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a b s t r a c t

This paper introduces the mapping of MPEG video decoders on ADRES, IMEC’s new coarse-grain reconfig-
urable and fully C-programmable array processor that targets nomadic devices. ADRES is a flexible tem-
plate that allows the instantiation of many different processor versions. An XML-based architecture
description language allows a designer to easily generate different processor instances with full compiler
support by specifying different values for the communication topology, the number and size of local reg-
ister files and functional units and supported instruction set. ADRES supports a VLIW-like programming
model with a pure VLIW mode for legacy code, and a (coarse-grain reconfigurable) array mode with very
high parallelism for the processing of compute intensive loops. We demonstrate the mapping of two video
decoders MPEG-2 and AVC, and discuss the performance trade-offs for two critical kernels: IDCT and inte-
ger transform. As a result, an ADRES based system can perform AVC decoding in CIF resolution with less
then 50 MHz on a 4 ! 4 array processor.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

A new class of programmable processor architectures is emerg-
ing for demanding DSP applications such as video coding: coarse-
grained reconfigurable architectures (CGRAs). While many CGRAs
were proposed in recent years [4] none of them have yet been
widely adopted, partially due to the difficult programming models,
and partially due to the vast overuse of resourceswhen compared to
other DSP processors. Another typical problem is the difficult inter-
facing between the array and the host processor, where the control
flow part of the application code is running. These issues are
addressed by a novel CGRA called architecture for dynamically
reconfigurable embedded systems (ADRES) and by its compiler
technology called dynamically reconfigurable embedded system
compiler (DRESC) [9]. Firstly, the ADRES architecture tightly couples
a very-long instructionword (VLIW) processor and a coarse-grained
array by providing two functional views on the same physical
resources. The VLIW part offers an easy path for the mapping of
complex applications, that is absent in other published CGRA imple-
mentations. Furthermore, the array part offers unprecedented loop
accelerations. Secondly the DRESC compiler framework assures that
applications written in C can be easilymapped onto VLIW and array
mode. The sharing of a central registerfile between these two
modes, that also serves as a storage for live-in and live-out variables
for the loop mode, minimizes communication and mode-switching

costs and enables the compiler to seamlessly generate code for both
modes, including the data transfer operations. Finally, ADRES is a
template instead of a concrete processor architecture. With the
retargetable compilation support from DRESC, architectural explo-
ration becomes possible to discover better architectures or design
domain-specific architectures.

We mapped two key video applications, namely MPEG-2 [5,14]
and H.264 [6,13] decoding, on ADRES [11]. Firstly, the applications
have been compiled for the VLIW-view. Next, the IDCT, which is
also used in MPEG-4 [7] and integer transform kernels are acceler-
ated on the array part of ADRES. The results for these are discussed
in detail, and compared to benchmarks for a state-of-the art VLIW–
DSP processor, TI’s TMS320C64! [1].

This paper is organised as follows. In Section 2 we first present
the architecture of the ADRES reconfigurable array processor in
Section 2 and the corresponding DRESC compiler in Section 3.
Then, in Section 4, we illustrate our application mapping method-
ology that is specific for this type of reconfigurable array and apply
it for MPEG in Section 5. The mapping results are presented in Sec-
tion 6 and compared to other stat-of-the-art processors in Section
7. Section 8 presents hardware implementation results and finally,
in Section 9 our conclusions are discussed.

2. The ADRES CGRA

The ADRES architecture template, as shown in Fig. 1, consists of
an array of basic components, including FUs, register files (RFs) and
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routing resources. The top row can act as a tightly coupled VLIW
processor in the same physical entity. The two parts of ADRES share
the same central register file and load/store units. The computation-
intensive kernels, typically dataflow loops, are mapped onto the
reconfigurable array by the compiler using the modulo scheduling
technique to implement software pipelining and to exploit the high-
est possible parallelism, whereas the remaining code is mapped
onto the VLIW processor. The data communication between the
VLIW processor and the reconfigurable array is performed through
the shared RF and shared memory. The array mode is controlled
from the VLIW controller as an infinite loop between two (configu-
ration memory) address pointers with a data dependent loop exit
signal from within the array that is handled by the compiler.

The array contains three types of basic components: functional
units (FUs), storages resources such as register files and memory
blocks, and routing resources that include wires, muxes and bus-
ses. The ADRES architecture is a flexible template that can be freely
specified by an XML-based architecture specification language as
an arbitrary combination of those elements.

Fig. 2 shows a detailed datapath of an ADRES FU. In contrast to
FPGAs, the FU in ADRES performs coarse-grained operations on

32 bits of data, e.g., ADD, MUL, shift. To remove the control flow in-
side loops, the FU supports predicated operations for conditional
execution. A good timing is guaranteed by buffering the outputs
in a register for each FU. The results of the FU can be written to
a local register file (RF), which is usually small and has less ports
than the shared RF, or routed directly to the inputs of other FUs.
The multiplexors are used for routing data from different sources.
The configuration RAM acts as a (VLIW-) instruction memory to
control these components. It stores a number of configuration con-
texts locally, which are loaded on a cycle-by-cycle basis. Fig. 2
shows only one possible data path, as different heterogeneous
FUs are quite possible.

3. DRESC compiler framework

For a complex architecture like ADRES, an automatic design
methodology and tools are essential. Therefore we developed the
ADRES architecture together with its own compiler framework,
called dynamically reconfigurable embedded system compiler
(DRESC). The compiler framework is depicted in Fig. 3. A design
starts from a C-language description of the application. The profil-
ing/partitioning step identifies the candidate compute intensive
loops (kernels) for mapping on the reconfigurable array based on
execution time and possible speed-up. Source-level transforma-
tions are used to make the kernel software pipelineable (see the
following section) and to maximize the performance. In the next
step, we use IMPACT, a VLIW compiler framework [3,15], to parse
the C code and do some analysis and optimization. IMPACT emits
an intermediate representation, called Lcode, which is used as in-
put for scheduling. As can be seen on the right-hand side of
Fig. 3, the target architecture is described in an XML-based lan-
guage. This high level parameterized description of the architec-
ture allows a designer to quickly specify different architecture
variation. The parser and abstraction steps transform the architec-
ture to an internal, more detailed, graph representation. Taking
program and architecture representation as input, a novel modulo
scheduling algorithm is applied to achieve high parallelism for the
kernels, whereas traditional ILP scheduling techniques are applied
to discover the available moderate parallelism for the non-kernel
code. The communication between these two parts is automati-
cally identified and handled by our tools. Finally, the tools generate
scheduled code for both reconfigurable array and VLIW. Three
kinds of simulator are generated from the architecture description
and the scheduled code and are used to obtain quality metrics for
the architecture instance under test.
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Fig. 1. Architecture of the ADRES coarse-grain reconfigurable array.
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Fig. 2. ADRES array node (FU). Fig. 3. DRESC compiler framework.
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The core technology of the compiler is the modulo scheduling
algorithm that is capable of mapping loops onto the ADRES archi-
tecture in a highly parallel way [10]. Modulo scheduling is a widely
used software pipelining technique [8]. The objective of modulo
scheduling executes multiple iterations of the same loop in paral-
lel. This is achieved by constructing a schedule for one iteration of
the loop such that this same schedule is repeated at regular inter-
vals with respect to intra- and inter-iteration dependences and
resource constraints. This interval is termed initiation interval
(II), and it specifies after how many cycles the execution of a
new iteration of the loop is initiated. Because of this, the initiation
interval is inversely proportional to the performance and it is used
to indicate the performance of the scheduled loop. Applied to
coarse-grained architectures, complexity of modulo scheduling
increases drastically as it needs to combine three sub-problems,
placement, routing and scheduling, in a modulo constrained space.
To illustrate the problem, a simple data dependence graph (DDG) is
shown, representing a loop body, and a 2 ! 2 array (Fig. 4a). The
scheduled loop is depicted in Fig. 4b, which is a space–time repre-
sentation of the scheduling space. The 2 ! 2 array is flattened to
1 ! 4 for convenience of drawing. The dashed lines represent a
routing possibility between the FUs. Placement determines on
which FU of a 2D (two-dimensional) array to place an operation.
Scheduling determines in which cycle to execute that operation.
Routing connects the placed and scheduled operations according
to their data dependences. The schedule on the 2 ! 2 array is
shown in Fig. 4c, where initiation interval is equal to one. FU1,
FU2, FU3 and FU4 are configured to execute n2, n4, n1 and n3,
respectively. By overlapping different iterations of a loop, an
instruction per cycle (IPC) of four is achieved in this simple exam-
ple. As a comparison, it takes three cycles to execute one iteration
in a non-pipelined schedule due to the data dependences, corre-
sponding to an IPC of 1.33, no matter how many FUs are in the
array.

Internally, our modulo scheduling algorithm utilizes a graph-
based architecture representation, called modulo routing resource
graph (MRRG), to model resources in a unified way, expose routing
possibilities and enforce modulo constraints. The algorithm is
based on congestion negotiation and simulated annealing meth-
ods. Starting from an invalid schedule that overuses resources, it
tries to reduce overuse over time until a valid schedule is found.
One main advantage of the DRESC framework is its flexibility.
The tools are designed to be retargetable within the ADRES tem-
plate. An architecture instance can be easily described in the

XML-based description language. Without any changes, the com-
piler and simulator are automatically retargetable to different
instances.

4. Application mapping methodology

The input for mapping an application to ADRES is C code, possi-
bly enhanced with intrinsics. There are some source-level transfor-
mations the programmer must perform to achieve an efficient
mapping of loops to the CGRA.

The first step is to determine the critical kernels of an applica-
tion, which is done through profiling. Then, the loops within the
kernels have to be made compilable with DRESC: the loop body
may not contain function calls and branches, and it must have a
single exit. Fortunately IMPACT already supports this when the
code is compiled to hyperblocks: the code blocks will have a single
exit, and predicates are being used to replace code branches. The
programmer sometimes has to support this by simplifying the con-
trol flow and manually inlining functions in the loop body.

Then the loop should be compiled and run on the compiled-
code simulator for a first evaluation. The compiler will report on
the schedule length, the initiation interval (II) or number of cycles
used for executing the loop body, and the resource usage. The sim-
ulator will provide statistics on the actual performance of the
mapped loop. The data will indicate whether the iteration count
is high enough and whether there are resource constraints which
should be removed. The combination of a low iteration count
and a long schedule indicates overhead, because a proportionally
higher amount of cycles is being spent in the loop prologue and
epilogue.

There are several techniques that can be used for increasing the
performance. Loop coalescing combines a nested loop with its
enclosing one to generate a larger, longer loop. Another aspect to
consider is whether two loops can be combined, like the horizontal
and the vertical passes of a 2D filter. The increase of the loop body
might come with an advantage as more independent instructions
become available for achieving a better pipelining. Loop unrolling
has a similar effect, which also helps when the resources in the ar-
ray are under-used. A special case is the trade-off between memory
accesses and additional computations, because an array typically
has far less memory interface than computation resources. Here
the programmer can trade-off additional computations against
memory accesses.

In some cases, a loop has already been optimized for a different
architecture, and loop unrolling, the insertion of intrinsics or the
usage of look-up tables have to be undone. It might further be ben-
eficial to split a loop into two, to reduce the number of memory
accesses. Then, with deeper application knowledge, the processing
flow can be optimized to generate even larger loop iterations.

Another dimension of the mapping is the architecture template.
If the specific ADRES implementation is also to be defined, the pro-
grammers, together with the system architects, can consider add-
ing or removing register files, connections, and even special
instructions. The latter are supported in the tool flow in the form
of intrinsics that are programmed by means of function calls. Be-
sides lowering the instruction count, the benefits of using intrinsics
are in reducing the schedule length by combining dependent
instructions, and in making more efficient use of the data path
by exploiting sub-word parallelism.

5. Mapping multimedia applications

Two key benchmarks from video compression have been
mapped on ADRES: MPEG-2 and H.264 decoding. Both codes have
been compiled for ADRES with several key kernels running on the

Fig. 4. (a) Data dependence graph that will be mapped to 2 ! 2 reconfigurable
array; (b) schedule with initiation interval (II) = 1; and (c) resulting configuration
DRESC compiler framework.
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array. Table 1 shows the overall performance of these applications
on an ADRES template with 8 ! 8 (total of 64) FUs.

Two most demanding kernels from a commercial H.264 basic
profile decoder, the deblocking and the combined interpolation
and motion compensation have been optimized for executing them
on the array part of ADRES. The motion compensation had been
implemented in 16 kernels for luma and four for chroma. To opti-
mize the loops, first the clipping, which had been done with a look-
up table, has been replaced with a min/max computation, and then
loop coalescing has been applied. Then several loops were merged
for code-size reasons. Finally, intrinsics replaced the clipping and
the shift with rounding operations, and the loops were unrolled
for better pipelining. In a second approach, the loops were split
for vertical and horizontal interpolation, for reducing the number
of memory accesses and the code-size. Undoing loop unrolling
and removing table look-up code were also the first steps on opti-
mizing the deblocking filter. Then the task was to define loops with
decent numbers of iterations, but with a reasonably sized loop
bodies. The problem with the deblocking filter is that just applying
loop coalescing results in a loop body which contains too many
code branches. The implementation then has overly much predi-
cated code, as well as a very-long schedule, if it compiles at all.

6. Results and architecture exploration

For another two of the key kernels, IDCT fromMPEG-2 and inte-
ger transform from H.264, several experiments have been carried
out using different architecture templates, varying array sizes
and instruction sets. Five different 8 ! 8 architecture templates
were used. First, we used a standard 8 ! 8 template with the con-
nectivity shown in Fig. 1: nearest neighbor, four-hop and busses.
Secondly, an 8 ! 8 array with routing adds a second independent
output register to each FU, thus offering an independent path for
the routing of data. Thirdly, the 8 ! 8 array with p2p interconnect
replaces the busses with individual point-to-point connections. Fi-
nally, the 4 ! 4 and the 14 ! 8 arrays are standard arrays with var-
ied sizes. Furthermore, IDCT kernels with three different
instruction sets were tested: without intrinsics (Idct_un_opti0.c),
with simple intrinsics (e.g., saturated instructions: Idct_un_opti1.c)
and with more complex intrinsics functions as found in the
TMS320C64 processor core (Idct_un_opti3.c). Table 2 summarizes
the characteristics of these different IDCT implementations.

Table 3 summarizes the performance results for the 8 ! 8 IDCT
kernel. What can be seen is that with intrinsics a speed-up of al-
most a factor of two can be achieved, while the smaller 4 ! 4 array
is only slower by a factor of two and is hence more area and power-
efficient, especially when combined with intrinsics. Interestingly,
the better routing offers the same speed-up as the larger array size
(14 ! 8).

Table 4 shows the performance results for the 4 ! 4 integer
transform. The numbers are for the calculation of a single macro-
block, i.e., for 16 iterations of the transform. Two kernels were

used, one with merged horizontal and vertical loops, and one with
separated loops that is performing significantly worse. No intrinsic
instructions were used. What can be seen from the numbers is that
this algorithm does not scale as well with additional resources as
the IDCT, Hence an optimized 4 ! 4 ADRES will execute this most
efficiently, i.e., with highest utilization of the available FUs.

7. Comparison with commercial VLIW DSPs

Fig. 5 shows a comparison for the IDCT between an 8 ! 8 ADRES
core and other known benchmarks. The numbers for StarCore, TI
and ADRES were obtained by compiling the code with the respec-
tive compilers and cycle-true simulation. In the case of TI, C and
assembler code from TIs web page were used. The cycle count
for PACT is taken from [2] and for Morphosys is taken from [12].

These architectures can be categorised into two different
groups: very-long-instruction-word (VLIW) processors that exe-
cute compiler-translated C code and coarse-grain reconfigurable
array processors that are typically programmed in assembler or
on a lower level by setting muxes and switches. While TI falls into
the first category, PACT and Morphosys belong to the second. Star-
Core is a kind of an exception since it employs a more traditional
DSP architecture with less instruction-level parallel processing
while ADRES actually combines these two groups by supporting
a (VLIW-) compiler for a coarse-grained array processor.

What can be seen from these numbers is that ADRES beats TI’s
TMS320C64! cores and StarCore LLC’ SC1400 by a large margin,
but it even beats a hand-coded assembler implementation with
heavy use of intrinsics on a TI TMS320C64! by a factor of four. It
also outperforms the more sophisticated but hand-programmed
array processor from PACT and Morphosys.

Table 1
Performance results of MPEG-2 and H.264 decoder on an 8 ! 8 ADRES with intrinsics.

MPEG-2 decoding (CIF) H.264 decoding (CIF)

ADRES 8 ! 8 with intrinsics 27 MHz 56 MHz

Table 2
Characteristics of the IDCT and Itrans kernels.

Idct_unopt Idct_opt11 Idct_opt3

Total number of instruction 1544 1184 704
Min cycle single loop (dependence) 60 50 38

Table 3
Performance results of MPEG-2 and H.264 on ADRES.

Table 4
Performance results of the inverse integer transform in H.264 decoder in cycles
(performed on 16 blocks) on different array architectures.

4 ! 4 Itrans, merged loops,
per macroblock

4 ! 4 Itrans, separated loops
per macroblock

8 ! 8 default 141 308
8 ! 8 and route 123
14 ! 8 115
4 ! 4 263 312
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Fig. 5. Performance comparisons between ADRES (8 ! 8) and other DSP solutions
on 8 ! 8 IDCT.
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8. Hardware implementation results

Table 5 shows the implementation sizes of different ADRES con-
figurations compared to TI’s TMS320C64! [1]. ADRES offers better
performance and scalability for lower cost, together with a retarg-
etable C compiler. While the TMS320C64! also comes with a C
compiler, the difference in results obtained for assembly code
and C code in Fig. 5 clearly show that that processor cannot be pro-
grammed in C efficiently.

Synthesis experiments show that ADRES will reach 600 MHz in
90 nm technology, which compares with 1 GHz reached by the
TMS320C64!. Power-efficiency will be in the range of 30 MOPS/
mW. The cache configurations use 16 Kb of instruction and data
cache and 1 MB of L2 cache. Since ADRES is a templatized core
for system-on-chip designs, the proper cache configuration for
ADRES will be selected upon the demands of the target applica-
tions, such as AVC. This contrasts with the TI processor that incor-
porates large caches to enable its standalone operation for more
general purpose signal processing applications.

9. Conclusions and future work

Coarse-grained reconfigurable architectures (CGRAs) have been
emerging as potential processor architectures for future program-
mable DSP systems in recent years. Themain hurdle formainstream
acceptance has been the lack of good compilers. The CGA template
ADRES together with its retargetable C compiler framework, DRESC,
are addressing this issue. The ADRES architecture tightly couples a
VLIW processor and a reconfigurable array, resulting in improved
performance, ease-of-programming, lower communication costs,
resource sharing and as a result, better power efficiency. Further-
more the architecture template can be adapted to certain classes
of applications.

Experiments in mapping MPEG-2 and H.264 decoding demon-
strate that complex applications can be mapped with competitive
performance on ADRES architecture templates. A detailed analysis

for IDCT shows that ADRES can perform better than state-of-the art
DSP processors. Future work will include more analysis on the
power consumption versus performance aspects for different array
architectures and instruction sets.
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