
Practical Mitigations for Timing-Based
Side-Channel Attacks on Modern x86 Processors

Bart Coppens∗, Ingrid Verbauwhede‡, Koen De Bosschere∗, and Bjorn De Sutter∗†
∗Electronics and Information Systems Departement, Ghent University, Belgium

Email: {bart.coppens, kdb, bjorn.desutter}@elis.ugent.be
‡Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium

Email: Ingrid.Verbauwhede@esat.kuleuven.be
†Electronics and Informatics Department, Vrije Universiteit Brussel, Belgium

Abstract—This paper studies and evaluates the extent to which
automated compiler techniques can defend against timing-based
side-channel attacks on modern x86 processors. We study how
modern x86 processors can leak timing information through side-
channels that relate to control flow and data flow. To eliminate
key-dependent control flow and key-dependent timing behavior
related to control flow, we propose the use of if-conversion in
a compiler backend, and evaluate a proof-of-concept prototype
implementation. Furthermore, we demonstrate two ways in
which programs that lack key-dependent control flow and key-
dependent cache behavior can still leak timing information on
modern x86 implementations such as the Intel Core 2 Duo, and
propose defense mechanisms against them.

I. INTRODUCTION

These days many cryptographic systems are implemented
on top of programmable instruction set processors. Many com-
ponents of such processors feature observable data-dependent
behavior. When the observable behavior of such components
depends on the value of a cryptographic key, attackers can
study that behavior to derive information about the key being
used.

This information obtained through the observation of an
implementation, rather than from the input-output behavior
of a cryptosystem, is said to leak from the implementation.
The components through which this information leaks are
called side channels, and attacks collecting and exploiting this
information are called side-channel attacks.

Known side channels are execution time [1], [2], power con-
sumption behavior [3], instruction or data cache behavior [4]–
[10], branch predictor behavior [11], pipeline instruction and
execution behavior [6], and pipeline speculation behavior [6].

For most of these side channels, countermeasures have been
proposed that rely on hardware modifications [6], [7], or on
software modifications [1], [2], [8], [9], [12], or on both [5],
[10]. An interesting approach was presented by Molnar et
al. [13], [14], in which hardware support was combined
with the removal of control flow to support the so-called
program counter security model. Fundamentally, Molnar et
al. propose to rely on (special) hardware to guarantee a one-
to-one mapping between the flow of control in a program’s

This work has been supported by the Foundation for Scientific Research -
Flanders under project G.0300.07, and by the ECRYPT and HiPEAC European
Networks of Excellence.

execution and all observable behavior, and to rely on source-
to-source software transformations to remove any control-
flow dependency on cryptographic keys. If control flow is
made independent of a key, and if the observable behavior
only depends on control flow (i.e. on the trace of program
counter values, but not on the values being computed during
the program execution), no information about the key can
be derived through side channels. For example, consider the
potential side-channel consisting of the execution time of an
application. If control flow is independent of a secret key, and
execution time only depends on control flow, then an observed
execution time cannot reveal any information about the secret
key.

This approach raises some interesting questions. First of all,
to what extent can one rely on source-to-source transforma-
tions to ensure that no key-dependent control flow occurs in
a program? For what types of program constructs can this be
guaranteed, for which target architectures can this be guaran-
teed, and for which compilers can this be guaranteed? Sec-
ondly, to what extent do existing architectures, including ones
that implement recently proposed countermeasures against
side-channel attacks, support the program counter security
model? In particular, does the widely used x86 architecture
support this, and if so, does it do so without compromising
performance too much?

This papers responds to these important questions. The
paper’s major contributions are:

• We analyze to which extent the most recent Intel im-
plementations of the x86 architecture, which is the most
widely used desktop architecture, support the program
counter security model, revealing two potential side chan-
nels not previously reported.

• We expose flaws in the source-to-source transformation
approach proposed by Molnar et al., which make that
approach impractical.

• Instead we propose to perform the necessary transfor-
mations in a compiler back-end. The transformations we
propose are similar to those proposed by Molnar et al.,
but we apply them quite differently.

• Using a prototype implementation in the back-end of
the LLVM compiler [31], we evaluate the cost and
efficiency of a practical semi-automated implementation
that relies on conditional execution as supported by the
x86 architecture.

The remainder of this paper is structured as follows. Sec-
tion II discusses program properties on which the execution
time may depend. In other words, this section discusses
potential side channels that can be the subject of timing-based
attacks, revealing two potential side channels on recent x86
implementations that have not been reported so far. Section III
details our approach to eliminate key-dependent control flow
from applications in a compiler back-end. Section IV evaluates
our approach, and Section V draws conclusions.

II. EXECUTION TIME ON MODERN PROCESSORS

This section discusses the influence of software and hard-
ware properties on the timing behavior of software. To derive
properties about a secret key K, timing-based attacks exploit
the timing behavior of a program executed on a secret key
K and on other data D that is under control of the attacker.
To defend against such attacks, the timing behavior of an
algorithm or program should be made independent of the value
of the key K. In general, the time behavior of a program can
depend on the control flow of a program, on its data flow, and
on its contention over resources the program has to share with
other running programs. If any of those aspects of a program’s
execution depends on the secret key K, the timing behavior
may leak information about K.

A. Control Flow

Examples of control flow properties that influence the time
behavior on modern processors [15] are

• the number and mix of executed instructions, their la-
tencies and their resource conflicts during execution, i.e.,
the pipelining behavior of instructions in the instruction
window,

• the number of instruction cache misses,
• the number of branch prediction misses.
Consider, for example, the following straightforward C

implementation of modular exponentiation:

result = 1;
do {

result = (result*result) % n;
if ((exponent>>i) & 1)

result = (result*a) % n;
i--;

} while (i >= 0);

This do-while loop iterates over the bits in the exponent, and
for each bit the result variable is updated if and only if that
bit was set to one. On most modern processors, the execution
time of this fragment depends on the number of ones in the
binary representation of the exponent.

A sufficient condition for avoiding any influence by a key
K on the time behavior of a program through control flow

properties is that the control flow is independent of key K. In
other words, when the control flow transfers in a program
are independent of key K, the control flow itself through
the program is guaranteed not to leak any information about
K. Section III will propose compiler techniques to provide
sufficient such guarantees by means of conditional execution.
Assuming that there will be no key-dependent control flow left
in the program after the proposed technique has been applied,
the remaining key-dependent timing behavior can only result
from key-dependent data flow. So in order to argue that the
method proposed in Section III suffices to remove all key-
dependent behavior, we first have to be convinced that key-
dependent data flow poses no problems. This is studied in the
remainder of this section.

B. Data Flow

If timing does not depend on a secret key through control
flow, it can still depend on the key through data flow proper-
ties. Some of such potential properties are:

• data dependencies between instructions through registers,
• data dependencies between instructions through memory,
• variable instruction latencies that depend on the values

and occurrence of earlier computations or on the value
of the instruction operands itself.

All of these properties relate to the complex behavior of
out-of-order execution pipelines in modern processors and
the available instruction-level parallelism in the code being
executed [15]. One well known example of the latter property
is data cache behavior: depending on which cache lines are
accessed and on the order in which they are accessed, more
or less cache misses will be observed. Memory accesses are
discussed in Section II-D. Here we focus on arithmetic and
logic instructions.

On modern processors, very few arithmetic/logic instruc-
tions are implemented such that their execution latency de-
pends on the operand values. Unfortunately, recent Intel
processors do have such instructions. On the Intel Core
Duo implementation of the x86 architecture, the micro-coded
division algorithm that implements the division instruction
(that computes a quotient as well as a remainder) exploits
opportunities for so-called early exit [16]. The divide logic
calculates in advance the number of iterations that are required
to accomplish the micro-coded division, and once the required
number of iterations is reached the divider wraps up the results.
As we will see in Section IV, this data-dependent instruction
latency is an important side channel.

Besides the aforementioned integer division instructions,
floating-point division instructions and floating-point square-
root instructions (which are not normally used in cryptographic
code), Intel’s documentation [17] indicates that there are
no other variable-latency arithmetic or logic instructions on
modern Intel x86 processors, including the Atom processor
that targets the mobile applications market. A number of
instructions with variable-latency have been discussed in the
past as they occured on other processors, such as rotation
and shift instructions as well as multiplications (on older x86

implementations [17]), so apparantly this behavior is not all
that rare. The danger of this behavior for software security
has also been recognized before [18]. Two types of software
workarounds for this problem can be considered.

First, one can try to add compensation code that, when
executed together with the variable-latency instruction, always
results in the same execution time. For complex instructions
such as division instructions, this will come at the price of
severely lower performance. The reason is that the test that
analyzes how many cycles are needed for a particular division
is quite complex. Basically, the number of cycles depends
on the number of bits in the quotient being set to one [16].
In addition to a complex test to be inserted to count this
number of bits, the compensation code also needs to be able
to compensate for a range of latencies. So it is clear that
the analysis and compensation code would be very time-
consuming. Moreover, it is unclear whether it is possible at
all to design such a compensation code fragment. Due to
the complex manner in which out-of-order processors execute
code fragments, this is an open question for which we have
yet not found a definitive answer. One potential solution we
tried consisted of generating a code fragment with a data
dependence graph in which a single instruction is dependent on
both the original division and on a division that is guaranteed
to take the longest number of cycles possible. The rationale of
this attempt was that the processor would try to execute the
two divisions at least partially in parallel, in which case the
slowest division would determine the total execution time of
the code fragment. However, because dividers consume a lot
of chip area, only one is available in a processor core. So the
two divisions are never executed in parallel, and the variable
latency division still determines the total execution time.

The second workaround is to avoid the use of variable-
latency instructions completely. In the case of divisions, this
can be accomplished by implementing a division algorithm
in software that only consists of simpler instructions with
fixed latency (such as additions, subtractions, multiplications
and shifts), and then ensuring that the control flow in that
division code is independent of its inputs. This is the so-
lution we have implemented and which will be evaluated
in Section IV. Obviously, this solution also introduces a
significant performance overhead. Depending on the fraction
of an application’s execution time that is spent in the key-
dependent code fragments that need to be transformed, this
overhead will be considered acceptable or not.

A third option would be to disable the early-exit optimiza-
tion of variable-latency instructions in hardware. This could be
permanent, or it could be software-controlled in similar ways
to other processor features that are controlled by software.
For example, on the x86 architecture the operating system can
temporarilly disable interupts with the cli instruction, and it
can enable them again by issuing a sti instruction. Similar
instructions could be introduced for disabling/enabling early-
exit in division instructions. The programmer or compiler
then simply has to surround sensitive regions with these
instructions. This is similar to cache locking to defend against

cache-based side-channel attacks [6], [7].

C. Register Dependencies

Suppose that we can avoid any key-dependent control flow,
and hence any dependence of timing on control flow by
performing code transformations in the compiler. What then
remains to be questioned are the effects of data flow on a
program’s execution time.

Consider the two following loop bodies (in which destina-
tion operands are specified left):

body 1: mov ecx, edi
add eax, ebx

body 2: mov eax, edi
add eax, ebx

In both loop bodies, the second instruction adds the value in
register ebx to the value in register abx. If the first loop body
is executed in a loop, all additions in subsequent iterations are
dependent on each other: register eax serves as a kind of
accumulator, to which the value in ebx is added repeatedly.
In the second loop body, each iteration starts with a fresh
value being copied into eax. By consequence, when that loop
body is executed in a loop, the additions in the different
iterations have become independent of each other. Out-of-
order processors that apply register renaming will detect this,
which allows them to execute the second loop much faster, as
they can then execute a number of additions in parallel. We
validated this observation experimentally by measuring that
the execution of an unrolled loop of loop body 2 on an Intel
Core Duo was 40% faster than the execution of an unrolled
loop of body 1.

Now consider the following loop body:

body 3: test edx,edx
cmovcc eax, edi
add eax, ebx

In this fragment, the test operation sets condition flags
that describe properties of the value in edx: its sign, whether
the value was zero or not, etc. If the right condition flag is set,
the cmovcc instruction1 is executed, and the value of edi
is copied into eax. In that case, the loop performs the same
computation as loop body 2 above. If the value of edx is
such that the cmovcc instruction is not executed, eax is not
overwritten. In that case the loop body basically performs the
same computations as loop body 1 above. Since loop bodies
1 and 2 had different timing behavior, one naturally wonders
whether the value of edx can influence the timing behavior
of loop body 3.

On an Intel Core Duo, we measured the execution time of
this loop body in an unrolled loop for different values of edx,
i.e., for the case in which it the conditional move is executed,
and for the case in which it is not executed. No significant

1In real code, the cc in cmovcc is replaced by a real condition. For
example, eq is an instance of cc that specifies that the zero flag will be
checked.

timing differences were observed, indicating that the answer
to the above question is no. So whereas loop body 1 and
loop body 2 had different dependencies between instructions,
resulting in different timing behavior, the value of edx in loop
body 3 has no influence on the timing behavior.

The reason is that x86 processors implement the cmovcc
instruction as a kind of multiplexor instruction.2 This instruc-
tion has two source operands, one of which is implicitly
the same as the destination operand. From these two source
operands, one is selected based on the condition flags, and
then written to the destination operand. In loop body 3, the
destination operand is eax, and the source operands are (the
implicit) eax and edi. By implementing the cmovcc instruc-
tion like a multiplexor instruction, the cmovcc instruction
in loop body 3 always depends on the test instruction,
and the add instruction always depends on the cmovcc
instruction, irrespectively of whether (from the programmer’s
point of view) the conditional move gets executed or not.
In other words, with this implementation of the cmovcc
instruction, the operation dependency chain as experienced by
the processor does not depend on the condition flags or on any
other data occurring in the program’s execution. As a result,
the timing behavior does not depend on the value of edx.

One can wonder whether this analysis holds for all proces-
sors. For all x86 processors we know and for ARM’s recent
out-of-order Cortex-A9 core [19], which is to the best of
our knowledge the only out-of-order architecture supporting
full conditional execution, the analysis holds.3 The reason is
that these out-of-order processors rely on the reordering of
operations to achieve high performance. Fundamentally, these
processors try to execute instructions as soon as they can.
This means that the processor will consider an instruction
ready for execution as soon as it can somehow determine
that there are no more true data dependencies that require
the instruction to wait for the result of other instructions stil
being executed. The technique used to differentiate true data
dependencies from false data dependencies is called register
renaming [15]. Register renaming is simplified significantly
if the processor knows early on in the processor pipeline
which instructions depend on which other instructions. So
register renaming is simplified by implementing a conditional
move instruction by means of a multiplexor instruction. The
drawback of this implementation is that even when the pro-
cessors somehow knows beforehand that the condition flag
is false, the processor cannot exploit this information to get
rid of superfluous dependencies. On most processors this
drawback is not big enough to warrant the implementation
of more complex register renaming techniques. So it safe to
assume that on x86 processors and on many other out-of-order
processors, such as the ARM Cortex-A9, conditional execution
will not introduce data-dependent timing behavior as long as

2We did not find public information on this subject, but the correctness
of our findings and our assumption on the implementation of the cmovcc
instruction was confirmed by Intel engineers.

3For the Cortex-A9, ARM engineers confirmed this in private communica-
tion.

the conditional execution is limited to move instructions.
Alternative micro-architecture techniques have been pro-

posed in the literature [20], however, that do enable processors
to optimize the code being executed for false condition flags.
In doing so, these proposed techniques do make the timing
behavior dependent on data flow. To the best of our knowl-
edge, such techniques have not yet been applied in existing
commercial processors. But when they would be applied to
conditional move instructions, they would break our proposed
solution to rely on conditional execution to get rid of data-
dependent timing behavior.4

D. Data Dependencies through Memory

Consider the following program fragment:

loop body: mov dword [ebx], 2
add eax, [ecx]

If this fragment is executed in a loop, it will repeatedly
store the value 2 at the memory location to which register
ebx points, and it will repeatedly add to eax the value at the
memory location to which ecx points. Since only two memory
locations are touched in such a loop, the cache behavior will
not influence the timing behavior significantly if the loop has
enough iterations.

We measured the timing behavior of such a loop on an
Intel Core Duo, loading and storing 4-byte int values, and
we varied the displacement between [ebx] and [ecx] over a
large range in steps of 4 bytes. The resulting execution times
are depicted in Figure 1. When the store goes to the same
address as the load (displacement 0), a higher execution time
is seen than when, e.g., there is a displacement of 12 bytes
between the two accesses. The reason is a micro-architectural
feature called load bypassing [15]. When the store instruction
and the load instruction access the same memory location,
the out-of-order processor detects a data dependency between
them by comparing the addresses of the locations at which they
access the memory. This dependency forces the processor to
let the load wait for the store to finish executing. When the
address comparison indicates that there is no such dependency,
as when the displacement is 12 bytes, the load can be executed
together with the store without having to loose time waiting.

Surprisingly, we observe the same slowdown whenever the
displacement modulo 64 is in the range [0,7]. When we
repeated the experiment for loads and stores of other widths,
such as with 1-byte char accesses, we observed a similar
slowdown. This illustrates that even independent memory
operations that always hit in the cache can still cause timing
effects as if they are dependent. These effects are not related
to the particular combinations of cache lines or cache banks
that are accessed. Instead these effects are caused by so-called
pessimistic load bypassing [15]. Pessimistic in this context
means that the processor only compares a few bits in the

4If those techniques would be applied to the conditional execution of
instructions other then moves, they would not break our defense mechanism
since in that case we would simply instruct the compiler not to generate code
with such conditional instructions wherever secret keys needs to be protected.

Fig. 1. Execution times of a microbenchmark loop with 4-byte load and store instructions executed for varying displacements between the accessed locations.

memory addresses to decide whether or not two memory
accesses depend on each other. As soon as those bits are
identical, the processor pessimistically concludes that there
may be a data dependency. The execution is then slowed down,
even when there is in fact no need to. In the Intel Core Duo,
the pessimistic address comparison is limited to bits 3-5 of
the addresses. For example, when comparing two accesses
at addresses 0xcf0001c0 and 0xaffff307, both of which have
value 000 for bits 3-5, the Intel Code Duo’s load forwarding
will pessimistically assume that the two accesses go to the
same address, and it will slow down the execution, as can be
observed from the timing results in Figure 1.

For our purpose of defending against timing attacks, this
observation implies that even if we can avoid all timing
dependencies on cache behavior (by locking or disabling the
cache [6], [7] or by using randomized cache addressing [6],
[7], or by using scratch-pad memories instead of a cache, or
by replacing, e.g., AES table look-ups with new hardware
instructions [21]), we still need to take care of other memory
dependencies. These dependencies can be true data depen-
dencies through memory, but they can also be dependencies
between seemingly independent operations that are caused by
micro-architectural pipeline implementation details.

E. Resource Contention
We already mentioned branch prediction and cache behavior

as possible origins of control-dependent and data-dependent
timing. But in the above discussion, we limited ourselves to
intra-thread dependencies: dependencies of a program thread’s
time behavior on its control flow and data flow.

In modern processors, many resources are shared between
multiple threads being executed. When this is the case, con-
tention for those resources can result in inter-thread timing
dependencies, in which case the execution of one thread
influences the timing behavior of other threads. If an attacker
has no direct access to the timing of a thread under attack, he
can observe other threads contending for resources to derive
information instead.

Many known attacks are based on this observation. For
example, algorithms that implement AES by means of table
lookups have been attacked by running other attacking threads
in a shared cache. In the attacking thread, the shared cache is
written and read in a specific pattern that interferes with the
memory operations of the thread under attack [5], [8]. By
observing this interference from within the attacking thread,
information is obtained on the specific table elements that are
accessed in the AES implementation, from which information
secret keys can be derived. Similar attacks have been devised
by means of shared branch prediction tables [11], and by
means of contention for functional units in modern processors
that support simultaneous multithreading. For example, when
a code fragment similar to the above one was run together with
an attack thread executing many multiplications on an SMT
core, the number of ones in the thread under attack could be
derived from the timing behavior of the attack thread [6]. As
such, existing side channels not only include a thread’s own
execution time, but also its influence on the execution time of
(fragments in) other threads through resource contention.

This paper studies timing-based side-channels and discusses
software solutions to avoid information leakage through those
channels. Other side channels, such as those based on power
consumption, are mostly neglected in this paper. We believe
this does not diminish the relevance of the subject of this
paper, as there are many cases in which timing-based attacks
are possible, and in which power-based attacks are not, simply
because an attacker has no physical access to the device
running the thread under attack, such as in remote attacks
over the Internet [1], [10].

III. ELIMINATING KEY-DEPENDENT CONTROL FLOW

In order to eliminate side channels related to control flow,
we will adapt the compiler back-end to eliminate all control
flow transfers that depend on secret keys. If we succeed, then
in the compiled code the same execution path will be followed
for every key with which a piece of data is encrypted or
decrypted. This path, and the timing behavior following from

this control flow, will then not reveal any information about
the secret key to an attacker. Indeed, branch prediction is then
independent of the key, as are instruction mix, instruction
order, data dependencies through registers, and instruction
fetching from the instruction cache.

The only remaining possible side channels then relates to
data cache flow and data dependencies through memory. For
the former, we will assume that existing techniques such as
blocked caches [6], [7] or random cache addressing [6], [7]
can overcome them. For the latter, we will propose potential
solutions in Section III-F.

A. Conditional Execution

For simple, acyclic code fragments not containing any
function calls, conditional execution provides an excellent
mechanism to get rid of key-dependent control flow. With
conditional execution, control flow dependencies on diverging
non-cyclic execution paths such as if-then-else constructs can
be transformed into data flow dependencies on a single path.

On architectures that support full conditional execution,
either by means of condition flags that activate or deactivate
instructions or by means of real predicates that guard instruc-
tions, this transformation is trivial. Consider again the code
fragment of Section II-A. The relevant part of that code can
be rewritten as follows:

c = (exponent>>i) & 1;
if (c) {

result = (result*a) % n;
}

which can in turn be rewritten as

c = (exponent>>i) & 1;
if (c) tmp = result*a;
if (c) result = tmp % n;

in which the last two lines will be compiled into two condi-
tional instructions. The conversion from code with branches
to code with conditional execution is called if-conversion [22],
and it is well known in the field of compiler techniques, in
particular for VLIW and EPIC types of architectures. Com-
posing more complex conditional structures such as nested
if-then-else structures poses no problem. It only requires a
few more instructions to compute the right predicates or set
the correct condition flags, depending on the expressiveness
of the architecture with respect to conditions [23].

Two remarks should be made here. First of all, depending
on potential side-effects of conditional instructions, these
instructions may sometimes be converted to non-conditional
ones again. In the above example, it is no problem to remove
the condition of the first statement:

c = (exponent>>i) & 1;
tmp = result*a;
if (c) result = tmp % n;

This predicate elimination, also called predicate specula-
tion [24] is fine because the transformed instruction only

affects the local variables tmp that does not define the global
program state, and because it cannot cause side effects such
as exceptions.

However, consider the following contrived, but exemplary
program fragment:

if (a != 0)
d = 1 + b / a;

Rewriting this fragment as follows is incorrect:

c = (a != 0);
tmp = b / a;
if (c) d = 1 + tmp;

This is incorrect because the division might cause a division-
by-zero exception. One potential solution consists of not ap-
plying predicate elimination for instructions with side effects.

This brings us to our second important remark: on many
architectures, such as on the omni-present x86 architecture, not
all instructions can be executed conditionally. On the x86, only
mov instructions can be executed conditionally. So the above
potential solution is not applicable on an x86 architecture.
There we have to come up with an alternative solution. This
alternative solution, to be applied by the compiler back-end,
consists of the following:

1) Before merging a path into other paths with if-
conversion, make sure that all instructions in that paths
operate on local, temporary variables.

2) Before merging this path with if-conversion, insert so-
called safe-guard instructions prior to all “unsafe” in-
structions that may cause exceptions or that change the
global state (because they store something to memory).
These safe-guard instructions are conditional move in-
structions that move an appropriate, safe value into the
appropriate local variable when this path would not have
been executed. So even if such “unsafe” instructions get
executed after if-conversion when they would not have
been executed in the original code (because another path
was taken), the safe-guard instructions will now ensure
that these instruction do not cause any harm.

3) At the end of this path, insert conditional move instruc-
tions that copy the local variables into global ones.

Consider the following example code fragment:

if (c) {

*a = 10;
d = x/y;

} else {
b = 10;

}

With conditional execution this code would be rewritten as
follows:

tmp_a = a;
if (˜c) tmp_a = dummy_location;

*tmp_a = 10;
tmp_y = y;

if (˜c) tmp_y = 1;
tmp_d = x / tmp_y;
tmp_b = 10;

if (c) d = tmp_d;
if (˜c) b = tmp_b;

If c evaluates to false, the store operation will now write to
a dummy location where it does not harm the real program
state, and the division will be executed with divisor one, which
will not cause an exception. Furthermore, in that case only the
assignment to b will be executed, but not the one to d. If c
evaluates to true, the store and the division will be executed
as they should, and only the assignment to d will be executed,
not the one to b.

The most common instructions that should be safe-guarded
this way include divisions, loads and stores. For stores and
divisions, one reason has already been mentioned. For loads
and stores, an additional reason not mentioned yet is that
memory accesses to disallowed addresses will result in page
faults. Consider a code fragment

if (a != NULL)
b = *a;

Clearly, the load from a should only be executed if a is not
NULL. So this needs to be rewritten as

tmp_a = a;
if (˜c) tmp_a = dummy_location;

tmp_b = *a;
if (c) b = tmp_b;

One may wonder whether or not the execution5 of loads
or stores often depends on secret keys. The fact is that
big integer functionality for cryptographic purposes, such as
RSA, is usually implemented using memory arrays of smaller
integers. When computing the result of an operation on such
big integers, the final results, as well as the intermediate
results, have to be written to memory into these arrays. So
in such libraries, conditional loads and stores are as likely as
any other conditional operation.

Please note that if-conversion should only be applied when
the involved conditional branches depend on a secret key.
Whether or not they do can be determined by means of a
compiler data flow analysis. In case this analysis lacks the
required precision to compute the correct dependencies, the
compiler should either conservatively assume that there is a
dependency on the secret key, or user annotations of the source
code could clarify this for the compiler. In any case, the user
should already inform the compiler what exactly constitutes
the key from which control flow should be made independent,
for example by means of so-called attributes or by means of
pragmas. Requiring the addition of even more user-annotations
or user-directives is hence not infeasible.

Please also note that compilers will likely optimize the
above code fragment to get rid of the temporary variables.

5We mean the fact whether or not a load or store is executed, not the
addresses at which they are performed.

They will always do this conservatively, however, respecting
the (correct) semantics of the rewritten code fragment.

Finally, we should point out that our implementation using
conditional execution of mov instructions relies on the fact that
conditional moves have data-independent timing behavior. As
discussed in Section II-C, we believe this is a safe assumption.

B. Cyclic Control Flow Graphs

Cyclic control flow graphs occur for program fragments
containing loops. In these loops, the number of iterations may
be key-dependent or not.6 A compiler can again either detect
this by means of static data flow analysis, or it can rely on
user-annotations in the program.

In cryptographic practice, it is not common for loops to
have a number of iterations that depends on the value of a
secret key. So in practice, this situation does not occur all that
often. However, some cryptographic libraries are programmed
generically, e.g., for different key lengths. Sometimes the
number of iterations of certain loops then depends on the
length of the key. Very likely, the compiler’s data flow analysis
will not be able to differentiate between depending on a key’s
value and depending on a key’s width. So in such cases, user-
annotations specifying that a loop’s number of iterations is not
dependent on a key will be required.

In the very rare case that a loop’s iteration count does
depend on the actual value of a secret key, the only solution
consist of letting the compiler determine (or the programmer
specify) an upper bound on the number of iterations, and to set
the iteration count of the loop to this fixed upper bound. The
loop body should then be executed conditionally as indicated
in Section III-A. In this case the condition will keep track
of whether real iterations are still being executed or whether
additional iterations are being executed to reach the fixed upper
bound.

Please note that from a performance point of view, in-
creasing the number of iterations in a loop to a fixed upper
bound might be detrimental. However, this is unavoidable. If
it has a detrimental effect on performance, it had to be the
case that there were significant key-dependent differences in
execution time in the original code. In order to avoid those,
each execution of a rewritten program on data D with whatever
key K should have the same execution time, independent of
K, which is hence at least the execution time of the slowest run
of the original program with key K. So all runs that previously
were faster than that slowest run need to become that slow as
well, which then may cause the detrimental, but unavoidable
run-time overhead.

6In lower-level code, this corresponds to a conditional branch that de-
termines whether the loop is continued or exited. Such a branch, if taken,
transfers control back to the loop entry point. As such, it cannot be omitted
with simple if-conversion.

C. Function Calls

Any realistic program contains functions and hence func-
tion calls.7 Because big integer libraries usually implement
operations on big integers as function calls, this certainly also
occurs in cryptographic code.

So it can very well occur that some functions are not
invoked on all execution paths in the original code of a
program, and that the invocation depends on the value of a
secret key. In such cases, the rewritten program should invoke
the function in the merged paths independently of the key, or
otherwise the execution trace of the rewritten code will still
depend on the key.

A first solution to this problem constitutes inlining. When a
callee’s function body is inlined in a caller’s body, the call is
removed and the callee’s body can be executed conditionally
just like the caller’s code.

Because inlining may increase the code size of a program
significantly, which may not be acceptable for embedded
devices with small amounts of memory, an alternative solution
is required. It consists of adding an additional parameter
to a function which specifies whether or not the function
would have been invoked in the original program. Instead of
executing a call conditionally, each call will now be executed
unconditionally with the additional parameter. Inside the func-
tion, all code is then executed conditionally as discussed in
Section III-A, but now with the additional condition specified
by the added parameter.

For example, consider the following code fragment:

void f(int x) {

*a = x;
}

...
if (c)

f(10);

This would be converted into

void f(int x, int c) {
if (c) *a = x;

}

...
f(10,c);

after which the normal if-conversion of Section III-A is applied
to function f().

7In this paper, we only consider direct function calls. Virtual method calls
such as in C++ or Java are rare in cryptographic code, and if they are present,
it is usually possible to replace them by conditional function calls after a
compiler has analyzed the class hierarchy of a program. This is not possible
when run-time class loading is used for classes that were not known at compile
time. But in such cases, those classes loaded at run time are not trusted since
they might do anything with data fed to them. So in practice, secret keys will
never be propagated into such classes, in which case there is no need to adapt
them, and hence we can neglect them in this paper. Furthermore, we neglect
system calls, as we have not found cases where the execution of system calls
is conditioned on values of secret keys.

Please note that in practice, we duplicate a function like
f and we add the additional parameter to the duplicate only.
That way, any call to f that is not dependent on the secret
key can still invoke the original function version without the
additional parameter, which will be better for performance and
which requires fewer code to be adapted.

D. Comparison with Molnar’s approach

Several approaches have been proposed before to remove
key-dependent control dependencies from cryptographic code.
Specific code fragments and their alternatives have been stud-
ied [25]–[28]. Molnar et al. [13], [14] presented a generic
approach relying on source-to-source transformations. Because
conditional execution is not available on all architectures,
Molnar et al. presented a variation on our use of conditional
execution. Consider the following C code fragment, which is
very similar to a fragment in their paper:

if (n != 0) {
if (n % 2) {

r = r * b;
n = n - 1;

} else {
b = b * b;
n = n / u;

}
}

They rewrite this fragment as

m1 = -(n != 0);
m2 = m1 & (-(n % 2));
r = (m2 & (r * b)) | (˜m2 & r);
n = (m2 & (n - 1)) | (˜m2 & n);
m2 = m1 & ˜ m2;
b = (m2 & (b * b)) | (˜m2 & b);
n = (m2 & (n / u)) | (˜m2 & n);

Rather than using conditional execution, Molnar et al. use
bit masking. Conditions are used to generate masks m1 and
m2 that consists of all zeros or all ones, and then they
mimic the conditional execution by using the masks. As is
obvious from the example, this allows them to handle nested
conditions. However, there are very fundamental issues with
their approach.

1) Compilers: As Molnar et al. indicate themselves, some
compilers will translate the negation operator ! into con-
ditional branches. They found this to be the case for the
very popular GCC compiler, and for that reason they could
not use that compiler. Likewise, they found it necessary to
write a static verifier that can validate whether the compiled
code really provides key-independent control flow. This clearly
contradicts their claim that a source-to-source approach is
practical.

This also hints to another problem of their approach: if the
compiler is able to see through their masking constructs, it
will be able to optimize the code to, for example, get rid of
unnecessary copy operations involving temporary variables or

to propage constant values through the program [29]. But then
one also risks that the compiler will be able to optimize the
code by reintroducing conditional branches. In other words,
if one uses a compiler that is smart enough to still optimize
the rewritten code, one risks that the compiler is so smart that
it will optimize the code too much (from a security point of
view). And if the compiler is not smart enough too see through
the masking, it will simply perform no optimizations.

By contrast, in our compiler back-end approach relying on
conditional execution, the compiler has already optimized the
code using the full potential of the original code that was
much easier to analyze. As such, full compiler optimization
and guaranteed key-independent control flow can be combined
without any problem.

2) Exceptions and side-effects: Molnar et al. treat side
effects such as exceptions and store instructions incorrectly.
They claim that they can neglect exceptions because they
only consider correct programs in the first place, in which
no exceptions occur. This is incorrect for at least two reasons.

First, in the above code fragments, in the original code
the division would only have been executed if (n != 0)
and if (n % 2) was zero. In the original version, it hence
does not matter what the value of u is if those conditions
are not met. So it is perfectly fine to execute the original
fragment with, for example, n being 5, and u being 0. No
division-by-zero exception will occur. In the rewritten code
however, the exception will occur, as the division is executed
unconditionally in that code. This clearly changes the program
behavior.

Secondly, obfuscation techniques exist [30] that rely on
exception handling to replace control flow that is easy to
reverse-engineer by control flow that is much harder to reverse-
engineer. If such obfuscation techniques are used to protect
cryptographic code, the exception handling even becomes part
of the correct execution of a program. Clearly, exceptions
cannot be neglected in this case.

Finally, Molnar et al. do not discuss how to handle con-
ditional function calls, and conditional loads or stores. This
is not a fundamental issue of their approach, it is merely an
incompleteness, as we believe that similar techniques as the
one we use to safe-guard instructions can be used in their
approach.

E. A Practical Implementation

In order to make an implementation of our proposed tech-
nique practical, we need to present it to programmers in
a usable way. If a programmer has to use many different
tools, or if he has little influence on how and where the
technique is applied, it cannot be considered really useful.
As a proof-of-concept, we implemented our technique in a
plugin for the compiler framework LLVM [31]. This plugin
approach facilitates the integration of our technique in existing
compilation flows.

In our proof-of-concept implementation, we have not yet
implemented (or adapted) the necessary data flow analyses
to let the compiler detect which code should be adapted.

Instead, we implemented support for programmer annotations.
The simple form of annotations we have implemented so far
enables the programmer to specify which C functions should
have data-independent control flow. In our implementation, we
call this balanced control flow, hence our use of the keyword
balanced. Consider the following code fragment:

int __attribute__((annotate("balanced")))
f(int a) {

if (a > 0)
return 1;

else
return -1;

}

int g(int* a) {
if (a!=0)

return *a;
else

return 0;
}

int __attribute__((annotate("balanced")))
h(int a, int* b) {

if (a & 2)
return f(a);

else
return g(b);

}

In this fragment, functions f() and h() will be trans-
formed immediately, but g() will not. However, because
h() calls g(), a transformed version of g() with data-
independent control flow will be generated as well, as de-
scribed in Section III-C which will then be called from within
h().

Our current implementation lacks support for recursive
function calls and for non-manifest loops, but adding support
for those is merely an implementation issue that poses no fun-
damental challenges. Furthermore, that support is not needed
to evaluate the effectiveness and efficiency of our technique.

F. Dealing with Timing Dependency on Memory Accesses

Using conditional execution and safe-guarding instructions,
we remove all key-dependent differences in timing behavior
due to control flow. However, as indicated in Section II-D, data
dependencies or independencies through memory operations
might still influence the execution time. This can in particular
be the case if load and store instructions at dummy locations
(as introduced in Section III-A) result in a timing behavior
that differs from the behavior of those same load and store
instructions when executed on the real addresses from the
original code.

To avoid such behavior, dummy locations should be chosen
very carefully. Unfortunately, however, no generic solution to
this problem exists, as it may be that no valid real address
can be computed. For example, in the last code fragment of

Section III-A, we only know that a real load at address a will
not go to address zero. But it may very well be that this limited
amount of information is all the compiler can derive. So if any
other non-zero address can occur, how is the compiler then
supposed to pick a correct dummy location?

We strongly believe that this situation will occur very rarely.
In most cases, the real addresses will be known and fixed,
and hence dummy locations can be chosen that result in the
same pipeline behavior. In cases where the real addresses
are not fixed, but known to be available at run time, safe-
guarding code can be inserted that will choose an appropriate
dummy location at run time, using the real address that is then
available.

If even that is not possible, a third approach would be to
profile the program off-line, and to let the compiler insert
safe-guarding code that chooses dummy locations statistically
in such a way that the timing differences to be expected are
minimized. In this case, however, no strict guarantee can be
provided.

Unfortunately, all of these solutions come with a major
drawback: each processor generation or implementation can
feature a different mechanism to determines how independent
or dependent memory operations are executed. This implies
that the compiler needs to know the exact implementation
for which it is compiling the code. As such, it is impossible
to provide a kind of binary compatibility guarantee for key-
independent timing behavior. This is a fundamental problem,
not only to our approach but for all approaches that combat
timing-based attacks.

Our current prototype compiler implementation in LLVM
does not yet support any of these solutions for timing de-
pendencies on memory accesses. Implementing and evaluating
these solutions is part of our ongoing research.

G. Feasibility of a Compiler back-end Approach

The proposed elimination of key-dependent control flow
transfers will be performed in a compiler back-end. Using a
compiler back-end, rather than a source-to-source transforma-
tion tool, gives the benefits of being able to apply the technique
more easily to programs that are implemented in multiple,
different programming languages. Furthermore, a back-end
implementation eliminates the risk of the compiler middle-end
reintroducing vulnerabilities by undoing source-to-source or
intermediate-code-to-intermediate-code transformations in the
middle-end or the front-end of the compiler. This guarantee
allows compiler middle-ends to be developed independently of
the security considerations, which is an important advantage
given the huge complexity of modern compilers consisting of
millions of lines of code.

One can argue that the source-to-source transformation
approach proposed by Molnar et al. [13], [14] is more reliable
than our approach because their approach includes a post-pass
static code checker that checks if the compiler-generated code
has no key-dependent control flow. Hence their trusted code
base consists of the static checker only, while ours seems
to consist of the full compiler or at least its back-end. So

apparently the trusted code base of Molnar et al. is smaller
than ours. This is of course a fake argument, as nothing stops
us from using the same static checker in our approach.

Now at first sight, it may seem as if our approach is
merely undoing or prohibiting compiler optimizations and
micro-architectural performance optimizations. This is not the
case, however. In the compiler-back-end approach that we
propose, we only restrict the applied compiler optimizations
to code fragments in which secret keys occur that need to
be protected. For all other code constituting an application,
the compiler can still apply all its optimizations. Similarly,
the back-end only inserts countermeasures against hardware
performance optimizations in the code where secret keys need
to be protected.

With this paper and its evaluation section, we demonstrate
that for at least one advanced x86 implementation, this semi-
automated compiler back-end approach is able to make the
timing behavior of a program independent of secret keys. In
other words, given the right compiler transformations, it is
alright for architectures to feature a number of leaking side
channels that relate to both control flow and data flow.

Clearly, the required set of code transformations depends on
the leaking features of the processor micro-architecture, which
might change from one processor generation to the other, as
already noted in Section III-F. So for each new processor
implementation, the potential leaks have to be studied again,
and appropriate code transformations have to be developed and
implemented in the compiler back-end(s).

This may seem very unproductive and not practically fea-
sible to cryptography researchers, but it is a familiar situation
for compiler developers.

With all major compilers (ICC, GCC, ...), developers can
use compiler flags to specify that they want to compile for a
specific architecture implementation target. When such a flag
is used, the compiler will apply additional optimizations for
the specified target and it will tune its generic optimizations
towards the specified target. The result is a faster compiled
program, and the price to pay is that of lowered portability.
Indeed, because the compiler knew that it was generating
code for a specific target, it may have generated code that
can only run on that target. If the developer chooses not
to specify a particular target for his compiler, that compiler
will apply a default set of optimizations with default tuning
parameters that target a virtual architecture that resembles the
least common denominator of all supported implementations
of that architecture. The result will be a slower program, as it
does not exploit specific features. But because the program
only relies on features found on all covered targets, the
program can be executed on any of them. In short, developers
can trade-off portability for performance by selecting a desired
level of target-dependent optimizations.

The development of such target-dependent compiler opti-
mizations typically works as follows. During the development
of a compiler, optimizations are first hardcoded for specific
processor features when those processors and their new fea-
tures hit the market. When other processors later arrive on

the market with variations of those features, the implemented
optimizations are adapted to become more generic and tunable.

Likewise, one can imagine the development of a compiler
that applies all known side-channel countermeasures when no
specific target micro-architecture is specified, thus introducing
a lot of run-time overhead. The application will then run
correctly and safely on all possible processor implementations
covered by the combined countermeasures, albeit slowly. But
when the compiler is invoked for a particular target, it will
not apply the countermeasures that are not needed for that
particular target. The result will be a faster application, and
this will again be at the price of portability.

IV. EVALUATION

To evaluate our approach and the extent to which the x86 ar-
chitecture lends itself for the program counter security model,
we used our implementation as described in Section III-E to
protect a number of microbenchmarks against timing-based
side-channel attacks.

A. Experiments

We used a variety of microbenchmarks to evaluate the effi-
ciency and effectiveness of our proposed approach. Efficiency
here corresponds to the performance and code size, i.e., the
execution time overhead and code size overhead introduced
by the if-conversion and elimination of variable-latency di-
vision instructions in the protected software. Effectiveness
corresponds to the extent with which the protection is able to
make the timing behavior independent of sensitive data such
as secret keys. We measured this effectiveness by measuring
the largest possible differences in execution times for different
inputs, both before and after our code transformations. For the
sake of completeness and to demonstrate that our technique
can defend against side-channel attacks based on branch pre-
dictor behavior [11], we also measured differences in branch
prediction behavior. This measurement was performed using
performance counters.

The first set of microbenchmarks consist of a set of simple C
functions of increasing complexity. This set, of which the code
is included in the appendix, allows us to determine the cost of
protecting increasingly complex code. Four microbenchmarks
f1, f2, f3, and f4 contain an increasing number of nested
if-then-else constructs, and thus an increasing num-
ber of different execution paths, and two microbenchmarks
memread1 and memread2 contain memory accesses that
have to be safe-guarded with dummy addresses.

The second set of microbenchmarks consists of three hand-
written implementations (similar to the code in Section II-A)
of modular exponentation as it occurs in, e.g., RSA encryption:

1) The experiment modexp32 uses 32-bit numbers for a
modular exponentiation.

2) This experiment modexp64 uses 64-bit numbers for a
modular exponentiation. This is the native word width
on 64-bit platforms such as the Core 2 Duo machine the
code was tested on.

3) We implemented a minimal so-called big integer com-
ponent modexp256 that can do the computations for
the modular exponentiation of 256-bit integers. This
is implemented in C++, using calculations on 8 32-
bit integers that are stored in memory rather than in
registers.

When these microbenchmarks are compiled, the compiler
maps the modulo computation onto x86 division instructions.

To demonstrate the effectiveness of our approach, we ran
these three modular exponentiation microbenchmarks on in-
puts consisting of (1) randomly varying modulo values, (2)
randomly varying base values, and (3) four different types of
exponents.

• In the all zero input set, the exponent in binary format
consists of all zeroes except for the two most-significant
bits set that are set to one. This ensures that the variable
result (see the code fragment in Section II-A) does
not remain constant throughout the whole loop. Having
all other bits set to zero ensures that the conditional code
in the original loop will only be executed twice per loop.
This pattern results in very accurate branch prediction by
the processor.

• In the all one input set, all bits in the exponent are
set to one. This ensures that the conditional code in
the loop is executed in every iteration. So in total, the
conditional code is then executed 32/64/256 times per
loop for 32/64/256-bit numbers. This pattern also results
in very accurate branch prediction by the processor. So
when this input is fed to a benchmark, much more code is
executed than with all-zero input, but the branch predictor
performs similarly.

• In the regular input set, half of the bits are set to one
in a regular pattern. This implies that the conditional
code is executed in half of the iterations, and that the
pattern is predicted very well by the branch predictor of
the processor.

• In the random input set, half of the bits are set to one as
well, but now the pattern of zeroes and ones is generated
by a pseudo-random generator. Consequently, this input
will result in the same amount of code executed as for
the regular input set, but branch prediction will be much
less accurate, resulting in more branch misses and higher
execution times.

Together, these four input sets allow us to study to what extent
our proposed transformations are able to eliminate timing
dependencies that originate from different amounts of code
being executed for different keys or from branch prediction
behavior that depends on keys.

Please note that the number of times each loop was invoked
per experiment differs for the three microbenchmarks. For
each benchmark, the number of invocations was choosen to
be a good balance between short experimentation times and
accurate measurements.

Finally we applied our approach to a function from the
OpenSSL (http://www.openssl.org) library that can be used to

implement RSA. The most interesting part of that function
called BN_sub is included in the appendix. This library code
is executed on two different inputs that result in different
timing behavior in the original code. These inputs were
obtained by running the original code on multiple random-
generated inputs, and by selecting the two inputs with the
most extreme behavior.

We ran all experiments on an Intel Core 2 Duo machine
running at 2.2GHz under the Linux operating system. All
versions were executed 20 times on all inputs to collect
statistics on the timing behavior and branch prediction. All
binary code was generated using LLVM’s standard compiler
options to generate 64-bit code, except for the OpenSSL code.
For the OpenSSL code we disabled some compiler middle-
end optimizations because they resulted in if-converted code
even in the unadapted compiler. Disabling this if-conversion
in the original compiler is not unrepresentative of the typical
behavior of optimizing compilers for at least three reasons.
Firstly, we verified that other optimizing compilers, including
recent versions of GCC, also generate assembly code for this
fragment that is not if-converted. Secondly, disabling compiler
optimizations is often done to obtain more usable debugging
information. Finally, had the code been slightly more complex,
the LLVM compiler would also not have applied if-conversion.
Because of these three reasons, we believe that compiling this
real-world code with some compiler optimizations disabled
still makes a good representative of the real-word code to
which our proposed technique can be applied.

B. Effectiveness

Table I presents average execution times and average branch
mispredications, as well as other statistics on the various mod-
ular exponentiation microbenchmarks and on the OpenSSL
benchmark for the different inputs.

Table I(a) presents, for each microbenchmark version and
for appropriate input set, the execution times averaged over
20 runs. Table I(b) presents the standard deviation of the
measured times. Clearly, for all of the benchmarks, the original
versions behave quite differently for their different inputs.
Hence, these benchmark versions leak information about the
secret inputs.

The if-converted benchmarks have significanlty longer ex-
ecution times, because of the overhead introduced by the if-
conversion, but the execution times obtained with the different
inputs now display significantly more similarity. The same
can be observed for the benchmarks after if-conversion and
division elimination, indicating that our approach has indeed
removed all timing dependence on the secret inputs.

To assess the confidence with which we can draw the above
conclusion, we have performed multiple t-tests. Table I(c)
depicts the p-values obtained from t-tests applied to three com-
binations of inputs: combination all zero - all one, combination
regular - random, and combination input1 - input2.

For the 32-bit and 64-bit modular exponentiation, the p-
values indicate that we can conclude with high confidence
that our approach of if-conversion and division instruction

elimination does in fact result in key-independent timing
behavior. For the same microbenchmarks, if-conversion alone
does not suffice to achieve this. This follows from the fact that
the variable-latency division instruction is still present.

For the 256-bit modular exponentiation, however, if-
conversion alone proves to be sufficient to eliminate all key-
depenent timing behavior. The reason is that in this 256-bit
big integer implementation, the divisor of all executed division
instructions is the fixed 64-bit value 0x00000000ffffffff. The
compiler replaces this divide-by-a-constant by a multiplication
and a shift. As as result, no division instructions occur in the
compiled code, and we only need to apply if-conversion to
eliminate the key-dependent timing behavior.

For the OpenSSL code, the same reasoning holds: there are
no division instructions, so we only need to apply if-conversion
to make this code’s timing behavior independent of the input
key.

Tables I(d), I(e) and I(f) present similar statistical informa-
tion for the number of branch mispredictions measured with
performance counters. Similar conclusions can be drawn. Here
as well, we can be confident that if-conversion and division
instruction elimination are successful in eliminating timing
behavior dependences on the secret inputs. Still, two remarks
need to be made here.

Firstly, very high standard deviations were obtained in
the numbers of measured branch mispredictions with several
versions of modexp32. We repeated these experiments multiple
times, but never obtained more consistent results. We can not
explain why the standard deviations of 1193.2 and 514.8 are
as high as they are. Clearly, however, these high standard
deviations do not occur in the if-converted code, which is what
matters to us.

Secondly, the confidence scores 0.0077 and 0.2701 for the
number of branch mispredicts of the if-converted modexp32
and modexp64 benchmarks are relatively low, notwithstanding
the fact that there is no key-dependent control flow present in
those benchmarks. The explanation for this result is found in
the complex pipeline behavior of the Intel Core 2 Duo pipeline.
Remember that there still are variable-latency division instruc-
tions present in these benchmark versions. The actual latencies
of those instructions occurring during the execution of the pro-
gram have an effect on the number of branches that are fetched
by the processor and issued speculatively [15]. So while the
number of truly executed branches (so-called retired branches)
is independent of the secret inputs of these benchmarks, the
number of speculatively issued branches is not. And hence
the number of mispredicted branches, some of which were
speculative, is not independent either. If division instructions
are eliminated as well, this effect does not play anymore, and
then we can conclude with much higher confidence that the
number of branch mispredictions does not depend on the secret
inputs anymore.

C. Performance Overhead

Figure 2 displays the performance overhead of applying if-
conversion and, where necessary, the elimination of division

TABLE I
STATISTICAL RESULTS OF IF-CONVERSION AND THE ELIMINATION OF VARIABLE-LATENCY DIVISION INSTRUCTIONS

instructions. We averaged this overhead over a large number
of pseudo-random inputs to get realistic results. Because the
LLVM middle-end itself already if-converted the code in f2,
and because the code in f1 only features a single execution
path, these fragments undergo no additional transformations
in our approach. So we observe no slowdown for them.
Suprisingly, the simple functions f3 and f4 became faster
after if-conversion. This can be attributed to the improved
branch prediction. As there are less branches to predict in the

converted code, and in particular less branches that depend on
pseudo-random inputs, less cycles are lost after mispredictions.

For the other microbenchmarks, increasing complexity re-
sults in additional overhead. The maximum overhead observed
corresponds to a slowdown with a factor 24.0. This is very
large, but it will only occur in those program fragments that
(1) involve computations on sensitive keys, and (2) include
division instructions. So on the total execution time of real-
applications, in particular of applications that only perform

Fig. 2. Average (over pseudo-random inputs) execution slowdown after
applying if-conversion and elimination of variable-latency division instructions

Fig. 3. Code size increase after applying if-conversion and elimination of
variable latency division instructions

cryptographic functions occasionally, the influence on the total
application execution time will be limited.

D. Code Size Overhead

The increase in code size due to if-conversion and elimina-
tion of divisions is depicted in Figure 3. As is to be expected,
our control experiment, f1, has kept the same size, since the
original function already had straight-line control flow. There
is also no increase in code size for experiment f2, because the
compiler middle-end had already applied if-conversion. The
other experiments behave as expected: the more complicated
the control flow, the greater the increase in code size after
if-conversion. Similarly, the more memory operations there
are, the more the code size increases. Without the elimination
of variable-latency division instructions, the code becomes
up to 2.75 times larger. When we also replace the division
instructions by calls to a subroutine, the code sizes become
up to 3.21 times larger.

To assess these results correctly, two observations need to

be made. First, in real applications, these code size increases
will only occur on those fragments that need to be protected
because they involve key-dependent control flow. The remain-
ing part of the code will remain the same, so the overal
code size increase will be much more limited. Secondly, in
the code sizes after division instruction elimination, the size
of the subroutines that implement the division operations are
included. Their relative contribution to the total code size
is marked with the horizontal line in the bars in Figure 3:
the fraction above the line comes from the newly included
division subroutines. Their absolute sizes are 77 bytes for the
32-bit version, and 80 bytes for the 64-bit version. This clearly
indicates that their contribution to the code size increase in real
applications will be minimal.

V. CONCLUSION

This paper investigated the extent to which current x86 im-
plementations support the so-called program counter security
model in which all execution behavior needs to be independent
of data values or data flow, and in which sofware removes all
control-flow dependencies on secret keys.

We proposed a new compiler technique to remove key-
dependent control flow from x86 programs. With this tech-
nique, compilers can defend against timing-based side-channel
attacks on program properties that relate to control flow. The
effectiveness and efficiency of the technique was evaluated,
from which we can conclude that it is indeed feasible to
remove key-dependent control flow, albeit with significant
performance overhead.

We also discovered two micro-architectural features, being
variable-latency division instructions and pessimistic load by-
passing, that make the timing behavior of software depend
on the data flow on Intel’s most recent x86 implementation.
These two cases can potentially be targeted by timing-based
side-channel attacks. From this, we must conclude that the
Intel Core 2 Duo implementation does not support the program
counter security model, at least not for all programs.

For at least one of those micro-architectural features, namely
the variable-latency division instruction, our experiments have
shown that compilers can work around them effectively, albeit
again at a significant performance overhead. For the data-
dependent behavior resulting from pessimistic load bypassing,
our research is ongoing in the directions indicated in this paper.

REFERENCES

[1] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in
SSYM’03: Proceedings of the 12th conference on USENIX Security
Symposium, 2003.

[2] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and
J.-L. Willems, “A practical implementation of the timing attack,” in
CARDIS, 1998, pp. 167–182.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology - CRYPTO 99, LNCS 1666. Springer-Verlag, 1999, pp.
388–397.

[4] O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-
Cache,” in CSAW ’07: Proceedings of the 2007 ACM workshop on
Computer security architecture, 2007, pp. 11–18.

[5] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of AES,” in Topics in Cryptology - CT-RSA 2006, The
Cryptographers Track at the RSA Conference 2006. Springer-Verlag,
2006, pp. 1–20.

[6] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in ACSAC ’06: Proceedings of the 22nd Annual Computer
Security Applications Conference on Annual Computer Security Appli-
cations Conference. Washington, DC, USA: IEEE Computer Society,
2006, pp. 473–482.

[7] ——, “New cache designs for thwarting software cache-based side
channel attacks,” SIGARCH Comput. Archit. News, vol. 35, no. 2, pp.
494–505, 2007.

[8] J. Bonneau and I. Mironov, “Cache-collision timing attacks against
AES,” in Cryptographic Hardware and Embedded Systems CHES 2006,
LNCS 4249. Springer, 2006, pp. 201–215.

[9] E. Brickell, G. Graunke, M. Neve, and J. pierre Seifert, “Software
mitigations to hedge AES against cache-based software side channel
vulnerabilities. iacr eprint archive, report 2006/052,” 2006.

[10] D. J. Bernstein, “Cache-timing attacks on AES,” The University of
Illinois at Chicago, Tech. Rep., 2005.

[11] O. Aciiçmez, Çetin Kaya Koç, and J.-P. Seifert, “On the power of simple
branch prediction analysis,” in ASIACCS ’07, 2007.

[12] G. Agosta, L. Breveglieri, G. Pelosi, and I. Koren, “Countermeasures
against branch target buffer attacks,” in FDTC ’07: Proceedings of
the Workshop on Fault Diagnosis and Tolerance in Cryptography.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 75–79.

[13] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-flow
side channel attacks,” pp. 156–168, 2005.

[14] ——, “The program counter security model: Automatic detection and
removal of control-flow side channel attacks,” in In Cryptology ePrint
Archive, Report 2005/368, 2005.

[15] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processors. McGraw-Hill, 2005.

[16] J. Coke, H. Balig, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon, J. Abel,
and A. Valles, “Improvements in the Intel Core 2 processor family
architecture and microarchitecture,” Intel Technology Journal, vol. 12,
no. 03, pp. 179–192, 2008.

[17] Intel 64 and IA-32 Architectures Optimization Reference Manual, Intel
Corporation, Dec 2008.

[18] B. Schneier and D. Whiting, “Twofish on smart cards,” in CARDIS
’98: Proceedings of the The International Conference on Smart Card
Research and Applications, 2000, pp. 265–276.

[19] “The ARM Cortex-A9 processors,” http://www.arm.com.
[20] E. Quiñones, J.-M. Parcerisa, and A. Gonzalez, “Selective predicate

prediction for out-of-order processors,” in ICS ’06: Proceedings of the
20th annual international conference on Supercomputing, 2006, pp. 46–
54.

[21] S. Gueron, “Advanced encryption standard (AES) instructions set,” Intel
Mobility Group, Tech. Rep., 2008.

[22] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in POPL ’83: Proceedings of
the 10th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, 1983.

[23] D. I. August, J. W. Sias, J.-M. Puiatti, S. A. Mahlke, D. A. Connors,
K. M. Crozier, and W. mei W. Hwu, “The program decision logic
approach to predicated execution,” in ISCA ’99: Proceedings of the 26th
annual international symposium on Computer architecture. Washing-
ton, DC, USA: IEEE Computer Society, 1999, pp. 208–219.

[24] M. Schlansker, S. Mahlke, and R. Johnson, “Control cpr: a branch height
reduction optimization for epic architectures,” in PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming language
design and implementation. New York, NY, USA: ACM, 1999, pp.
155–168.

[25] F. Sano, M. Koike, S. Kawamura, and M. Shiba, “Performance evalu-
ation of AES finalists on the high-end smart card,” in AES Candidate
Conference, 2000, pp. 82–93.

[26] J.-S. Coron, “Resistance against differential power analysis for elliptic
curve cryptosystems,” in CHES ’99: Proceedings of the First Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
London, UK: Springer-Verlag, 1999, pp. 292–302.

[27] C. Clavier and M. Joye, “Universal exponentiation algorithm,” in CHES
’01: Proceedings of the Third International Workshop on Cryptographic

Hardware and Embedded Systems. London, UK: Springer-Verlag, 2001,
pp. 300–308.

[28] J. Blömer and J.-P. Seifert, “Fault based cryptanalysis of the advanced
encryption standard (AES),” in FSE, 2003.

[29] S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[30] D. Dolz and G. Parra, “Using exception handling to build opaque
predicates in intermediate code obfuscation techniques,” Journal of
Computer Science & Technology, vol. 8, no. 2, 2008.

[31] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” Computer Science Dept., Univ.
of Illinois at Urbana-Champaign, Tech. Report UIUCDCS-R-2003-2380,
Sep 2003.

APPENDIX
SAMPLE CODE FRAGMENTS

This appendix presents the sample code fragments that were
used in Section IV to measure the performance overhead
corresponding to the transformations of code fragments with
varying degrees of control and data flow complexity.

A. f1
int __attribute__((annotate("balance")))
f1(int a, int b, int c, int d) {
return a+b;

}

B. f2
int __attribute__((annotate("balance")))
f2(int a, int b, int c, int d) {
if (a < b)
return a+b;

else
return c+d;

}

C. f3
int __attribute__((annotate("balance")))
f3(int a, int b, int c, int d) {
if (a < b) {
if (c < d)
return c+d;

else
return c-d;

} else {
if (a > d)
return a-d;

else
return a+d;

}
}

D. f4
int __attribute__((annotate("balance")))
f4(int a, int b, int c, int d) {
if (a < b) {
if (c < d) {
if (a < 0)
return c+d;

else
return c-d;

} else {
if (b < 0)
return b+c;

else
return a+b;

}
} else {
if (a > d) {
if (d < 0)
return a-d;
else

return a+d;
} else {
if (c < 0)
return c+a;

else
return c-a;

}
}

}

E. memread1
int __attribute__((annotate("balance")))
memread1(int a, char* b) {
if (a == 0) {
return *b;

} else {
return a;

}
}

F. memread2
int __attribute__((annotate("balance")))
memread2(int a, char* b) {
if (a == 0) {
return b[0] + b[1];

} else {
return a;

}
}

G. OpenSSL fragment
for (i = min; i != 0; i--){
t1= *(ap++);
t2= *(bp++);
if (carry) {
carry=(t1 <= t2);
t1=(t1-t2-1)&BN_MASK2;

}
else {
carry=(t1 < t2);
t1=(t1-t2)&BN_MASK2;

}
*(rp++)=t1&BN_MASK2;

}

