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Abstract. This paper surveys components that are useful to build programmable,
predictable, composable, and scalable multiprocessor-system-on-a-chip (MPSoC)
multimedia platforms that can deliver high performance at high power-efficiency. A
design-time tool flow is proposed to exploit all forms of parallelism on such platforms.
As a first proof of concept, the flow is used to parallelize a relatively simple video
standard on a platform consisting of off-the-shelf components. As a second proof of
concept, we present the design of a high-performance platform with state-of-the-art
components. This platform targets real-time H.264 high-definition video encoding
at an estimated power consumption of 700mW.

Keywords: MPSoC, parallelization, multimedia, predictability, tool flow

1. Introduction

Multimedia applications require ever more computation performance.
At the same time, seamless mobility demands battery-operated devices
that have to run with limited power resources, and that have to run
multiple standards. A typical example of multimedia usage in the not
too distant future consists of a video call between two people wearing
cell phones. As one of them enters his living room, he continues the
call on his HD multimedia device (what once used to be known as
television), expecting high-quality video on that screen.

Not only does the platform need to deliver all this functionality at
run time, it also needs to meet several design constraints. For enabling
a short time-to-market, the platform should be as flexible as possible,
meaning programmable, and the components should be reusable in a
large range of products that should also be cheap to produce. Thus the
platform design itself and the programming of it should be flexible.

In the past single processors with increasing clock frequencies met
the demands for more computing power, enabling programmers to keep
using their sequential programming. Today, and certainly in the near
future, simply increasing clock frequencies to get higher performance is
no longer a viable option. Today lower frequencies are more attractive
from the power-efficiency point of view, so lower clocked multi-core
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2 B. De Sutter et al.

processors on a chip (MPSoC) are required. However, to exploit the po-
tential of MPSoC solutions, the application or algorithm development
process needs significant change.

To start with, all types of parallelism, being instruction-level paral-
lelism (ILP), data-level parallelism (DLP), and thread-level parallelism
(TLP), need to be extracted from applications and then mapped onto
the parallel computation resources of the platform. As different parts
of the applications can exploit different kinds of parallel computing
resources, the ideal platform is heterogeneous, offering different kinds
of processing cores: reduced instruction set computers (RISCs), digital
signal processors (DSPs), field programmable gate arrays (FPGAs),
application specific instruction-set processor (ASIP) accelerators, etc.
Furthermore, for limiting the power consumption to a minimum while
still allowing the parallel code to access enough data in parallel to
achieve high throughput, a complex memory hierarchy needs to be
implemented in hardware and supported in software. This means that
all data transfers in the application need to be determined, and that
they also need to be mapped onto the available memories and data
transfer primitives offered by the run-time libraries of the platform.

So compared to single-core systems, new hardware is needed to make
multiple cores operate in parallel, and new programming aids needs
to help in transforming the software to exploit that hardware. For a
platform or a range of platforms to succeed, we believe it is crucial that
the new design flow is to a large extent automated. Besides the existing,
well-known support from single-core compilers, additional automated
tools are needed to support the mapping of TLP onto heterogeneous
computing resources, and to support the mapping of data transfers
onto communication primitives. The reason is obvious: neither of these
tasks scales when performed manually.

This paper reports on the results of a recent multimedia MPSoC re-
search project at IMEC (Interuniversity Micro-Electronics Center). The
main contribution of this paper is to demonstrate that a largely auto-
mated tool flow can indeed be built by carefully choosing the hardware
components and the way they are exposed to the application by the
run-time library. We discuss a series of platform components of which
concrete instances deliver the required performance at a high power-
efficiency. Equally important, we discuss how these components are
abstracted by the run-time library at a level of predictability that allows
both engineers and tools to deal with the platform’s complexity and
real-time behavior. Based on this predictability, we then present a tool
flow that maps complex applications onto the proposed components.

To demonstrate the effectiveness of both the platforms and the tool
flow, the achievements of two experiments are reported. Due to the
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Design and Tool Flow of Multimedia MPSoC Platforms 3

Figure 1. An exemplary codec. For two program versions, each kernel’s contribution
to the workload is presented: first for unoptimized code executed on a VLIW, and
secondly for DLP-optimized code executed on an ADRES (see Section 3.1).

limited number of resources at our research institute, neither of the
experiments result in a production ready design. Together, however,
we believe they provide a valid proof-of-concept case study of the
proposed platform template and tool flow. In a first experiment, a
video decoder (QSDPCM) is mapped to a platform built with off-the-
shelf components. This experiment demonstrates that we indeed have
a complete tool flow to map full applications onto platform. In a second
experiment, we have designed a state-of-the-art platform that supports
more demanding applications (MPEG-4 encoding and decoding), using
in-house state-of-the-art components, that demonstrates that system
instances of the proposed template can indeed be built that deliver the
performance and power-efficiency required for near-future applications.

This paper is structured as follows. Section 2 discusses components
that are suitable for MPSoC multimedia platforms. Section 3 discusses
the tool flow to map applications onto those platforms. Section 4 reports
on the two experiments, and conclusions are drawn in Section 5.

2. Multimedia Platform Components

This section presents IMEC’s view on the types of components of which
platforms should be built in order to deliver the high performance, high
power-efficiency, and predictability at manageable levels of complexity.

2.1. Multimedia Application Opportunities

Typically, current state-of-the-art hybrid block-based video encoders
(MPEG-2, MPEG-4, AVC) conform to block diagrams as shown in
Figure 1, in which each block corresponds to one or more kernels (loops
of computations) to be executed on data sets. The compression in
multimedia codecs is achieved by exploiting temporal correlation in mo-
tion estimation/compensation (ME/MC), spatial correlation (discrete
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4 B. De Sutter et al.

cosine transform (DCT) and quantization) and statistical correlation
(entropy coder). Furthermore, to avoid so-called drifting at the de-
coder or, in other words to match the encoder and decoder prediction
signals, the encoder incorporates the same decoder reconstruction path
(inverse quantization or rescaling, and inverse DCT). The resulting re-
constructed frames are used to perform the temporal prediction for the
next input frames. The encoding process is performed on macroblocks
(MBs) of 16x16 pixels or 8x8 pixels, or even subblocks of 4x4 pixels,
which form a partition of the input image (Richardson, 2003).

The performance requirements of such a video coder depend on the
resolution and the frequency of the inputs, and on the rate-distortion re-
quirements. To meet those a certain number of Operations-Per-Second
(OPS) needs to be executed. In the case of AVC Baseline Profile encod-
ing at HDTV 720p resolution at 30 frames-per-second, this minimum
performance is in the order of 100 integer GigaOPS (GOPS), depending
on specific encoder algorithmic implementations and settings (Chen,
2006; Huang, 2005; Pinto, 2006). The only way to deliver this and
consume acceptable amounts of energy is through parallelization.

In the case of video codecs, the opportunities for high ILP are mainly
limited to the inner loops that operate on MBs or subblocks. These
can be software-pipelined to expose enough instructions that are not
dependent on each other, and can thus be executed in parallel. Non-
loop code, involving many (unpredictable) control flow transfers, does
not offer many ILP opportunities. Because the inner loops work on
small datasets (MBs), their number of iterations is usually limited, and
so is the amount of ILP that can be exploited. For a similar reason,
the amount of available DLP is limited. In order to be really worth-
while single-instruction multiple-data (SIMD) or vectorization needs
the data words that are loaded from memory to be stored consecu-
tively; otherwise the memory accesses cannot be executed in parallel
and many packing and unpacking instructions need to be inserted. As
the inner loops are bound to MBs, typically only 4 to 16 pixels are
stored consecutively. In practice, we believe that a single DSP core
may support SIMD up to at most 4 parallel subwords, because of
the aforementioned limitations, and that no more than 16 FUs can be
utilized well. The latter is supported by our experiments with different
ADRES DSPs (Cervero, 2007), of which some results are discussed in
Section 3.1. This means that at most 64 operations per cycle can be
executed on a single DSP core. Supposing such a core operates at a
frequency of 400 MHz, which we were able to achieve for some of our
ADRES DSPs, the peak performance is 25.6 GOPS. Hence to achieve
anything in the order of 100 GOPS, at least 4 cores running one thread
each in parallel are needed.
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Design and Tool Flow of Multimedia MPSoC Platforms 5

This multithreading can either be done in the form of a functional
pipeline, in the form of a data parallel path (by, e.g., parallelizing the
handling of one frame into two threads that each handle one half of the
frame), or in any combination thereof. In block-based video coding, this
parallelism can be achieved by exploiting the block-based processing of
the input image. For example, we can perform the ME on multiple
MBs simultaneously or we can perform the DCT on one MB while
performing the ME on the next one. The difficulty is to identify the data
dependencies between different kernels enabling such a partitioning into
well-balanced threads with as little overhead as possible. Looking at
the computational costs of the components in Figure 1, it is clear that
a straightforward application of pipelining parallelism alone will not
suffice. Of the optimized kernels about one third of the work is spent in
MC, so pipelining alone can certainly not deliver a four-fold speedup.

2.2. Processors & Platform Components

Different parts of codecs expose different kinds of parallelism. To exploit
these power-efficiently, multiple heterogeneous computational resources
are needed. To store and transfer the data on which the computations
are performed, storage and interconnect resources are needed.

2.2.1. Computational Resources

Many types of computational resources exist. The most power-efficient
resources are application-specific integrated circuits (ASICs). While
these are not flexible, being not programmable, they may be very useful
to execute specific tasks at very high energy efficiency. Typically, ASICs
are added to platforms as accelerators for such specific tasks.

Compared to ASICs, FPGAs are very flexible, but unfortunately
they are too energy-inefficient and too costly for consumer products.
Furthermore, only code that is programmed in spatial computational
models, such as structural VHDL, is easily mapped onto FPGAs. C
code, which exposes a much more temporal model, can still not be
mapped onto FPGAs efficiently, with the exception of inner loops that
can be transformed, by compilers, into very spatial-like representations.

General-purpose processors (GPPs) are not optimized to any par-
ticular type of parallelism, and hence they are by definition not power-
efficient for any of the specific parts of a complex embedded application.
Except of course for those parts where little parallelism is to be found,
such as in the control-flow intensive parts of applications that basi-
cally implement state-machines. For such parts, GPPs that focus on
power-efficiency rather than on pure performance are interesting.
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6 B. De Sutter et al.

What remains is different types of DSP architectures and ASIPs. Be-
cause of their good balance between power-efficiency and compiler sup-
port, a broad range of very long instruction word (VLIW) architectures
exists today, ranging from high-performance Texas Instruments DSPs
(http://www.ti.com), over SiliconHive (Halfhill, 2003), to very-low-
power architectures such as CoolFlux (www.coolfluxdsp.com). Some
architectures focus primarily on DLP (vector machines, but also SIMD
extensions), while others focus primarily on ILP (such as ADRES, see
Section 3.1), and still others combine both. One important problem
caused by the huge diversity of computational resources in general, and
of DSP architectures in general, is that application loop kernels need to
be transformed differently depending on the target processor in order
to exploit its features optimally (Franke et al., 2005). On top of the
parallelization and memory hierarchy mapping task, this complicates
the mapping of applications onto heterogeneous platforms even more.

As we focus on programmability, our target platforms may contain
GPPs and DSPs, but ASIC accelerators are supported just as well.

2.2.2. Storage and Communication Resources

The data on which an application performs computations need to be
stored in some form of data memory. Because of programmability, these
memories should be generic. So in our platform, we will not consider
hardware implementations of specific buffers, queues, etc.

In general, a memory’s power consumption and delay increases when
its size or its number of ports grows. These relations are superlinear,
which implies that we should try to improve power consumption and
possibly performance by building systems with as small as possible
memories. Still, large data sets need to be stored, and moreover, as
we have many computational resources operating in parallel a lot of
data needs to be accessed in parallel. For that reason, hierarchies of
distributed storage resources are the only viable solution. An excellent
overview of memory hierarchies and programming opportunities can be
found in (Wehmeyer and Marwedel, 2006).

One important question to answer is whether we use scratch-pad
memories (SPMs) or caches, or a combination of the two. We strongly
favor SPMs because of their superior power-efficiency, scalability, pre-
dictability and composability

With respect to power-efficiency, SPMs are smaller and more effi-
cient per access, and this difference becomes even bigger in the case of
MPSoC systems where cache-coherency is a big (and expensive) issue.

Scalability in this context refers to two things. First it refers to
the fact that the performance of a platform should scale with added
resources. Secondly it refers to the fact that a platform’s predictabil-
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Design and Tool Flow of Multimedia MPSoC Platforms 7

ity and composability should not be endangered by adding more re-
sources. When a number of original applications have been mapped
to a platform exploiting the predictability and composability of that
platform, extensions to that platform or additional applications should
not break the original applications. In this respect snooping-based cache
coherency is not scalable because every processor is putting all its writes
directly on the bus, protocol-based cache coherency has a large latency,
and software cache coherency requires a user/tool to add explicit flushes
and invalidates. While the latter can exploit buses much better, it is
limited to buses and bus snooping, and hence not nearly as scalable as
network-on-chip based solutions.

Predictability is primarily a design-time notion. Predictability is re-
quired to enable designers and tools to reason about how an application
uses storage and communication resources, and hence to estimate the
needed amount of resources for a certain application to reach a certain
performance. For example, predictable storage and communication re-
sources allow a tool to calculate how long a certain data transfer will
take, which is necessary to compute the communication overhead in
a mapped application in terms of execution cycles. Composability is
more a run-time notion. For guaranteeing that an application can de-
liver a certain amount of performance, a certain amount of guaranteed
communication and storage resources should be available to that appli-
cation. Composability in this context refers to the ability of a run-time
manager to decide how many applications can run concurrently while
still guaranteeing that all of the running applications get the resources
they were assumed to have at their disposal at design time. Obviously
composability requires predictability, but predictability also depends on
composability: when there is no composability, an application cannot
be guaranteed to have a certain amount of resources, and hence its
behavior becomes unpredictable.

Good SPM management requires analysis and optimization at de-
sign time, and support for data transfers, a.k.a. block transfers (BTs),
at run time. When done well, the design-time analysis and run-time
SPM management (SPMM) can offer some important advantages over
caches. Foremost, using profile data a design-time analysis can take into
account a whole program execution. So it can introduce actions at pro-
gram points that anticipate future run-time behavior. Purely dynamic
analysis, such as present in caches, can only analyze past behavior
during a program execution. Furthermore, SPMM can more accurately
copy exactly that part of the data that is needed by some core, such
as by reading only a single column of bytes from a frame. And data
that is ”written only” by some processor does not need to be fetched
first. This contrasts with caches, that fetch a line as soon as one byte
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8 B. De Sutter et al.

Figure 2. On the left, a traditional interconnect with buses and DMA controllers.
On the right, a more modern interconnect consisting of CAs and a NoC.

in it is written. Moreover, many arrays can be stored in L1 SPM and
do not need to be fetched or flushed when replaced by something else.
Note that caches can also support locking. But to enable this locking,
a similar, albeit maybe simpler, design-time analysis and optimization
is required as for SPMs. Overall, a managed SPM hierarchy is more
predictable, and hence more composable than a cache-based system.

For similar reasons, we propose to use communication assists (CAs)
and a network-on-chip (NoC) communication rather than buses and
direct-memory-access (DMA) controllers. A CA is essentially a dis-
tributed DMA. Each CA contains half a DMA for sending and half a
DMA for receiving. This allows two CAs to setup a DMA transfer by
using a specific BT protocol. Figure 2 depicts a DMA-bus interconnect
on the left, and a CA-NoC on the right. Conceptually, a DMA controller
can be seen as two address generator units. One computes in-addresses
to fetch data from some component, while the other computes out-
addresses to store data into some other component. Inside the DMA
controller, fetched data flows from the input-buffer to the output-buffer
to be written again. When a DMA controller is active, it occupies the
bus to which it is connected, so that bus cannot be used for anything
else. The CA-NoC operates differently. At the sending end the CA will
set up sending through its output FIFO and at the receiving end the
CA will set up the receiving through its input FIFO. When a NoC is
used, many CAs can be communicating with each other over point-
to-point connections implemented over the NoC. This CA-NoC scales
much better than the traditional DMA-bus setup. Furthermore, when
the NoC offers Quality-of-Service (QoS) protocols, the whole communi-
cation becomes predictable and composable, as the run-time manager
can set up point-to-point connections with guaranteed bandwidth and
latency. The alternative is best-effort communication, which implies
overdesigned communication resources, and hence inefficient resource
use. For more information about NoCs and CAs, we refer to (Benini
and De Micheli, 2006; Goossens et al., 2002; Goossens et al., 2005).
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Design and Tool Flow of Multimedia MPSoC Platforms 9

3. Application Mapping Tool Flow

This section focuses on tools and techniques that support the (au-
tomated) mapping of sequential application functionality to parallel
MPSoC platforms, exploiting all levels of parallelism.1 The next section
will then present a mapping flow based on these tools and techniques.

3.1. Tools for Extracting Instruction-Level Parallelism

In this section we focus on VLIW DSPs and alikes. Typically, those
cores execute the code with high ILP potential. Control code, in which
ILP is limited by control and data dependencies, is typically mapped
onto more sequential processors, such as an ARM.

Many techniques have been developed to expose as much as possi-
ble the available ILP in application loop kernels (where most of the
computation time is spent), and to map that ILP onto the parallel
issue slots of VLIW processors. The formation of hyperblocks (Mahlke
et al., 1992) by means of predicated execution (in which control flow
is replaced by data flow) and the application of software-pipelining by
means of modulo scheduling (Rau, 1995; Lam, 1988) are among the
most commonly used techniques to overcome limitations on ILP that
are caused by data and control dependencies. When these techniques
are applied on top of traditional data flow and control flow optimiza-
tions in a compiler, reasonable levels of ILP can be exploited, and
commercial tools are available that automatically apply these trans-
formations and generate code for (clustered) VLIW architectures of
up to 8 issue slots. However, when the number of FUs increases to
16 or so, which does make sense for a lot of application loop kernels,
additional novel compiler techniques are needed. To let that many FUs
operate with minimal power consumption, their interconnect to the
register files must become much sparser (to limit the number of ports
per register file), up to the point where traditional register allocators
and list-scheduling based schedulers do not perform anymore. So not
only do we need architectures with fewer interconnects, but we also
need new compilation techniques for those architectures.

Several architectures and corresponding compiler techniques have
emerged over the last years, operating at different performance/power
specifications. Architectures such as EDGE (Burger et al., 2004) com-
bine dynamic instruction issuing with static instruction placement (i.e.

1 In the future application development might be done in parallel languages
instead of sequential C. However, this will not solve the mapping problem. Rather
than distributing operations over several processors as needs to be done now, the
problem will then become to cluster and assign operations to the limited number of
processors. Only the design flow will then be different, not the fundamental problem.

paper.tex; 18/07/2008; 3:24; p.9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 B. De Sutter et al.

Figure 3. An ADRES architecture consisting of an array of 16 functional units that
are connected with almost as many local register files, and a layout of a multimedia
version of this architecture.

compile-time assignment of operations to issue slots) on an array of
functional units, aiming for general-purpose high-performance applica-
tions. An architecture template with high ILP potential at low power
consumption is ADRES (Mei et al., 2003a). Instances of this template
consist of an array of functional units that are connected to many small
local register files (RFs) in a sparse interconnect, and with one central
RF. The whole array executes loops in a data flow mode for which
the instructions and interconnect configuration (multiplexer selection
bits) are fetched every cycle from a configuration memory. As such the
array operates as a kind of dynamically reconfigurable coarse-grained
reconfigurable array, i.e. as an FPGA with wide computation resources
(32 or 64 bit instead of 1 bit) that is reconfigured every cycle. The
top row can operate as a regular VLIW processor, with a standard I-
cache and fetch-decode-execute-writeback pipeline, to execute non-loop
code. Data passing from non-loop code to loop-code happens through
the central register file, that is shared by both modes, and by the shared
memory, that is accessed through the load/store units that are shared
by both modes. An example ADRES instance with 16 functional units
is depicted in Figure 3.

For the ADRES architecture template, a full ANSI-C compiler tool
chain exists (including simulators, virtual machines, binutils, and a
VHDL generator) that compiles inner loops in applications for the
ADRES array mode, and all other code to VLIW mode. This com-
piler basically builds a data dependence graph representation for the
loops, and maps this graph on a time-space graph that models all
interconnects in the ADRES array. This compilation technique is sim-
ilar to placement and routing techniques from the hardware synthesis
world (Betz et al., 1999). On top of the time-space graph modeling of
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Design and Tool Flow of Multimedia MPSoC Platforms 11

Figure 4. IPCs obtained on a 16-FU ADRES DSP for the ten most time-consuming
kernels of an H264 AVC baseline profile decoder and of an MPEG-4 encoder.

the architecture, a modulo-reservation table is used to ensure that loop
code is modulo-scheduled, i.e., software-pipelined. For more details on
this algorithm, we refer to (Mei et al., 2003b).

The result of a synthesized ADRES instance after layout is depicted
on the right of Figure 3. This experiment was performed using 90 nm
standard cell TSMC logic. The total area is 3.6mm

2, and the clock
frequency obtained is 300 MHz at which 91 mW is consumed when an
AVC video is being decoded. For real-time AVC BP CIF decoding at 30
fps, a 50 MHz clock speed suffices, meaning that 15 mW is consumed.
For D1 decoding, a 205 MHz clock and 62 mW suffice. Please note
that this is an architecture with 16 FUs and 12 small local RFs, all of
which are 32 bits wide. Special instructions, that are programmed via
intrinsics, include clipping, min/max operations, and 2-way SIMD.

Some compilation results for an AVC decoder and an MPEG-4 en-
coder are presented in Figure 4. For most loops of the 10 hottest loops of
each application, the number of instructions executed per cycle (IPC)
is well above 10. When the IPC is lower than that, this is always due
to data dependences between operations in consecutive iterations of
the loops, which form a fundamental limitation on the obtainable IPC.
More extensive results are presented in (Mei et al., 2008). These results
illustrate that high instruction-level parallelism can indeed be obtained
for compiled C code, at low power consumption.

3.2. Tools for Extracting Data-Level Parallelism

DLP can be exploited in many ways, from completely manually to fully
automated. Compiler support for extracting vector operations from
an application has been researched for many years now, and even the
popular GCC 4.3 compiler includes rather extensive autovectorization
support (http://gcc.gnu.org), in the form of autovectorization analyses
and code transformations, but also in the form of vector data types
(that extend the standard C data types) that allow a programmer to
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12 B. De Sutter et al.

express vector operations in his code. Another popular, albeit manual,
technique to program SIMD operations is the use of intrinsics: in C-
code, the parallel operations are programmed by means of function calls
to functions that take wide inputs (e.g., of 64-bit long long data that
contains 4 16-bit values) and produce a wide output. When the com-
piler sees the function calls to these functions, they are simply replaced
with single, corresponding instructions on the target architecture. This
way, the compiler does not need to do instruction selection for the
intrinsic operations, which may be very complex and hence difficult
to use automatically. In our tool flows, intrinsics are used both for
programming SIMD and for programming other complex, specialized
instructions that were added to the ADRES architectures for speeding
up multimedia applications, such as clipping instructions.

3.3. Tools for Extracting Thread-Level Parallelism

With respect to TLP, we should first note that manual paralleliza-
tion is inherently non-scalable because of the retargeting effort that is
required to map applications onto different platforms. Thus, we need
to find (semi) automated ways to parallelize applications. With today’s
technology, mapping an application’s TLP such that resources are used
efficiently and correctness is guaranteed remains a big challenge, even
if applications offer plenty of TLP potential. Fortunately, the behav-
ior and workload of multimedia applications are rather predictable at
design time as they consist of a largely (but not completely!) fixed
execution order of a number of kernels like the ones in Figures 1 or 4.

The main task in exploiting TLP is deciding on the distribution of
kernels: which kernel runs on which processor. From a specific distri-
bution, it is possible to derive the communication and synchronization
required to maintain correctness. These, in turn, determine how effi-
ciently resources are used. Since the application workload is relatively
predictable, it is possible to take most decisions at design time, thereby
avoiding the overhead of an operating system and of switching. In this
paper, we discuss an approach which is fully design time, i.e. all de-
cisions (workload distribution, processor assignment, communication)
are taken at design time. Instead of an operating system, a simple run-
time library executes the design-time decisions. These decisions do not
involve scheduling: all the kernels assigned to a processor can simply
be executed in the same order as in the original sequential code.

In our semi-automated approach, a developer iterates through a
parallelization space of an application, assisted by two types of tools.
In each iteration, the developer (1) specifies how the kernels should be
distributed, (2) uses a tool to automatically generate correct parallel
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Design and Tool Flow of Multimedia MPSoC Platforms 13

code for the specified distribution, and (3) uses other tools to assess the
efficiency of the performed parallelization. Based on that assessment,
the developer goes back to step 1, updating his specification of the
distribution until an acceptable efficiency is obtained. Nowhere in this

process is it necessary to write parallel code manually.

As discussed in Section 2.1, two main distribution mechanisms exist:
functional parallelization, which distributes different kernels over differ-
ent processors, and loop or data parallelization, which distributes dif-
ferent iterations of the same kernel to different processors. The freedom
for such parallelization is limited by data dependencies. In multimedia
applications, the dependencies typically still allow a very large number
of different parallelizations because even if a dependency exists between
two kernels or two executions of the same kernel, they can still be
executed in parallel by pipelining over a surrounding loop.

When a dependency exists between two kernels executing on differ-
ent processors, this implies that data has to be communicated from one
processor to the other, and that the involved processors must synchro-
nize: the consuming kernel can only consume data when it is ready,
and the producing kernel should not overwrite data before it has been
consumed. In many multimedia applications, as in streaming applica-
tions in general, the easiest way to implement both the communication
and the synchronization at the same time is by using a FIFO. This
makes the synchronization one-way, and allows the producing kernel to
continue without waiting for the consuming kernel, because the data is
buffered in the FIFO.

Finding the dependencies is easy enough for scalar data using Static
Single Assignment analysis (Muchnick, 1997). For non-scalar data (ar-
rays and pointer structures) dependencies, more accurate analyses are
needed that identify exactly which parts of the non-scalar data are
being produced and consumed (Pugh and Wonnacott, 1998; Feautrier,
1991; Plevyak et al., 1993), and hence which data need to be com-
municated. Alternatively, the non-scalar data can be stored in shared
memory and only a counter or pointer is passed to the consumer that
indicates which data is ready for consumption. With this method, how-
ever, output dependencies and anti-dependencies still need to be han-
dled explicitly by means of additional counters and pointers. Otherwise
data may be overwritten before it is consumed.

We have implemented a tool that automates the generation of mul-
tithreaded code (Cockx et al., 2007). Its input consists of sequential C
source code that has been annotated by the developer with information
(in the form of pragmas) on how he wants to apply functional and data
parallelization. This tool generates correct parallel code by identify-
ing all required FIFOs or shared memory synchronization using the
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14 B. De Sutter et al.

aforementioned dependency analyses. Concretely, the tool duplicates,
for each processor, the kernel code and surrounding control code from
the sequential code, after which the required FIFO and synchronization
statements are inserted. This tool guarantees correct parallelization by
construction. However, this tool by itself does not suffice to perform
a parallelization. It merely generates correct parallel code, but not
necessarily efficient parallel code. To obtain an efficient parallelization,
the parallelization specified in the developer’s annotation should solve
the following three problems.

Load balancing issues occur if one core has less work to do than
others. As a result, it will waste resources remaining idle for some
time. Obviously, when some kernels do not have a fixed execution time,
design-time load balancing becomes difficult. Still, it is usually possible
to find a distribution that balances execution time variations over a
longer period.

Synchronization issues result from dependencies. The reader of some
data cannot start until the writer has finished. Worst case, depen-
dencies force a completely sequential execution order. After inserting
the synchronization mechanisms (FIFOs) in the code, it is possible to
determine the time consumed by the dependencies either by simulating
the parallel code or by formal analysis (Denolf et al., 2007; Burns et al.,
1995; Baccelli et al., 1992).

Communication issues arise when communication resources are be-
ing shared. Usually, the platform does not offer a fully connected point-
to-point communication network. The communication resource is to
some extent shared between processors. This is particularly the case
for shared memory. On a single processor, a communication takes a
predictable amount of time, but on the multiprocessor it may take
longer because it has to wait for the request of another processor to
finish. It turns out that for some latency-sensitive communications,
the additional waiting time becomes critical for the overall execution
time (Marescaux et al., 2007). Although the distribution decision affects
the communication overhead quite a lot, it is less important to take
communication into account for the distribution decision. Indeed, it
is possible to explicitly manage data communication and move most
transfers to a place where their latency is not critical (Dasygenis et al.,
2006; Marescaux et al., 2007).

We have developed a simulation tool that allows the developer to as-
sess the efficiency of a distribution without requiring a time-consuming
full mapping and simulation on the parallel platform. This high-level
parallel simulation environment is based on information from a se-
quential profiling run. The sequential run is performed on the target
processor (or a simulator of it) and records the execution time of each
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Design and Tool Flow of Multimedia MPSoC Platforms 15

Figure 5. Screenshots of the waveform representations of a program execution. For
two ADRES cores, the activities related to BT synchronization, BT issuing and
actual computation are shown. From the zoomed -out shot , two stages can be
observed: one in which the ADRES processors are active, and one in which they are
not, i.e. when the ARM processor on the platform is actually executing. From the
circled areas in the zoomed-in shot, it can be observed that the two ADRES cores
are effectively performing computations in parallel.

kernel. These times are used in the parallel run on the workstation
to simulate the synchronization overhead. Thread activations, FIFO
filling and waiting times are all recorded and presented in two formats.
First, computation times and communication times can be displayed in
convenient graphs such as the ones displayed in Figure 9 (see Section 4.1
for an explanation of the graphs). Secondly, they can be displayed as
waveforms, as shown in the screenshots in Figure 5. These two formats
give a designer a quick view on the potential issues of his parallel ap-
plication’s timing with and without the actual variations in execution
time, which allows him to perform an efficient exploration.

The most related work is OpenMP (Chandra et al., 2001). Like our
tool, OpenMP is a compiler extension that enables the parallelization of
C code by means of pragmas. It is supported by its own run-time library,
and is great for specifying data parallelization of loops with indepen-
dent iterations. For other forms of parallelism the user has to take care
of data dependencies and he has to rewrite the code before inserting the
pragmas. For example, for functional pipelining, the developer has to
implement the activation and deactivation of pipeline stages in C code,
thus basically implementing the whole pipelining himself. The pragmas
then only instruct the compiler to execute the stage in parallel. Our
tool also relies on pragmas, but no C code rewriting is necessary, which
is the key to facilitating design space exploration.

3.4. Tools for Managing Scratch-Pad Memories

To avoid a power and performance bottleneck in main memory accesses,
it is often useful to give threads local copies of data that can be accessed
in local memories. Obviously, the energy and bandwidth consumed in
making copies and transferring blocks of data between different mem-
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16 B. De Sutter et al.

Figure 6. Inputs and outputs of our tool to insert data block transfers.

ories should be balanced with the gain of avoiding global accesses. To
enable the developer to find a good balance, we have developed another
tool that automates a lot of the code rewriting involved in inserting data
copies and data block transfers. Like the tool for inserting TLP in the
previous section, this tool enables the developer to explore different
options without having to rewrite C code manually. In other words,
this tool enable our flow to scale to larger platforms and applications.

The main inputs and outputs of this tool are depicted in Figure 6.
Based on a description of the platform and a profile of the application,
a data-reuse analysis learns how data is accessed and reused by the
kernels of the application. This analysis highlights good candidates for
local copies in the copy-candidate graph, and informs the developer
about the required block transfers. The developer can then choose
which local copies he wants to see implemented, after which the tool
will give him an energy and performance estimate, a data assignment
to local memories, and rewritten C code that includes the calls to the
run-time library to execute the necessary block transfers.

Existing other work in this area is presented in (Kandemir and
Choudhary, 2002; Udayakumaran and Barua, 2006; Udayakumaran
et al., 2006; Verma, ; Wehmeyer and Marwedel, 2006; Aouad and Zen-
dra, 2007). Overall, we believe that our tool is applicable to a much
broader range of applications than the existing work, as is demonstrated
on a full MPEG-4 encoder (Baert et al., 2008).

3.5. Supporting Run-time Library

To make sure that MPSoC platforms with components as described in
Section 2 can be programmed efficiently using a design flow like ours,
a run-time library is needed that abstracts the hardware. By means
of different platform-dependent implementations, the run-time library
offers a platform-independent interface to the hardware resources. A
well designed run-time library interface carefully balances abstraction
and performance. A more abstract interface hides more of the platform,
which improves application portability. On the other hand, for per-
formance reasons the interface should expose many platform features
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Design and Tool Flow of Multimedia MPSoC Platforms 17

which can be used to optimize the application for the platform. In our
context, where we start from sequential code and make all decisions at
design time, the following run-time functionality is required.

Regarding the platform’s configuration, a thread configuration stati-
cally defines the threads, the functions representing the threads, which
processors they run on, and other thread parameters. A FIFO con-

figuration statically defines the FIFOs, which threads use them to
communicate, their block size, and their depth. A counter or pointer

configuration statically defines the counters or pointers (token FIFOs),
by which threads they are used, their range and the allowed difference.

Concerning application-wide control flow, the assumption is that the
outermost control flow is not parallelized. For that reason, a sequential
root thread must be identified that starts the pre-defined parallel code
at specific points. Once all pre-defined threads have run to completion,
they perform a barrier synchronization before the sequential code is en-
tered again. To support control flow that jumps out of parallel sections,
as when an exception happens, special support for thread termination

needs to be executed before the sequential code is entered again.
Regarding communication, the FIFO communication primitive put

blocks if the FIFO is full. The get blocks if it is empty. It is also
useful to split these primitives in an acquire and a release part such
that the data can be written directly into the FIFO buffer rather than
requiring an additional copy. The acquire is then blocking and returns a
pointer into the FIFO buffer, while the release is non-blocking. Counter

increment and test are the equivalents of token FIFOs. The increment is
non-blocking while the test is blocking. For the communication of data
blocks, block transfers are used. Rather than communicating individual
words, it is more efficient to let a DMA unit transfer blocks of data.

Note that some typical primitives are not required, e.g. semaphores,
locks, FIFO peeking, dynamic thread creation. This is so because we
start from sequential code and take all decisions at design-time.

3.6. Overall MPSoC Mapping Flow for ILP, DLP and TLP

Based on the tools and techniques described in Section 3, as well as
on the run-time library functionality, we can build an overall MPSoC
mapping flow, as depicted in Figure 7.

Our flow relies on transformations of the source code. Ideally, the
whole process would be automated and the programmer could just push
sequential C code in a tool which spits out optimal TLP, DLP and ILP
machine code. Unfortunately, manual interaction is still needed at every
step to achieve good results. Thus, the code has to be easy to transform
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Figure 7. Our overall application mapping flow.

and to understand. This often requires refactoring of existing code to
make it amenable for manual or automatic analysis and transformation.

Multimedia applications are typically data-intensive, involving many
memory accesses and much communication. Optimizing temporal lo-
cality (Wolf and Lam, 1991) reduces the amount of communication re-
quired after parallelization, as demonstrated in Section 4.1. This can be
done on the sequential code, and is mostly platform-independent. The
locality optimizations are therefore also scalable to platform extensions.

To evaluate the quality of load balancing, it is important to have a
good idea of the load generated by each kernel. For that reason, the
code is first optimized for the ILP and DLP on a single processor.
After parallelization, the code at the boundary between two kernels
that are mapped onto the same processor can often still be optimized.
Therefore, the final step in the flow refines the kernel optimizations.

In our current, mature flow, we apply the scratch-pad management
strictly before thread-level parallelization. The reason is pragmatic: the
scratch-pad management tool cannot deal with the more complex code
that comes out of the parallelization tool. Merging the two tools is
ongoing work, which we believe will lead to better results.

We should note that the parallelization into threads occurs fairly late
in the mapping flow. This has the advantage of being more scalable:
when mapping to a higher-performance platform which contains more
processors, only the parallelization step has to be redone while the
results of the locality and kernel optimizations stay valid.

4. Experimental Evaluation

This section presents results and lessons learned from two experiments:
one in which the whole tool flow was applied on a full application for an
off-the-shelf platform, and one in which we designed a state-of-the-art
platform using the components discussed in this paper.
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Design and Tool Flow of Multimedia MPSoC Platforms 19

Figure 8. Number of accesses to large data structures in QSDPCM at various
stages of data-flow and data locality optimization, and the corresponding energy
estimations based on the used two-level memory hierarchy.

4.1. Mapping QSDPCM on an off-the-shelf platform

To demonstrate the effectiveness of our design flow, we mapped a
simple multimedia application onto an off-the-shelf platform. Quad-
tree Structured Difference Pulse Code Modulation (QSDPCM) is a
typical, albeit simple, video codec. It consists of an inter-frame com-
pression based on a three-stage hierarchical motion estimation (ME),
which we split in two kernels, followed by a quad-tree based coding
of the motion-compensated (MC) frame-to-frame difference signal, and
a quantization (QC) followed by Huffman compression. The latter two
steps are combined into one kernel. The target multi-processor platform
consists of 6 TI-C62 DSP processors with local L1 scratch-pad memo-
ries, the Aetheral network-on-chip, a shared L2 memory, and CA blocks.
A cycle-accurate virtual platform model of the architecture in SystemC
was used to obtain accurate performance estimates. The remainder of
this section discusses a selected number of steps out of the design flow.

The first step we illustrate is the optimization of data flow and data
locality by performing loop transformations. These reduce the number
of accesses to large arrays and improve their locality by reordering
loop iterations. Figure 8 shows their effects on the number of memory
accesses performed and on the energy consumption per frame. Note
that the locality-improving transformations do almost not affect the
number of accesses to data. They only affect the access locality of the
data, thus reducing the number of power-consuming accesses (or data
block transfers) to and from L2 memory.

The next step explores different thread-level parallelizations. Fig-
ure 9a shows that a sequential execution of three kernels on a single
processor P1 will consume 53308 cycles, which is the sum of the ker-
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nel cycle counts as indicated in italic for each kernel. These cycle
counts were obtained by profiling the sequential application. Figure 9b
shows a functional pipelining parallelization over three processors, while
Figure 9c shows a combined functional pipelining and data-parallel
parallelization, in which kernel ME2 is split in two parallel threads. The
latter parallelization is more balanced, and hence the combined cycle
count is lower, now totaling 18522 cycles. Finally, Figure 9d shows the
optimal parallelization over the six processors of our target platform.

Note that it is the developer that explores different parallelizations
by indicating how each kernel should be parallelized and assigned to (a)
processor(s). Based on the developer’s input, our tool can immediately
present the estimated total cycle count, and it generates the multi-
threaded code which includes all communication code that is necessary
to pass data from the L2 memory to each processor’s L1 memory and
back over the platform’s NoC. The resulting parallel program is profiled
again, and the tool reports the number of cycles required to perform the
required block transfers over the NOC, as shown in Figure 9e. Looking
for example at the ME1 kernel, we observe more about a factor 3 differ-
ence between maximum cycles required for communication (2154+330)
versus computation (9261), indicating that the NoC can be clocked at
three times lower frequency than the processors. In addition, different
bandwidth can be reserved for the different connections. For example,
the ME2 connection requires more than a factor 4 less bandwidth than
ME1. By doing this exercise for different parallelizations, the developer
can efficiently explore the parallelization design space.

Finally, the resulting code can be executed on our virtual platform
model. Figure 10 shows how much of the time each processor spends on
different parts of the processing, the communication, and the synchro-
nization. Preamble/postamble are the times some stages of the func-
tional pipeline are idle because the pipelining is being set-up/emptied.
Thread synchronization times originates from load imbalances as seen
in Figure 9. L1 conflicts stall cycles result from access conflicts of each
TI’s two load/store units that share a single L1 memory. The block
transfer synchronization overhead is very limited, as the corresponding
DMA transfers are executed in parallel (prefetching data).

4.2. A Platform for MPEG-4-like Applications

In a second experiment we designed and implemented a programmable
multi-mode multimedia platform on which multiple video coding and
decoding standards can be implemented such as AVC H.264, MPEG-4,
MPEG-2, etc. This platform had to meet the following requirements:
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Figure 9. Different QSDPCM parallelizations. Cycle counts are for VGA resolution.

Figure 10. Cycle usage for final SQDPCM implementation at VGA resolution.

Real-time performance Play Baseline Profile level 3.1 AVC HDTV
720p encoding at 30 FPS as well as AVC CIF encoding at 30 fps in
combination with up to 4 AVC CIF decoding streams for a 4-user
video conferencing).

Composability Run different combinations of applications.

Power-efficiency Components not used at some point are disabled.

Design flow support The platform must support the design flow pro-
posed in this paper by means of a multi-processor architecture
with hierarchical shared memories and a scalable interconnect with
guarantees for bandwidth of various data transfer streams.
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Figure 11. Our multimedia platform is comprised of an ARM subsystem, a FIFO
interface, an external memory interface, four Level 2 memories and 6 ADRES cores.

Area The die area should not exceed 100mm2 in a 90nm process.

Figure 11 provides a block diagram of our platform. Block arrows
represent interfaces with the external world. The figure shows the fol-
lowing subsystems which are connected through a central Arteris NoC
(http://www.arteris.com). The ARM subsystem performs general con-
trol tasks, including system configuration (clock frequencies, voltage
island management, clock activation/de-activation), system booting,
general data movement (from FIFO interface to and from L3 and be-
tween L3 and L2 memories), task scheduling on the various processors
in the system, synchronization and communication with the external
world, control and relay of debug information from the ADRES pro-
cessors, and, optionally, audio encoding. The L3 EMIF (external mem.
interface) accesses external SDRAM. The FIFO interface is a dedi-
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cated communication channel to the external world. Typically raw and
compressed data will be exchanged through this channel. Six ADRES
core form the intensive processing elements, targeted at computation
tasks. Two L2 data memories: these are used to store data at a L2
stage, which are shared by the different actors of the system. Each
sub-system is connected to the NoC through a CA. These modules are
intended to perform complex 2D data movements autonomously, which
they thus offload from the processing elements. These CAs also feature
a bypass capability allowing the processing element to perform simple
data load/stores through the NoC.

Our platform is divided into several clock domains, which are high-
lighted by red dotted areas (notice that there is one independent clock
per ADRES core). These clock domains have been chosen to enable
the adaptation of the platform’s resources to the different needs of
different applications. For example, some applications are more CPU
bound while others are more memory bound, and some applications will
allow more parallel prefetching than others. This means that different
applications have different optimal ratios between memory operating
frequencies, bus (NoC) operating frequencies and processor operating
frequencies. The analysis in Section 4.1 revealed one such operating
point for the QSDPCM standard. Furthermore, the platform features
eight separately powered voltage islands highlighted by a bold border:
the six ADRES cores and the L2D2 and L2I2 memory nodes. These
voltage islands are not foreseen to be turned on or off frequently (in a
dynamic way) as their reaction time is relatively long (voltage ramp-
up time, global clock slow down, reset de-assertion phase). Instead the
goal is to turn them off (or to lower the frequency of clock domains) for
the entire run of an application that does not require all resources. For
example, not all six ADRES cores are needed when a video conference
with less than six users is set up, or when a single stream of lower
resolution than HDTV 720p is being encoded. As such, clock domains
and voltage islands ensure efficient scalability in the platform: only the
computing performance needed at some point is consuming energy.

4.2.1. Platform Implementation

Two goals have been driving our implementation effort. The first goal
was a functional verification. To this end, we mapped the platform on an
emulator which then ran a compiled MPEG-4. The second goal was an
estimation of area, reachable clock frequency and power consumption.
We achieved that goal by synthesizing the platform on a technology
library. To realize these two goals, a hardware model of the complete
platform was required. The NoC (Arteris), the ARM core and the EMIF
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Figure 12. The platform layout: the die size is 64mm2.

(Barco-Silex) are off-the-shelf components. The other blocks have been
designed internally in VHDL.

4.2.1.1. Emulator mapping The platform has been mapped onto an
high-performance hardware emulation system, the Mentor VStation
Pro. The design uses 56% of the available capacity and can operate be-
tween 430kHz and 493kHz. The application was tested either by using
the ARM AXD debugger, enabling a direct connection to the ARM core
on the emulator, or through the FIFO interface for faster execution (the
ARM debugger communication requires interactions through the slow
JTAG port). Several hundred QCIF frames were encoded to validate
the correctness of the platform and of the compiled software mapping.

4.2.1.2. Synthesis and Place & Route The platform has gone through
a complete ASIC design flow. The targets set forward for the different
clocks were: 300MHz for the ADRES cores, 75MHz for the ARM sub-
system and 150MHz for other components (CAs, NoC, L2 memories,
EMIF, FIFO). The design was successfully laid out using Synopsys
Design Compiler and Cadence SoC Encounter, fitting in a die of 8mm
x 8mm (Figure 12) and meeting the frequency constraints. The technol-
ogy library used is TSMC 90nm general purpose process with normal
VT. The complete design (including memories) represents 5M gates
equivalent plus 2.35 MBytes of L2 and L1 memories.

4.2.2. Application Mapping

We mapped an MPEG-4 encoder onto this platform to demonstrate
that (1) a complex platform can be designed that operates correctly as
predicted, even though some components are suboptimal, and (2) that
an application can be mapped onto the platform, albeit suboptimally.
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Figure 13. Performance results (number of cycles for one QCIF frame) and
extrapolation for the mapping of an MPEG-4 encoder on the platform.

Figure 13 shows some results of this mapping experiment. The top
bar shows the execution time breakdown of the controller part of the
encoder mapped onto the ARM processor (being the rate control and
the fetching of the data to be encoded) and of the computation intensive
parts, being the unoptimized kernels, mapped onto a single ADRES
core. These breakdowns were obtained using virtual platform simula-
tions. Because of the memory hierarchy consisting of L1 scratch-pad
memories and a shared L2 memory, even the single-threaded compu-
tational part already needs to perform block transfers, which consume
about 27% of the time spent on the ADRES core. Because the ARM
code in this mapped application fetches the data to be decoded next,
i.e. without pipelining or prefetching of data from additional frames, it
cannot be executed in parallel with the code running on an ADRES.

The second bar shows the same breakdown for the same application
mapped onto one ARM and two ADRES cores. In this version, the
motion estimation is run in a separate thread from the other kernels. As
such, both threads can run in parallel perfectly. As can be seen from the
result, this parallelization is not balanced at all: the motion estimation
running on one processor performs about 1/5 of the DSP workload,
while the other kernels running on the other processor perform about
4/5 of the DSP work. What can also be observed is that in this experi-
ment, the FIFO communication results in significant overhead. Because
of that, the total speedup of the application is limited to only 8%.
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While the simulations on the virtual platform and the validation on
the VHDL emulator show that the platform performs as expected, the
results are clearly all but optimal, reaching only a 8% speed-up after
parallelization over 3 threads. Due to the limited amount of resources
available at our research institute, we could not optimize the whole
platform to get more optimal, measurable results. But to get some idea
of where a better mapping and better platform could take us, bars (c)
to (e) show extrapolated results based on additional experiments that
we performed on isolated parts of the platform.

First, the ARM code can be optimized easily. Instead of fetching
one byte of frame data at a time with the fread C-library function,
buffered fetches can be used. This reduces the workload significantly.
Furthermore, by fetching frames one frame ahead of the actual decoder
implemented on the ADRES cores, the ARM code can be executed in
parallel with the ADRES code. On isolated ADRES code kernels, we
have performed additional ILP and DLP optimizations, that reduce
their cycle count by an average factor of 3.5. Combining these opti-
mizations with the ARM code optimizations, the result of bar (c) can
be obtained.

Next, the CAs can be optimized. Each CA needs to be configured
from within the application code using an API to pass the parameters
defining the block-transfer to the CA (BT issue) and its completion is
monitored through a second API (BT sync). The actual block-transfers
are executed by the CA (configuration of the remote CA, setting-up
DMA channels, monitoring progress and completion of transfer, ...)
through firmware executing on the CA’s internal controller (in our case,
a stripped-down Leon processor). The implementation of the CA (both
hardware, firmware and APIs) contains quite some overhead that we
are currently removing: for example, we are limiting the parameters
that need to be passed back-and-forth between the CA and the ap-
plication processor (ADRES), simplifying the protocol to configure the
remote CA, etc. With these optimizations we expect to reduce the time
required for the application processor to execute BT issue and BT sync
functions by roughly a factor of 6, resulting in the situation shown in
bar (d).

Finally, the RT-lib can be reimplemented more efficiently. The par-
allelization using 2 ADRES processors relies on FIFO communication.
As there is no direct hardware support for FIFO communication in the
CA, the FIFO behavior is implemented entirely in a run-time library
executing on the communicating ADRES processors, leading to a sig-
nificant processor load. This situation can be corrected by off-loading
part of the FIFO communication implementation to the CA resulting
in the situation shown in bar (e).
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With these three optimizations, we believe we can reduce the re-
quired number of cycles from 7.5M per frame to 1.2M per frame. Still
further optimization can be obtained of course, by performing a better
balanced thread-level parallelization, over more ADRES cores.

4.2.3. Power Estimation

Not having a fully optimized application that exploits all platform
resources, we present power numbers for the individual components.
A layout of a synthesized ADRES core and simulation of an optimally
mapped AVC decoder showed that one ADRES core clocked at 300MHz
consumes 91 mW of which about 5mW is static power. For a power
breakdown of an older, less optimized version of the ADRES core, we
refer to (Mei et al., 2008). The ARM data sheet provides a power
number of 0.14mW/MHz. Since our ARM is clocked at 75MHz, this
implies a power estimate of 10.5mW. For the memories, data sheets
provide numbers per read and write access. With an estimate of the
numbers of reads and writes required to execute a video codec opti-
mally, we estimate the L2 memories to consume around 40mW (data)
and 30mW (instructions). With respect to the NoC, separate exper-
iments have been conducted together with Arteris (Milojevic et al.,
2007). The results of that experiment, again for an estimate of the NoC
use in an optimally mapped coded, is a power consumption estimate
of less than 25mW. Finally, we measured the power consumption of
a custom 150MHz CA design (not based on the aforementioned Leon
processor, and developed outside our platform by another group in our
department) to be 1mW. Combined, this brings us to 6 ∗ 91 + 10.5 +
40 + 30 + 25 + 13 ∗ 1 = 664mW . This is only an estimate however, as
the additional cost of the interconnect is not taken into account.

4.2.4. Related Platforms

The SiliconHive HiveFlex VSP2500 platform (VSP, 2007) is a pro-
grammable MPSoC platform. The main difference with our platform,
apart from the processing cores, is that it features special purpose
connections between processors and a shared system bus with DMA
controllers. The Nexperia PNX1700 media processor from NXP (PNX,
2005) features a programmable TriMedia TM5250 VLIW CPU and
several dedicated accelerators. It features a shared bus to main memory
and the VLIW includes a L1 data cache. Texas Instruments DaVinci
video processors (Davinci, 2007) include a single programmable TI
C64+ VLIW DSP and dedicated hardware accelerators to perform
video coding, and an ARM9 processor to run application control. These
processors feature a shared memory that is connected to all processors
via a so-called switched central resource. ST’s Nomadik multimedia

paper.tex; 18/07/2008; 3:24; p.27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28 B. De Sutter et al.

processors, such as the STn8815P14 (nomadic, 2008), feature an ARM9
controller and several (up to 4 at the time of writing) application-
specific, programmable DSPs for tasks such as accelerating video pro-
cessing, audio processing, graphics acceleration, etc. As a communica-
tion mechanism they use a multi-layered AMBA crossbar.

We not necessarily want to differentiate purely on a platform basis.
We focus instead on the combination of tool flow and platform, for
example by using scratch-pad memories for which we have tool support.
Our tool support might be applicable to the above platforms as well
in so far as they have scratch-pad memories. Of course, parallelization
is one thing. Doing it good, in a predictable, composable and scalable
manner is another. Compared to the above platform, we believe our
NoC-based platform to score much better on these criteria.

5. Conclusions

This paper presents our experience with designing MPSoC multime-
dia platforms and with the mapping of applications on those plat-
forms. We have discussed the components (DSP processors, scratch-pad
memory hierarchies, communication assists and NoCs) that we believe
should be used to build such platforms. These components are cho-
sen because they result, when abstracted by a run-time manager, in
predictable, composable, scalable platforms that can deliver high per-
formance at high power-efficiency. Based on run-time abstractions like
FIFOs and block transfers from and to a shared memory, we have also
proposed a design-time tool flow for mapping applications. This tool
flow enables the exploitation of all forms of parallelism in a predictable,
composable and scalable manner. The feasibility of both the design
flow and the proposed platform has been confirmed experimentally for
a QSDPCM application mapped on a platform consisting of off-the-
shelf components, and for an in-house design of a multimedia platform
with state-of-the-art components to support AVC and MPEG-4 video
codecs.
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