
with the highest consumption (primary targets for improvement) are the configuration
memories (CMs: 37.22%), the FUs (19.94%) and the DRFs (14.80%) of the CGA.

drf_vliw
10.07%

prf_vliw
0.31%

fu_vliw
6.64%
cu_vliw
0.41%

drf_cga
14.80%

prf_cga
0.44% fu_cga

19.94%

Intercon. Logic
5.21%

Intercon. REG
2.66%

Intercon. MUX
2.30%

CM
37.22%

Fig. 3. Power distribution of our base architecture for IDCT: 80.45mW

We optimize these three components using the following methods:

CM: Create an array with less configuration bits by reducing the number of architec-
ture components or by using simpler interconnections;

FU CGA: Improve the FU design from non-pipelined to pipelined (VHDL modifica-
tions) and optimize the routing of the CGA array (XML architecture description
update);

DRF CGA: Reduce the register file sizes, apply clock gating and use register file
sharing.

Sharing data between the FUs and the local DRFs and PRFs is important for the
power consumption and performance of the architecture as these influence the CMs,
FUs and the local DRFs in power and performance. Therefore we will focus the ex-
plorations on routing and the register files. We only utilize IDCT and FFT kernels for
architecture explorations due to the fact that simulating complete applications such as
MPEG2 would result in prohibitively long simulation times. We will perform the fol-
lowing experiments for the explorations:

Local DRF distribution: Determine the influences of the RFs in the array by explor-
ing the distribution of the local data register files;

Interconnection Topology: Determine the influence of additional interconnections.
More interconnections improve routing, but increases the power consumption and
vice-versa;

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 71

Register File Size Reduction: Determine what is the minimum size of the local DRFs
and PRFs. This results in local register file size optimally fitting the array increasing
the performance vs. power ratio.

Our exploration and comparison starts from the result architecture obtained in [8]
and shown in Figure 1. All explored architectures have a CGA dimension of 4x4, 32-
bit data bus and are non-pipelined. Pipelining of the FUs is of little relevance for our
study as the performance vs. power ratio remains constant. However, pipelining will be
applied to the selected architecture in Section 5 and analyzed with different array sizes.
Furthermore, the VLIW DRF and PRF have 64 words of which 14 are rotating for the
DRF and 32 for the PRF. The local DRFs and PRFs have 16 words created as rotating
register files. The configuration memories have 128 words and vary in width depending
on the CGA organization.

4.1 Distributing Local Data Register Files

This section investigates the influence of the local DRFs and PRFs on power and perfor-
mance for the array. This study is based on a fixed mesh plus interconnection topology
between the FUs with vertical and horizontal connections [8]. Among the FUs we ex-
plore variable register file distributions proposed in [11] which are also depicted in
Figure 4. There are eight FUs with multiplication and four FUs with memory LD/ST
capabilities.

VLIW DRF

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

VLIW DRF

FU FU FU FU

FU

RF

FU

RF

FU

RF

FU

RF

FU FU FU FU

FU FU FU FU

VLIW DRF

FU FU FU FU

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

FU
RF

= MUL

= LD/ST

Mesh_plus Reg_con_shared_xR_yW Reg_con_all

Fig. 4. Distribution of the Local DRFs

The three different architectures have a local PRF for each FU that can be replaced by
predicated busses (noted with suffix pd in Table 1). The capability of storing and later
processing is not possible with the busses that is a potential performance bottleneck.

The simplest architecture mesh plus does not have local DRFs and completely rely
on the available data busses for all data transfers. Only the first row of FUs is connected
to the global DRF. The architecture reg con shared xR yW shares its inputs and outputs
of the RFs to decrease the area of the RFs and share data more efficiently. For the shared
RF architecture we investigate the influence of the number of ports for the local RFs.
More precisely we simulated instances with 2, 4 and 8 read ports. The most complex
architecture reg con all has a DRF for each FU in the array and is similar to the one

72 F. Bouwens et al.

Table 1. Distributed DRFs Names

Original Renamed Original Renamed
4x4 mesh plus arch 1 4x4 mesh plus pred bus arch 1 pb
4x4 reg con shared 2R 1W arch 2 4x4 reg con shared 2R 1W pred bus arch 2 pb
4x4 reg con shared 4R 2W arch 3 4x4 reg con shared 4R 2W pred bus arch 3 pb
4x4 reg con shared 8R 4W arch 4 4x4 reg con shared 8R 4W pred bus arch 4 pb
4x4 reg con all arch 5 4x4 reg con all pred bus arch 5 pb

0.0

0.5

1.0

1.5

2.0

2.5

np
_1

x1
_r

eg

ar
ch

_1

ar
ch

_1
_p

b

ar
ch

_2

ar
ch

_2
_p

b

ar
ch

_3

ar
ch

_3
_p

b

ar
ch

_4

ar
ch

_4
_p

b

ar
ch

_5

ar
ch

_5
_p

b

ar
ch

_6

ar
ch

_6
_p

b

ar
ch

_7

ar
ch

_7
_p

b

ar
ch

_8

L
ea

ka
g

e
(m

W
)

Intercon.
Misc.
Intercon.
REGs.
Intercon.
MUX
FU_VLIW

PRF_VLIW

DRF_VLIW

FU_CGA

PRF_CGA

DRF_CGA

VLIW_CU

CM

Fig. 5. Leakage Power

depicted in Figure 1. The created architectures are noted in Table 1 and the names are
abbreviated for ease of explanation.

All results presented here and in Section 4.2 are placed together in Figures 5 and 7
- 10. The leakage results are depicted in Figure 5 and the power results at 100MHz of
IDCT and FFT are presented in Figures 7 and 8, respectively. The energy-delay results
are depicted in Figures 9 and 10. We will discuss the results presented here first.

Removing the local DRFs in the first two architectures (arch 1 and arch 1 pb) result
in a low energy consumption, but decreased performance as depicted in Figures 9 and
10. This indicates the DRFs are beneficial during CGA operation. Replacing the PRFs
with a bus increases energy consumption by (FFT: 10 - 46%, IDCT: 5 - 37%) except
for arch 5. This experiment shows that storing predicate results of previous operations
in local PRFs is essential for overall power consumption in cases with few local DRFs
or no DRF at all.

The experiment in this section showed that register file sharing creates additional
routing for the DRESC compiler that improves scheduling density of the array. Inter-
connection complexity is reduced requiring less configuration bits, hence decreasing the
size of the configuration memories. Replacing four RFs with only one reduced leakage
and IDCT/FFT power consumption of the local DRFs. Local RFs with 1 write and
2 read ports in arch 2 outperforms in terms of power and energy-delay the fully dis-
tributed RFs architecture arch 5 for both, FFT and IDCT, kernels.

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 73

4.2 Interconnection Topology

This section explores the impact of additional interconnections on power and perfor-
mance. This enhancement has a fixed reg con all RF distribution similar to the base ar-
chitecture in [8]. The three different interconnection topologies are depicted in Figure 6.
The resources and LD/ST units are distributed in the same way as in Figure 4.

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

Mesh Mesh_plus Morphosys

Fig. 6. Interconnection Topologies

We apply the same methodology as in Section 4.1 by replacing the local PRFs with
busses. The different architectures explored are listed in Table 2 and their results are
merged with the results of Section 4.1 and depicted in Figures 5 to 10. Combining the
Mesh plus architecture with the reg con all base architecture in Figure 6 would result
in arch 5 in Table 1, hence it is omitted in Table 2. The Morphosys interconnection is
based on the Morphosys architecture [5] that fully interconnects the array in both row
and column directions. The final arch 8 architecture will be explained at the end of this
section.

By considering only the architectures noted in Table 2 we notice that additional in-
terconnections in the base architecture are beneficial for energy-delay [9]. This is espe-
cially noticeable with the Morphosys architecture (arch 7). Figures 7 and 8 show that
replacing the local PRFs by predicate busses decreases the overall power and energy
consumption. Although the architecture arch 5 is better than arch 7 pb in both power
and energy, the additional Morphosys connection would be useful for larger arrays e.g.
8x8 and more. Therefore, we selected the arch 7 pb as the best fit for IDCT and FFT.

When the results of Sections 4.1 and 4.2 are combined, the arch 8 architecture with
shared DRFs, Morphosys connections and local PRFs is created as depicted in Figure
11. The predicate busses are omitted as they showed not to improve power and per-
formance of the architecture with shared register files. Figure 9 and 10 show arch 2 is
energy and delay appropriately, however it lacks the Morphosys interconnection that

Table 2. Interconnection Topologies Names

Original Renamed Original Renamed
4x4 reg con all mesh arch 6 4x4 reg con all mesh pred bus arch 6 pb

4x4 reg con all morphosys arch 7 4x4 reg con all morphosys pred bus arch 7 pb

4x4 reg con shared 2R 1W morphosys arch 8

74 F. Bouwens et al.

0

10

20

30

40

50

60

70

80

90

np
_1

x1
_r

eg

ar
ch

_1

ar
ch

_1
_p

b

ar
ch

_2

ar
ch

_2
_p

b

ar
ch

_3

ar
ch

_3
_p

b

ar
ch

_4

ar
ch

_4
_p

b

ar
ch

_5

ar
ch

_5
_p

b

ar
ch

_6

ar
ch

_6
_p

b

ar
ch

_7

ar
ch

_7
_p

b

ar
ch

_8

ID
C

T
 P

o
w

er
 (

m
W

)

Intercon.
Misc.
Intercon.
REGs.
Intercon.
MUX
FU_VLIW

PRF_VLIW

DRF_VLIW

FU_CGA

PRF_CGA

DRF_CGA

VLIW_CU

CM

Fig. 7. IDCT Power @ 100MHz

0

10

20

30

40

50

60

70

80

90

100

np
_1

x1
_r

eg

ar
ch

_1

ar
ch

_1
_p

b

ar
ch

_2

ar
ch

_2
_p

b

ar
ch

_3

ar
ch

_3
_p

b

ar
ch

_4

ar
ch

_4
_p

b

ar
ch

_5

ar
ch

_5
_p

b

ar
ch

_6

ar
ch

_6
_p

b

ar
ch

_7

ar
ch

_7
_p

b

ar
ch

_8

F
F

T
 P

o
w

er
 (

m
W

)

Intercon.
Misc.
Intercon.
REGs.
Intercon.
MUX
FU_VLIW

PRF_VLIW

DRF_VLIW

FU_CGA

PRF_CGA

DRF_CGA

VLIW_CU

CM

Fig. 8. FFT Power @ 100MHz

is beneficial for larger arrays. Table 3 notes the improvements of arch 8 over the base
architecture in Figure 1. The results clearly show an improvement in performance (MIP-
S/mW) of 14 - 16%. Power consumption was decreased by 22%, however, energy im-
proved only by 1.6% as additional execution cycles are required for the applications due
to the reduced local DRFs and PRFs sizes. Minimizing the number of local DRFs has
a beneficial effect on area resulting in 14.4% reduce. We select the arch 8 architecture
for further optimizations and explorations.

4.3 Register File Size Modification

In this section we evaluate the selected architecture arch 8 of Section 4.2 with variable
local DRF and PRF sizes to improve power while maintaining performance of the ar-
chitecture for kernels considered here. The global DRF and PRF can not modified and

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 75

arch_1
arch_1_pb

arch_2

arch_3_pb

arch_5_pb

arch_6

arch_6_pb

arch_2_pb

arch_3arch_4

arch_4_pb

arch_5 arch_7

arch_7_pb

arch_8

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

500 550 600 650 700 750 800 850 900 950

Simulation Time (us)

E
n

er
g

y
(m

J)

Fig. 9. IDCT Energy-Delay @ 100MHz

arch_1

arch_1_pb

arch_2

arch_2_pb

arch_3

arch_3_pb

arch_4

arch_4_pb

arch_5

arch_5_pb

arch_6
arch_6_pb

arch_7

arch_7_pb

arch_8

5.0E-04

5.5E-04

6.0E-04

6.5E-04

7.0E-04

7.5E-04

8.0E-04

8.5E-04

9.0E-04

9.5E-04

1.0E-03

7 9 11 13 15 17 19 21 23

Simulation Time (us)

E
n

er
g

y
(m

J)

Fig. 10. FFT Energy-Delay @ 100MHz

Table 3. Base vs. arch 8 for IDCT & FFT @ 100MHz

MIPS/mW mW/MHz Power Energy Area
Benchmark (mW) (uJ) mm2

IDCT
base 17.51 0.81 80.45 37.72 1.59

arch 8 20.00 0.63 62.68 37.46 1.36
Improvement 14.22% 22% 22% 0.6% 14.4%
FFT

base 9.40 0.72 73.28 0.62
arch 8 10.95 0.57 57.05 0.61

Improvement 16.5% 20.8% 22.1% 1.6%

76 F. Bouwens et al.

fixed at 64 words. The global DRF has 8 read and 4 write ports, which are 32-bits wide.
The global PRF has 4 read and write ports each 1-bit wide.

The results in Table 4 show that 4 registers provide the least amount of instructions
and cycles with an optimal instructions per cycle (IPC) for an 4x4 array. The registers
that are not used will be clock gated reducing the negative impact on power. Interest-
ing to note is the decrease of IPC with increasing RF sizes. This was unexpected as
IPC usually saturates with increasing RF sizes. Nevertheless, our tests showed that the
scheduler of DRESC2.x improved over time [9] as the IPC increased with better usage
of the local DRFs, but the number of utilized registers is still relatively low.

VLIW DRF

Reg_con_shared_2R_1W_morphosys

RF

RF

RF

RF

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

Fig. 11. Proposed ADRES archi-
tecture with shared RFs

Table 4. Reducing Register File Size arch 8

Local Register File Size
Application 2 4 8 16
IDCT
Instructions 974632 923940 923980 923960

Cycles 62924 59755 59762 59757
IPC 9.69 10.21 10.21 10.21

FFT
Instructions 11364 10532 11040 11060

Cycles 1087 1035 1063 1065
IPC 2.48 2.73 2.57 2.58

5 Final Results

The optimizations in Sections 4.1 till 4.3 led to arch 8 architecture with shared local
DRFs, Morphosys interconnections and reduced RF sizes. The architecture discussed
is a non-pipelined version with no further optimizations of the architecture and data
path. We apply three additional optimizations for the architecture and data path in this
section: clock gating, operand isolation and pipelining. Clock gating targets the regis-
ter files by reducing their switching activity. This feature is implemented automatically
by Synopsys Power Compiler. Empirical results show a power reduction of the reg-
ister file between 50 - 80%. A pipelined version of the same architecture shows 20 -
25% power improvement in overall. Operand Isolation targets the data path of a FU
reducing switching activity of unused components. It is implemented manually as the
automated version built in the design tools used only reduced the power by 1%. Our
manual implementation using OR-based isolation [12] reduced power by 30% for a
single FU and 30 - 40% for the overall pipelined system. Pipelining increases perfor-
mance significantly by creating shorter critical paths and provides higher throughput.
Pipelining, which is implemented by hand, has a disadvantage that power increases lin-
early when increasing the frequency unless clock gating and operand isolation is used.
These optimizations are most efficient with multi-cycle architectures and very suitable
for pipelined architectures.

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 77

Table 5. Comparing base (100MHz) with final instance (312MHz)

Total MIPS MIPS/mW mW/MHz
Power Energy
(mW) (uJ)

FFT
Base 73.28 0.619 759 10.35 0.7328
Final 67.29 0.307 1190 17.68 0.2153

Improve 8.17% 50.4% 56.78% 70.82% 70.62%
IDCT

Base 80.45 37.72 1409 17.51 0.8045
Final 81.99 19.14 2318 28.27 0.2624

Improve -1.91% 49.25% 64.51% 61.45% 67.38%

5.1 Putting It All Together

Combining the arch 8 architecture with the aforementioned optimizations results in
a low power, high performance ADRES instance: 4x4 arch 8 4L final. A comparison
between the proposed architecture with the base architecture (shown in Figure 1) is
provided in Table 5. The results indicate a moderate improvement in power of 8%, but
with a higher performance of 56 - 65% due to the pipelining and routings features. This
results in lower energy dissipation of the architecture by 50%. The area of the proposed
architecture was improved from 1.59mm2 (544k gates) to 1.08mm2 (370k gates), which
is equivalent to a 32% improvement.

5.2 Final Architecture Power Decomposition

The final 4x4 arch 8 4L final architecture is placed and routed using Cadence SOC
Encounter v4.2. The power and area of the proposed architecture layout are decom-
posed in Figures 12(a) and 12(b), respectively. These figures are of the ADRES core
architecture excluding data and instruction memories. Due to the fact that the final ar-
chitecture is pipelined the clock tree contribution (4.67mW) is included in these figures.
The data memory and the instruction cache were not included in the synthesis for which
no power estimations are made. The multiplexors in the CGA datapath were removed
during synthesis by the synthesis tool as this was beneficial for performance.

Comparing Figure 3 with Figure 12(a) we notice that the shared local DRFs com-
bined with clock gating results in lower power consumption. The configuration mem-
ories still require a vast amount of power and area, but have decreased in size as well.
Further optimizations of the configuration memories require advance power manage-
ment e.g. power gating, which was not applied in the final architecture. Interesting to
note is the relatively higher power consumption of the CGA FUs compared to Figure 3.
This is caused by the higher utilization of the array compared to the base architecture
consuming more power, but providing higher performance. This increases power effi-
ciency as noticeable in Table 3. The 16 CGA FUs and the CMs require 68.66% of all
the area as depicted in Figure 12(b). The largest single component is the global DRF
(noted as drf vliw) with 8 read and 4 write ports.

78 F. Bouwens et al.

fu_cga
50.94%

CM
31.45%

cu_vliw
0.56%

prf_cga
0.24%

drf_vliw
4.60%fu_vliw

0.37%

prf_vliw
0.17% Intercon. Logic

6.63%

Intercon. REG
3.33%

drf_cga
1.71%

(a) IDCT Power: 81.99mW

CM
28.83%

fu_cga
39.83%

drf_cga
1.84%

prf_vliw
0.58%

drf_vliw
15.24%

fu_vliw
8.29%

Intercon. Misc.
4.66%

prf_cga
0.26%

vliw_cu
0.47%

(b) Area: 1.08mm2

Fig. 12. Results of 4x4 arch 8 4L final @ 312MHz

5.3 Energy-Delay Architectures Analysis of Different Array Sizes

The proposed architecture was created as a 4x4 array, however, different array sizes e.g.
2x2 and 8x8 are of interest to determine the most efficient architecture dimensions us-
ing the same interconnection network. The same sizes for the global (64 registers) and
local RFs (4 registers) are maintained and the FUs are pipelined. Changing the array di-
mension implies different routing capabilities. For example, a 2x2 array has less routing
overhead and requires reduces the possibilities for the compiler to map loops efficiently
on the array. This requires deeper and larger configuration memories to map a loop on
the array and increases power consumption. An 8x8 array improves the possibilities for
the compiler to map loops on the array and reduces the sizes of the CMs.

We compare the pipelined architectures with non-pipelined key architectures men-
tioned in this paper. All key architectures in this paper are noted in Table 6 including
their frequencies of which the energy-delays are depicted in Figures 13 and 14. The first
three architectures are non-pipelined as the last three are pipelined. The 4x4 arch 8 16L
architecture has 16 register words in the local DRFs and PRFs. The architectures with
4L in their name have 4 register words in the local DRFs and PRFs as explained in
Section 4.3.

Table 6 shows that modifying the size of an ADRES instance creates different critical
paths by increasing frequency of a 2x2 and decreasing for an 8x8 instance. The energy-
delay charts in Figure 13 and 14 show that the proposed pipelined 4x4 architecture is
superior to all other architectures. The 8x8 instance has the same performance as the
4x4 architecture for the IDCT code, however, due to its larger size and power consump-
tion the energy consumption is also higher. For the FFT code the 8x8 architecture is

Table 6. Key Architectures

Non-pipelined Architecture Freq (MHz) Pipelined Architecture Freq (MHz)
base 100 4x4 arch 8 4L final 312
4x4 arch 8 16L (16L DRFs) 100 2x2 arch 8 4L final 322
4x4 arch 8 4L (4L DRFs) 100 8x8 arch 8 4L final 294

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 79

4x4_reg_con_all
(base)

4x4_arch_8_16L

4x4_arch_8_4L

4x4_arch_8_4L_final

2x2_arch_8_4L_final

8x8_arch_8_4L_final

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 100 200 300 400 500 600 700

Simulation Time (us)

E
n

er
g

y
(m

J)

Fig. 13. Energy-Delay IDCT Results of Key Architectures

4x4_reg_con_all
(base)

4x4_arch_8_16L

4x4_arch_8_4L

4x4_arch_8_4L_final

2x2_arch_8_4L_final

8x8_arch_8_4L_final

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

8.E-04

9.E-04

0 2 4 6 8 10 12

Simulation Time (us)

E
n

er
g

y
(m

J)

Fig. 14. Energy-Delay FFT Results of Key Architectures

minimally faster than the 2x2. This is because the scheduler failed to map one key loop
of the FFT code on the array that is reducing performance considerably.

The key conclusions that can be drawn from our study are:

– The CGA is highly dependent on the local DRFs. Sharing DRFs among FUs im-
proves routing for the DRESC compiler increasing scheduling density of the array;

– Replacing PRFs with busses is only beneficial if there are sufficient local DRFs;
– The optimal local DRF and PRF sizes of the proposed architecture is 4 words with-

out influencing performance. The DRESC compiler can be enhanced for the array
by improving the local DRF utilizations for loops;

– An array dimension of 4x4 balances energy vs. performance best for the FFT and
IDCT kernels.

80 F. Bouwens et al.

6 Conclusions

This paper delivers for the first time systematic explorations on the ADRES coarse-
grained reconfigurable array template. An existing ADRES instance was optimized in
terms of power, performance and energy. Several architectures were explored by fo-
cussing on the register file distributions and different interconnect topologies. The pro-
posed architecture is evaluated for reduction of register file sizes.

The distribution of local data register files provided optimal results when the DRFs
with 2 read and 1 write port are shared among 4 diagonally, neighboring functional
units. This created additional routing capabilities for the DRESC scheduler and im-
proved data sharing and scheduling density of the array. Replacing predicate register
files with busses diminished power and energy-delay results. The results of the inter-
connection topology exploration showed that a fully interconnected array of the FUs
and RFs in both row and column direction was optimal. Applying predicate busses im-
proved power and energy consumption when there were sufficient local DRFs available.
The final proposed ADRES instance consists of local PRFS and shared local DRFs, the
Morphosys interconnection scheme and optimizations like clock gating, operand iso-
lation and pipelining. Comparing 2x2, 4x4 and 8x8 instances based on the energy vs.
delay shows that the 4x4 instance performed optimal as the instruction scheduling den-
sity is highest. The DRESC compiler has significant room for improvement for larger
arrays.

In conclusion we show that ADRES offers an attractive path for low power scaling
of e.g. VLIW DSP cores. The proposed ADRES architecture shows good performance
efficiency of 25MIPS/mW and power efficiency 0.24mW/MHz at 312MHz. This im-
proves the performance (MIPS/mW) by 60 - 70% and energy by 50% The energy con-
sumption is 0.307uJ - 19.14uJ and the performance is 1190 - 2318 MIPS for FFT and
IDCT, respectively. The area utilization is 1.08mm2 for the ADRES core studied here
targeting 90nm TSMC libraries. Comparing the ADRES base architecture with the pro-
posed ADRES architecture the performance (MIPS/mW) improved by 60 - 70%, energy
by 50% and area by 32%.

References

1. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: An Architecture with
Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix. In: IMEC
2003, Kapeldreef 75, B-3001, Leuven, Belgium (DATE 2004)

2. KressArray, http://kressarray.de
3. SiliconHive, http://www.silicon-hive.com
4. PACT XPP Technologies, http://www.pactxpp.com
5. Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N.: MorphoSys: an integrated

reconfigurable system for data-parallel and computation-intensive applications. In: Univer-
sity of California (US) and Federal University of Rio de Janeiro (Brazil), pp. 465–481. IEEE
Transactions on Computers, Los Alamitos (2000)

6. Hartenstein, R.: A Decade of Reconfigurable Computing: A Visionary Retrospective, CS
Dept (Informatik), University of Kaiserlautern, Germany, March 2001, Design, Automation
and Test in Europe, 2001. Conference and Exhibition pp. 642–649 (2001)

http://kressarray.de
http://www.silicon-hive.com
http://www.pactxpp.com

Architecture Enhancements for the ADRES Coarse-Grained Reconfigurable Array 81

7. Lambrechts, A., Raghavan, P., Jayapala, M.: Energy-Aware Interconnect-Exploration of
Coarse Grained Reconfigurable Processors. In: WASP. 4th Workshop on Application Spe-
cific Processors (September 2005)

8. Bouwens, F., Berekovic, M., Kanstein, A., Gaydadjiev, G.: Architectural Exploration of the
ADRES Coarse-Grained Reconfigurable Array. In: Diniz, P.C., Marques, E., Bertels, K.,
Fernandes, M.M., Cardoso, J.M.P. (eds.) ARC 2007. LNCS, vol. 4419, pp. 1–13. Springer,
Heidelberg (2007)

9. Kwok, Z., Wilton, S.J.E.: Register File Architecture Optimization in a Coarse-Grained Re-
configurable Architecture. In: FCCM 2005. Proceedings of the 13th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, vol. 00, University of British
Columbia (2005)

10. http://www-sop.inria.fr/esterel.org/
11. Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkerst, D., Lauwereins, R.: Architecture Explo-

ration for a Reconfigurable Architecture Template. In: IEEE Design & Test of Computers,
pp. 90–101. IMEC and Katholieke Universiteit Leuven (March 2005)

12. Münch, M., Wurth, B., Mehra, R., Sproch, J., Wehn, N.: Automating RT-Level Operand Iso-
lation to Minimize Power Consumption in Datapaths. In: Proceedings Design, Automation
and Test in Europe Conference and Exhibition 2000, pp. 624–631 (2000)

http://www-sop.inria.fr/esterel.org/

	Introduction
	ADRES Base Architecture and Programming Model
	Tool Flow
	Architectural Explorations
	Distributing Local Data Register Files
	Interconnection Topology
	Register File Size Modification

	Final Results
	Putting It All Together
	Final Architecture Power Decomposition
	Energy-Delay Architectures Analysis of Different Array Sizes

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

