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Abstract. This paper presents a memory organization for SDR inner modem base-
band processors that focus on exploiting ILP. This memory organization uses power-
efficient, single-ported, interleaved scratch-pad memory banks to provide enough
bandwidth to a high-ILP processors. A system of queues in the memory interface
is used to resolve bank conflicts among the single-ported banks, and to spread long
bursts of conflicting accesses to the same bank over time. Bank address rotation is
used to spread long bursts of conflicting accesses over multiple banks. All proposed
techniques have been implemented in hardware, and are evaluated for a number of
different wireless communication standards. For the 11a|n benchmarks, the overhead
of stall cycles resulting from unresolved bank conflicts can be reduced to below
2% with the proposed organization. For 3GPP-LTE, the most demanding wireless
standard we evaluated, the overhead is reduced to less than 0.13%. This is achieved
with little energy and area overhead, and without any bank-aware compiler support.

Keywords: interleaved memory, memory queues, software-defined radio, instruction-
level parallelism, memory-level parallelism

1. Introduction

Digital signal processors (DSPs) for mobile software-defined radio (SDR)
inner modem baseband processing, such as Silicon Hive’s CSP2200(Hive,
2007), NXP’s EVP (van Berkel et al., 2005) or IMEC’s ADRES (Bougard
et al., 2008b; Bougard et al., 2008a; Derudder et al., 2009), need to
deliver very high performance at low energy consumption. Today, this
is done by exploiting different types of low-level parallelism. When data-
level parallelism (DLP) is available in an application, its exploitation
by means of vector processing or SIMD (single-instruction, multiple
data) processing is one of the most power-efficient techniques to op-
timize performance within single application threads. When available
and exploitable, DLP offers the huge advantage that few wide ports to
memory can suffice to provide the necessary data bandwidth, which is
much more power-efficient than having many narrow ports. However,
even if enough DLP is avaible, it is still hard to compile for, and hence
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hard to exploit. This is particularly the case when data shuffling is
needed, as when there are concurrent array accesses with different
strides. For this reason, it remains an open question as to what extent
DLP solutions will scale to future wireless standards. Using instruction-
level parallelism (ILP) instead of DLP to exploit available parallelism
is typically more flexible. Whereas DLP instructions typically perform
the same operation on multiple data elements concurrently, ILP im-
plementations enable the concurrent execution of different operations
on multiple data elements. Typically, ILP processors are also easier
to compiler for. Today Silicon Hive and ADRES have full compiler
support, while EVP has no or very limited compiler support for its
vector data path.

One downside of using ILP instead of DLP is that ILP is typically
less power-efficient, however, because more instruction bits need to
be fetched and decoded per data operation. On architectures such
as SiliconHive and ADRES, this is compensated by the special loop
modes that are used to execute loops. In these mode, code is fetched
from dedicated memories that, unlike instruction caches, consume very
little power. Furthermore, ILP can be combined with limited amounts
of DLP. For example, the 4-way SIMD ADRES Inner Modem Base-
band (Bougard et al., 2008b; Bougard et al., 2008a; Derudder et al.,
2009) architecture with 16 issue slots proved to be a power-efficient
competitive processor for running many wireless standards, including
very demanding standards such as 3GPP and 802.16e. The ADRES
architecture achieves its power-efficiency through two operation modes
that are optimized for two types of code. First, a narrow, low-ILP VLIW
mode with 3 issue slots executes non-kernel code. Secondly, a wide,
high-ILP reconfigurable data flow mode with 16 issue slots accelerates
inner loops that operate on arrays of data. Of course, this high-ILP
mode requires a high memory bandwidth to feed the numerous issue
slots with data. As the DLP is limited, this bandwidth can only be
provided through multiple memory ports.

Designing a memory organization for a single wireless standard that
consists of a few inner loops, a.k.a. kernels, is relatively simple. For
high-ILP SDR processors, the design is more complicated. First, there
are more different kernels and hence more different access patterns to
support. Furthermore, those patterns are often less optimized and less
regular. The lack of optimization results from code reuse over multiple
standards. While reusing code is beneficial for limiting the overall code
footprint, the reuse of a kernel prohibits its specialization or optimiza-
tion for any single execution context. The lack of regularity results from
the code generation techniques used in high-ILP compilers (Mei et al.,
2003; Park et al., 2008; Friedman et al., 2009; De Sutter et al., 2008; Oh
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et al., 2009). These compilers usually generate software-pipelined code
in which loads and stores from many iterations are mixed in irregular
ways that are most often not easily predictable at compile time. These
properties also warrant the use of multiple ports to memory.

With respect to that memory itself, it is well-known that scratch-pad
memories, when used well, consume less power than caches(Baert et al.,
2008; Wehmeyer and Marwedel, 2006). Furthermore, single-ported mem-
ories consume less power than multi-ported memories. This implies
that, if we can compile our code in such a way that it accesses all
2n banks in a memory organization exactly once every cycle, then a
scratch-pad memory with 2n single-ported banks and 2n load/store
units will be a very power-efficient organization that can provide pre-
cisely the amount of throughput required. In practice, however, it is not
feasible to generate such code for irregular, unoptimized data access
patterns. Instead it will occur that multiple load/store operations try
to access the same single-ported bank together, thus causing so-called
bank conflicts. Because most DSPs feature static code schedules with
blocking loads, such bank conflicts stall the processor until all outstand-
ing accesses are resolved. The resulting stalls can impose significant
limitations on the achievable performance and energy consumption.

This paper presents a novel, hardware-supported conflict resolution
mechanism to avoid such stalls and to support high memory bandwidth
while still enabling the use of power-efficient single-ported scratch-pad
memory banks. The core idea of the proposed conflict resolution mecha-
nism for high-ILP VLIW-like processors such as the ADRES SDR Inner
Modem Baseband processor, is to spread same-bank access bursts over
time and over multiple banks. The mechanism consists of the following
components:

1. Data memory queues exploit additional execution cycles given
to issued load/store operations in software-pipelined loops to re-
solve bank conflicts. Thus, small bursts of simultanuous accesses
to the same bank are spread over a number of cycles. Because
the longer individual latencies of load operations are not problem-
atic in software-pipelined loops, this do not prohibit efficient loop
schedules.

2. Load/store reordering further spreads bursts of interleaved loads
and stores to the same bank by delaying the execution of stores.
This is possible because loops in SDR applications typically operate
on streaming data. Since data written to memory inside such a loop
cannot influence any later read operations in that loop, delaying the
store operations does not change the behavior, even if this delaying
involves the reordering of loads and stores. As such, load/store
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reordering helps in spreading small bursts of loads and stores to
the same bank over time.

3. Bank access rotation changes the assignment of memory loca-
tions to interleaved memory banks to make sure that the stride of
the interleaving is not a power of two. Thus, long bursts of accesses
to the same non-rotated bank, which resulted from access patterns
with strides that are powers of two, will access multiple rotated
banks instead.

Together, these techniques reduce the number of conflicts that need
to be resolved with processor stalls to negligible amounts, while re-
quiring little additional power consumption and no specific compiler
support. This is demonstrated by compiling several wireless standards
programmed in ANSI C for an Inner Modem Baseband ADRES SDR
processor, and by performing gate-level simulations of the processor
and memory organization.

The main contribution of this paper is the combination of the above
techniques (which are not new by themselves), the novel implementa-
tion of the data memory queue controller by means of scoreboards, and
the evaluation of a real hardware implementation for the latest wireless
standards, including even the emerging but not yet fully standardized
3GPP-LTE. This evaluation demonstrates that previously proposed
dynamic techniques for addressing interleaved memory banks are not
needed in practice for these wireless standards. Instead static tech-
niques such as load/store reordering and static bank access rotation
implemented on top of memory queues suffice. Of course the imple-
mentation presented in this paper can be useful in other domains too,
such as video coding. Whether or not the static approach presented
here suffices in those contexts is out of scope of this paper.

The structure of the paper is as follows. Section 2 describes the
context in which a memory organization for a high-ILP inner modem
baseband SDR processor needs to operate. It discusses properties of
applications and of the VLIW-like architecture to which the memory
is attached. Section 3 presents our three solutions conceptually, and
Section 4 presents a hardware implementation. This implementation is
evaluated in Section 5. Section 6 discusses related work, and Section 7
draws conclusions.

2. Processor and Application Context

The inner modem baseband wireless algorithms that we want to run
on a SDR processor have a number of important properties, which
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define part of the context for which our memory organization should
be optimized. The other part of the context is defined by our choice for
a high ILP VLIW-like processor with a scratch-pad L1 data memory.
In this section, we discuss this context.

2.1. Basic Assumptions

Both the transmitter and the receiver of all standards are streaming
applications in which a number of consecutive loops, hereafter called
kernels, operate on arrays of data that are stored in the scratch-pad
memory. We want to execute those loops on a high-ILP VLIW-like
processor or accelerator, as is done, for example, on state-of-the-art
commercial processors such as SiliconHive (Hive, 2007). The Silicon-
Hive CSP2200 features a narrow VLIW mode for non-kernel code, and
a wide VLIW mode for executing software-pipelined kernels. We focus
on the wide VLIW mode in this paper because that mode requires most
memory bandwidth.

Before looking at the memory hierachy and related properties, we
need to clarify a number of limitations of our wide VLIW mode. First
of all, we should note that the energy and area constraints of mobile
devices limit the amount of ILP that an architecture can exploit. In
order to balance performance, energy, area, and available ILP in the
code, the number of ALUs/multipliers on an architecture is always
limited. As a result, some kernels will be CPU-bound because they
offer more ILP than can be exploited by the number of available ALUs
and multipliers. Other kernels will not be CPU-bound because data de-
pendencies prohibit exploiting the amount of ILP that the architecture
can sustain. Furthermore, we assume that load operations are blocking
and that the code schedules are static, assuming fixed latencies for load
operations. If the memory organization cannot handle a load operation
in time, the whole processor will stall during which the memory gets
more time to handle the operation. Also, in our argumentation for high
bandwidth requirements, we take for granted that we are working with
an architecture that supports predication for all operations. However,
predication is by no means a requirement for our proposed solution.
Finally, all numbers presented in this paper were obtained for a 64-bit
processor (32-bit integer logic and 4x16 bits SIMD) which supports
only 8, 16 and 32-bit memory accesses. We come back to this latter
limitation in Section 4.7.

2.2. Computation Bandwidth and Memory Bandwidth

On such a high-ILP processor with predicated, blocking loads, the
computation bandwidth provided by the number of ALUs/multipliers
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Figure 1. Execution traces of a software-pipelined loop compiled for two target
architectures. Both versions have an II of three, but version a) has a shorter schedule
because the assumed latency of the load operation is architecture a) is lower than
on architecture b).

should be balanced with the memory bandwidth provided by the num-
ber of load/store units. In order to optimize performance and utiliza-
tion, our memory organization should ideally be able to handle one
memory access per cycle per load/store unit to feed data to the available
ALUs and multipliers, without needing to introduce stall cycles. This
means that in a perfectly balanced architecture, the average kernel will
be as memory-bound as it will be CPU-bound.

By simulating perfect memories that can handle all memory accesses
without needing to insert stalls, we observed that a high-ILP mode with
16 issue slots, of which 4 can also be used to issue memory accesses, is
a good balance. With such architectures, average IPCs over 10 can be
obtained easily at what we believe to be a sweetspot for performance
and energy efficiency (Bougard et al., 2008b; Bougard et al., 2008a;
Novo et al., 2008; Derudder et al., 2009). As an example, consider our
11a WLAN SISO transmitter. It spends 1141 duty cycles (i.e. non-stall
cycles) in the high-ILP mode, during which it performs 3144 memory
accesses out of 3741 scheduled ones; 597 accesses had false predicates.
This means that the load/store units had a utilization of 3741/1141/4 =
0.82 on average over all kernels. While the 11a WLAN SISO transmitter
is an overly simple example for SDR processing, similar behavior is
observed in the more complex SDR standards that we will evaluate
later in this paper.

To interpret this number correctly, consider the software-pipelined
execution of a loop depicted in Figure 1a. With software-pipelining (Rau,
1995; Lam, 1988) the loop body is split in pipeline stages. In this case,
there are four pipeline stages, shown as rectangles from left to right.
The loop is scheduled in such a way that each stage takes three cycles,
and a new iteration can be started every three cycles. The loop is said
to have an initiation interval (II) of three. In the first part of the loop
execution, which is called the prologue and which is indicated in light
grey on the left, stages become active progressively. During the steady
state, which is indicated in darker grey, all stages are active together,
for different iterations. At the end of the loop, which is called the
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epilogue and which is also colored light gray, stages gradually become
disactivated again as fewer and fewer iterations need to be finished. In
this paper, we assume kernel-only loops, i.e. loops in which the prologue
and epilogue code are part of the wide VLIW mode. In such kernel-
only loops, the prologues and epilogues are implemented by means of
so-called staging predicates, i.e. predicates that disable stages when
they should not be active. Because of these staging predicates, every
loop involves memory accesses that are predicated, even if the original
source code of the loop did not include any conditional statements. At
least during the prologues and epilogues these predicates will evaluate
to false a number of times, which explains why there are more scheduled
memory accesses than actually executed ones. During the steady-state,
all staging predicates evaluate to true, so during the steady-state, all
scheduled memory accesses are actually executed. In short, the peak
memory bandwidth is required during steady-state, which is about 0.82
* 4 = 3.3 accesses per cycle.

Given these numbers and alike numbers for other wireless standards,
our task is to design of a memory organization that can handle close
to four memory accesses per cycle in steady-state without inserting too
many stall cycles, and with as low as possible power consumption.

2.3. Scratch-pad Memory Organization and Access

Patterns

Regarding scratch-pad memories, we have already noted that single-
ported memories consume much less energy per access than multi-
ported memories. Single-ported memories are therefore preferable if
the same performance can be obtained with them as with multi-port
memories. Obviously, when using single-ported memories, there should
be at least as many as there are load/store units issuing memory ac-
cesses in the steady state of kernels. So ideally we want a hierarchy
with just as many single-ported memories as there are load/store units.
From here on, we will use the term memory banks to denote the single-
ported memories that constitute one bigger memory space. The best
organization of these banks depends on the kernel’s memory access
patterns.

2.3.1. Bank Conflicts and Load Latencies
We assume that a compiler cannot (always) control which banks will
be accessed by which load/store units. One of the reasons is that some
kernels access arrays in data-dependent ways that a compiler cannot
analyze. Also, some kernels are used in many standards, and hence in
many different contexts, some of which feature different memory layouts
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of the accessed arrays. Consequently, all load/store units need to be
connected to all memory banks, for example by means of a crossbar.
And it needs to be foreseen that bank conflicts will occur. A bank
conflict occurs when two load/store units want to access the same bank
in the same cycle. Even if on average all banks are accessed the same
number of times, there may be simultaneous accesses to the same bank
from multiple load/store units.

Since each bank has only one port, it can handle only one access per
cycle. The other accesses to the same bank have to be handled in later
cycles. Either stall cycles need to be inserted, or a mechanism needs to
be foreseen through which the processor does not expect the accessed
data to be available immediately, in which case it does not need to stall.
Such a mechanism can, for example, exploit additional time obtained
by increasing the latency of load instructions in the architecture.

Figure 1b shows the same loop as in Figure 1a, but in this case it
is scheduled assuming higher latencies of load operations. The effect
of higher latencies is of course longer schedules, and in this case the
schedule of one iteration has gone from 12 to 13 cycles, which is an in-
crease in schedule length of about 8.3%. For the whole loop, however the
performance loss is much lower than 8.3%. Basically, it is not because
the schedule of a single iteration has become longer that the compiler
has become unable to find a schedule with the same II. Figure 1b depict
such a schedule, and one can see that the total loop execution time is
only increased with one cycle, which is only a 3% cycle increase. To
verify this on real kernels, we’ve scheduled several FFT versions with
different latencies of load operations, ranging from 3 to 12 cycles. The
accumulated duty cycle counts of these kernels are depicted in Figure 2.
It can be seen that the number of duty cycles barely increases, from
593 to 681, when the latency of loads is increased from 3 up to 12. This
indicates that higher load operation latencies might be able to provide
ample time for a bank-conflict resolution mechanism. Of course, the
increase in duty cycles resulting from higher load latencies should then
be compensated by a reduction in stall cycles. As in so many situations,
a trade-off between throughput and latency needs to be found.

2.3.2. Memory Access Patterns and Interleaving
A kernel’s memory access pattern determines whether or not the kernel
will cause many bank conflicts. Some important kernels access only one
array, which they read and update in place. Most often this update in
place happens because the input and output array are overlayed onto
the same memory locations to reduce the memory footprint. If that
whole array is placed in a single memory bank, the bandwidth to the
array will be limited to one access per cycle. To avoid this it suffices not
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Figure 2. Duty cycles and stall cycles when using different sizes of unified queues,
corresponding to different load operation latencies, to access non-rotated interleaved
banks.

Figure 3. A simple interleaved 32-bit memory organization. The numbers inside
each 32-bit wide bank denote the addresses of the words stored in them.

to assign contiguous memory regions to banks, but to assign memory
to banks in an interleaved fashion. Figure 3 depicts a simple interleaved
bank assignment. To avoid the need for complex integer divisions in the
memory hierarchy, its number of banks should be limited to powers of
two. That is one of the reasons why 4 load/store units is the best
number for architectures with 16 ALUs/multipliers.

Of course, the effectiveness of an interleaving scheme depends on
the strides with which arrays are indexed. If the strides occurring in a
loop are bad, the whole loop might access only one bank. This happens,
e.g., when a stride of 0x10 is used to access a single array stored in the
interleaved memory of Figure 3. For such cases we use the term long
burst of conflicting accesses to a memory bank. But even when the
stride in a loop looks perfect for some interleaving scheme, there might
be occasional conflicts or even sequences of conflicts. We will term those
short bursts. One reason why there might be conflicts even with good
strides is that there is no strict relationship between the order in which
the memory accesses occur in the source code of an application and the
order in which they will be performed in the loop schedule. This follows
from the fact that loads and stores might be reordered by the compiler,
and by the fact that software-pipelined schedules are generated, in
which code corresponding to different iterations in the source code
is executed simultaneously. In our current version, the compiler (Mei
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et al., 2003; De Sutter et al., 2008) schedules the code completely bank-
unaware.1 As such, even if the strides might look alright in the source
code, there might still be many conflicting simultaneous accesses in
the scheduled code. Of course, if the strides look alright in the source
code for some interleaved bank assignment, this implies that at least
on average the accesses will be spread over multiple banks. So in that
case, the only problem the memory organization needs to tackle is that
of accidental, short bursts of accesses to the same bank.

2.3.3. Aliasing and Memory Dependencies
Most if not all kernels in the streaming applications that are run on an
SDR inner modem baseband processor do not contain read-after-write
or write-after-write dependencies. In each kernel, one or more arrays
are read, computations are performed on the read data, and the results
are written to other arrays that will be consumed later on by other
kernels. Sometimes arrays being written may also be read, as is the
case with the aforementioned update in place. But then each read from
a memory location will always happen before all writes to that location,
so there again are no read-after-write or write-after-write dependencies.

A compiler can easily check whether or not a loop contains read-
after-write or write-after-write dependencies through memory, for ex-
ample by means of loop analysis techniques based on the polyhedral
model analysis (Bastoul et al., 2003). Alternatively, if no such compiler
analysis is available in a compiler, the programmer can indicate the
presence or lack of these dependencies in code annotations that are
presented to the compiler.

Once the compiler can detect, through analysis or through annota-
tions, that the above types of dependencies are not present in a kernel,
it knows that the write operations in the kernel can be delayed and
reordered without any problem.

3. Memory Queues and Bank Rotation

Given the context described in the previous section, we have to design
an interface between a processor with 4 load/store units, and 4 single-
ported interleaved memory banks. This interface needs to reduce the

1 Finding valid schedules on our wide ADRES, which is in fact a coarse-grained
reconfigurable array of 16 ALUs and 13 register files with a sparse interconnect,
is very complex. To find those schedules, we currently rely on simulated-annealing,
which is quite slow. Making the compiler bank-aware might make it even slower.
Also, as we will see in the evaluation section, we provide a solution based on rather
cheap hardware that makes bank-aware code generation unnecessary altogether.
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Figure 4. The execution of schedules on seven memory organizations. The first
column indicates the clock cycles. The second column shows the VLIW instructions
executed. The third column depicts the memory accesses issued in each cycle. The
fourth and fifth column indicate the actual memory accesses being performed, and
the last column which instructions retire.

number of stall cycles as much as possible. Stalls will occur when there
are short (accidental) bursts of accesses to the same bank or when the
number of accesses, over a longer period of time, is not balanced over
the available banks.

To avoid both types of stalls, we will rely on three techniques.
First, we will increase load latencies to enable the implementation of a
queueing mechanism that can resolve conflicts by spreading them over
time. Next, these queues will be extended with write buffers that can
delay conflicting write operations, thus spreading short bursts to the
same bank over even more time. Finally, bank rotation will ensure that
long bursts of accesses to a single (non-rotated) bank are spread over
multiple banks, thus avoiding long bursts to a singe bank altogether.

3.1. Data Memory Queues

When the latency of load operations is increased, data memory queues
can be inserted in between the processor and the memory banks to
resolve bank conflicts. These queues basically spread short bursts of
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simultanuous accesses to the same bank over a number of cycles. Be-
cause the longer individual latencies of load operations are not that
detrimental in software-pipelined loops as long as they remain small
enough, as discussed in Section 2.3.1, the efficiency of the loop schedules
is not hampered significantly.

To illustrate how this works, consider the first two execution traces
in Figure 4. In all traces for organizations without queues (organizations
1, 5, and 6 in Figure 4), we assume for the sake of simplicity that mem-
ory accesses have a latency of one cycle: they need to retire in the cycle
in which they are issued. Although this is not realistic, as memories do
have latency, this assumption does not change the concepts illustrated
here. On the organizations with queues (organizations 2, 3, 4, and 7 in
Figure 4) we assume that the latency is increased to two cycles, i.e. the
result only has to become available at the end of the next cycle. We
also assume that all accesses issued in the third column go to bank 0
of a non-rotated interleaved memory as depicted in Figure 3.

Now consider two accesses (r0 and r1) that are issued to bank 0
in cycle 0 of organization 1 in Figure 4, which does not have queues.
Because bank 0 can only handle one of the two accesses, the second one
is delayed to a stall cycle. At the end of that stall cycle, both memory
accesses retire, after which the processor can continue executing the
second instruction.

On organization 2 of Figure 4 with queues and higher latency, the
read operations issued in cycle 0 only need to retire in cycle 1. So
bank 0 can handle r0 in cycle 0, and r1 in cycle 1, after which both
operations retire in cycle 1. They retire in the same cycle as in the
organization without queues, but in this case, the processor did not
need to be stalled. Assuming that the compiler was able to place other
operations in the remaining slots in that cycle, more operations will
have been executed in the two cycles.

For a benchmark consisting of several different FFTs, the reduction
in stall cycles by using data memory queues and increased load latencies
is depicted in Figure 2. The smallest load latencies of 3 and 4 cycles
that our processor (and its pipeline implementation) can support, are
too small to enable the insertion of queues. Consequently, there is
no conflict resolution at those latencies, which results in a very high
numbers of stalls. With higher latencies, we can insert data memory
queues that can resolve more and more conflicts in the additional time
they get from the increased latencies. Thus, the number of stall cycles
goes down when the load latency increases. Above 7 cycles of latency,
however, the number of stalls does not decrease significantly anymore.
In fact, above 7 cycles of latency, the reduction in stall cycles can only
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compensate the increase in duty cycles. This indicates that at least for
this small benchmark, a load latency of 7 cycles is optimal.

We should note that in architectures in which the low-ILP and
high-ILP mode share the memory interface, as in the one used in our
evaluation, the queues need to be disabled during low-ILP mode. In
code that is not software-pipelined, increasing the latencies of load
operations comes with a much bigger degradation in IPC (instructions
per cycle), so there we want the shortest possible latency. The disabling
of the queues is discussed in Section 4.5. Here, we limit the discussion
to clarifying that disabling the queues in low-ILP mode is most often
not problematic. The most frequently occurring sequences of memory
accesses in non-loop code are the spilling and filling of callee-saved
registers to the stack upon entry to and exit from a called procedure.
Typically these registers are spilled to consecutive addresses, which
results in few conflicts in interleaved banks.

3.2. Write Buffers

Organization 3 in Figure 4 features a queue and increased latency. A
read operation and a write operation are issued in cycle 0 of the schedule
and two read operations are issued in cycle 1, all to the same bank. r1
and r2 need to retire in cycle 2. Obviously, handling four operations
in three cycles is impossible, so again the memory needs to stall the
processor for one cycle.

In organization 4, the memory interface stores the read and write op-
erations in separate buffers, and it gives priority to the read operations.
Assuming that the write is independent of any subsequent reads, the
memory interface can now handle the three read operations in cycles 0,
1, and 2, and the write operation in cycle 3. Again, more instructions
will have been executed in the same amount of cycles. Just like the
original unified queues can spread conflicting access over time without
stalling the processor, so can the separate write buffers. They simply
offer more spreading capability.

It should be clear that the write buffers we use to delay writes in
favor of reads have nothing in common with the well-know store buffers
found on out-of-order superscalar processors. There write buffers store
data to be written to memory in order to forward it to consecutive read
operations. Those read operations can then be handled without having
to wait until all outstanding writes accesses are committed to the actual
memories. In our case, no forwarding is done whatsoever. This makes
the implementation much cheaper, as we will see in Section 4.

As it can happen that some writes are delayed in favor of reads
throughout the whole execution of a kernel, some writes might still
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be outstanding when a kernel finishes. To handle those writes, special
hardware needs to be foreseen that can introduce additional stalls at
the end of a kernel’s execution. In practice, an accumulation of out-
standing writes towards the kernel’s end will occur infrequentely. One
reason is that the peak bandwidth to memory is only required during a
kernel’s steady state. In the epilogue, more and more memory accesses
are disabled by their staging predicates, which will almost certainly
free slots to handle outstanding writes. Secondly, because of the bank
rotation proposed in the next section, there only occur short bursts of
conflicts anyway. So over the whole execution of a kernel, no significant
amount of outstanding writes will have accumulated.

Finally, we should note that the use of separate write buffers needs
to be software-controlled to guarantee the correct execution of kernels
for which the compiler cannot assume that there are no read-after-write
or write-after-write dependencies. This software control by means of a
flag set or reset upon entry to a kernel does not come at the expense
of significant additional hardware.

3.3. Bank Access Rotation

Memory queues and separate write buffers give the memory the ability
to work around short bursts of bank conflicts. What remains to be han-
dled are the long bursts. Such bursts occur, for example, when arrays
are accessed with a bad stride. For example, consider the following C
code fragment:

int* pm;

for (...) {

y0 = *(pm + 0*4); y1 = *(pm + 1*4);

y2 = *(pm + 2*4); y3 = *(pm + 3*4);

y4 = *(pm + 4*4); y5 = *(pm + 5*4);

y6 = *(pm + 6*4); y7 = *(pm + 7*4);

...

}

In this fragment, all accesses to the array pm occur at indices that
are multiples of 4. Since integers have a width of 4 bytes, all the offsets
in the binary code will be multiples of 16, so in the interleaved bank
organization of Figure 3, all these accesses to pm will access the same
bank.

The problem of such accesses to the same bank is also illustrated
in the schedule of organization 5 in Figure 4. Three read operations
are issued in the first cycle of the schedule, and one more is issued in
the second cycle. In between, the memory has to stall the processor
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for two cycles because the first three accesses are to the same bank.
The schedule of organization 6 illustrates that the number of stalls
goes down if rotation is used, but still one stall cycle is required. Now
suppose the interleaving of the banks is different (in our case this will
be rotated), such that the read operations r1 and r3 no longer access the
same bank as r0 and r2. The corresponding execution trace is depicted
in organization 7 of Figure 4. In this case, no more stall cycles are
needed.

The problem to solve here is related to the problem of row-major
storage and column-major storage of matrices and the order in which
the matrices are traversed, and to the problem of determining an array
layout given the access stride patterns. Many data layout and address
generation optimizations have been proposed in the past to optimize
accesses to arrays, especially in the context of systems with distributed
memories such as single cores with caches, multicores with non-shared
caches, MPSoC systems with scratch-pad memories, etc. (Catthoor
et al., 2002; Kandemir et al., 1999; Wehmeyer and Marwedel, 2006).
The transformations applied and the hardware support proposed usu-
ally aim at reducing the number of conflicts for memory banks and
at improving the locality for caches by carefully scheduling accesses
in the correct order. In most proposed techniques, transformations on
layout or access order are fine-tuned, parametrized or set for each kernel
separately. This is because typically some kernels are best with row-
major layout or order, while others are better off with column-major.
The same holds for kernels that access arrays with different strides.

In our case, the compiler is assumed to be bank-unaware, and many
kernels are memory-bound. So the compiler cannot avoid conflicts by
reordering or spreading the accesses, and it cannot generate a setting for
the parameters for a programmable memory organization. Instead we
have to use a memory organization that works well for both row-major
and column-major order, and for different strides. Furthermore, we
don’t care about improving locality. We assume that the programmer
has written his program such that all data accessed is available in
the scratch-pad memory. So we don’t care about the order in which
operations are executed or about the order in which banks are accessed.
Finally, we can rely on the queues and write buffers to resolve short
bursts of conflicting accesses. So here we only care about long bursts.

These observations imply that we can reorganize the memory banks
differently without having to care about turning good access patterns
into bad ones. We only have to make sure that any access pattern
that was on average spread over all original banks (as organized in
Figure 3) remains spread over the reorganized banks. The queues and
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Figure 5. A rotated interleaved scratch-pad memory.

buffers will then resolve all accidental short burst conflicts that result
from the reorganization.

Following this reasoning, we propose the bank organization of Fig-
ure 5. In this organization, it is as if the second row has been rotated
to the left over one position, the third row has been rotated to the left
over two positions, and the fourth row has been rotated to the left over
3 positions. This rotation is repeated throughout the whole scratch-pad
memory. With this memory organization, it can easily be seen that the
accesses to pm in the above code fragment are now nicely spread over
all banks, as if all bank accesses got randomized.

An important aspect of this rotated bank assignment is its hardware
cost. Suppose we have a 32-bit address space. We denote an address
b31...b0. In the original interleaved 32-bit bank assignment of Figure 3,
the bank is determined by the bits b3b2. Within the bank, the row
is determined by b31...b4, and within a row, the bytes addressed are
determined by b1b0. In the rotated interleaving, the same bits b31...b4

and b1b0 determine the row that is accessed and the bytes within that
row. Only the bits that determine the bank change. Instead of b3b2, it is
now the two bit value b5b4+b3b2 that determines the bank accessed. We
call such a data interleaving single rotation. Clearly very little logic will
be required to implement the bank rotation. More complex rotations
can also be envisioned. For example, in the evaluation section we will
also study multiple rotation, in which the bank accessed is determined
by the two bit value b13b12 + b11b10 + b9b8 + b7b6 + b5b4 + b3b2.

We should note that in architectures in which a low-ILP mode shares
the memory interface with a high-ILP mode, the use of rotated banks
can occasionally introduce new conflicts in the low-ILP mode. As there
is no conflict resolution of short bursts in that mode, the numbers
of stalls in it may increase. Overall, we have found that this rarely
happens, and only in insignificant quantities that certainly do not undo
the gains obtained in high-ILP mode.
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Figure 6. Overview of our hardware implementation of the unified data queues.

4. Hardware Implementation

4.1. Overview

Figure 6 depicts an overview of our unified data memory queue im-
plementation for the simplified case of two load/store units and two
memory banks. Queue enabling or disabling signals are not included to
simplify the figure. Solid lines indicate data, while dashed lines indicate
control. Its components are as follows.

− The load/store units at the left of the figure model the pipeline
stages in which memory accesses are issued. The load/store units
on the right of the figure model the writeback stages. Since we
are working in the context of a VLIW-like processor with blocking
loads with fixed latencies, a fixed number of cycles needs to pass
between the issuing of a memory access and its writeback.

− Each memory bank y has a reorder buffer roby. Data that has been
read from a bank is stored in this buffer until the correct cycle

JSPSpaper_final.tex; 24/09/2009; 11:02; p.17



18 B. De Sutter et al.

arrives to send the data to the writeback stage of the processor
pipeline.

− Each load/store unit x has a latency queue lqx. This queue re-
members when values that have been read from memory need to
be send to the writeback stage, and uses this information to control
the reorder buffers.

− Each memory bank y has a scoreboard scoreboardy. This keeps
track of the number of issued and outstanding memory accesses for
its bank, for all load/store units. When it detects that it cannot
handle all outstanding accesses in time, it will raise a stall signal.

− The core controller controls all stall signals. It is notified about
stalls by the scoreboards when a memory access cannot be handled
in time. There might also be other reasons for the processor to
stall, for example, when a miss occurs in the instruction cache.
Whatever the reason is for which the processor stalls, the memory
interface needs to know about this to keep track of the time left
to handle outstanding memory accesses. So the stall signal is sent
to the latency queues and the scoreboard.

− Each load/store unit x has a load/store buffer bx that stores the
data of all outstanding memory accesses of the load/store unit.
This information includes the address to be accessed, the type of
operation (load or store), and, in the case of store instructions, the
data to be written.

− Per pair (x, y) of load/store unit x and of memory bank y, there is
one queue qxy that stores pointers to the data in bx for outstanding
accesses to bank y.

The areas in grey form so-called single-input, multiple output (SIMO)
queues. There is one SIMO per load/store unit. This unit pushes mem-
ory accesses into the SIMO, and the scoreboards pop them when they
can be handled by their memory banks. In our hardware implemen-
tation, the reorder buffers are implemented in a similar way, but we
have not drawn their internals to simplify the figure. In the case of
reorder buffers, the memory bank pushes data that was read from that
bank, and the latency queues pop data. The use of our SIMO structures
has several advantages that are also known in the domain of network
switches. These advantages will become clear in the next section.
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4.2. Operation

Suppose load/store unit x issues a load operation. The unit first de-
termines the bank y that will be accessed, using any of the address bit
sequences discussed in Section 3.3. It then pushes information into the
appropriate blocks as follows:

− The value y is pushed into lqx. The depth of this queue equals
the latency of a load operation, and this queue is popped every
non-stall cycle. So the value y will be popped exactly when the
data read for this memory access has to enter the writeback stage
of load/store unit x, at which point it will be used as a selector for
the multiplexor in front of the load/store unit’s writeback stage.

− scoreboardy is notified that unit x wants to access its bank, and
stores this information. How this information is stored and han-
dled, is discussed in detail in Section 4.3.

− The read address is stored in buffer bx, say at location i. This
address will be obtained from this table when scoreboardy decides
to pass this access to bank y. How this decision is made is also
discussed in Section 4.3.

− The value i is pushed into queue qxy, from which it will be popped
when scoreboardy decides to pass this access to bank y, i.e. when
this i reaches the front of qxy, and when scoreboardy decides that
it is x’s turn to access bank y.

For store operations, about the same happens. But in this case, a special
NO DATA-value is pushed into the latency queue to indicate that there
will be no data to pass to the writeback stage, and the data to be stored
is stored in bx, together with the store address. In a cycle in which no
memory access is issued at all on unit x, because no such operation was
scheduled or because its predicate evaluated to false, the NIL-value is
also pushed into the latency queue.

When scoreboardy decides that a memory access issued from unit
x can be handled by its bank y, that scoreboard pops the location i at
which the access is stored in bx from qxy. It then uses i to retrieve the
memory address, the type of operation (read or write), and, in the case
of a store, the data from bx. This retrieval is all done by means of the
multiplexors in the SIMO of unit x. The retrieved data is sent to the
memory bank to actually perform the access. Also, location i is freed
in bx. For a write operation, the handling finishes here.

For a read operation, the data that was read from bank y is pushed
into roby, together with the value x of the load/store unit to which
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the value has to be returned. This value comes from scoreboardy.
As already indicated, the reorder buffers internally look exactly like
the SIMOs. They have one internal buffer in which the read data is
stored at location j, and two queues (one for each load/store unit).
The scoreboard pushes the value j into the appropriate queue.

When the x corresponding to this access gets popped from lqx, the j

will be at the front of its queue in roby. Using that popped j, the data
at location j is retrieved from the internal buffer of roby and passed
to the writeback stage of unit x. The entry j is freed in the internal
buffer, which finalizes this memory access.

The advantages of our SIMO structure over other structures that
would only consist of simple queues are that (1) multiple items can be
popped from the SIMO simultanuously; (2) there are no head-of-line
blockings of accesses from the same unit to different banks; instead such
accesses can be reordered without any problem; and (3) its control is
rather simple.

4.3. Scoreboards

The function of the scoreboards is threefold.

1. Each cycle, each scoreboardy has to decide which outstanding ac-
cess is retrieved from the load/store unit SIMOs to be executed on
bank y.

2. If the executed operation is a load operation, its result has to be
stored in reorder buffer roby.

3. Finally, if the scoreboard detects that not all outstanding accesses
can be handled in time, it has to raise the stall signal. When the
stall signal is actually raised, no more memory accesses will be
issued by the load/store units, and no data needs to be passed
from the reorder buffers to the writeback stages. During the stalls,
the scoreboard keeps selecting and performing bank accesses, and
it keeps pushing read values in the reorder buffers, where they will
wait until the stall signal is reset, after which the data will be passed
to the writeback stages.

Figure 7 illustrates how a fictitious scoreboard for four load/store
units works. In the scoreboard, there is one row per load/store unit,
and a number of columns that is determined by the optimal load/store
latency as discussed in Section 4.4. In this example, we assume that the
load instruction latency is high enough to enable the memory interface
to handle all accesses in time. In other words, no stalls need to be
inserted. Ten consecutive cycles are displayed. In each cycle, a number
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Figure 7. Operation of the scoreboard.

of accesses are issued and become visible to the scoreboard. The units
issuing the accesses in a cycle are marked with X in the corresponding
row under the heading IN, and the load/store unit of which an access is
actually being passed to the bank is marked with an X under the head-
ing OUT. Outstanding accesses are marked with Xs in the scoreboard
table. The column marked in grey corresponds to the cycle of which
the scoreboard is currently handling accesses to the memory bank.

Accesses enter the scoreboard one cycle after they show up at its
input. The scoreboard can then start handling them, unless it still has
to handle accesses from previous cycles. It handles one access per cycle,
and proceeds from top to bottom, from right to left (and then rotating
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at the end). This guarantees that all accesses to its bank are performed
in order. Hence no memory dependencies can be violated.

If during some non-stall cycle no new accesses are issued to a bank,
the gaps counter of the next free column is incremented by one. So
every non-stall cycle, either the next empty column is filled with Xs,
or that column’s gaps counter is incremented.

Every time the scoreboard passes the last access in some column
to the memory, this implies that it has finished all accesses that were
issued in the same cycle. That column becomes empty, and the score-
board is ready to start handling accesses in the next column. At that
point, the gaps counter of that column is reset to 0, which models
the fact that we also finished executing all loads and stores (being
none) that were issued in the cycles in which this gaps counter was
incremented.

The latency value specified in each cycle in Figure 7, to which
we will refer as ls, equals the sum of all gaps counters added to the
number of columns with Xs in them. Basically this is a counter that is
incremented every non-stall cycle, and that is decremented whenever
all memory accesses of a cycle have been handled. In other words, the
latency value specifies the number of non-stall cycles that have passed
in the processor between the current cycle and the cycle in which the
access was issued that is currently being passed to memory. When this
latency value passes some threshold, the scoreboard knows that it will
not be able the handle outstanding accesses in time. At that point, the
scoreboard will raise the stall signal.

4.4. Latencies and Sizes

Previous sections described the operation of the memory interface and
its exploitation of higher load operation latencies. Now we discuss the
relation between the fixed latencies of load operations at the instruction
set architecture (ISA) level and the sizes of the tables in our hardware
implementation.

Our memory interface needs to support a fixed number of cycles from
the moment a load/store unit issues a memory access to the moment
the reorder buffer passes the result back to the write-back stage. We
call this number maximum latency, or ml. The relation of this ml to the
latency of a load operation as described in the ISA depends entirely on
the pipeline structure of the processor’s data path. At least the latency
according to the ISA should be higher than ml, but how much it should
be higher depends on the processor’s pipeline. So in this section, we
will determine all queue and buffer sizes in terms of the architecture-
independant ml.
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The tape-out samples (Derudder et al., 2009) of our prototype pro-
cessor that includes this memory hierachy can operate at 400 MHz. It is
fabricated using the 90 nm standard cell TSMC GP process technology.
To reach this frequency, at least one cycle is spent accessing the memory
bank. Also, at least one cycle is needed for an access to pass the queues
and one cycle to pass the reorder buffer. This means that an access can
spend any number of cycles cq in the queues with 1 ≤ cq < ml − 2,
after which it spends 1 cycle on actually accessing the memory bank,
and ml − cq − 1 cycles in the reorder buffer.

To compute the sizes of the queues, buffers and tables, we need
to know the exact points at which stall cycles will be inserted. They
need to be inserted if the scoreboard detects that it will not be able
to handle all outstanding requests in time. Since it takes at least two
cycles out of ml cycles to perform an access and to pass the result
through the reorder buffer, a stall should be inserted when the latency
ls as computed in the scoreboard (see Section 4.3) becomes higher than
ml−2. So when ls > ml−2, we know that stalls will have to be inserted,
which needs to be done somewhere in the next two processor cycles.
The exact point can be chosen because it takes at least two cycles for
an access to get from the scoreboard to the writeback stage anyway. In
our implementation, we have chosen to insert the stall one cycle after
the cycle in which the scoreboard detects it needs to insert a stall. This
was done because otherwise the combinatorial paths become too long
to reach 400 MHz.

With that implementation, the scoreboard needs to be able to store
at least the accesses of ml−1 cycles to be able to detect the need for stall
cycles in the case all gap counters are zero. Furthermore, since the stall
is delayed one more cycle, one more cycle can issue memory accesses
before the stall actually happens. So in total ml columns are needed in
the scoreboard. The number of rows is the number of load/store units.

Load operations issued on a load/store unit need to be finished in
ml cycles. During those ml cycles, at most one new access per cycle
can enter the unit’s SIMO. And one additional access can enter the
queues in between the detection of the need for a stall cycle and the
insertion of the stall cycle. So in total, at most ml + 1 accesses from a
load/store unit can be in flight. When this worst-case scenario happens,
at least one of the accesses in flight is actually accessing the bank,
and one more is in the reorder buffer. So worst case, the queues have
to hold ml + 1 − 2 = ml − 1 accesses. That is their maximum size,
and it corresponds to instructions spending anything in between 1 and
ml − 2 (+1 in case of a stall) in the SIMO. It is the possibility to
execute accesses at any time within this range that allows our whole
organization to resolve conflicts. Of course, it is not necessary to make
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the queues and buffer of the SIMO ml − 1 deep. Smaller depths can
also be used, to save on area and on power, but then there will be less
freedom to resolve conflicts, and hence more stall cycles will have to be
inserted.

The size of the reorder buffers equals the number of load/store units
plus one. This is because in the worst case, all units can have issued a
load operation to the same bank in the same cycle, and then all these
operations must have their results passed from the same reorder buffer
to all writeback stages of all load/store units. Plus, because of the delay
in the stall signal, one more read value can have entered the reorder
buffer.

Finally, the latency queues can be implemented as simple pipelines
of depth ml, since every non-stall cycle these queues get pushed and
popped exactly once.

4.5. Disabling the Queues

At the end of Section 3.1, we argued that it should be possible to disable
the queueing mechanism in order to achieve shorter latencies for non-
pipelined code. In hardware, this can be achieved easily by making
two values parametrizable, and by changing the values when switching
between low-ILP mode for non-pipelined code and high-ILP mode for
pipelined code. In the low-ILP a value of 1 instead of the value ml − 2
should be used when checking ls for the need to insert stalls. This will
ensure that every access leaves the queues in front of the memory bank
after at most one (non-stall) cycle. Secondly, the depth of the latency
queues should be set to 3. This ensures that all performed memory read
operations have their data sent back to the processor pipeline as soon
as it comes out of the bank.

4.6. Write Buffers and Rotating banks

The previous sections described the unified memory queues. We will
not present the separate read queues and write buffers in detail. The
SIMOs of the load/store units are duplicated (one for loads and one for
stores), and the scoreboards are extended with counters to account for
outstanding stores. Simple counters suffice for this because the writes
can be reordered when the write buffers are enabled. If they are disabled
(under control of the software), both loads and stores go to the load
SIMO, through which they will still be executed in order.

Because writes in the separate write buffers can be delayed virtually
indefinitely, write buffers can be made larger than ml + 1 − 2, unlike
the sizes of all other elements, which are limited by ml as discussed in
the previous section.
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This implementation needs to work in two software-controlled modes.
In one “unified” mode, one of the duplicated queues functions as a
unified queue to execute code that contains read-after-write dependen-
cies or write-after-write dependencies in order. In the other “reodering”
mode, the duplicated queues operate as separate read queues and write
buffers. To optimize area and power comsumption, the separate read
queue of the “reordering” mode is best implemented in the queue that
is not used in “unified” mode. This way, that queue does not need to
provide space to store values to be written to memory. Instead it only
needs to store addresses from which to read.

To implement rotating banks, it suffices to adapt the computation
of the bank value y inside the load/store units.

4.7. Extensions

So far, we have assumed that the memory banks are scratch-pad mem-
ories. For the above hardware to work, this is not necessary however.
With little modifications, other memories like caches can replace the
scratch-pad memories. Also, the hardware is easily extensible to differ-
ent numbers of load/store units or different numbers of banks. When no
interleaving is required, the number of banks also does not need to be
a power of two. It then suffices to adapt the current bank computation
in the load/store as discussed in Section 3.3.

Another possible extension is to use 64-bit memory ports. So far,
we have not done this because we have a significant number of kernels
that cannot exploit 64-bit ports. They would underuse 64-bit ports, and
hence become less power-efficient. Furthermore, our high-ILP mode
shares the load/store units with the low-ILP mode for accessing the
scratch-pad memory. In that low-ILP mode, there are more accesses
with a stride of four bytes, such as the spilling and filling code previ-
ously mentioned in Section 3.2. Having 64-bit memory banks that are
64-bit wide would hence result in more conflicts in the low-ILP mode.

Another extension that is straightforward is the addition of ports to
external memory. For example, it is easy to construct a system with
four scratch-pad memory banks that cover the address range 0x0000-
0xffff, and to add a fifth “bank” that is not a real bank but, e.g., an
AHB master port to a DMA controller. Such a setup is in fact the one
we implemented in our evaluation prototype ADRES processor used
in the evaluation in the next section. Similarly, an external controlled
DMA-controller can be connected as an AHB slave port that functions
like an additional load/store unit.
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4.8. Discussion

The scoreboard implementation proposed in this paper has a number of
advantages over other implementations that only contain queues. The
main advantage of using a scoreboard is that all information regarding
the scheduling of memory accesses (to a bank) is centralized. In designs
without a scoreboard, the scheduling information must be stored in the
queues themselves as tags. This information then flows through pipeline
together with the accesses, which complicates the decision logic.

The centralized scoreboard also facilitates extensions such as sepa-
rate write buffers that can be enabled or disabled by the programmer,
and other extensions such as extra ports for DMA controllers. With-
out any changes to the decision logic, to the design of the queues
themselves, or to their interconnect, the scoreboard-based design also
supports architectures with separate FUs for loading and for storing,
or with more or less load/store units than banks. Supporting on and off
chip memories, or multiple non-interleaved on-chip memories, poses no
problem either. Even the adaption to use caches instead of scratch-pad
memories, which means that the memory accesses themselves no longer
have a fixed single-cycle latency, only requires relatively simple changes
to the scoreboards, and only to the scoreboards.

5. Evaluation

5.1. The Evaluation Architecture

The results in Figure 2 have shown that it is clearly necessary to in-
clude some form of conflict resolution in the interface to the memory
banks. They also showed that increasing the latency of load operations
beyond a certain threshold number of cycles to give more freedom to
the conflict resolution is not useful. Above that threshold, the decrease
in the number of stall cycles is compensated by the increase in duty
cycles. In this evaluation, we therefore focus on the conflict resolution
methods for a fixed load instruction latency of 7 cycles as seen in the
ISA of our target architecture. On that architecture, this corresponds
to a fixed maximum latency or ml (see Section 4.4) of 5 cycles.

Some other important properties of our architecture are as follows.
The whole architecture has a 64-bit integer data path to support 4-way
16-bit SIMD (single-instruction-multiple-data) operations and regu-
lar 32-bit integer operations. No floating-point operations are sup-
ported. This architecture is an instance of the ADRES (Architecture
for Dynamically Reconfigurable Embedded Systems) architecture tem-
plate (Mei et al., 2004), that features a low-ILP VLIW processor and a
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high-ILP coarse-grained reconfigurable array (CGRA). Inner loops are
mapped onto the CGRA using modulo-scheduling, while the other code
is mapped onto the VLIW processor. In our SDR implementation, the
low-ILP mode is a 3-issue VLIW machine, in which all issue slots can
issue memory accesses. It shares its main register file with the high-ILP
CGRA mode to pass data between the two modes. Both modes execute
exclusively: when an inner loop is entered, its CGRA code is invoked
from within the VLIW code, and when the loop is exited, control is
transferred back to the VLIW code. The VLIW processor also shares
the memory interface with the CGRA, but in VLIW mode, the queues
are disabled, which corresponds to a load instruction latency of 5 cycles
(in the ISA) instead of 7.

The high-ILP CGRA mode features 16 issue slots. Of the 16 func-
tional units, four can perform memory accesses besides regular ALU
operations. All units can also perform integer 16-bit (SIMD) multiplica-
tions, and one unit can perform 24-bit divisions. The SIMD operations
supported include simple parallel operations like parallel addition, sub-
traction, and shifting in saturated arithmetic, as well as complex fixed-
point multiplication. All operations in the ADRES VLIW mode and in
its CGRA mode can be predicated. Predication by means of hyperblock
formation (Mahlke et al., 1992) allows the compiler to remove control
flow from inner loop bodies, and thus enables the mapping of complex
loop bodies onto the CGRA, on which control flow (apart from loop
iteration) is not supported to make the very wide 16-issue instruction
fetching more power-efficient.

All experiments performed in this paper are based on gate-level
simulations of a full ADRES core (before placement and routing),
which includes testing hardware, DMA controllers, a debug interface,
etc. In short, all required features are present to make this core oper-
ate as a slave inner modem baseband processor in a multi-core SDR
System-on-Chip. Such an SDR platform, containing two ADRES cores
(featuring unified queues and non rotated bank assignment to a 4-bank
scratch-pad memory of 64kB, and a CGRA memory of 128 736-bit
instructions) was taped-out in Q2 08 and is currently being tested.
That SDR platform uses 90nm TSMC general-purpose technology, in
which the ADRES cores operate at 400MHz and occupies 6mm2 of die
area. More detailed simulation experiments performed on that SDR
platform, after placement and routing, have shown that a single SDR
ADRES core can process the IEEE802.11n 20MHz 2x2 MIMO OFDM
baseband code in real-time, consuming 220mW on average (310mW
in CGRA mode, 75mW in VLIW mode), of which the typical leak-
age is 12.5mW (25mW at 65C). This proves that the processor used
for this evaluation is competitive in terms of performance and energy
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consumption. For more detailed info on our Inner Modem Baseband
ADRES processor, we refer to (Bougard et al., 2008a; Bougard et al.,
2008b; Derudder et al., 2009).

Compared to the taped-out ADRES cores, we increased the total
level-1 scratch-pad memory size of the ADRES core used in this eval-
uation to 256 kB to make it fit our current implementation of the
3GPP-LTE standard. We also increased the size of the instruction
memory for CGRA mode to 256 instructions, and we recently added
a level-0 loop buffer in front of it to limit its power consumption. The
instruction cache for the VLIW mode remains identical to the one in
the taped-out cores, being a direct-mapped cache of 32 kB. Further-
more, we also added the optional bank rotation and separate write
buffers. Before performing any measurements, we verified that none of
the added features or changed memory sizes resulted in changes to the
critical paths of the processor. As such, we can guarantee that the 400
MHz clock speed can still be obtained with all of the proposed conflict
resolution schemes and with the increased memory sizes.

5.2. The Wireless Standards

An ADRES processor is programmed in sequential ANSI C. Our pro-
prietary compiler extracts the loops from the application automatically,
and maps them onto the CGRA. This mapping is done by means of
modulo-scheduling to exploit the amount of available ILP as much as
possible. SIMD is not extracted automatically by the compiler how-
ever. SIMD operations must be programmed manually by inserting
so-called intrinsics in the C source code. Furthermore, our prototype
compiler does not yet apply complex loop transformations such as loop
unrolling to increase the amount of available ILP. For more information
on the compiler, we refer to (Mei et al., 2003; De Sutter et al., 2008).
Alternative compiler code generation techniques for architectures like
ours exist (Park et al., 2008; Friedman et al., 2009; Oh et al., 2009).
Their treatment of memory bank assignments and memory addressing
schemes is not different from the one in our compiler.

The 6 standards and modes we have implemented are listed in
Table I. Table II lists the kernels in each benchmark. Each of these
applications was simulated at gate-level on the 12 organizations of the
memory subsystem presented in Table III. Each organization is a spe-
cific combination of no rotation, single rotation or multiple rotations
with unified read and write buffers or with separate write buffers of
depths 4, 5 and 6. This means that at most 4, 5, or 6 write operations
can be outstanding for any bank at any time. Table IV presents some
basic results of this mapping exercise for the SDR inner modem base-
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Table I. Standards used in this evaluation.

Table II. Kernels in the different standards.

band processing standards of Tables I and II. For each benchmark, the
fraction of the total execution time spent in the high-ILP CGRA mode
is presented (as obtained on a basic memory interface with unified
queues and no rotation) as well as the instructions-per-cycle (IPC)
that are obtained in the high-ILP CGRA mode (counting only duty
cycles). As can be seen, pretty high IPCs are obtained. We also included
the power consumption estimates obtained using gate-level simulation,
averaged over both the low-ILP VLIW mode and the high-ILP CGRA
mode. These are lower than the aforementioned 220mW because of
the level-0 loop buffer we added to the configuration memory. The
power consumption is clearly related to the fraction of time spent in
the CGRA mode.

To assess the pressure on the memory organization, Figure 8 presents
the distribution of the number of memory accesses that are performed
per duty cycle in the CGRA mode. Four accesses are performed in
between 6.9% and 37.4% of the CGRA duty cycles, depending on the
benchmark. Three accesses are performed in between 13.4% and 35.2%
of the CGRA duty cycles. From these numbers, it becomes clear that we
indeed need more than 2 ports to memory to deliver high performance.
For completeness, Figure 9 shows the distribution of memory accesses
issued per duty cycle for the low-ILP mode. Since this is a 3-issue VLIW
processor, the maximum number of accesses in a single cycle is three.
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Table III. Properties of the 12 memory interfaces organizations.

Table IV. Exploitation of the high-ILP mode.

Figure 8. Distribution of the number of performed memory accesses per cycle in
high-ILP CGRA mode.

Clearly, the memory bandwidth requirements of the VLIW mode are
much lower.

Note that the CGRA mode is the only mode in which the different
queues and buffer organizations are actually enabled. In VLIW mode,
they are simply disabled. By contrast, any type of rotation that is
applied in the CGRA mode needs to be applied in VLIW mode as well.
This follows from the fact that the two modes share a single level-1
scratch-pad memory, in which they may access the same data.

5.3. Performance Results

Figure 10 presents the fraction of the total execution time spent in
stalls resulting from bank conflicts for each of the 12 memory interface
organizations. For all benchmarks, we immediately observe that consid-
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Figure 9. Distribution of the number of performed memory accesses per cycle in
low-ILP VLIW mode.

erable fractions of the execution time are spent in stall cycles because
of unresolved bank conflicts when only the basic queues are used.

Furthermore, the behavior clearly differs from benchmark to bench-
mark. With the limited number of benchmarks implemented so far,
we notice that for less advanced standards, such as 11a and 11n, the
relative number of stalls in a receiver is typically lower than in a trans-
mitter, at least for the simpler memory organizations. This is to be
expected, as those transmitters perform much less complex computa-
tions per transmitted byte than their receivers. Thus, the pressure on
memory is much higher in the transmitters, as could be observed in
Figure 8 as well. The reason why these transmitters spend relatively
little time in CGRA mode, while still pressuring memory quite a bit in
VLIW mode, is that they involve irregular data reordering operations
that are not executed in loops. Instead those reordering operations
consists of sequence of loads and stores executed in VLIW mode.

The 3GPP-LTE Tx and Rx behave differently. Both their pressure
on memory in the CGRA mode is not that high. But on the other
hand the 3GPP-LTE Tx and Rx spend almost all of their time in that
mode. So in the end the 3GPP-LTE Tx and Rx still have a considerable
amount of stall cycles, at least when the simplest conflict resolution is
used.

Fortunately the number of stall cycles in all benchmarks can be
reduced to below 2% by implementing separate write buffers and bank
rotation. For the 3GPP-LTE Tx and Rx, the number of stall cycles
is even below 0.13%. This shows that the proposed extensions are
definitely useful to increase performance. On average, multiple bank
rotations with separate write buffers of depth 6 proves to provide the
highest performance. But the gain of going from depth 5 to depth 6 is
marginal.

On some benchmarks, single rotation outperforms multiple rota-
tions, albeit not by much. For the 3GPP-LTE benchmarks however,
multiple rotations with separate queues is by far the preferable imple-
mentation. The reason is that our implementations of these benchmarks
involve both small and large power-of-two array access strides, up to
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Figure 10. Percentage of the total cycle count that are stall cycles.

4096. The only way to handle all of them efficiently in hardware is to
use multiple rotations. One could argue that in this case rewriting the
software to avoid those large strides might also get rid of many conflicts.
While that is true, the whole idea of software-defined radio is to enable
shorter times to market. As such, the burden of optimizing code for a
specific memory organization should not be put on the programmer.
This is particularly so if the hardware solution involves little overhead
in terms of energy or area as shown in the next sections.

5.4. Energy Results

Figure 11 shows the fraction of the total energy that is consumed in
the 12 memory organizations we evaluated. These fractions include the
power consumption in the queues and buffers. It can be seen that the
differences in consumption between different memory organizations are
small.

Between 15% and 20% of the 18% to 33% power consumed in the
memory organization is spent in the queues and buffers. This means
that our proposed conflict resolution schemes consume between 4% and
7% of the total power budget of an ADRES core including memories,
depending on the benchmark and the specific scheme chosen. Consid-
ering the huge performance penalties as shown in Figure 2 for designs
without conflict resolution, this energy overhead can be considered very
low.
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Figure 11. Percentage of energy consumption of the total core that is spent in the
data memory subsystem.

It is no surprise that the benchmarks with the highest memory pres-
sure consume most energy in the memory subsystem. It is also for those
benchmarks that the highest gains in performance were obtained. As
such, the increases in relative energy consumption as seen in Figure 11
must be interpreted correctly: rather than resulting from increased en-
ergy consumption in the memory subsystem, they result from reduced
energy in the whole core as a result of the reduced number of stalls. This
becomes obvious in the energy/performance plots of Figure 12. Every
point in these plots shows, for positive numbers, the gains in total core
energy consumption and the gains in execution time. In these charts,
the scale of the energy gains is much smaller than the scale of the
performance gains. The reason is that, because of clock-gating, stall
cycles consume much less energy than active duty cycles. So only a
limited amount of energy can be saved by eliminating stall cycles. In
fact, these savings are so small that they are offset by the increased
energy consumption in the queues.

5.5. Area Results

The basic unified queues without rotation take about 5.8% of the total
core area on the SDR platform described in Section 5.1. This 5.8%
includes all the hardware as discussed in Sections 4.1 to 4.4, except for
the pipeline stages of the load/store units, and except for the memory
banks themselves.
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Figure 12. Energy savings and performance (execution cycles) improvements over
the unified queues with non rotated banks for several standards, and for several
organizations. The WBx lines connect WB4, WB5, WB6 from left to right.

Adding rotation does not increase the size of the memory interface
significantly. But adding separate write buffers does increase it. Sepa-
rate write buffers of size 4 makes the conflict resolution hardware grow
22% in size. For buffers of sizes 5 and 6, this becomes 33% and 45%
resp. So with separate write buffers of sizes 4, 5 and 6, the conflict
resolution hardware consumes 7.1%, 7.7% and 8.5% resp. of the total
core area. All in all, the proposed conflict resolution mechanisms thus
occupy little area.
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5.6. Summary

Except for 11n and 11a Rx, significant speedups are achieved, up to over
13% for 11a Tx. This proves that the (combined) extensions of rotated
banks and separate write-buffers are very useful. When no separate
write buffers are used, multiple rotations is either significantly better
or almost equally good as single rotation with respect to performance,
while it never consumes more than 1% additional energy. Without ro-
tation, separate write buffers prove to bring some gains in performance,
but not nearly as much as with single rotation. Finally, it is clear from
these figures that the combination of multiple rotations with separate
write buffers is only useful for the advanced 3GPP-LTE benchmarks.

We can summarize these results as follows. Given that a SDR plat-
form will run at least a couple of standards, which design is favorable
depends on the precise standards that need to run and on whether en-
ergy or performance has higher priority. A choice can be made between
UQ-mROT, WB4-sROT, WB5-sROT, or WB6-sROT or WB5-mROT.
Alternatively, a more flexible design that supports switching between
these modes could also be considered.

6. Related Work

Many reconfigurable architectures feature multiple independent mem-
ory banks/blocks to achieve high data bandwidth. But exploiting them
automatically in a compiler is not a fully solved problem. RAW features
an independent memory block in each tile (Taylor et al., 2002) for
which Barua (Barua, 2000) developed a method called modulo un-
rolling to disambiguate and assign data to different banks. However,
his technique can only handle array references whose index expres-
sion are affine functions of loop induction variables. MorphoSys has
a very wide frame buffer (256-bit) between the main memory and a
reconfigurable array (Singh et al., 2000). Its efficent use of such a wide
memory depends by and large on manual data placement and operation
scheduling. Both SiliconHive (Hive, 2007) and PACT (PACT, 2006)
feature distributed memory blocks without crossbar. We did not find
any public information in how their compilers map data onto such
distributed memory blocks.

Zhuang et al developed a technique to treat the bank assignment
problem as a graph coloring problem (Zhuang et al., 2002). It re-
orders individual accesses and operations to increase memory paral-
lelism. Byoungro So et al present a compiler-based approach to derive
custom data layouts in multiple memory banks for array-based compu-
tations (So et al., 2004). (Delaluz et al., 2002) describes a technique that

JSPSpaper_final.tex; 24/09/2009; 11:02; p.35



36 B. De Sutter et al.

interleaves data for SDRAMs. Other techniques like (Zhang et al., 2000)
also propose interleaving in SDRAMs while preserving the the locality.
Similar to Barua’s work (Barua, 2000), all these software-only tech-
niques are very restrictive on what code can be handled. Typically, they
cannot handle pointer-rich and data-dependent code. Most of these
techniques target higher levels of memories (SDRAMs), and therefore
are obliged to maintain locality. Furthermore, these techniques ignore
the costs that may be incurred due to increased addressing complexity.
Nonetheless, these software techniques still can be combined with our
memory queue approach if they are applicable.

More complex hardware schemes like (Chen and Postula, 2000)
improve the memory bandwidth bottleneck. However, they do intro-
duce substantial hardware overhead like extra address generator units
(AGUs) and look-up tables (LUT) for ensuring optimal memory inter-
leaving. Such overheads are not acceptable on low power platforms.

Many memory interleaving schemes (a.k.a. skewing schemes) have
been proposed in the past, such as (Rau, 1991; Pitkänen et al., 2008;
Tanskanen and R. Creutzburg, 2005), of which some are much more
complex than our simple bank rotation schemes. Harper et al (Harper
and Linebarger, 1991) proposed a dynamic rotation scheme, in which
special instructions can set the specific form of rotation for each loop.
Thus they avoid the need to find a single scheme that fits all loops and
their access patterns or strides. Multiple combinations of different dy-
namic schemes, including XOR-based, linear and rotation-like address
mapping schemes have been investigated. Harper(Harper, 1991) builds
on existing work to study the extent to which they can provide low-
latency conflict-free accesses for a number of important data access
patterns. His low-latency requirement excluded the use of buffers or
queues. Valero et al. (Valero et al., 1995) discussed how the reordering
of stream in vector processors or out-of-order processors accesses can
result in conflict-free accesses for a wide range of strides.

The main difference between those papers and this paper is that we
have demonstrated that low-latency, conflict-free memory addressing
schemes are not needed to get close-to-optimal performance for SDR
inner modem baseband processing with high-ILP processors. Thus we
have shown that, e.g., support for dynamic addressing schemes is not
needed for SDR inner modem baseband processing. Instead, combining
a fixed address rotation with local load/store-reordering and memory
access queues that exploit longer latencies suffices. We know of no
literature in which the interleaving schemes of scratch-pad memories
has been combined with load/store-reordering and with memory access
queues that exploit longer instruction latencies.
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Load/store queues have been used in modern out-of-order micropro-
cessors (Park et al., 2003; Sethumadhavan et al., 2007; Castro et al.,
2005; Subramaniam and Loh, 2006). They are used to absorb burst
requests in cache accesses and to maintain the order of memory oper-
ations in a superscalar machine without having to wait until stores
are actually committed to memory. Rivers et al describes a multi-
bank cache organization that exploits data access locality (Rivers et al.,
1997), where load/store queues are also used to meet buffering and or-
dering requirements of the superscalar machine. Hur and Lin (Hur and
Lin, 2007) target modern out-of-order processors with their adaptive
history-based memory access scheduler. This scheduler takes global ac-
cess history information into account to reschedule memory operations.
Memory queues like those mentioned (Sethumadhavan et al., 2007)
target ILP-rich architecture like TRIPS, at the expense of consider-
able hardware like content accessible memories (CAMs), Bloom filters,
etc. Such complex techniques are used to honor memory dependences
on their out-of-order processors. Additionally, they are not designed
with predefined latencies as found in static schedules. Furthermore,
the target applications of these load/store queues are general purpose
computing, where very few properties of the application cannot be
exploited at compile-time. Furthermore techniques like (Subramaniam
and Loh, 2006) do not exhibit consistent behaviour as is required for
real-time systems like SDRs.

7. Conclusions

SDR inner modem baseband processing applications that are executed
on high-ILP processors such as wide VLIWs or CGRAs put high pres-
sure on memory. This paper proposed bank conflict resolution schemes
based on queues, buffers and bank assignment rotation to limit the
number of stall cycles resulting from conflicting memory bank accesses.
With low overhead in terms of energy and area, the proposed schemes
enable the use of power-efficient single-ported memory banks, while
limiting the number of stall cycles to below 2% for the 11a|n standards
and below 0.13% for the demanding 3GPP-LTE standard. Thus the
proposed hardware solution removes the burden of optimizing an ap-
plication’s data layout and access pattern strides from the programmer.

JSPSpaper_final.tex; 24/09/2009; 11:02; p.37



38 B. De Sutter et al.

References

Baert, T., E. De Greef, E. Brockmeyer, P. Avasare, G. Vanmeerbeeck, and J.-Y.
Mignolet: 2008, ‘An Automatic Scratch Pad Memory Management Tool and
MPEG-4 Encoder Case Study’. In: Proc. of Design Automation Conference
(DAC 2008). To appear.

Barua, R.: 2000, ‘Maps: a compiler-managed memory system for software-exposed
architectures’. Ph.D. thesis, Massachusetss Institute of Technology.

Bastoul, C., A. Cohen, S. Girbal, S. Sharma, and O. Temam: 2003, ‘Putting poly-
hedral loop transformations to work’. In: In Proc. Workshop on Languages and
Compilers for Parallel Computing (LCPC’03). pp. 23–30.

Bougard, B., B. De Sutter, S. Rabou, S. Dupont, O. Allam, D. Novo, R. Vandebriel,
V. Derudder, M. Glassee, and L. Van Der Perre: 2008a, ‘A Coarse-Grained Array
Based Baseband Processor for 100MBPS+ Software Defined Radio’. In: Proc.
Of Design, Automation, and Test in Europe (DATE 2008).

Bougard, B., B. De Sutter, D. Verkest, L. Van der Perre, and R. Lauwereins: 2008b,
‘A Coarse-Grained Array Accelerator for Software-Defined Radio Baseband
Processing’. IEEE Micro 28(4), 41–50.

Castro, F., D. Chaver, L. Pinuel, M. Prieto, F. Tirado, and M. Huang: 2-5 Oct.
2005, ‘Load-store queue management: an energy-efficient design based on a state-
filtering mechanism’. Computer Design: VLSI in Computers and Processors,
2005. ICCD 2005. Proceedings. 2005 IEEE International Conference on pp. 617–
624.

Catthoor, F., K. Danckaert, C. Kulkarni, E. Brockmeyer, P. Kjeldsberg, T.
Van Achteren, and T. Omnes: 2002, Data access and storage management for
embedded programmable processors. Kluwer Acad. Publ.

Chen, S. and A. Postula: Feb 2000, ‘Synthesis of custom interleaved memory sys-
tems’. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 8(1),
74–83.

Delaluz, V., M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, A. Sivasubramaniam,
and I. Kolcu: 2002, ‘Compiler-Directed Array Interleaving for Reducing Energy
in Multi-Bank Memories’. In: VLSI Design. pp. 288–293.

Derudder, V., B. Bougard, A. Couvreur, A. Dewilde, S. Dupont, A. Folens, L.
Hollevoet, F. Naessens, D. Novo, P. Raghavan, T. Schuster, K. Stinkens, J.-W.
Weijers, and L. Van der Perre: 2009, ‘A 200Mbps+ 2.14nJ/b digital baseband
multi processor system-on-chip for SDRs’. In Proc of VLSI Symposum.

De Sutter, B., P. Coene, T. Vander Aa, and B. Mei, B.: 2008, ‘Placement-and-
routing-based register allocation for coarse-grained reconfigurable arrays’. In
Proceedings of the 2008 ACM SIGPLAN-SIGBED conference on Languages,
compilers, and tools for embedded systems. pp. 151–160.

Friedman, S., A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and S. Hauck,
S.: 2009, ‘SPR: an architecture-adaptive CGRA mapping tool’. In FPGA ’09:
Proceeding of the ACM/SIGDA international symposium on Field programmable
gate arrays. pp. 191–200.

Harper, D.: 1991, ‘Block, Multistride Vectorm and FFT Accesses in Parallel Memory
Systems’. IEEE Trans. on Parallel and Distributed Systems 2(1), 43–51.

Harper, D. and D. Linebarger: 1991, ‘Conflict-Free Vector Access Using a Dynamic
Storage Scheme’. IEEE Trans. on Comp. 40(3), 276–283.

Hive, ‘HiveFlex CSP2000 series, Programmable OFDM Communication Signal
Processor’. http://www.siliconhive.com.

JSPSpaper_final.tex; 24/09/2009; 11:02; p.38



An Efficient Memory Organization for High-ILP Inner Modem Baseband SDR Processors39

Hur, I. and C. Lin: 2007, ‘Memory scheduling for modern microprocessors’. ACM
Trans. Comput. Syst. 25(4), 10.

Kandemir, M., J. Ramanujam, and A. Choudhary: 1999, ‘Improving cache locality
by a combination of loop and data transformations’. IEEE Trans. on Computers
48(2), 159–167.

Lam, M. S.: 1988, ‘Software pipelining: an effecive scheduling technique for VLIW
machines’. In: Proc. PLDI. pp. 318–327.

Mahlke, S., D. Lin, C. W.Y., R. Hank, and R. Bringmann: 1992, ‘Effective compiler
support for predicated execution using the hyperblock’. In: MICRO 25: Pro-
ceedings of the 25th annual international symposium on Microarchitecture. pp.
45–54.

Mei, B., S. Vernalde, D. Verkest, and R. Lauwereins: 2004, ‘Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix Arcchitecture: a Case Study’. In:
Proc. of Design, Automation and Test in Europe (DATE 2004). pp. 1224–1229.

Mei, B., S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins: 2003, ‘Exploiting
Loop-Level Parallelism for Coarse-Grained Reconfigurable Architecture Using
Modulo Scheduling’. IEE Proceedings: Computer and Digital Techniques 150(5).

Novo, D., T. Schuster, B. Bougard, A. Lambrechts, L. Van der Perre, and
F. Catthoor: 2008, ‘Energy-Performance Exploration of a CGA-Based SDR
Processor.’. Journal of Signal Processing Systems.

Oh, T., B. Egger, H. Park, and S. Mahlke: 2009, ‘Recurrence Cycle Aware Modulo
Scheduling for Coarse-Grained Reconfiguralbe Architectures’. In Proceedings
of the 2009 ACM SIGPLAN-SIGBED conference on Languages, compilers, and
tools for embedded systems. pp. 21–30.

PACT: 2006, ‘PACT XPP Technologies’. http://www.pactcorp.com.
Park, I., C. L. Ooi, and T. N. Vijaykumar: 2003, ‘Reducing Design Complexity

of the Load/Store Queue’. In: Proc. of the 36th International Symposium on
Microarchitecture (MICRO-36).

Park, H., K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim: 2008, ‘Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures’. In: PACT
’08: Proceedings of the 17th international conference on Parallel architectures
and compilation techniques. pp. 166–176.
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