
A Novel Obfuscation: Class Hierarchy Flattening

Christophe Foket?, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

Computer Systems Lab
Electronics and Information Systems Department

Ghent University
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

{cfoket,bcoppens,kdb,brdsutte}@elis.ugent.be

Abstract. This paper presents class hierarchy flattening, a novel ob-
fuscation technique for programs written in object-oriented, managed
programming languages. Class hierarchy flattening strives for maximally
removing the inheritance relations from object-oriented programs, thus
hiding the overall design of the program from reverse engineers and
other attackers. We evaluate the potential of class hierarchy flattening by
means of a fully automated prototype tool for Java bytecode. For real-life
programs from the DaCapo benchmark suite, we demonstrate that the
transformation effectively hinders both human and tool analyses, and
that it does so at limited overheads.

Key words: Java bytecode, obfuscation, class hierarchy, program design

1 Introduction

Reverse engineering and modification of managed code are well-understood and
common practices, with many legitimate goals [16]. Malicious developers can
abuse them, however, to attack Java and .NET applications with the goals of
software piracy, software IP theft, and data theft. Their attacks are facilitated by
the fact that managed code is executed at a high abstraction level. To combine
run-time efficiency with programmer productivity, a large amount of symbolic
information needs to be presented to the virtual machines that execute the code.
This is needed, e.g., to enable effective and efficient just-in-time (JIT) compila-
tion, to support efficient garbage collection, and to support reflection and byte-
code verification. This symbolic information is also what makes managed code
easier to understand, reverse engineer, decompile, modify, reuse and steal.

With respect to reverse engineering (and all practices for which reverse en-
gineering is a prerequisite), many different obfuscation techniques have been
proposed. Some try to prevent automatic decompilation [5, 17], some try to hide

? The authors want to thank the Agency for Innovation by Science and Technology in
Flanders (IWT) for their support and Ghent University, the Hercules Foundation and
the Flemish Government - department EWI who funded the STEVIN Supercomputer
Infrastructure at Ghent University on which we carried out part of this work.

2 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

data (flow) properties [8, 34] or control flow properties [8, 9, 17, 19, 20, 22, 24, 33]
from both tools and humans. Others try to remove information that is useful in-
formally, such as field and method identifiers [2, 5]. Finally, a few have proposed
obfuscating the overall application design by altering the class and interface hi-
erarchy to make it harder to understand for software engineers [28]. The latter
techniques aim for the opposite of classic code refactoring [27, 31].

This paper takes application design obfuscation one step further. Instead of
merely modifying an application’s type hierarchy, we propose a technique called
class hierarchy flattening (CHF) to get rid of it altogether. Given a number of
constraints because of, e.g., compatibility with external libraries, CHF strives for
a class hierarchy that is as flat as possible, i.e., in which application classes are
siblings rather than subtypes and supertypes. We discuss the necessary analyses
and transformations to automate CHF and present a proof-of-concept tool. We
evaluate the level of software protection provided by CHF and its overhead.

The remainder of this paper is structured as follows. First, Section 2 discusses
the conceptual goals of CHF by means of an example program. The transforma-
tion itself is discussed in some detail in Section 3, and evaluated in Section 4. We
compare CHF to related work in Section 5. Finally, Section 6 draws conclusions
and discusses some future extensions.

2 Rationale: an Example Program

To set the context for a detailed discussion of our obfuscating class hierarchy
transformation, we first present an example consisting of a media player. It
consists of three main parts: (1) the player initializer (2) support for media files
and (3) support for media streams contained in the media files. Different subtrees
of the class hierarchy implement those parts, as shown in Figure 1. The code in
Figure 2(a) illustrates their interaction.

The main method of class Player creates an array of MediaFile objects to
be played (line 10). It then queries each of the media files in this list for its media
streams (line 12), which are initialized when the media file is accessed with the
readFile method. Figure 2(a) shows how this is done for the MP3File class,
which represents MP3 files containing MPEG audio streams.

During playback, the player checks the run-time type of the MediaStream

object associated with the stream (lines 13 and 15) to decide where it needs to
be output. Depending on the actual run-time type of the MediaStream objects,
they are either cast to AudioStream or VideoStream, such that the correct
play method is invoked (lines 14 and 16). The play methods essentially output
the raw bytes of the media streams’ analog signals for a specific output device.
Those bytes are obtained, decrypted (lines 35–36) and decoded (line 37) with the
getRawBytes method declared in MediaStream. Note that because the decoding
process is different for each type of media stream, the decode method is declared
as abstract, such that it can be implemented by subclasses of MediaStream. The
decryption process, on the other hand, is the same for each type of media stream
and is therefore handled by the MediaStream class.

A Novel Obfuscation: Class Hierarchy Flattening 3

MediaStream

- da ta :b yte[]
- KEY :b yte[]

decode (byte[]) :b yte[]
+ getRawBytes() :byte[]

AudioStream

au dioBu ffer :int[]

decode (byte[]) :b yte[]
decode Sample() :byte []

VideoStream

vid eoBu ffer :int[][]

decode (byte[]) :b yte[]
decode Frame() :b yte[]

MediaFile

filePath :String
mediaStreams :M edia Strea m[]

readFile () :void
+ ge tStreams() :Me diaS tream []

MP3File

readFile () :void

MP4File

rea dFile () :void

java.la ng.Object

XvidStream

de code Fram e() :b yte[]

MPGAStream

de code Samp le() :byte []

DTSStream

de code Samp le() :byte []

Player

+ ma in(St ring[]) :vo id
+ play (Au dioSt ream) :vo id
+ play (Vid eoSt ream) :vo id

Fig. 1: Class hierarchy of a simple DRM media player

From a software-engineering point of view, the media player application is
well structured. The inheritance relations are meaningful and code shared be-
tween different classes is located in a common superclass. While we could have
further improved the structure of the program by factoring out the casts and
run-time type checks, we chose not to do so for educational purposes.

From a security perspective, however, some problems arise. First, the class
hierarchy provides reverse engineers with information about the relationships
between classes and the abstraction levels of the functionalities provided by
classes (with classes higher in the hierarchy typically providing more abstract
functionality). Secondly, code sharing through inheritance enables attacks in
which compromising one class can cause all of its subclasses to be compromised.
All media streams are decrypted using the getRawBytes method declared in
MediaStream. Therefore, when an attacker reverse-engineers this method, he
will be able to decrypt all supported media stream types. Finally, we observe
that the program contains much type information, which simplifies both manual
analysis and automated analysis that rely on, a.o., point-to set computations.

These issues can be solved by rewriting the well-structured hierarchy into the
unstructured class collection of Figure 3. To determine how classes are related,
an attacker can then no longer rely on the class hierarchy. He will instead have
to analyze and compare all classes in the application. Furthermore, as all classes
are provided with a (diversified) copy of all fields and methods declared in their
former superclasses, they have become functionally more independent. Code is
no longer shared between related classes, so attackers can no longer attack many
classes at once by patching their common superclass. In short, more actual code
analysis and tampering will be needed to mount a successful attack.

4 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

public class Player{
 public void play(AudioStream as) {
 /* send as.getRawBytes() to audio device */
 }
 public void play(VideoStream vs) {
 /* send vs.getRawBytes() to video device */
 }
 public static void main(String[] args) {
 Player player = new Player();
 MediaFile[] mediaFiles = ...;
 for(MediaFile mf : mediaFiles) {
 for(MediaStream ms : mf.getStreams())
 if(ms instanceof AudioStream)
 player.play((AudioStream)ms);
 else if(ms instanceof VideoStream)
 player.play((VideoStream)ms);
 }
 }
}

public class MP3File extends MediaFile {
 protected void readFile() {
 InputStream inputStream = ...;
 byte[] audioData = new byte[...];
 inputStream.read(audioData);
 AudioStream as = new MPGAStream(audioData);
 mediaStreams = new MediaStream[]{as};
 }
}

public abstract class MediaStream {
 public static final byte[] KEY = ...;
 public byte[] getRawBytes() {
 byte[] decrypted = new byte[data.length];
 for(int i = 0; i < data.length; i++)
 decrypted[i] = data[i] ^ KEY[i];
 return decode(decrypted);
 }
 protected abstract byte[] decode(byte[] data);
}

public class Player implements Common {
 public void play(Common as) {
 /* send as.getRawBytes() to audio device */
 }
 public void play1(Common vs) {
 /* send vs.getRawBytes() to video device */
 }
 public static void main(String[] args) {
 Common player = new Player();
 Common [] mediaFiles = ...;
 for(Common mf : mediaFiles) {
 for(Common ms : mf.getStreams())
 if(myChecker.isInstance(0, ms.getClass()))
 player.play(ms);
 else if(myChecker.isInstance(1, ms.getClass()))
 player.play1(ms);
 }
 }
}

public class MP3File implements Common {
 public void readFile() {
 InputStream inputStream = ...;
 byte[] audioData = new byte[...];
 inputStream.read(audioData);
 Common as = new MPGAStream(audioData);
 mediaStreams = new Common []{as};
 }
}

public class MediaStream implements Common {
 public static final byte[] KEY = ...;
 public byte[] getRawBytes() {
 byte[] decrypted = new byte[data.length];
 for(int i = 0; i < data.length; i++)
 decrypted[i] = data[i] ^ KEY[i];
 return decode(decrypted);
 }
 public abstract byte[] decode(byte[] data);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(a) original code (b) flattened code

Fig. 2: Partial implementation of the Player, MediaStream and MP3File classes

Code analysis has also become harder, as the code in the transformed appli-
cation (shown in Figure 2(b)) contains less type information than the original
application. This follows from all declaration types being replaced by a new
Common type. Since this interface type serves as a common supertype for all
classes in the application and declares all their instance methods, all classes im-
plement a significantly larger number of methods. The subset of those methods
that are never called at run time can be filled in with arbitrary code, to make
the static analysis of the application even more complex.

3 Class Hierarchy Flattening

This section presents the analyses and transformations needed to automatically
transform the unprotected program into the one that is much harder to attack.

A Novel Obfuscation: Class Hierarchy Flattening 5

Me diaStream

- da ta :b yte[]
- KEY :b yte[]

de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeSamp le() :byte []
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

AudioStream

au dioBu ffer :int[]
- da ta :b yte[]
- KEY :b yte[]

de code(byte[]) :byte[]
de codeSamp le() :byte[]
+ getRawBytes() :byte[]
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

VideoStream

vid eoBu ffer :int[][]
- da ta :b yte[]
- KEY :b yte[]

de code(byte[]) :byte[]
de codeFrame () :b yte[]
+ getRawBytes() :byte[]
de codeSamp le() :byte []
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

Me diaFile

file Path :String
me diaS tream s :Comm on[]

+ de code(byte[]) :byte[]
rea dFile () :void
+ getRawBytes() :byte[]
+ ge tStrea ms() :Com mon []
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void

MP4File

- fi le Path :String
- me diaS tream s :Comm on[]

+ de code(byte[]) :byte[]
rea dFile () :void
+ getRawBytes() :byte[]
+ ge tStrea ms() :Com mon []
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void

Xv idStream

- vid eoBu ffer :int[][]
- da ta :b yte[]
- KEY :b yte[]

de codeFram e() :b yte[]
de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeSamp le() :byte []
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

MPGAStream

- au dioBu ffer :int[]
- da ta :b yte[]
- KEY :b yte[]

de codeSamp le() :byte []
de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

MP3File

- fi le Path :String
- me diaS tream s :Comm on[]

+ de code(byte[]) :byte[]
rea dFile () :void
+ getRawBytes() :byte[]
+ ge tStrea ms() :Com mon []
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void

DTSStream

- au dioBu ffer :int[]
- da ta :b yte[]
- KEY :b yte[]

de codeSamp le() :byte []
de code(byte[]) :byte[]
+ getRawBytes() :byte[]
de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

Pla yer

+ de code(byte[]) :byte[]
+ ma in(St ring[]) :vo id
+ getRawBytes() :byte[]
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

«in terfa ce»
Common

+ de code(byte[]) :byte[]
+ getRawBytes() :byte[]
+ de codeSamp le() :byte []
+ de codeFram e() :b yte[]
+ pla y(Co mmo n) :void
+ pla y1(Comm on) :void
+ rea dFile () :void
+ ge tStrea ms() :Com mon []

Fig. 3: Flattened class hierarchy of the media player

3.1 Basic Algorithm

The basic class hierarchy flattening (CHF) algorithm consists of five steps.

Step 1: Subtree selection We assume that each application consists of a set of
application classes A that use or extend classes from a self-contained set of library
classes L that includes java.lang.Object. Classes in L are never considered for
transformation. L will usually correspond to the standard library, while A will
contain all classes that make up the actual application. In this paper, sub(x)
denotes all subclasses of class x, and super(x) its superclasses.

There is a subset X ⊂ A of classes on which our CHF transformation is not
applicable because changing those classes’ position in the hierarchy can alter
the program behavior. This includes classes on which reflective operations are
performed such as getInterfaces() (which makes the program potentially de-
pendent on the number of interfaces implemented by a class), getSuperclass(),
isAssignableFrom(), getMethod(), etc.

As library classes cannot be rewritten, we cannot change their position in the
hierarchy, nor can we adapt their methods’ signatures, which typically involve
library types themselves. To maintain type correctness, this implies that in gen-
eral any application class a ∈ sub(l) with l ∈ L, needs to stay a subclass thereof.
This further implies that we cannot make all application classes direct subclasses
of java.lang.Object. This limitation is similar to the limitations imposed to
several code refactoring transformations. Those limitations have been formalized
in literature [31], so we will not repeat them here. As the classes in X cannot be
moved in the hierarchy either, similar limitations apply to them.

6 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

A"
B"

C"

D"
E" G"

F" H" J"

L"

X"

T1"

T2"

T3"
T4"

K"

Fig. 5: Selected subtrees

B"

L"I1"

I2"

I3"

A"

C" D"

E" G"F" H" J"

X" I4"

K"

Fig. 6: Flattened class hierarchy
subtrees

T =
⋃

i=1..m

Ti

∀i, j.Ti ∩ Tj = ∅

Ti ⊂ A \ X

∀c ∈ Ti.sub(c) ⊂ Ti

Fig. 4: Selection rules

For our purpose, we partition A into the set
T of transformable classes and the set N of non-
transformable classes. T is further partitioned into dis-
joint subtrees Ti according to the rules of Figure 4. They
mainly express that each subtree Ti consists of a unique
set of transformable classes for which the property holds
that if Ti includes a class c, it also includes all of its sub-
classes. An example selection of subtrees is depicted in
Figure 5. In the media player, the three subtrees corre-
spond to the three subtrees of java.lang.Object.

Each subtree will then be transformed into one flat set of classes that all
implement a common interface and that are all direct subclasses of the direct
superclass of the tree’s root. For the class hierarchy of Figure 5, the result with
four new interfaces can be seen in Figure 6.

Step 2: Interface insertion To reach that final result, we first add the common
supertype interfaces in two steps. For each subtree we encapsulate all instance
fields declared in all classes of the subtree with getter and setter methods and
rewrite public accesses to those fields into invocations of these getters and set-
ters. This is done to provide access to instance fields declared in the subtree
classes, even though interfaces cannot declare instance fields. Next, we create
a new supertype interface for each subtree. This interface declares all instance
methods of all classes in the subtree and is implemented by all classes of the sub-
tree. Whenever an original class does not implement all the required methods of
the interface, temporary dummy methods are added, some of which implement
supercalls not to change the behavior of overriding methods.

Step 3: Subtree type abstraction Next, we rewrite the program such that
it becomes independent of the subclass relations that will be removed from the
class hierarchy. We replace all references to types in T by their corresponding
interface supertype. In practice, this comes down to replacing the types of local
variables, fields, array creations, and the types used in method signatures. The
only time we still refer to the actual classes in the subtree is for object creation.
An example of such a conversion of declarations can be seen in Figure 2, where
various declarations have been replaced by the supertype Common.

A Novel Obfuscation: Class Hierarchy Flattening 7

As for cast operations, most of them are not needed anymore for static type
correctness because interfaces instead of concrete types are used in declarations
wherever possible. Moreover, we want to omit the remaining ones from the code
not to reveal type information. So we replace them by code that tests a type and
throws a ClassCastException whenever a run-time cast would have failed in
the original program. To minimize the number of types that needs to be tested
(and hence revealed in the code), we perform a points-to analysis on the original
program [15, 23]. As such, our treatment of casts is similar to that in other code
refactoring techniques that change type hierarchies [31].

Step 4: Subtree flattening Finally, we remove the inheritance relations be-
tween the classes in the subtrees, making subclasses independent of their super-
classes. We traverse each subtree Ti in a breadth-first fashion. For each class
c ∈ Ti, we execute the following steps for each direct subclass d of c:

1. copy the instance fields and concrete instance methods from c to d, renaming
them if necessary to avoid collisions with original fields and methods of d;

2. rewrite the code in d such that it makes use of its own private copies of the
methods and fields defined in c;

3. make d implement the same interfaces as c, to preserve assign compatibility
between variables and fields of the interface types and objects of type d;

4. make d a sibling of c by setting its superclass to the superclass of c.

During this flattening, we replace many of the temporary dummy methods
that were added when the interfaces got inserted. Not all of those methods are
replaced, however. Consider, e.g., the MediaStream subtree. The interface for this
subtree declares both the methods decodeFrame() and decodeSample(), and
hence all classes originating from this subtree should implement those methods.
That is why we inserted dummy implementations where necessary. In this case,
some of the dummy implementations of decodeFrame() and decodeSample()

in DTSStream, MPGAStream, and XvidStream are overwritten, but those in, e.g.,
MediaStream, AudioStream, and VideoStream are not. This poses no problem:
As the non-overwritten methods were not present in the original program, and
as we are not changing the behavior of the program, they will never be executed.
We can therefore provide a dummy implementation for them, using nonsensical
code [2] or carefully chosen code, as we propose in Section 3.2.

Step 5: instanceof The behavior of run-time type checks, introduced either ex-
plicitly by the programmer or automatically while handling casts during subtree
type abstraction, depends on the specific organization of classes in the hierarchy.
Before flattening the subtrees of Figure 1, ms instanceof AudioStream evalu-
ated to true for ms pointing to objects of either type DTSStream or MPGAStream.
In the flattened subtree, however, it evaluates to false for objects of those types.

To maintain the original behavior, we replace all occurrences of instanceof
by a lookup in a table that encodes part of the original subtype relations, namely
the part that is necessary to maintain the behavior with respect to instanceof.
Each row in the lookup table initially corresponds to one of the instanceof ex-
pression oi instanceof Aj in the program, while the columns correspond to

8 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

(a superset of) the classes in the points-to set of all oi. For the example program
introduced in Section 2, the initial lookup table is given in Table 1.

X
v
i
d
S
t
r
e
a
m

A
u
d
i
o
S
t
r
e
a
m

V
i
d
e
o
S
t
r
e
a
m

M
P
G
A
S
t
r
e
a
m

D
T
S
S
t
r
e
a
m

M
P
3
F
i
l
e

M
e
d
i
a
F
i
l
e

M
e
d
i
a
S
t
r
e
a
m

M
P
4
F
i
l
e

P
l
a
y
e
r

ms instanceof AudioStream false DC DC true true DC DC DC DC DC

ms instanceof VideoStream true DC DC false false DC DC DC DC DC

mf instanceof MediaFile DC DC DC DC DC true DC DC true false

Table 1: instancoef lookup table

As most of the classes will not occur in all points-to sets of all occurrences of
instanceof, a considerable number of elements in the table will be “don’t care”
(DC) values. As is done for the optimization of multi-output boolean functions
for optimizing integrated circuits [21], we can freely choose how to instantiate
those DCs, i.e., replace them by true or false. For example, as MPGAStream and
DTSStream have identical behavior, they likely originate from the same subtree.
We can hide this by instantiating their DC values in a way that makes the
classes’ behavior look different, thus hiding an existing relation between two
classes in the program. Alternatively, we can make XvidStream and Player,
which are not related at all, look related by instantiating their DC values such
that their behavior becomes identical. Likewise, we can replace the last two,
different occurrences of instanceof by two identical ones by instantiating their
DCs appropriately. This way, completely unrelated cast operations look as if
they cast related types.

In short, by instantiating the DC values in the table, we can reduce its size
and make unrelated classes and casts look related and vice versa. Furthermore,
we can use hashing and white-box crypto techniques [6] to prevent static analysis
of the table and involved code. Exploiting these opportunities is future work.

Once the final lookup table is constructed, each expression oi instanceof Aj
is replaced by a call myChecker.isInstance(ri,j,oi.getClass()) where ri,j is
the row index of the lookup table entry that corresponds to the given instanceof
expression.

3.2 Extensions

Several extensions to CHF can be considered.

Dummy methods - introducing differences/similarities During the sub-
tree flattening, methods and fields are copied from parent classes into their chil-
dren. This creates an opportunity for attackers to infer the original class hier-
archy by means of diffing tools like Stigmata (http://stigmata.sourceforge.jp/).
To distract such tools, we can introduce artificial differences or similarities by

A Novel Obfuscation: Class Hierarchy Flattening 9

choosing appropriate dummy method bodies. By copying function bodies from
unrelated classes, we can make unrelated classes look related and vice versa.

Interface merging CHF as described above binds each subtree to one interface.
This gives attackers the possibility to infer information about the original class
hierarchy from the use of interfaces. To limit the amount of information that can
be inferred, we can merge multiple (unrelated) interfaces into a single one. Such
merging can result in more dummy methods in the classes, however, and hence
in considerable overhead. This can be observed in the flattened media player
hierarchy in Figure 3, in which the three interfaces are already merged.

It is important to note that in general, the merging of interfaces needs to
be limited to subtrees originating from within the same jar files. The merged
interface can then be packaged in that same jar, such that custom class loaders,
of which it is not known which jar files they can access in the original program,
can find them precisely when and where they need them.

Object allocation obfuscation Even after interface merging, some statements
expose detailed type information. After the allocation on line 26 in Figure 2, as
points to an object of type MPGAStream. From this information, points-to analysis
deduce points-to sets of many local variables. In turn, other analyses like call
graph construction and program slicing will also regain some precision to the
advantage of attackers. To prevent the propagation of precise type information
at allocation sites, we can replace individual allocations by multiple ones by
means of opaque predicates [24]. For example, line 26 can be replaced by

Common as;

if(condition1) as = new XvidStream(...);

else if(condition2) as = new DTSStream(...);

else if(condition3) as = new MPGAStream(audioData);

else as = new AVC1Stream(...);

in which the first two conditions opaquely evaluate to false, and the third one
opaquely evaluates to true. Switch statements can also be used of course. Al-
ternatively, we can introduce factories [12] that return all types that implement
an interface. Factories are more stealthy [7] as they look more like regular, well-
engineered code. Moreover, whereas context-insensitive coverage analysis suffices
to detect that potential opaque predicates or switches only evaluate to one value,
context-sensitive ones will be needed to obtain equally useful information from
factories implemented in separate methods.

The effect of such object allocation obfuscations, when not undone by an
attacker, will be that no points-to analysis, however complicated, will compute
more precise results than the analysis based on class hierarchy analysis [10].

Combining flattening with other obfuscations CHF can be combined with
several existing design obfuscations. CHF enables, e.g., more efficient class co-
alescing. Coalescing MP3File and VideoStream in Figure 1 with the algorithm
proposed by Sosonkin et al. [28] would require MediaFile and MediaStream

to be coalesced as well. This would increase the number of fields in all classes
that inherit from the coalesced class by a factor two. After CHF, MP3File and

10 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

VideoStream can be coalesced without affecting the number of fields, and con-
sequently the size of objects, of other classes.

CHF can also prepare a program for false factoring [8]. In Figure 3 all classes
inherit directly from java.lang.Object and dependencies on the original inher-
itance relations have already been removed, so the classes can easily be reorga-
nized in a fake hierarchy by inserting random superclasses.

4 Evaluation

We implemented CHF in Soot 2.5.0 [18, 32], an analysis and transformation
framework for Java bytecode. As our tool rewrites the application bytecode that
the developer has packaged in a collection of jar files, it does not require any
changes to the application’s source code.

Our implementation consists of two parts; a CHFTransformer and a refactor-
ing toolkit. The CHFTransformer implements CHF as a Soot SceneTransformer,
such that it can be applied together with Soot’s other whole program transfor-
mations. Our refactoring toolkit provides a series of refactoring transformations,
including encapsulate field, rename field/method, and variations of push down
field/method and extract interface that were required to implement CHF [11].

To detect the set of non-transformable classes and to ensure that all Java
features like reflection and dynamic class loading are handled correctly, we rely
on TamiFlex, a tool developed specifically for facilitating the static analysis
of Java programs that use such features [4]. As a profile-based tool, TamiFlex
relies on the developer to provide program inputs that generate enough coverage.
Alternatively, the developer can manually complement the coverage of TamiFlex
with his knowledge of how the program depends on reflection and class loaders.

4.1 Benchmarks

We use the DaCapo 9.12 benchmark suite [3] to evaluate the protection-wise
effectiveness and the performance-wise efficiency of CHF. This suite consists
of 14 medium to large sized realistic applications. Because of space concerns,
we report results for the four applications listed in Table 2. We opted for the
“9.12 bach” release of the DaCapo suite because TamiFlex is particularly well
tested on this version (http://dacapobench.org/soot.html). As can be seen in
the table, for three out of four benchmarks the large majority of all classes is
transformable. For eclipse, the number of transformable classes is much lower,
because of restrictions imposed by dynamically generated classes.

For all benchmarks, we generated and evaluated 1 + 1 + 5× 10 versions. The
first, base version is the original bytecode that comes with the DaCapo suite,
but with identifier names obfuscated [7]. This type of obfuscation is orthogonal
to CHF; any Java obfuscator would apply it. We applied it for our evaluation
baseline to obtain results for realistically obfuscated programs and to be able to
present realistic overheads in term of code size and memory footprint, both of
which heavily depend on the length of identifiers.

A Novel Obfuscation: Class Hierarchy Flattening 11

Benchmark Description
appl. # transf. # jar code size (MB)
types classes files before IO after IO

batik Scalable Vector Graphics processor 4573 3505 (77%) 6 12.5 9.3
eclipse non-GUI version of Eclipse IDE 5947 2258 (38%) 48 25.7 22.7
fop XSL-FI to PDF conversion 4479 3349 (75%) 7 11.0 8.8
luindex document indexing based on Lucene 633 526 (83%) 3 1.9 1.2

Table 2: Overview of DaCapo 9.12-bach benchmarks before and after
Identifier Obfuscation (IO).

The second version was generated from the first one by our prototype im-
plementation of the basic CHF algorithm as discussed in Section 3.1. Next, we
extended the basic algorithm with interface merging (Section 3.2) and we gen-
erated program versions at different levels of interface merging. Given a merge
threshold value t ∈ {10, 20, 30, 40, 50}, the extended tool iteratively and ran-
domly picks interfaces in the program and merges them until all merged inter-
faces are implemented by at least t classes or until it can no longer find interfaces
to merge within a jar. The latter occurs a lot for eclipse, of which the classes
are partitioned over many more jar files. For each merge threshold value, the tool
generates ten different program versions with ten different random seeds. When
we present results for a level of merging in later charts, we always present the
average result obtained for the ten versions at that level. In the charts, a merging
threshold of 0 refers to the basic CHF algorithm without interface merging. In
our proof-of-concept tool, the dummy method bodies are empty. Other exten-
sions as described in Section 3.2 are left for future work. All generated program
versions were type verified and proved to work correctly on the DaCapo inputs.

4.2 Results

Protection against Human Program Understanding As all obfuscation
researchers, we face the problem of measuring the potency of our technique. And
as in almost all of the literature (see, e.g., the literature discussed in Section 5),
we know of no suitable metrics that directly measure the resistance to, e.g.,
reverse-engineering attacks. Therefore we instead rely on established software
complexity metrics from the domain of software-engineering. In particular, we
use the static QMOOD metrics from Bansiya et al. [1]. QMOOD stands for Qual-
ity Model for Object-Oriented Design. It includes a metric for understandability
that is defined as a linear combination of other complexity metrics that measure
different aspects of a design, including abstraction, encapsulation, coupling, co-
hesion, polymorphism, complexity and size [1]. This understandability metric is a
relative metric that can only be used to compare two program versions. Given an
original program with a normalized understandability score of -0.99 (as defined
in [1]), less understandable versions will have lower scores. Figure 7(a) displays
the relative understandability for the four benchmark programs. CHF clearly
reduces human understandability significantly, with understandability dropping
as more interfaces are merged. For eclipse, less interfaces got merged at higher
merge thresholds because its classes are partitioned over more jar files. This
results in a higher understandability than the other benchmarks.

12 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0
0 10 20 30 40 50

Re
la
tiv

e
in

cr
ea

se

Merge threshold

batik eclipse fop luindex
0.1

1

10

100

 a
bs

tr
ac
tio

n

en
ca

ps
ul

ati
on

co
up

lin
g

co
he

sio
n

po
ly

m
or

ph
ism

co
m

pl
ex

ity

de
sig

n
siz

e

0 10 20 30 40 50

(a) understandability results (b) QMOOD breakdown for batik

Fig. 7: QMOOD understandability

Figure 7(b) shows the breakdown of batik’s understandability over its com-
ponents for the six threshold levels. For other benchmarks, similar results are
obtained. Each bar depicts the relative value of one metric compared to the value
of that metric of the baseline program. It can be observed that CHF influences
abstraction, coupling, cohesion, and complexity of the program, of its classes
and of its class hierarchy. As such, the impact of CHF on the effort needed by an
attacker to reverse-engineer and understand the program is multidimensional.

For all benchmarks, the variation in understandability score among the 10
program versions generated for each level of interface merging was at most 12%,
the large majority of which was below 9%. This shows that interfaces can be
merged in less or more confusing combinations, but also that the decrease in un-
derstandability is determined more by the level of merging than by the particular
combinations merged.

Protection against Static Analysis Tools We measure the ability to confuse
static analyses in terms of increases in points-to set sizes. In practice, the pre-
cision of many important client analyses, including call graph construction [14]
and virtual call resolution, can drop significantly as the result of an imprecise
points-to analysis.

0
50

10
0

15
0

20
0

orig 0 10 20 30 40 50
merge threshold

si
ze

 o
f p

oi
nt

s-
to

 s
et

Fig. 8: Points-to set sizes in batik

At the same time, the analysis
costs such as memory footprint and
execution time increase with less pre-
cise points-to analyses because the
constructed call graphs becomes big-
ger. Hence, reducing the precision of
points-to analyses by causing them to
return larger points-to sets, will di-
rectly reduce both the effectiveness
and the efficiency of several static
analyses that are fundamental for
static code attacks. We made Soot
compute the points-to sets with class
hierarchy analysis [10], the points-to
analysis that cannot be hampered by

A Novel Obfuscation: Class Hierarchy Flattening 13

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

0 10 20 30 40 50

Re
la
tiv

e
in

cr
ea

se

Merge threshold

batik eclipse fop luindex

Fig. 9: Code size overhead

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

Re
la
tiv

e
in

cr
ea

se

Merge threshold

batik eclipse fop luindex

Fig. 10: Memory footprint overhead

object allocation obfuscation as discussed in Section 3.2. The histogram in Fig-
ure 8 depicts the distributions of points-to set sizes of all local variables and
parameters in the methods of classes declared as (transformable or not) appli-
cation types in the batik benchmark. For the other benchmarks, we observed
very similar trends.

Clearly CHF increases the sizes of many points-to sets. In particular those
points-to sets of variables declared as merged interface types grow with the num-
ber of classes implementing those interfaces. In all benchmarks, a considerable
number of points-to sets does not grow even when more interfaces are merged.
This follows from the fact that the increases are limited to the points-to sets of
variables whose type is changed during CHF.

Not visible in the histograms, but similarly to what we observed for QMOOD,
the points-to set size increases depend much more on merging threshold than on
the particular combinations of interfaces merged.

Overhead Figure 9 depicts the relative code size increase as a result of the basic
flattening and interface merging. Overall, more interface merging implies more
code. The increase, which results mainly from methods being duplicated and
(mostly) empty dummy methods being added, varies from one benchmark to the
other. The lower increase for eclipse is caused by its classes being partitioned
over more jar files, as a result of which fewer interfaces got merged.

Figure 10 depicts the relative memory footprint increase observed with the
Java SE Runtime Environment (build 1.6.0 30-b12) and the Java HotSpot 64-
bit Server VM (build 20.6-b03) on standard runs consisting of 10 consecutive
program executions in a benchmark harness on the default inputs. In general, the
memory footprint overhead is a linear function of the code size overhead because
classes and code are also stored in memory. The memory footprint overhead is
an order of magnitude smaller, however, because there are many class instances
(i.e, objects) allocated on the heap whose size is unaffected by CHF.

Finally, Figure 11 depicts the performance overhead in terms of the relative
execution time increase. The overheads reported in Figure 11(a) include all 10
runs of the benchmarks in their harness. This includes the warm-up runs during
which the JIT compiler is very active. As the code size grows with interface
merging, so does the time spent by the JIT compiler. Figure 11(b) shows that
during steady-state (i.e., when only the last of the 10 runs is considered during

14 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

Re
la
tiv

e
in

cr
ea

se

Merge threshold

batik eclipse fop luindex 0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0 10 20 30 40 50

Re
la
tiv

e
in

cr
ea

se

Merge threshold

batik eclipse fop luindex

(a) warm-up included (b) steady-state

Fig. 11: Performance overhead

which almost no JIT compilation takes place anymore) the performance overhead
no longer depends on the merging threshold value. For most benchmarks, the
overhead is limited to less than 10%. For eclipse, the overhead is insignificant
because most of its execution time is spent in non-transformable classes. The
small variations in the observed execution time of eclipse are clearly within
the expected noise range [13]. For fop, considerably more overhead remains. A
performance analysis revealed that the getters and setters introduced during the
interface insertion are the culprits.

5 Related work

To obfuscate the overall application design, and in particular its class hierar-
chy and the type information contained in the code, Sosonkin et al. proposed
class coalescing, class splitting, and type hiding by introducing interface types
and by replacing declarations of class types with declarations of those inter-
faces [28]. In its most extreme form, their class coalescing transformation can
coalesce all transformable classes in the program into a single class, effectively
removing the whole program design; beyond what CHF can achieve. For exam-
ple, when all classes are coalesced, all points-to sets becomes singletons that
contain all types in the program. In other words, points-to sets become com-
pletely useless. The main disadvantage of class coalescing is that the number
of member fields in coalesced classes grows far beyond the number of original
member fields in the original classes and all their superclasses. As a result, their
instances also grow bigger, which will lead to a much larger memory footprint.
The authors acknowledge this potential issue, but their experimental evaluation
is limited to execution time measurements of relatively small programs (up to
307 classes). For those, they measure slow-downs up to 130% even with limited
coalescing. Furthermore, their evaluation does not contain any criteria related
to software protection, software understandability, or software complexity, and
when limitations to the application of their transformations are observed, they
hide behind tool maturity instead of investigating more fundamental issues. By
contrast, this paper proposed an obfuscation that from the very start maximally
removes the class hierarchy, and of which the code size, memory footprint, and
(smaller) performance overhead are evaluated in detail, as well as its impact

A Novel Obfuscation: Class Hierarchy Flattening 15

on program understandability, for a set of large, real-life programs (up to 5947
classes). Furthermore, rather than being immature, our prototype tool pushes
the application of our obfuscation to the fundamental limits relating to external
libraries, dynamic class loading and reflection.

The false factoring transformation proposed by Collberg et al. [8] refactors
a program in such a way that two or more unrelated classes come to share a
superclass, thereby giving the impression that they are related. We know of no
public tool implementing this proposal or of any experimental evaluation of it.

Given a set of transformable classes, the obfuscation techniques introduced
by Sakabe et al. [24] first changes the signature of all methods in the classes
such that each class implements the same set of overloaded methods. These
methods are then defined in an interface implemented by the classes and used
in declarations instead of the original classes. To hide the actual type of objects
bound to variables of the interface type, they propose to replace single object
creations by a set of object creations guarded by opaque predicates. CHF as
presented here is to a certain degree complementary, as explained in Section 3.2.

In the field of software refactoring, Snelting and Tip [26, 27] presented a
method for analyzing and reengineering class hierarchies by extracting informa-
tion on the use of an application’s class hierarchy, from which they construct a
concept lattice that provides insights on how to improve the hierarchy to bet-
ter match the way the classes interact. Their analysis can detect where class
members can be moved to a subclass or identify where it is beneficial to split
classes. This analysis has been extended and implemented in the refactoring tool
KABA [25, 29, 30]. This tool uses the results from the concept analysis to present
several refactorings to the user, who can then interactively modify the class hi-
erarchy. Potentially, Snelting and Tip’s work could help an attacker find related
classes in a flattened hierarchy by allowing him to see through the smokescreen
of specially crafted dummy method implementations and by detecting unrelated
classes implementing merged interfaces. It remains an open question to assess to
which extent their tool would be useful in practice.

6 Conclusions and Future Work

This paper presented class hierarchy flattening, an obfuscating program trans-
formation for object-oriented programs written in managed code languages. The
transformation removes the class hierarchy to the extent possible to hide the
overall application design. We presented the basic technique and possible exten-
sions. Together with the basic algorithm, one of those extensions, called interface
merging, was evaluated extensively on large real-world programs. While several
aspects of the experimental results deserve further analysis, they clearly demon-
strate that class hierarchy flattening provides measurable protection against at
least some forms of human understandability and automated program analysis.
This protection is achieved at relatively low levels of run-time overhead.

Our future work will concentrate on more focused interface merging strategies
to outperform random merging, on extending the basic protection as discussed in

16 Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere

the paper, and on a more extensive evaluation involving more security metrics,
including diffing-based metrics, and more complex points-to analyses.

References

1. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28(1) (January 2002) 4–17

2. Batchelder, M., Hendren, L.J.: Obfuscating Java: The most pain for the least gain.
In: Proc. CC. (2007) 96–110

3. Blackburn, S.M., McKinley, K.S., et al: Wake up and smell the coffee: evaluation
methodology for the 21st century. Commun. ACM 51(8) (August 2008) 83–89

4. Bodden, E., Sewe, A., et al: Taming reflection: Aiding static analysis in the presence
of reflection and custom class loaders. In: Proc. ICSE. (2011) 241–250

5. Chan, J.T., Yang, W.: Advanced obfuscation techniques for Java bytecode. Journal
of Systems and Software 71(1-2) (2004) 1–10

6. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Proc. SAC. (2003) 250–270

7. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional (2009)

8. Collberg, C., Thomborson, C., Douglas, L.: A taxonomy of obfuscating transfor-
mations. Technical report, University of Auckland (1997)

9. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proc. ACM POP. (1998) 184–196

10. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Proc. ECOOP. (1995) 77–101

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

12. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

13. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance
evaluation. In: Proc. ACM OOPSLA. (2007) 57–76

14. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst. 23(6) (November 2001) 685–746

15. Hind, M., Pioli, A.: Evaluating the effectiveness of pointer alias analyses. Science
of Comp. Programming 39(1) (2001) 31–55

16. Holst, S.: Assessing and managing security risks unique to Java and .NET. ISSA
Journal (2009)

17. Hou, T., Chen, H., Tsai, M.: Three control flow obfuscation methods for Java
software. IEE Proceedings-Software 153(2) (APR 2006) 80–86

18. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java
program analysis: a retrospective. In: Proc. CETUS 2011. (October 2011)

19. Majumdar, A., Thomborson, C.D.: Manufacturing opaque predicates in distributed
systems for code obfuscation. In: Proc. ACSC. (2006) 187–196

20. Majumdar, A., Thomborson, C.D., Drape, S.: A survey of control-flow obfusca-
tions. In: ICISS. (2006) 353–356

21. McCluskey, E.: Introduction to the theory of switching circuits. McGraw Hill Text
(1965)

22. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., Zhang, Y.: Experience
with software watermarking. In: Proc. ACSAC. (2000) 308–316

A Novel Obfuscation: Class Hierarchy Flattening 17

23. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented pro-
gramming languages. In: Proc. CC 2003, Warsaw, Poland (2003) 126–137

24. Sakabe, Y., Soshi, M., Miyaji, A.: Java obfuscation approaches to construct
tamper-resistant object-oriented programs. IPSJ Digital Courier 1 (2005) 349–
361

25. Snelting, G., Streckenbach, M.: KABA: Automated refactoring for improved co-
hesion. In: Proc. of the first Workshop on Refactoring Tools. (2007) 1–2

26. Snelting, G., Tip, F.: Reengineering class hierarchies using concept analysis. In:
Proc. ACM FSE. (1998) 99–110

27. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM
Trans. Program. Lang. Syst. 22(3) (May 2000) 540–582

28. Sosonkin, M., Naumovich, G., Memon, N.: Obfuscation of design intent in object-
oriented applications. In: Proc. ACM DRM. (2003) 142–153

29. Streckenbach, M.: KABA - a system for refactoring Java programs. PhD thesis,
Universität Passau (2005)

30. Streckenbach, M., Snelting, G.: Refactoring class hierarchies with KABA. In: Proc.
ACM OOPLSA. (2004) 315–330

31. Tip, F., Furher, R., Kieżun, A., Ernst, M., Balaban, I., De Sutter, B.: Refactoring
using type constraints. ACM Trans. Program. Lang. Syst. 33(3) (2011) 9:1–9:47

32. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proc. CASCON. (1999) 125–135

33. Venkatraj, A.P.R.: Program obfuscation. Master’s thesis, University of Arizona
(2003)

34. Zhou, Y., Main, A., Gu, Y.X., Johnson, H.: Information hiding in software with
mixed boolean-arithmetic transforms. In: Proc. WISA. (2007) 61–75

