
Implementation of a Coarse-Grained Reconfigurable Media
Processor for AVC Decoder

B. Mei (bennet@imec.be), A. Kanstein
(a.kanstein@freescale.com), B. De Sutter
(desutter@imec.be), T. Vander Aa (vanderaa@imec.be), S.
Dupont (duponts@imec.be) and M. Wouters (wouters@imec.be)

Abstract. ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) is a
templatized coarse-grained reconfigurable processor architecture. It targets at embedded ap-
plications which demand high-performance, low-power and high-level language programma-
bility. Compared with typical VLIW-based DSP, ADRES can exploit higher parallelism by
using more scalable hardware with support of novel compilation techniques. We developed a
complete tool-chain, including compiler, simulator and HDL generator. This paper describes
the design case of a media processor targeting at H.264 decoder and other video tasks based
on the ADRES template. The whole processor design, hardware implementaiton and appli-
cation mapping are done in a relative short period. Yet we obtain C-programmed real-time
H.264/AVC CIF decoding at 50 MHz. The die size, clock speed and the power consumption
are also very competitive compared with other processors.

1. Introduction

Nowadays consumers would like to have one portable device that combines
the functionality of a mobile phone, personal digital assistant, digital cam-
era,... This requires a processor that can combine the very different perfor-
mance requirements of these functionalities with the energy efficiency that
is needed for a battery powered device. At the same time the increasing cost
of ASICs is driving the designers’ choice towards more flexible solutions.
Because of this, coarse-grained reconfigurable architectures (CGRAs) have
become increasingly important in recent years. Various architectures have
been proposed (Hartenstein, 2001) that are composed of an array of Func-
tional Units (FUs). An FU is a hardware operator that is capable of executing
word- or subword-level operations (e.g. addition, multiplication, shift) instead
of the bit-level operations found in common FPGAs. This coarse granularity
greatly reduces delay, area, power and configuration time compared with FP-
GAs, however, at the expense of flexibility (Hartenstein, 2001). On the other
hand, compared with traditional embedded processors such as DSPs (digital
signal processors), these architectures offer potential to achieve higher per-
formance and power-efficiency because of their massive amount of resources
and less expensive architectural features.

However, these architectures generally lack good tool support due to their
complexity. They are programmed manually or have limited automatic tool

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 5/10/2007; 17:06; p.1

2

support. On the other hand, modern multimedia and wireless communication
applications are becoming increasingly complex. It is extremely difficult for
application developers to program such complex architectures manually. This
is one of important reasons that CGRAs have yet to make it into mainstream
applications.

In past, we have developed ADRES (Architecture for Dynamically Re-
configurable Embedded Systems (Mei et al., 2003a)), which features a unique
concept of combining a VLIW mode and an reconfigurable array mode into
the same architecture. The VLIW mode is used for exploit instruction-level
parallelism, while the array mode is designed to accelerate loops in a pipelined
way. A novel modulo scheduling algorithm was proposed to solve the key
compilation problem of mapping loops onto partially connected array (Mei
et al., 2003b). A prototype compiler called DRESC (Dynamically Reconfig-
urable Embedded Systems Compiler) is developed based on the algorithm.

In this paper, we present a more complete tool flow based on recent devel-
opments. It meets requirements from application development downto hard-
ware verification: a compiler, assembler, linker and several simulators. It also
includes tools to automatically generate synthesizable VHDL from high-level
architecture description and help fast power simulation. Based on the toolset,
we demonstrate how a high-performance and low-power media processor for
video applications is designed as an instance of ADRES template. With our
retargetable toolset support, it is very easy to exploit different design options
to achieve our goal. We also show the hardware implementation results of
the media processor. It achieves clock speed of 300MHz and die size of only
3.6mm

2. More importantly, it meets our low-power goal for target applica-
tions. The whole media processor and the mapped H.264/AVC decoder have
been verified and demonstrated on an FPGA-based platform. The design of
the media processor proves our architecture and toolset are mature enough to
handle complex application such as an H.264/AVC decoder.

The remainder of this paper is organized as follows. Section 2 gives de-
scription of the ADRES architecture template and its complete toolset. Sec-
tion 3 discusses design choices that were made to obtain the required op-
eration frequency and to obtain high enough IPC (instruction per cycle).
Experimental results are reported in Section 4. Section 5 discusses some
related work. Finally, conclusions are drawn and future work is discussed
in Section 6.

2. ADRES Reconfigurable Processor Template and Toolset

This section describes the ADRES processor template and its toolset.

paper.tex; 5/10/2007; 17:06; p.2

3

2.1. ARCHITECTURE DESCRIPTION

The ADRES processor template is shown in Figure 1. It consists of an array of
basic components, including FUs, register files (RFs) and routing resources.
At the highest abstraction level, it tightly couples a VLIW processor and a
reconfigurable array in the same physical entity. The identified computation-
intensive kernels, typically loops, are mapped onto the reconfigurable array,
whereas the remaining code is mapped onto the VLIW processor. The data
communication between the VLIW processor and the reconfigurable array
is performed through the shared RF and shared memory access. ADRES
is a flexible template specified by an XML-based architecture specification
language, which is integrated into the DRESC compiler framework.

RF

FU

VLIW view

Reconfigurable array view

Instruction fetch
Instruction dispatch
Instruction decode

DATA Cache

FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

FU FU FU FU FU FU FU FU
RF RF RF RF RF RF RF RF

Figure 1. ADRES architecture template

Inside the ADRES processor (Figure 1), we find many basic components,
including computational resources, storage resources and routing resources.
The computational resources are functional units (FUs), which are capable
of executing a set of operations. The storage resources mainly refer to the
register file (RFs) and memory blocks, which can store intermediate data. The
routing resources include wires, multiplexors and busses. Basically, computa-
tional resources and storage resources are connected by the routing resources
in the ADRES array. This is similar to other CGRAs. The ADRES array is
a flexible template instead of a concrete instance. Figure 1 only shows one
instance of the ADRES array with a topology resembling the MorphoSys ar-

paper.tex; 5/10/2007; 17:06; p.3

4

chitecture (Singh et al., 2000). An XML-based description language specifies
the chosen ADRES instances (see Section 2.4.1).

Figure 2 shows the details of an example datapath. The FU performs
coarse-grained operations, i.e., operations on 8, 16, 32 or 64-bit words. The
FU supports predicated operations to remove control flow. This is needed
since the scheduling algorithm used does not support loops with internal
control flow (see Section 2.3.1). To guarantee timing, the outputs of FUs are
required to be buffered by an output register. The results of the FU can be
written to the local RF, which is usually small and has less ports than the
shared RF, or routed to other FUs. The multiplexors are used for routing data
from different sources. The configuration RAM provides bits to control these
components. It stores a number of configuration contexts locally, which can
be loaded on a cycle-by-cycle basis. The configurations can also be loaded
from the memory hierarchy at the cost of extra delay if the capacity of the
local configuration RAM is not sufficient. Figure 2 shows only one possibility
of how the datapath can be constructed. Very different instances are possible.
For example, the output ports of a RF can be connected to input ports of
several neighboring FUs. The ADRES template has much freedom to build
an instance out of these basic components.

FU

mux mux mux

reg reg reg

pred src1 src2

dst1pred_dst1 pred_dst2

RF

From different src.

To different dest.

Conf. RAM

conf.
counter

buffer

Figure 2. An example of detailed datapath

2.2. EXECUTION AND CONFIGURATION MODEL

The most important feature of the ADRES architecture is the tight coupling
between a VLIW processor and a coarse-grained reconfigurable array. Since
VLIW processors and CGRAs use similar components like FUs and RFs, a
natural thought is to make them share those components. The whole ADRES
architecture has two virtual functional views: a VLIW processor and a re-
configurable array. These two virtual views share some physical resources
because their executions will never overlap with each other thanks to the
processor/co-processor execution model. This execution model also greatly

paper.tex; 5/10/2007; 17:06; p.4

5

simplify compiler development though at expenses of losing potential perfor-
mance gain using concurrent execution model.

For the VLIW processor, several FUs are allocated and connected together
through one multi-port register file. The FUs used in VLIW are generally
more powerful. For example, some of them have to support the branch and
subroutine call operations. The instructions of the VLIW processor are loaded
from the main instruction memory hierarchy. This requires typical steps like
instruction fetching, dispatching and decoding. For the reconfigurable array
part, all the resources, including the RF and FUs of the VLIW processor,
form a big 2D array. The array is connected by partial routing resources.
Dataflow-like kernels are mapped to the array in a pipelined way to exploit
high parallelism. The FUs and RFs of the array are simpler than those of
the VLIW processor. The communication between these two virtual views
is through the shared VLIW register file and memory access. The sharing
is in the time dimension so that it does not increase the hardware cost. For
example, it does not require more ports in the VLIW RF.

In the VLIW mode, the configuration is performed as in all other VLIW
processors: in each cycle, an instruction is fetched from the instruction mem-
ory hierarchy and executed. In the array mode, the configuration contexts are
fetched from the on-chip configuration memory. Each kernel may use one
or more consecutive contexts. If the configuration memory is big enough to
accommodate all the kernels, all these kernels only need to be loaded once
at start-time. Afterward, the reconfiguration can be done on cycle-by-cycle
basis. If the configuration memory is not big enough for all the kernels, one or
more existing kernel has to be carefully chosen and discarded in order to load
a new kernel from the main instruction-memory hierarchy. This is known as
the kernel scheduling problem (Maestre et al., 2001). Proper algorithms can
minimize the reconfiguration overhead (Maestre et al., 2001). However, this
aspect is not addressed in this paper.

2.3. BASIC COMPONENTS

2.3.1. Functional Units
An FU can perform a set of operations. In ADRES, only fixed-point opera-
tions are supported because they are considered sufficient for typical telecom-
munication and multimedia applications. All FUs are fully pipelined so that
one instruction can be issued at each cycle even when the latency of that
instruction is more than one cycle. Different implementations may lead to
different latency, which can be specified in the architecture description (Sec-
tion 2.4.1) and is supported by the compiler.

The supported instruction set is very close to that of a standard RISC pro-
cessor. Typical instructions supported include arithmetic operations (ADD,
SUB, MUL), logic operations (AND, OR, etc.), and compare operations (CMP,

paper.tex; 5/10/2007; 17:06; p.5

6

PRED). The VLIW FUs, typically the first row of FUs, also support load/store
and control operations (LOAD, STORE, Branch, JMP). The DRESC toolset
allows a user to define and use intrinsic functions such as max and min, which
are often used in signal processors. The intrinsic functions can be used just as
normal functions, and will be compiled to special instructions supported by
certain FUs.

Predicated execution is introduced in the FUs in order to remove control-
flow using if-conversion (Allen et al., 1983) and do other transformations.
Each FU has three source operands: pred, src1 and src2. pred is a 1-bit signal
(Figure 2). If it is 1, the operation is executed; otherwise, the operation is
nullified. src1 and src2 are normal data source operands. To enhance the
routability of the ADRES array, the FU is augmented with swapping logic
for src1 and src2 operands. Therefore, the operands of all operations can
be switched, even though some operations, such as shifts, are not commu-
tative. This feature increases the scheduling freedom. The FU also has three
destination operands: pred dst1, pred dst2 and dst. pred dst1 and pred dst2
are complementary 1-bit predicates holding the results of special comparison
operations. dst is the normal output operand.

Furthermore, the FUs are enhanced with routing operations that allow src
operands to be copied to the destination ports of FUs in array mode. The SEL1
and SEL2 instructions copy data from src1 or src2 to dst, similar to MOV
operation. Besides the main operation to be executed on an FU, so-called
extra operations can be executed at the same time to route predicate data. The
extra operations CON1, CON2 and CON12 take care of the predicate part by
copying a predicate from pred to pred dst1, pred dst2 or both.

2.3.2. Register Files
Register files (RFs) are used in the ADRES architecture as one of the main
storage resources. We support different types of register files: various amount
of read and write ports are supported, as well as 1-bit predicate and 32-bit
data register files, rotating/non-rotating/mixed register files.

Normally the shared VLIW register file requires multiple ports. For each
FU of VLIW, at least 2 read ports and 1 write ports are required. Thus, for the
3-issue VLIW implemented on the FPGA platform, a 9-port RF is used (see
also Section 3). For distributed RFs inside the array, typically only simple
RFs are required with one read port and one write port. Simpler RFs are not
only faster and smaller, but also consume significantly less power.

Rotating register files (RRFs) are available to handle special requirements
of software pipelining (Rau et al., 1992). RRFs basically implement hardware-
based register renaming. Each physical RF address is calculated by adding a
virtual RF address and a value from the iteration counter of executed loops.
Hence, the different instances of the same variable in different iterations are
assigned to different physical registers, thus avoiding name clashes and the

paper.tex; 5/10/2007; 17:06; p.6

7

need for software-based renaming. In ADRES, a RF can be specified as rotat-
ing, non-rotating or mixed. A mixed RF contains a section of rotating registers
and a section of non-rotating registers. In the ADRES XML template, an
architecture designer can use these RFs freely with the only constraint that at
least one non-rotating RF or one non-rotating RF section should be available
in the VLIW execution mode.

2.3.3. Routing Network
The routing networks consist of a data network and a predicate network. The
data network routes the normal data among FUs and RFs, while the predicate
network directs 1-bit predicate signals. These two networks do not necessarily
have the same topology. Because of their different data widths, they cannot
overlap.

The basic routing resources are mux, point-to-point wire, and bus. Addi-
tionally, an FU can be used for routing both data and predicate using routing
operations discussed above. Arbitrary latency can be specified for these rout-
ing resources, in which case latches are inserted. A hardware designer can
exploit this freedom to the brake up critical paths in his design, thus achieving
the target clock speed (See section 3).

2.4. DRESC TOOLSET

For a complex architecture like ADRES, extensive tool support is essential
for designers to be really able to use it. Therefore we have developed the
ADRES architecture together with a complete set of tools, centered around
a compiler called DRESC (Dynamically Reconfigurable Embedded System
Compiler (Mei et al., 2002)). The compiler framework is depicted in Fig-
ure 3. A design starts from a C-language description of the application. The
profiling/partitioning step identifies the candidate compute intensive loops
(kernels) for mapping on the reconfigurable array based on execution time
and possible speed-up. Source-level transformations make the kernel soft-
ware pipelineable (see next paragraph) and to maximize the performance. In
the next step, we use IMPACT, a VLIW compiler framework (IMPACT,), to
parse the C code and to perform some analyses and optimizations. IMPACT
emits an intermediate representation, called Lcode, which is used as input
for scheduling. The XML-based architecture description that was described
before is used as an input for most of the lower level steps in the flow. The
parser and abstraction steps transform the architecture to an internal, more
detailed, graph representation (Mei et al., 2003b). Taking program and ar-
chitecture representation as input, a novel modulo scheduling algorithm is
applied to achieve high parallelism for the kernels, whereas traditional ILP
scheduling techniques are applied to discover the available moderate paral-
lelism for the non-kernel code. The communication between these two parts

paper.tex; 5/10/2007; 17:06; p.7

8

Figure 3. DRESC Compiler Framework

is automatically identified and handled by the DRESC compiler through joint
register allocation for the shared RFs. The compiler generates scheduled code
for both reconfigurable array and VLIW. The scheduled code can already be
simulated by a cycle-true simulator. It is also processed by the assembler and
linker to generate binary code. The binary code is used by a low-level Esterel
simulator and as final format for running on the hardware.

In the following text, we describe some parts of the tool flow in fur-
ther details. These parts are important for doing hardware implementation
of ADRES architecture and not published previously.

2.4.1. XML-Based Architecture Description
The XML-Based architecture description plays a central role in defining an
ADRES instance. Unlike other processor architecture description languages (Fauth
et al., 1995; Hadjiyiannis et al., 1997; Pees et al., 1999), our XML-based
description focuses on only high-level features of an architecture like the
amount of resources and their topology, which is the mostly needed informa-
tion for the compiler. We didn’t provide mechanisms to define the semantics
of each individual operation. Instead we assume the ADRES architecture will

paper.tex; 5/10/2007; 17:06; p.8

9

inherit the operation set generated by the compiler frontend. This assumption
simplifies the compiler support. We also simplify the pipeline description by
assuming all the FUs are fully pipelined. Therefore, only the latency of each
type of operation needs to be specified. The current description language is
extensible.

<resource>
 <FU name = "fu_0">
 <in name = "pred" width = "1" />
 ...
 <out name = "pred_dst1" width = "1" />
 ...
 <op>
 <opgroup name = "ldmem"/>
 ...
 </op>
 </FU>
 ...
 <RF name = "ireg_10" width = "32" size = "8">
 <in name = "in1" />
 <out name = "out1" />
 <out name = "out2" />
 </RF>
 ...
 <TRN name = "outireg_0" width = "32" delay = "1" />
 ...
</resource>

Figure 4. The resource section

The overall architecture description comprises main three sections: re-
source, connection and behaviour. The resource section allocates a number
of resources of different types (Figure 4). The resources include FUs, RFs
and TRNs (transitory nodes such as muxes and busses). For FUs, the names
of input and output ports, data width and supported operation groups can
be specified. The operation groups themselves are defined in the behaviour
section. RFs are specified in a similar way. TRNs currently include output
registers and busses because data are passed through these components in a
transitory way. Their specification includes data width and delay. Figure 4
shows all three types of resources allocated in the resource section. The
connection section defines the topology of an ADRES instance.

Figure 5 shows some examples of connections. Generally, it connects an
output port of an entity to an input port of another entity. If one entity doesn’t
have a port, e.g., output register, the port field can be skipped. If multiple
output ports are connected to one input port, an implicit multiplexor will be
created for the input port. The behaviour section defines some other architec-
tural properties (Figure 6). For example, it specifies which FUs and RFs are
used in the VLIW processor.

The XML file is quite large because each resource and connection have
to be individually described to allow maximal flexibility. A script languages
such as PHP language can be used to produce XML file in a convenient way.

paper.tex; 5/10/2007; 17:06; p.9

10

 <connection>
 <connect>
 <src entity = "vliw_pred" port = "out1" />
 <dst entity = "fu_0" port = "pred" />
 </connect>
 <connect>
 <src entity = "fu_0" port = "pred_dst1" />
 <dst entity = "vliw_pred" port = "in1" />
 </connect>
 ...
 <connect>
 <src entity = "outpred_2" />
 <dst entity = "pred_col_bus2" />
 </connect>
 ...
</connection>

Figure 5. The connection section

<behaviour>
 <vliw_section>
 <vliw_reg name = "vliw_reg" />
 <vliw_pred name = "vliw_pred" />
 <stop_sig name = "loop_stop" />
 </vliw_section>
 <op_section>
 <opgroup name = "arith" delay = "1">
 <op name = "mov" />
 <op name = "abs" />
 <op name = "add" />
 ...
 </opgroup>
 ...
 </op_section>

Figure 6. The behaviour section

The architecture description is used in many places of our tool flow, including
compiler, simulators and XML2VHDL tool.

2.4.2. XML2VHDL Tool
An XML2VHDL tool is developed to produce synthesizable VHDL directly
from architecture description. The tool generates the high-level structural
VHDL to compose all the basic components together. It also take care of
some tedious and error-prone tasks such as encoding of multiplexor selection.

It is not fully automated, however, leaving designer to design and opti-
mize basic components such as FUs and RFs. Other components such as
instruction cache and configuration memory are also pre-designed and pro-
vided as libraries to XML2VHDL tool. These components are not specified
in architecture description currently.

paper.tex; 5/10/2007; 17:06; p.10

11

Figure 7. XML2VHDL tool flow

2.4.3. Verification Support
To meet various requirements from application development to hardware ver-
ification, we developed several simulators. All the simulators can co-simulate
both the VLIW and the array parts.

The first simulator belongs to a category of so-called compiled simulators.
A compiled application on the target architecture is translated back to the C
code that simulates the execution of the assembly/machine code. Hence, the
generated C code is compiled by the host compiler to an application-specific
simulator running on the host computer. The compiled simulator can do very
fast simulation, allowing a programmer to verify his design quickly. It is also
provide cycle-true simulation, almost as accurate as HDL simulation (3%
margin).

For hardware verification, an Esterel-based simulator has been built. Es-
terel (Berry and Gonthier, 1992) is both a programming language, dedicated
to programming reactive systems, and a compiler which translates the Esterel
code into a flattened finite-state machine implemented in C. Our Esterel-
based simulator models an ADRES architecture structurally similar to the
HDL implementation, but at a higher level. It simulates much faster and
emits data traces that are used for hardware verification. We use it extensively
during our hardware verification phase and for exploring architectural design
options.

We are also developing a new conventional interpretive simulator, which is
an independent program taking directly the compiled application as input. It
interprets and executes the assembly/machine code at run-time operation-by-
operation on the simulated target architecture. A designer can use traditional
debugging commands such as step and breakpoint. It can also do the simula-
tion in different accuracy/speed levels and produce different trace levels for
verification. Additionally, this simulator can be used in system-level simula-
tion. For example, it has been integrated with ARM simulator using CoWare
tool to perform simulation of a system consisting multiple ARM and ADRES
processors.

paper.tex; 5/10/2007; 17:06; p.11

12

2.4.4. Power Simulation Support
Low-power is an extremely important goal for targeted application of ADRES
architecture. Therefore, we build extensive power simulation support in our
flow. The power simulation is based on Esterel simulator and third-party tool.
The key for power simulation is to obtain as accurate as possible switching
activity of the hardware. As mentioned in previous section, Esterel simulator
is very close to HDL simulation and runs much faster. Thus, it is extended
to producing the toggling file. On the other hand, we use realistic hardware
characteristics after synthesis, placement and routing. With all the informa-
tion, we use a third party tool, i.e., Synopsys Prime Power, to calculate power
consumption.

3. Instance Design and Hardware Implementation

With ADRES reconfigurable processor template, we can easily design pro-
cessor targeting at different application domain. The fully retargetable toolset
allow designers to quickly explore different design options.

In this project, our goal is to design a high-performance low-power media
processor for video codec, especially for H.264/AVC decoder application.
More concretely, the media processor should reach 300 MHz with 90nm
standard-cell technology. It should be able to decode D1 (720x480) quality
video stream at real-time (30 frames/sec.) and consume no more than 100mw
of power. Additionally, we would also like to build a demonstrator based
on FPGA. It should at least reach 50MHz and decode QVGA bitstream at
real-time.

We do not have automatic way to determine optimal size and topology of
a CGRA array. We determine array size according to design goal and analysis
of applications. With some early synthesis experiment. It became clear very
soon that a 4x4 ADRES array was the best choice for H.264/AVC decoder.
With larger arrays, the limited connectivity of the FPGA would become prob-
lematic. Also, the 4x4 array still achieves relatively high performance because
many loops do not contain enough parallelism to utilize all resources of a
larger array.

To reach these concrete objectives, two main design exploration tracks
were followed: instance design and application mapping. Here we only dis-
cuss instance design.

3.1. ADRES CORE EXPLORATION

3.1.1. Architecture Exploration
Since the ADRES template offers vast design space, to achieve a given de-
sign target, we can explore the design space to obtain an optimized instance.

paper.tex; 5/10/2007; 17:06; p.12

13

(a) unpipelined, densely-connected path

(b) pipelined, sparsely-connected path

Figure 8. A fragment of our original instance (a), and an adapted version thereof (b).

This optimization step included, amongst others, the insertion of pipelining
registers in the reconfigurable array to break critical paths.

For example, our first trial instance included paths as detailed in Fig-
ure 3.1.1(a). Note that in paths through the central RF, there occurs only one
buffer: at the output of the forwarding network of the RF. Soon we discovered
that such long paths would prohibit us from reaching our target frequency. To
solve this problem, we adapted the instance as depicted in Figure 3.1.1(b).
Basically, we reduced the number of connections going from FU outputs to
the input ports of the central RF, thus saving on muxes, and we inserted a
pipelining latch to break the critical paths.

While both changes potentially deteriorate performance (because of lim-
ited connectivity, and because of longer delays on certain execution paths),
the effect of these changes on performance was very limited in practice. Most
importantly, this follows from the fact that the additional delays are not on
critical paths in the software-pipelined loops because their schedule most-
often is resource-bound rather than data-dependence bound. Secondly, the
number of live-out variables (variables that see their values changed during
a loop’s execution, and that need to be stored in the central RF) is limited in
most loops, so the connectivity to the write ports of the central RF is also not
a critical point.

Another important change that was made during our design space explo-
ration was to move to a 3-issue VLIW machine instead of a 4-issue machine.
Because most high-ILP loop code is executed in array mode, it is not neces-
sary to have a very wide VLIW machine. Instead, by reducing the number of
VLIW issue slots from 4 to 3, the number of ports on the central register file

paper.tex; 5/10/2007; 17:06; p.13

14

is reduced from 12 (8 read, 4 write ports) to 9 (6 read, 3 write ports). This
increases the speed of the RF and of its corresponding forwarding network
significantly, without hurting performance.

3.1.2. Media-Oriented Instructions
Like typical media processors, we enhanced FUs with SIMD instructions
for data packing and other operations typically used for video codecs. These
instructions are implemented as intrinsics. Table I lists these new instructions.

Table I. Media-Oriented instructions implemented as intrinsics

instructions name function description

clip1 clip a between -b and b (a, b are operands)

clip2 clip a between 0 and b (a, b are operands)

sh rnd shift and round

max return the bigger one of the two operands

min return the smaller one of the two operands

modulo restricted modulo operation (only power of 2)

avg average value of the two operands

avgu4 average value of 4 packed-bytes

pack2 pack two 16-bit values into one 32-bit word

spacku4 pack four unsigned bytes into one 32-bit word

3.2. PROCESSOR-LEVEL ARCHITECTURE

The ADRES core alone does not work. It needs memory hierarchy to store
data and I/O subsystem to get data in and out. The whole processor-level
diagram is shown in left part of Figure 3.2. The processor contains an ADRES
core, a data RAM, a VLIW instruction cache, and a configuration memory. To
reduce power consumption, we use software controlled data memory instead
of using data cache. In this media processor, we use 4 banks of SRAM to
provide up to 4 simultaneous read/write capability. It is sufficient to a 4x4 ar-
ray. Each bank is 8 KB of size. To support multiple data accesses to memory,
a novel queue-based memory organization is used to reduce potential bank
conflicts (Mei et al.,). Many small queues (1 to 3 entries) are attached to each
load/store unit. The simultaneous memory accesses to a single bank will be
smoothed out by buffering requests in the queues.The queue-based memory

paper.tex; 5/10/2007; 17:06; p.14

15

Figure 9. Overview of our target platform. On the left, details of an FU and its local RF are
shown.

organization is totally transparent to the compiler. The only difference is that
load/store operations have longer latencies (1 or 2 cycles typically) to allow
sufficient time for buffering. It brings no major penalty on performance be-
cause pipelined loops can hide instruction latency, but reduces bank conflicts
significantly. Currently, the memory subsystem can support up to 8 memory
banks, which is sufficient for 4x8 or 8x8 array. The VLIW instruction cache
is a direct-mapped 32kB cache with a line size of 64 bytes. The configuration
memory holds 256 configurations, more than enough for our purposes. Its
width depends on the number of configurable elements within the array; in
the instance used in this instance each line is 896 bits long, thus totaling the
configuration memory size to 27kB.

In the system, these memories in processor are communicated with the
main system SDRAM through AMBA AHB bus and an DMA controller.
The data swapping between data memory and SDRAM is controlled by soft-
ware, i.e., the application developer inserts API (application programming
interface) calls in the proper places to initiate DMA transfer.

3.3. SYNTHESIS AND PHYSICAL DESIGN

We optimized the VHDL code generated with our HDL generator. In par-
ticular, the implementation of the FUs and RFs in our ADRES core were
optimized in order to achieve higher clock and smaller area. We also ap-
ply other performance and power optimizations such as clock-gating and
isolating switching activity.

Figure 10 depicts the hardware implementation of the media processor.
It is able to achieve clock speed of 300MHz. Considering that we are able
to deliver more IPC than the state-of-art DSPs and the design still lacks fine

paper.tex; 5/10/2007; 17:06; p.15

16

Table II. Tools and libraries used for synthesis and physical design

Synthesis tool Synopsys Physical Compiler 2006.06

Place and route tool SoC Encounter v05.20

Simulation tool ModelSim v6.0a

Power tool Synopsys Prime Power ver. X-2005.06-SP2

Standard cell library TSMC 90nm

Configuration and Data Memories Artisan TSMC nominal Vt Single Port RFs and SRAMs

optimization in circuit- and physical-levels, we believe that our results are
quite competitive. The die size is only 3.6mm

2 though the media processor
has 4x4 FUs. It is comparable with even a RISC processor. For example,
an ARM Cortex-A8 processor occupies about 4mm

2 with 65nm technol-
ogy. One reason is that memory is typically dominating part in a modern
embedded processor.

Figure 10. Hardware implementation of the media processor: die size = 3.6mm
2; clock speed

(worst case) = 300MHz

3.4. FPGA-BASED DEMONSTRATOR

We have yet made tape-out of the media processor. Instead, the whole design
and tool flow are proved on an FPGA-based demonstrator platform. Fig-
ure 3.2 depicts the entire platform we implemented on FPGA, including the
media processor itself and other storage, I/O and controller components. The
demonstrator platform is implemented on a HARDI HAPS-32 prototyping
board equipped with two Xilinx Virtex-4 LX200, a PCI interfacing board, a
32MB SDRAM board, and an interconnect board to enhance the connectivity
between the two FPGAs. One FPGA houses the processor, while the other
houses the rest of the platform. We use a synchronous clock for the system:

paper.tex; 5/10/2007; 17:06; p.16

17

Stream
buffer

Input bit stream Inverse
quantization

Inverse
transform

Entropy
decoding

+

Intra
prediction

Motion
compensation

Frame
buffer

Deblocking
filter

Video out

Figure 11. Scheme of the H.264 decoder.

50MHz for the processor and 25MHz for the peripherals. Synplify Premier
was the only tool which reached the synthesis target for the processor. The
utilization of the processor FPGA is 9% of DSP48, 34% of IOBs, 94% of
BRAMs and 43% of slices. The utilization of the other FPGA is 0% of
DSP48, 46% of IOBs, 43% of BRAMs and 15% of slices.

4. Performance and Power Evaluation

We mapped an H.264/AVC decoder application onto the media processor to
evaluate its performance and power consumption.

4.1. H.264/AVC DECODER OVERVIEW

The ITU-T H.264, also known as MPEG-4 (Part 10) Advanced Video Coding
represents the latest evolution of video codecs (Wiegand et al., 2003). Like
with every video codec evolution step, encoding quality for a given bit rate
is improved, at the expense of computational complexity. For the baseline
profile, the computational complexity lies mainly in two components: The
deblocking filter, which is now part of the decoding loop, and the motion
compensation with quarter-pixel interpolation, for various block sizes rang-
ing between 16x16 and 4x4. The many variations in macroblock-encoding
increase the amount of control code involved in the processing. Looking at
the decoder from the perspective of decoding a sequence of macroblocks, the
processing flow becomes mostly non-uniform.

The functional block diagram of a generic hybrid video decoder based on
the H.264 standard is shown in Figure 4.1. The incoming video bitstream is
stored in a memory buffer in order to be parsed and decoded by the entropy
decoding stage. The syntax elements obtained after this process for each
macroblock are demultiplexed and sent to the different functional kernels

paper.tex; 5/10/2007; 17:06; p.17

18

involved in the decoding process. In particular, the syntax elements related
with the coding of the luminance and chrominance residual samples of the
current macroblock (MB) are re-ordered by following a typical inverse scan
procedure and passed to the inverse transform kernel. In parallel, a predictor
is composed from previously decoded pixels in the same frame (intra coded
macroblocks) or from pixels pointed by the received motion vectors belong-
ing to frames previously decoded (inter coded macroblocks) depending on the
information stored in the MB layer of the received bitstream. By adding the
inverse transformed residual samples to the predictor selected and filtering
the result in order to reduce the presence of annoying blocking artifacts, the
original macroblock is recovered with minimal quality losses.

Important kernels for acceleration are in the motion compensation, in the
deblocking filter, the inverse transform, and some data handling functions like
memset. The following discusses the implementation of the decoder.

4.2. CODE PREPARATION

For availability and performance reasons we decided to use the H.264 decoder
implemented in the libavcodec library (FFMPEG,), and not the reference
decoder. To be able to embed the code, we first extracted the H.264 decoder
from the libavcodec sources and wrote a simple decoding loop around it, and
then pruned unused functions from the sources.

For our target system some further code cleaning had to be done: Floating-
point code had to be removed, as well as 64 bit and unaligned memory
accesses. Furthermore, the code must comply with the older ANSI C standard
(C89) because of the IMPACT front-end version (2.36) we are currently us-
ing. The target hardware and the compiler do not support modulo or division
operations, therefore these had to be replaced as well. Finally, the ADRES
implementation has only 16 bit multipliers, which required some additional
analysis and code changes. Finally we implemented some needed C library
functions like memcpy and memset and replaced dynamic with static memory
allocation.

4.3. MAPPING ONTO THE MEDIA PROCESSOR

Because an ADRES processor executes in two modes, the VLIW mode and
the array mode, the application has to be partitioned and both parts have to
be tailored for their execution mode. This requires manual adaptations to the
C code of the application, that are discussed here. We should note, however,
that only standard C code is used. There is no inline assembly, nor are there
pragmas in the code.

First, an ADRES software developer needs to partition his code in those
procedures in which loops will be mapped to array mode, and in the remain-
ing procedures that will be mapped onto VLIW mode only. The former are

paper.tex; 5/10/2007; 17:06; p.18

19

identified by a procedure name that starts with the prefix DRESC. Although
this partitioning is not strictly required, it is beneficial for the quality of the
generated code: because transformations that enable/improve the mapping of
loops onto array mode are not necessarily beneficial for code that will be
mapped onto VLIW mode, we have adapted the IMPACT C-frontend to treat
both types of procedures differently during its optimizations. Hyperblock
formation, for example, is applied less aggressively on code that will not be
mapped onto array mode. Vice versa, inlining is applied more aggressively
on code that will be mapped onto array mode.

Next, the loops that will be mapped onto array mode often need some
preparation to make them better suited for mapping them onto the array. Typ-
ical transformations that are applied for this purpose are loop coalescing and
loop unrolling. Loop coalescing is the combination of two nested loops in one
single loop. In the coalesced loop, the number of iterations is bigger than in
the original inner loop, and hence switches between VLIW and array modes
can be saved, as well as executing code of the outer loop in the less efficient
VLIW mode. Loop unrolling typically increases the number of operations per
iteration. Thus, the compiler has more operations available to schedule in the
array mode, thus allowing him to exploit the offered ILP optimally.

To select the code to be mapped onto array mode, we used profiling in-
formation. First, we identified the hot code, and once we had identified this
code, we studied it in detail to see which loops were potential candidates to
be executed in array mode. In total, 28 out of 222 procedures were chosen
to have their loops mapped onto array mode, for a total of 50 loops. 6 loops
originate from the deblocking filter, 31 originate from the motion compen-
sation, 5 from the inverse transformation, 3 from the decoder control part,
and finally 5 from memory copy and initialization operations. The remaining
procedures, including entropy decoder, are mapped onto VLIW-only mode.
These procedures are either too control-insensive to be pipelined, or simply
not loops.

4.4. PERFORMANCE EVALUATION

Several input streams have been decoded on our implementation to measure
its performance on the hardware board. In order of increasing complexity
these are the well-known News,Mobile, and Foreman sequences. For each se-
quence, we decoded two image sizes,QVGA (320x240) and CIF (352x288),
at two bit rates per image size (128kb and 256kb). Furthermore, each combi-
nation was measured on a program version that was compiled to VLIW mode
only, and on a version that was compiled to both VLIW and array mode. The
results of our measurements are presented in Table 4.4. The instructions-per-
cycle, the framerates and the required frequency to obtain real-time decoding
are all measured on the hardware, i.e., on the host system connected to the

paper.tex; 5/10/2007; 17:06; p.19

20

Table III. For movies of increasing complexity, different sizes and different bitrates, the number of executed in-
structions per cycle (IPC) is presented, the framerates when playing at 50MHz, both in VLIW mode and in mixed
VLIW-array mode, and the required frequencies for playing the movies in real time. Also included is the fraction
with which the simulator (excluding stall cycles) overestimated the performance on the hardware (including I-cache
stalls and memory conflict stalls).

VLIW mode only VLIW and array mode
sequence format bitrate IPC framerate RT freq. HW cycles IPC framerate RT freq. HW cycles

(Kb) (fps at (MHz at / sim. (fps at (MHz at / sim.
50 MHz) 30fps) cycles 50 MHz) 30 fps) cycles

news QVGA 128 1.83 23.78 63.1 1.07 4.74 51.24 29.3 1.10
news QVGA 256 1.81 19.39 77.4 1.06 4.58 41.01 36.6 1.10
news CIF 128 1.84 19.34 77.6 1.06 4.83 41.85 35.9 1.09
news CIF 256 1.82 16.05 93.5 1.06 4.70 34.47 43.5 1.10

mobile QVGA 128 1.99 16.54 90.7 1.09 5.90 42.99 34.9 1.11
mobile QVGA 256 1.95 13.23 113.4 1.08 5.64 33.28 45.1 1.11
mobile CIF 128 1.97 14.39 104.2 1.08 5.81 37.12 40.4 1.10
mobile CIF 256 1.97 11.13 134.8 1.07 5.80 28.27 53.1 1.11

foreman QVGA 128 1.98 14.73 101.8 1.09 6.05 39.02 38.4 1.13
foreman QVGA 256 1.94 12.05 124.6 1.09 5.82 31.02 48.4 1.13
foreman CIF 128 1.99 12.02 124.8 1.09 6.06 31.98 46.9 1.12
foreman CIF 256 1.96 9.97 150.5 1.09 5.97 26.37 56.9 1.12

FPGA board. These numbers hence include the impact of instruction cache
misses and of SDRAM arbitration. All results presented are averages over
300 frames (10 seconds).

As can be seen in the table, our implementation achieves real-time de-
coding for all but two of the sequences. The operating frequency of 50 MHz
would have to increase by only 6.9 MHz in order to achieve real-time decod-
ing for all the streams. By comparing the VLIW-only and the mixed VLIW-
array numbers, it is clear that ADRES’s array mode is indeed an excellent
accelerator.

To indicate how competitive these results are, we mention that an H.264
baseline decoder implemented for the StarCore 2400 processor in manu-
ally optimized assembly code requires 64MHz for real-time CIF (StarCore-
Hantroh264, 2006). So not only does the ADRES architecture per se out-
perform the StarCore architecture, we now have also demonstrated that a
C-programmed implementation on ADRES outperforms an assembly-level
optimized implementation on StarCore.

Besides measuring the real performance of our system, we also did per-
formance measurements using the compiled-code simulator of the ADRES
core. As this excludes cache misses, data memory arbitration and SDRAM

paper.tex; 5/10/2007; 17:06; p.20

21

arbitration, it represents an upper bound for the achievable performance. We
see that the results differ by a relatively small margin of 6 to 13%, which
demonstrates a good system design. The difference is bigger when code is
mapped to array mode. This follows from the fact that not only the overall
IPC is higher in array mode, but so is the number of data memory accesses
per cycle. Consequently, the relative number of stalls due to data memory ar-
bitration are higher as well. Also noticeable is that the framerate improvement
obtained by using the array mode is a little bit less than the IPC improvement,
resulting from the fact that in array mode more code is executed speculatively
than in VLIW mode.

4.5. OTHER APPLICATIONS

To show the effectiveness of the DRESC compiler, we’ve compiled three
benchmark programs on two architecture instances of ADRES. One is the
standard instance used throughout this paper. The other instance is obtained
by inserting extra pipeline registers in the standard instance as discussed in
Section 3.1.1.

The MPEG-4 video decoder (AVC H.264) and an MPEG-4 encoder (MPEG4-
enc) are two benchmarks from the multimedia domain and a multiple antenna
receiver (MIMO) applications has been chosen from the wireless domain. The
results are presented in Table IV. When an application consists of more than
ten loops, only the ten most frequently executed ones are included in the table.

The resource-constrained minimal II (ResMII) is calculated by totaling,
for each resource, requirements imposed by one iteration of the loop. The
recurrence-constrained minimal II (RecMII) corresponds to the sum of the
latencies divided by the sum of dependence distances along the most critical
cycle (a.k.a loop-carried dependencies) in the dependence graph. Readers
are referred to (Ramakrishna, 1994) on how to compute ResMII/RecMII.
The MII is the larger one of ResMII and RecMII. The II column shows the
effectively obtained II after compilation. Since both instances have 16 FUs,
the maximum IPC (number of Instructions Per Cycle) is 16. The time column
shows the time (in seconds) to compile the loop.

We can draw the following conclusions from the results in Table IV. First,
the average IPC of the evaluated loops is over 10 for each application. For the
resource-bound (RecMII ≤ ResMII) loops, the obtained IPC is even higher,
reaching 13.7 for one loop. The 6 recurrence-bound loops (RecMII ≥ResMII)
cannot take advantage of the high number of parallel resources. Still, IIs are
obtained for these loops that are close to RecMII. For 18 out of the 19 loops
our algorithm finds a schedule at an II which equals MII or MII+1 when
compiling for the pipelined processor versions.

Secondly, because of the pipelining registers, the pipelined VLIW ver-
sions have higher RecMII than the non-pipelined versions. Thus, it is not

paper.tex; 5/10/2007; 17:06; p.21

22

surprising that the recurrence-bound loops are scheduled with lower IIs on
the non-pipelined version. The fact that the compiler is not hampered by the
pipelining registers in the resource-bound loops demonstrates the effective-
ness with which the compiler can work around the additional latencies that
one expects with deeper pipelines. This illustrates how the scheduler uses the
pipelining registers to its advantage as temporary storage locations.

4.6. POWER SIMULATION RESULTS

Since low-power is an essential design goal of the ADRES architecture and its
targeted application domain, we integrate extensive power simulation support
in our tool flow (see Section 2). Table V lists the simulated dynamic power
and static power of the media processor running at 300MHz. Since we can
decode CIF format at 50MHz, 300MHz should be more than sufficient for a
D1 format video. The total power of 105.5mw is quite competitive. To put this
power figure into perspective, TI’s ultra low-power C5000 DSPs consumes
about 0.4 mW/MHz (1.2 v * 0.33 mA/MHz) (TI, 2007). Hence, it would
consume roughly 120mW at 300MHz, which is comparable to our media
processor. However, our media processor is much more powerful than C5000
since it can exploit much higher parallelism (16 FUs vs 2 FUs). To perform
the same AVC decoding task would require TI’s high-end DSPs, e.g., C64+
series.

Figure 12 shows power breakdown of its different components. Clock
tree, instruction cache, data memory and ADRES core roughly each accounts
for 1/4 of total power consumption. Though ADRES architecture uses much
more resources, mainly FUs and RFs, than normal processors, it doesn’t add
much to the total power consumption. Clock tree and memories dominates
the total power consumption, not the ADRES core itself.

Power breakdown of the media processor

ICache

DMEM

CORE

AHBSlaveDmq

AHBMasterDmq

Status Register

Others

Clk Tree

Figure 12. Power distribution of the media processor

paper.tex; 5/10/2007; 17:06; p.22

23

5. Related Work

According to R. Hartenstein, CGRA refers to a class of reconfigurable archi-
tectures that provide operator level basic configurable block, word level dat-
apaths as well as powerful and very area-efficient routing switches (Harten-
stein, 2001). Many CGRAs have been proposed in recent years. MorphoSys
is a typical coarse-grained reconfigurable array, consisting of 8x8 basic units,
called reconfigurable cells (RC) (Singh et al., 2000). Each RC consists of an
ALU, a multiplier and a register file. The interconnection is through multi-
plexors and busses. The MorphoSys array cannot work alone for an entire
application, so it is coupled with a RISC processor, called TinyRISC, to
form a reconfigurable system. A frame buffer together with a DMA con-
troller provides the communication channel between the two entities. The
mapping of kernels is based on an assembly-like language or a GUI-based
capture tool (Mo04,), where the designer does all the scheduling work man-
ually. In contrast to other 2-dimensional architectures, PipeRench features
a ring-like one-dimensional architecture (Goldstein et al., 2000), specially
designed for pipelining. The architecture is organized as stripes of process-
ing elements (PEs), which are equivalent to FUs. A number of stripes are
connected by an interconnection network in a ring way in order to provide
pipelining capability. Compilation techniques are developed to automatically
map kernels onto a PipeRench fabric based on placement and routing (Budiu
and Goldstein, 1999). High-level languages like C and Java are partially sup-
ported. The PipeRench architecture is usually used as a co-processor. It has
to be combined with a processor to execute an entire application, but how
to co-design for such system is not well solved. RaPiD is a coarse-grained
architecture developed in the University of Washington (Ebeling et al., 1996).
Like PipeRench, RaPiD is also a one-dimensional architecture designed to
run pipelined dataflow. The RaPiD is an architecture template that should
be customized to an application rather than a generic reconfigurable archi-
tecture. The functional units in the datapath provide the operations that are
performed by the target applications on the Rapid array. A C-like language,
called RaPiD-C, accompanied with a compiler, is developed to program the
RaPiD architecture (Cronquist et al., 1998). The linear structure of the RaPiD
array greatly reduces the implementation and compilation complexity. Silicon
Hive is a spin-off company from Philips Electronics (SiliconHive, 2006). Its
architecture consists of three levels. The basic block is PSE (processing and
storage element), which is essentially a partially connected VLIW processor.
Several PSEs together form a Cell. It is still fully synchronous because there
is only one controller within the Cell. PSEs are communicating through CL
(communication lines). In the Cell level, a dataflow can be mapped to PSEs to
exploit high parallelism. The core design tool of Silicon Hive is the HiveCC
spatial compiler. It accepts a program written in a sub-set of ANSI C and

paper.tex; 5/10/2007; 17:06; p.23

24

uses constraint-analysis and scheduling techniques to pipeline the loop. The
constraint analysis module is able to handle the partial connectivity of the
architecture. Readers are refered to (Hartenstein, 2001) for more CGRAs.

At the best of our knowledge, none of these architectures have provided
full toolset support with automatic compilation and proved with complex
application such as H.264/AVC on real hardware platform.

6. Conclusions and Future Work

An in-depth overview of the ADRES architecture template has been pre-
sented, including its operation mode and its toolset based on the DRESC
ANSI-C compiler. This toolset has become mature enough to build a hard-
ware platform based on a specific media processor based on the ADRES
template.

Using the media processor discussed in this paper, we have been able
to demonstrate that the toolset can handle complex applications such as an
H.264/AVC decoder, and that it enables us to obtain very competitive results
both with respect to the hardware implementation and its clock speed, and
with respect to the software compilation and the obtained performance. The
media processor is able to do C-programmed real-time H.264/AVC CIF de-
coding at 50 MHz, and it only consumes 105 mW at 300MHz. Thus, we have
demonstrated the efficiency of the ADRES architecture, and the effectiveness
of its compiler.

Future work for ADRES and DRESC includes possible tape-out of the
media processor, for which we first want to optimize the hardware implemen-
tation in further. This optimization will include techniques such as operand
isolation, clock gating, etc. With respect to the toolset, we plan to improve
the efficiency of the compiler by using improved, significantly faster place-
ment and routing algorithms, and to look for alternatives for the simulated
annealing approach that is currently used.

References

Allen, J. R., K. Kennedy, C. Porterfield, and J. Warren: 1983, ‘Conversion of Control Depen-
dence to Data Dependence’. In: Proc. of ACM Symposium on Principles of Programming
Languages. pp. 177–189.

Berry, G. and G. Gonthier: 1992, ‘The Esterel Synchronous Programming Language: Design,
Semantics, Implementation’. Science of Computer Programming 19(2), 87–152.

Budiu, M. and S. C. Goldstein: 1999, ‘Fast Compilation for Pipelined Reconfigurable Fabrics’.
In: Proc. of ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA). pp. 195–205.

paper.tex; 5/10/2007; 17:06; p.24

25

Cronquist, D. C., P. Franklin, S. G. Berg, and C. Ebeling: 1998, ‘Specifying and Compiling
Applicaitons for RaPiD’. In: Proc. of Field-Programmable Custom Computing Machines
(FCCM). pp. 116–125.

Ebeling, C., D. Cronquist, and P. Franklin: 1996, ‘RaPiD - Reconfigurable Pipelined Datap-
ath’. In: Proc. of International Workshop on Field Programmable Logic and Applications.
pp. 126–135.

Fauth, A., J. V. Praet, and M. Freericks: 1995, ‘Describing Instruction Set Processors Using
nML’. In: Proc. of Design Automation Conference (DAC). pp. 503–507.

FFMPEG, ‘libavcodec is distributed with FFmpeg, an audio/video conversion tool’.
http://sourceforge.net/projects/ffmpeg.

Goldstein, S. C., H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor: 2000,
‘PipeRench: A Reconfigurable Architecture and Compiler’. IEEE Computer 33(4), 70–77.

Hadjiyiannis, G., S. Hanono, and S. Devadas: 1997, ‘ISDL: An Instruction Set Description
Language for Retargetability’. In: Proc. of Design Automation Conference (DAC). pp.
299–302.

Hartenstein, R.: 2001, ‘A Decade of Reconfigurable Computing: a Visionary Retrospective’.
In: Proc. of Design, Automation and Test in Europe (DATE). pp. 642–649.

IMPACT, ‘The IMPACT Group’. http://www.crhc.uiuc.edu/impact.
Maestre, R., F. J. Kurdahi, M. Fernndez, R. Hermida, N. Bagherzadeh, and H. Singh: 2001, ‘A

Framework for Reconfigurable Computing: Task Scheduling and Context Management’.
IEEE Trans. on VLSI Systems 9(6), 858–873.

Mei, B., S. J. Kim, and R. Pasko, ‘A new multi-bank memory organization to reduce bank con-
flicts in coarse-grained reconfigurable architectures’. In: sumbitted to IEEE Transaction
on VLSI Systems.

Mei, B., S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins: 2002, ‘DRESC: A Re-
targetable Compiler for Coarse-Grained Reconfigurable Architectures’. In: Proc. of
International Conference on Field Programmable Technology. pp. 166–173.

Mei, B., S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins: 2003a, ‘ADRES: An Ar-
chitecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable
Matrix’. In: Field-Programmable Logic and Applications.

Mei, B., S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins: 2003b, ‘Exploiting
Loop-Level Parallelism for Coarse-Grained Reconfigurable Architecture Using Modulo
Scheduling’. IEE Proceedings: Computer and Digital Techniques 150(5).

Mo04. http://www.eng.uci.edu/morphosys/tools.html.
Pees, S., A. Hoffmann, V. Zivojnovic, and H. Meyr: 1999, ‘LISA - Machine Description

Language for Cycle-Accurate Models of Programmable DSP Architectures’. In: Proc.
of Design Automation Conference (DAC). pp. 933–938.

Ramakrishna, R. B.: 1994, ‘Iterative Modulo Scheduling’. Technical report, HPL-94-115, HP
Labs Technical Reports.

Rau, B. R., M. Lee, P. p. Tirumalai, and M. S. Schlansker: 1992, ‘Register Allocation for
Software Pipelined Loops’. In: Proc. of ACM SIGPLAN Conf. Programming Language
Design and Implementation. pp. 283–299.

SiliconHive: 2006, ‘SiliconHive’. http://www.silicon-hive.com.
Singh, H., M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho: 2000, ‘Mor-

phoSys: an integrated reconfigurable system for data-parallel and computation-intensive
applications’. IEEE Trans. on Computers 49(5), 465–481.

StarCoreHantroh264: 2006, ‘StarCore and Hantro announce immediate availability of high-
performance H.264 video decoder’. Press Release, Feb. 13, 2006.

TI: 2007, ‘Texas Instruments’. http://www.ti.com.

paper.tex; 5/10/2007; 17:06; p.25

26

Wiegand, T., G. J. Sullivan, G. Bjontegaard, and A. Luthra: 2003, ‘Overview of the
H.264/AVC Video Coding Standard’. IEEE Trans. on Circuits and Systems for Video
Technology 13(7), 560–576.

paper.tex; 5/10/2007; 17:06; p.26

27

Table IV. Results for the benchmark loops. First, the tar-
get-version-independent number of operations (#ops) and
the ResMII. Then for each target version the RecMII, the
actually achieved II and IPC, and the compilation time.

pipelined non-pipelined
Res Rec time Rec time

Loop #ops MII MII II IPC (sec) MII II IPC (sec)

AVC

MBFilter1 70 5 2 6 11.7 251 1 6 11.7 291

MBFilter2 89 6 7 9 9.9 529 6 8 11.1 433

MBFilter3 40 3 3 4 10.0 112 2 3 13.3 110

MBFilter4 105 7 2 9 11.7 538 1 9 11.7 599

MotionComp 109 7 3 10 10.9 183 2 10 10.9 213

FindFrameEnd 27 4 7 7 3.9 26 6 6 4.5 40

IDCT1 60 4 2 5 12.0 179 1 5 12.0 191

MBFilter5 87 6 3 7 12.4 399 2 7 12.4 309

Memset 10 2 2 2 5.0 8 1 2 5.0 11

IDCT2 38 3 2 3 12.7 99 1 3 12.7 72

Average 10.0 10.5

MPEG4-enc

MotionEst1 75 5 2 6 12.5 88 1 6 12.5 135

MotionEst2 72 5 3 6 12.0 115 2 6 12.0 169

TextureCod1 73 5 7 7 10.4 188 6 5 12.2 186

CalcMBSAD 60 4 2 5 12.0 89 1 6 12.0 125

TextureCod2 9 1 2 2 4.5 6 1 2 4.5 15

TextureCod3 91 6 2 7 13.0 195 1 7 13.0 132

TextureCod4 91 6 2 7 13.0 194 1 7 13.0 133

TextureCod5 82 6 2 6 13.7 440 1 6 13.7 121

TextureCod6 91 6 2 7 13.0 245 1 7 13.0 175

MotionEst3 52 4 3 4 13.0 46 2 5 10.4 100

Average 11.7 11.6

MIMO

Channel2 166 11 3 14 11.9 162 1 14 10.4 161

Channel1 83 6 3 8 10.4 157 1 8 10.7 79

SNR 75 5 4 6 12.5 89 2 6 12.5 88

Average 11.6 11.2

paper.tex; 5/10/2007; 17:06; p.27

28

Table V. Power simulation results at
300MHz

total dynamic power 100.7 mW

total leakage power 4.8 mW

total power 105.5 mW

paper.tex; 5/10/2007; 17:06; p.28

