
GHUMVEE: Efficient, Effective, and Flexible
Replication

Stijn Volckaert?, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

Computer Systems Lab, Ghent University
{stijn.volckaert, bjorn.desutter, koen.debosschere}@elis.ugent.be

Abstract. We present GHUMVEE, a multi-variant execution engine
for software intrusion detection. GHUMVEE transparently executes and
monitors diversified replicae of processes to thwart attacks relying on a
predictable, single data layout. Unlike existing tools, GHUMVEE’s inter-
ventions in the process’ execution are not limited to system call invoca-
tions. Because of that design decision, GHUMVEE can handle complex,
multi-threaded real-life programs that display non-deterministic behav-
ior as a result of non-deterministic thread scheduling and as a result of
pointer-value dependent behavior. This capability is demonstrated on
GUI programs from the Gnome and KDE desktop environments.

Keywords: Memory Exploits, Non-determinism, Diversified Process Replicae

1 Introduction

Memory error exploits divert the control [2] or data flow [10] of a vulnerable
program by injecting faulty data. This is typically done by overwriting data
such as code pointers. Examples of such exploits are stack-smashing [2], return-
oriented programming [30], and return-to-lib(c) attacks [27]. Such attacks nearly
always rely on knowledge about the memory layout of the attacked application.

Several protection strategies exist to fix the vulnerabilities [5, 40], to protect
against buffer overflows at run-time [1, 12, 44] to protect against the execution of
injected code [22], and to prevent the attacker from determining the addresses
of data [29]. Modern OSes and system libraries support all of these approaches
to prevent intrusions and to prevent damage in case of intrusions. For example,
the Linux and glibc support Address Space Layout Randomization (ASLR) [29]
and Exec Shield [26] to prevent code on the stack to be executed, and length-
bounded string functions like strncpy and strncat [38]. Extensions have been
proposed in academics, such as Address Space Layout Permutation (ASLP) [20].

Many protections have been circumvented, however. Return-to-lib(c) [27] and
return-oriented programming [30] attacks simply do not require injected code to
be executed, the use of more secure library functionality like strncpy has proven
to be error-prone [25] and ASLR was attacked in a brute-force manner [37].

? The authors want to thank the Agency for Innovation by Science and Technology in
Flanders (IWT) and Ghent University for their support.

2 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

A more reliable protection based on intrusion detection was proposed in 2006.
Cox et al [14] implemented a Linux kernel extension to transparently run multi-
ple diversified replicae of the same application in parallel. The protection relies
on the assumption that it is much harder for an attacker to make diversified
replicae perform the exact same malicious behavior than it is to exploit vulnera-
bilities in a single application version. The replicae are executed in lock-step and
are always transparently fed the exact same input. A monitor module compares
the invoked output operations of the replicae before executing them. When the
monitor detects any discrepancies, it assumes that those result from an attack
taking place and it terminates the execution before any damage is done.

Since Cox et al, a number of other so-called multi-variant execution engines
(MVEE) have been developed [8, 9, 32–36], as well as different methods to di-
versify applications, including stacks growing in opposing directions [32], heap
layout randomization [6], redundant data diversity [28], address space partition-
ing [8], ASLR [37, 29], and code diversification [3, 4, 41].

However, a major problem of all existing MVEEs is that they cannot handle
real desktop applications. The fundamental reason is that real-world applications
are not deterministic because of non-deterministic thread scheduling and because
their behavior depends on concrete pointer values, which vary when replicae are
diversified. By contrast, pre-existing MVEEs and their diversification schemes
only function on simple, single-threaded applications. Moreover, their memory
layout diversification is limited to relatively weak, predictable forms.

This paper presents the Ghent University MVEE or GHUMVEE. Contrary
to the existing MVEEs, GHUMVEE’s design supports a wide range of features
observed in non-deterministic applications and a wider range of diversification
techniques, including the stronger protection of the less predictable, full ASLR.
Furthermore, experiments demonstrate that GHUMVEE comes with less per-
formance overhead than existing MVEEs. The most fundamental novel aspect
of GHUMVEE’s design is its ability to intervene in the execution of replicae
at program points other than system calls. This does require some cooperation
of the application developer, but as we will discuss in the paper, compilers can
easily limit the burden on the developer.

Section 2 discusses related work and the weaknesses of existing MVEE’s
that GHUMVEE’s design overcomes. Section 3 presents this design, which is
evaluated in Section 4. Section 5 draws conclusions.

2 Related work

Software memory exploit techniques and countermeasures have been actively re-
searched in the past 15 years. Stack overflow attacks have long been the easiest
way to seize control of a running application. Smashing [2] the stack allows for
an attacker to inject shell code or overwrite return addresses [27]. Several solu-
tions were proposed to eliminate stack overflow attacks. StackGuard [12] inserts
canaries into the stack to detect return address overwrites. Several state-of-the-
art compilers adapted this technique later on [19, 24]. Other people proposed

GHUMVEE: Efficient, Effective, and Flexible replication 3

the use of a secondary stack to keep copies of the return addresses [11, 21]. An
alternative is to extend the C-library functions that are commonly used to set
up the attack, with extra security checks such as bounds checking [1, 44]. Lib-
Safe [5, 40] does this at runtime and modern versions of the GCC and VC++
compilers offer alternative versions of these functions [16, 23]. Mainstream op-
erating systems also implement some form of software-enforced Data Execution
Prevention [22, 26] to prevent injected code from being executed. Most other
exploiting techniques, control-data attacks in particular, share one important
property. They all make assumptions about the memory layout of the target
application, e.g., about the absolute locations of certain functions or about the
distance between two allocated objects. Many proposed techniques attempt to
break these assumptions, all of which involve randomization. Xu [43] modified
the Linux program loader to dynamically relocate a program’s stack, heap and
shared libraries. The PaX team implemented and demonstrated Address Space
Layout Randomization [29], a well known technique with goals similar to the
latter. ASLR employs a kernel patch to relocate a program’s stack, heap and
shared libraries during startup. All mainstream operating systems have adapted
ASLR. Other techniques exist but are not as commonly used [13, 20].

In 2005, Berger and Zorn proposed DieHard [6], a framework for redundant
execution of multiple diversified program replicae. DieHard tries to protect pro-
grams against memory errors and exploits thereof by running multiple replicae of
the same program in parallel and feeding them the same input. A custom mem-
ory allocator ensures full heap randomization of the replicae: objects always have
different addresses in the different replicae. DieHard redirects all program output
through stdout to its voter module where it can isolate replicae that encounter
memory errors. DieHard does not require any kernel modifications but can only
run replicae whose only input comes from stdin, it cannot run multi-threaded
programs or any other programs with pointer-dependent behavior.

More advanced MVEEs are the N-Variant Systems [14, 28], the proof-of-
concept MVEE from Cavallaro et al [8, 9] (hereafter called CPoC), and Orches-
tra [32–36]. Figure 1 displays their basic operation. The kernel or user-space mon-
itor is responsible for running multiple replicae of a process in a user-transparent
manner. To that extent, the monitor intercepts all communication between the
replicae and the outside world. As the progress of the replicae (denoted by black
bars on the horizontal time access) may differ, they will communicate through
system calls at different moments in time. The monitor intercepts the calls, stalls
the calling replicae and waits until all of them have made a call. At that time, the
monitor compares the calls and operands, and either terminates the program or
handles the calls appropriately. For example, when sys brk is invoked to request
memory from the OS, the monitor checks the requested sizes and lets the OS
allocate memory for both replicae after which both replicae continue executing.
When sys write is invoked to write to a file, the monitor blocks one of them to
ensure transparency for the user. The result of the system call is still fed back
to both replicae, which continue their execution.

4 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

The first one concerns the rendez-vous points at which MVEEs intervene in
the execution of the replicated program versions. The aforementioned MVEEs
only intervene in a replica to intercept system calls. By construction, those
MVEEs can therefore not handle any non-trivial multi-threaded program. The
reason is that the threads in the different replicae have to be executed in the
same order (i.e., synchronized) to avoid false alerts. No fully deterministic exe-
cution is required (i.e., consecutive runs of the application under control of an
MVEE may feature different thread schedules), but within one execution under
control of an MVEE, all synchronization events and decisions need to be repli-
cated. For example, when a program allocates tasks in a pool to spawn task
threads, they need to be spawned in the same order in all replicae. And when
the tasks updates shared memory, that needs to happen in the same order in
all replicae. MVEEs that only intercept applications upon system calls cannot
provide this synchronization for two reasons. First, many modern applications
feature synchronization operations that do not involve system calls. These in-
clude atomic functions, (uncontended) locks by means of futexes [17], and many
custom synchronization primitives. Secondly, several synchronization primitives
such as the pthread cond timedwait execute multiple system calls as part of a
more abstract decision process. To replicate these decisions, a replication mech-
anism at a higher abstraction level than system calls is needed as well. As will
be discussed in detail in Section 3.3, GHUMVEE supports such a replication
mechanism that solves both issues with acceptable performance overhead.

kernel

Replica 1 Replica 2 t t

brk brk

monitor
write write

Fig. 1. Basic operation of a MVEE

The second limitation of existing MVEEs
is their lack of support for program behav-
ior that depends on exact pointer values. N-
Variant Systems and CPoC rely on address
space partitioning, in which each concrete
address that can be targeted by an attack oc-
curs in only one replica. Orchestra features
two replicae in which the stack grows in dif-
ferent directions to prevent a buffer overflow
from having the same effect in both replicae.

The problem with these address-space based approaches is that many ap-
plications’ behavior depends on concrete pointer values. Those values are then
typically hashed to index hashtables or other containers such as (supposedly
unordered) sets. When the computed hashes differ in the different replicae, their
behavior diverges in many ways. For example, when collusions in a hashtable dif-
fer in two replica, they might rehash or resize the hashtables at different points
in time. In the case of a resize, this might involve memory allocation system
calls being executed in one replica but not in the other. None of the existing
MVEEs can handle this. When iterating over supposedly unordered containers
in which objects are stored based on hashed pointer values, the order will also
depend on the concrete values. So the order of visiting objects and performing
tasks on them might differ from one replica to the other. In some cases the tasks
involve no sensitive operations, but in many cases they do. This ranges from

GHUMVEE: Efficient, Effective, and Flexible replication 5

different files being opened for different objects, over locks being taken on the
visited objects, to worker threads being spawned for the stored objects.

In other words, if the order in which objects are stored in containers is not
controlled by the MVEE, different replicae may show diverging behavior in every
possible way. All existing MVEEs that we are aware of suffer from this problem.
This has two consequences. First, they are applicable only to relatively simple,
nice programs. For example, the programs evaluated in the existing MVEE pa-
pers are limited to a modified Apache, thttpd, SPEC benchmarks, and Snort.
Exactly how nice the programs have to be depends on the precise details of the
MVEE internals. Secondly, because of this dependence on different aspects of
nice behavior, the existing MVEEs provide only relatively weak forms of pro-
tection. Orchestra is limited to protecting buffer overflows on the stack. The
partitioned address spaces of N-Variant Systems and CPoC ore a very limited
form of layout diversification with very predictable behavior.

As discussed in Section 3.7, GHUMVEE can handle many modern programs
with address-dependent behavior, none of which are handled correctly by pre-
existing MVEEs. Moreover, GHUMVEE can replicate the applications with full
code and data layout randomization. As such, GHUMVEE makes the protection
provided by replicated execution applicable to a much wider set of applications,
and it demonstrates that stronger forms of protection can be provided. These
are the two most important contributions of this paper.

3 GHUMVEE Architecture

The GHUMVEE monitor is launched from the command line with the program
to be protected as its argument. From a database GHUMVEE then retrieves the
executables of the replicae. GHUMVEE spawns the replica processes to which
it attaches itself using Linux’ ptrace API [39]. From then on, GHUMVEE acts
as a proxy between the replicae and the kernel as depicted in Figure 1.

3.1 Rendez-vous Points

GHUMVEE can intercept all system calls invoked by the replicae and manipulate
or stall them when needed. GHUMVEE’s rendez-vous points are system call
entries (i.e, invocations) and exits (i.e., returns). Replicae are stalled at both
types of points and not resumed until all replicae have reached the rendez-vous
point. GHUMVEE handles rendez-vous points based on the type of system call
the replicae are trying to execute. We generally distinguish four types of system
calls. The distinction is based on four factors:

I/O-related system calls: These system calls should be performed only once
to ensure transparency and to avoid unwanted side effects. For example,
when replicae are writing to a file, the data should be written only once,
precisely like it would happen in the original program.

6 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

Side effects: System calls that create, modify or delete process-bound kernel
structures have side effects. Most memory management functions are exam-
ples of such system calls. These calls are performed by all replicae in the
same manner as depicted in Figure 1.

Mutable results: System calls that have mutable results, i.e., calls that return
different results upon every invocation, should only be performed once to
ensure that all replicae get consistent return data from these calls. Most
time-related functions are examples of such calls.

Self-aware: System calls that make a process self-aware should only be per-
formed once. These include sys getpid and sys open(/proc/self/...).

After a system call entrance has been handled in accordance with the call’s
class, the monitor waits for the replicae to hit the next rendez-vous point. In
most cases, this is the system call’s exit. Handling this rendez-vous point is
straightforward. If the system call was executed by all replicae, the monitor
checks whether all of them received consistent results from the call. Then it
either resumes them or shuts down the system, e.g., if a call returned an error
for some replica but not for the others. If on the other hand, the call was only
executed by one replica, the monitor copies the return data into the address
spaces of the slave replicae, after which it resumes all of them.

3.2 I/O Replication and Data Transfers

As mentioned above, MVEEs generally allow I/O related system calls to be
executed only once. Nearly every existing solution deals with this restriction
differently. Cox et al [14] stall all slave replicae in kernel-space while the master
replica executes the actual I/O call. When that call returns, the monitor copies
its return value and return data to the address spaces of the slave replicae.

Later MVEEs handle I/O replication in user-space using Linux debugging
facilities such as the ptrace and waitpid APIs [39]. The ptrace API allows
for a debugger to observe and control the execution of a debuggee process by
inspecting and manipulating its internal state, while waitpid is used to poll
a debuggee for status changes such as the entrance or exit of a system call.
CPoC’s [9] implementation is similar to Cox’. The fact that CPoC stalls the
replicae in user-space does entail an additional issue, however. When a process
(e.g., a slave replica) is stalled at the entrance of a system call, that process
cannot be prevented from executing the actual call once it is resumed. To skip
such as system call, a debugger has to replace its number in register EAX by that
of another system call that has no side effects. The best choice for this purpose is
sys getpid. After replacing the system call number and resuming the replaced
slave calls, CPoC waits until the master replica returns from the original system
call and until the slaves returns from their fake sys getpid calls. CPoC then
first copies the results of the master system call from from master replica to
the monitor, and then from the monitor to all slave replicae. This process is
visualized in Figure 2(a), in which solid arrows denote control transfers and
dashed arrows denote data being copied.

GHUMVEE: Efficient, Effective, and Flexible replication 7

master
replica

monitor

kernel

1

1: monitor intercepts I/O system calls
2: monitor allows master replica to execute call
3: kernel copies results to master
4: monitor intercepts system call return
5: monitor fetches call results using ptrace
6: monitor copies call results to slaves
7: monitor resumes all replicae

2
3

6

4

5

slave
replica

1 77

(a) CPoC’s I/O replication

replica 0

monitor

kernel

1
1: monitor intercepts I/O system calls
2: monitor executes call itself
3: call returns
4: monitor copies call results to replicae using ptrace
5: monitor resumes all replicae

2 3

replica 1
1 554 4

(b) Orchestra’s basic I/O replication

master
replica

monitor

kernel

1

1: monitor intercepts I/O system calls
2: monitor allows master replica to execute call
3: kernel copies results to master
4: monitor intercepts system call return
5: monitor copies results directly using
 PTRACE_EXT_COPYDATA
6: monitor resumes all replicae

2
3

4

slave
replica

1 66
5

(c) GHUMVEE’s I/O replication

Fig. 2. I/O replication in three MVEEs

Salamat [34] implemented a different system in Orchestra. Rather than let-
ting a master replica execute a system call, Orchestra executes the call on behalf
of the variants and copies the results of the call directly from the monitor to the
replicae. This is visualized in Figure 2(b).

GHUMVEE’s implementation of I/O replication is nearly identical to CPoC’s.
Like CPoC, we only allow the master replica to execute the original system call.
Unlike CPoC however, we often do not copy the results of the system call from
the master to the monitor. Instead, we copy the results directly from the master
to the slaves as shown in Figure 2(b). As a result, GHUMVEE performs one less
memory copy operation per replicated I/O call than CPoC and Orchestra.

In Figure 2, the copying between monitor and replicae is depicted with mul-
tiple arrows. This reflects the limitation of copying only one memory word at a
time with the PTRACE PEEKDATA and PTRACE POKEDATA operations. On the x86
architecture, this implies that at most 4 bytes can be copied per peek or poke,
each of which requires the monitor to perform a ptrace system call. Even in the
simplest applications, this introduces a significant performance penalty.

Salamat [34] proposed a workaround that consists of shared memory buffers
between the monitor and the replicae, the standard memcpy to copy data between
that shared memory and the monitor’s private memory, and a custom memcpy

8 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

0"
20"
40"
60"
80"

100"
120"
140"
160"
180"

4" 8" 16
"

32
"

64
"

12
8"

25
6"

51
2"

10
24
"

20
48
"

40
96
"

81
92
"

16
38
4"

32
76
8"

ex
ec
u%

on
(%
m
e(
(s
ec
on

ds
)(

Block(size((bytes)(

ptrace_peekdata""
(similar"to"CPoC)"
hybrid"ptrace"+"shared"mem""
(similar"to"Orchestra)"
ptrace_ext_copymem"
(GHUMVEE)"

0"
30"
60"
90"

120"
150"
180"
210"
240"

2" 4" 8" 16
"

32
"

64
"

12
8"

25
6"

51
2"

10
24
"

20
48
"

40
96
"

81
92
"

16
38
4"

32
76
8"

65
53
6"

!e
xe
cu
&
on

im
e!
(s
ec
on

ds
)!

String!size!(bytes)!

ptrace_peekdata"(similar"to"
CPoC/Orchestra)"

ptrace_ext_copystring"
(GHUMVEE)"

Fig. 3. Comparison of different data transfer methods

function injected into each replica. For every transfer of 40 bytes or more, control
in the replicae is diverted to the injected functions to transfer data from the
shared buffers to the replicae’s private memories. So every transfer requires two
copies: one into the shared memory and one out of it. A similar overhead would
exist when /proc/<pid>/mem would be used instead, as that cannot be mapped
directly into a process’ address space.

GHUMVEE avoids part of this overhead with two small extensions for the
ptrace API in Linux [39]. The PTRACE EXT COPYDATA and PTRACE EXT COPYSTRING

operations enable a monitor or a debugger to copy a fixed-size data block and
a NULL-terminated string directly to, from, and between any of its replicae or
debuggees. GHUMVEE uses these extensions for all data transfer operations
when it finds them in the kernel, hence the horizontal arrows in Figure 2(c). On
synthetic performance benchmarks that stress the data transfer functionality
of our MVEE, we obtained the results depicted in Figure 3. This figure shows
that GHUMVEE’s optional kernel extensions allow for data to be transfered
much more efficiently. In real-world benchmarks such as SPEC CPU 2006, these
extensions improved multi-variant performance by 1 to 4%.

3.3 Multi-threading and Synchronization

Arguably the biggest challenge for a MVEE is to deal with multi-threaded repli-
cae. This is complicated mainly because MVEEs running in user-space cannot
control the order in which threads are scheduled1. This implies (1) that a monitor
can observe system calls in different orders in multi-threaded replicae because
of different progress rates and different scheduling of the replicae, and (2) that
the replicae of programs with non-deterministic behavior can actually perform
different system calls in different replicae.

The first problem can be solved easily with a multi-threaded monitor. Like
the other MVEEs that support fork/exec and multi-threading, the GHUMVEE
monitor spawns a new monitor thread for every set of new processes or threads
spawned by the replicae. This works fine as long as the replicae behave deter-
ministically and execute in lock-step, because then they will spawn the same
processes and threads from within the same processes and threads. Each new

1 And even when the monitor would run in kernel-space, if has no direct control over
user-space synchronization events, so the fundamental problems remain the same.

GHUMVEE: Efficient, Effective, and Flexible replication 9

monitor thread then attaches to the corresponding replicae threads, after which
each such monitor thread observes only the system calls in those corresponding
threads, which will happen in exactly the same order in all replicae.

The second problem is much harder to solve. Pre-existing MVEEs simply
neglect this and are hence broken for many applications, for which they report
mismatches between the replicae and halt the execution. Fundamentally, the
problem is that any synchronization race in non-deterministic programs can
lead to different replicae executing different system calls in different orders.

In GHUMVEE, we solved this problem by forcing all slave replicae to behave
exactly like the master. Whenever a synchronization race in the master replica
is decided, that same decision is imposed onto the slave. This is similar to tech-
niques used for record/replay of multi-threaded applications [31], the difference
being that in GHUMVEE all replicae run concurrently in lock step, rather than
sequentially. We therefore don’t have to store logs of the synchronization events.
Please note that GHUMVEE does not eliminate non-determinism. Rather, it
only forces all replicae to take the same decision for every synchronization race.
This way, GHUMVEE cannot introduce any deadlocks in the replicae.

Initially, we interposed [15] or detoured [18] all user-space synchronization
operations by means of fake system calls through which the monitor became
aware of the operations for which it could then enforce scheduling decisions. This
solution introduced too much overhead, however. Even simple applications like
the gcalctool calculator from the Gnome desktop environment spawn several
threads during their initialization, in which they perform mostly uncontended
synchronization. For example, we observed gcalctool performing 1.8M futex
operations during its 400 ms initialization. Interposing all those operations with
a fake system call and multiple ptrace system calls made the initialization time
grow to over 370 seconds, a slowdown with a factor 925!

As an alternative, we designed a system with which the replicae can syn-
chronize themselves. This is visualized in Figure 4. When the monitor spawns
the replicae, it allocates shared circular buffers (shown in green) between them.
Furthermore, the monitor preloads a dynamic library with interposers and de-
tours to intervene in all user-space synchronization events. Instead of executing
system calls in all replicae as in our initial solution, these new interposers record
the synchronization decisions of the master replica (e.g., the order in which its
threads acquire locks) in the shared buffers. In the figure, the master threads
record the order in which they acquired a specific lock Lm in the buffer. In the
slave replicae, the interposers read these decisions, and impose the same behav-
ior on the slaves. In the figure, when slave thread Bs first tries to acquire the
corresponding lock Ls, the interposer observes that thread As should acquire
it first, so it blocks thread Bs. When thread As tries to acquire the lock, this
succeeds, and after it is released, thread Bs will acquire it as well.

As all interposers perform their duties without additional system calls or
context switches to the monitor, the overhead of this solution is much smaller.
For example, with this solution the already mentioned gcalctool initializes in
1.7 seconds, a slowdown with factor 4.25. This is still significant, but most of it

10 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

master thread Bm

monitor

1: thread Am acquires lock Lm
2: thread Bm acquires lock Lm after thread Am released it
3: thread Bs tries to acquire lock Ls but is blocked
4: thread As tries to acquire lock Ls and gets it
5: thread Bs acquires lock Ls after thread As released it

2 3
4

5
master thread Am slave thread AsA

B

1

slave thread Bs

Fig. 4. GHUMVEE’s synchronization decisions through shared buffers

is due to setting up the shared buffers. After the initialization the rate at which
synchronization operations are performed decreases significantly, as a result of
which this enforced synchronization between different replicae does not results in
an noticeable overhead during the normal, interactive operation of the program.

Enforcing the master’s schedule on the slave replicae in this way solves non-
determinism problems related to synchronization races, a form of non-determinism
that is generally considered acceptable program behavior and that occurs in
most modern multi-threaded programs. Our solution does not protect against
non-determinism caused by critical data races. As such data races are generally
considered as bugs, we feel this is an acceptable limitation of GHUMVEE.

3.4 Signal Handling

Besides control-data dependencies in multi-threaded applications, there are sev-
eral other sources of non-determinism. One of them is asynchronous signal de-
livery. Because most signal handlers invoke system calls, delivering signals from
external sources to replicae should happen very carefully. For example, assume
that one single-threaded replica is blocked on entry to a system call, waiting for
the other single-threaded replicae to arrive at the same point. If we then deliver a
signal to another replica that is still executing, the corresponding signal handler
in that replica will be invoked, in which a very different system call might be
invoked in turn, leaving two replicae wanting to execute different system calls.

In GHUMVEE, this is solved by delaying the delivery of signals to replicae
until they are blocked on exit of a system call. This can significantly delay
the handling of a signal. Salamat et al proposed a complex solution to deliver
signals earlier [34], which showed significant improvements for synthetic signal
handling stress tests. We investigated the need for such a complex solution for
real-world applications, and discovered that in real applications, the number of
signals is typically more than three orders of magnitude lower than the number
of system calls invoked. As such, limiting the delivery of signals to the rendez-
vous points of those system calls does not hinder performance or latency in
practice. One notable side effect of our signal handling mechanism is that some
duplicate asynchronous signals might be lost. In practice however, we have not
encountered any programs that started behaving incorrectly when a duplicate
signal was not delivered.

Unlike asynchronous signals, synchronous signals are delivered immediately.
Synchronous signals occur as a direct result of the executing instruction. Because

GHUMVEE: Efficient, Effective, and Flexible replication 11

the MVEE keeps all replicae in a consistent state, we can assume that all replicae
will trigger the same synchronous signal on the same instruction.

3.5 Time Stamp Counter

Yet another source of non-determinism is time, of which applications can be-
come aware through the gettimeofday system call. On the x86 architecture,
the time can also obtained directly from the processor by executing the rdtsc

instruction in user mode. Salamat [34] acknowledge the problems this can cause
when different replicae get different input through rdtsc, but he offers no so-
lution beyond pointing out that programmers could use gettimeofday instead.
In practice, programmers do not follow his advice, however. A simple program
like the gcalctool calculator executes the rdtsc instruction tens of times.

GHUMVEE solves this by setting the control registers in the x86 architecture
to make all user-mode rdtsc instructions trap. The monitor handles the resulting
SIGSEGV signal by feeding all replicae the same time stamp counter value.

3.6 Shared Memory Support

Linux programs can use shared memory blocks to set up communication chan-
nels with other programs. Once such channels are in place, the programs can
communicate by reading and writing from and to the shared memory without us-
ing any system calls and without exchanging any other information. This makes
it very hard for a MVEE to perform correct replication under all circumstances.

Somewhat surprisingly, almost all programs use shared memory. So at least
partial support is needed in an MVEE. But fortunately, most programs do not
really require two-way communication channels with the outside world via shared
memory. An analysis of the usage of shared memory in our testing applications
reveals that shared memory is typically used for one of the following goals:

Shared Libraries: The Linux program loader uses shared memory blocks to
map shared libraries into the address spaces of dynamically linked programs.
This should obviously be supported by an MVEE.

Memory-Mapped I/O: When a file is mapped into a program’s address space
as shared memory, it can be read and written without the overhead of system
calls. We have encountered several programs in the KDE desktop environ-
ments that require memory-mapped I/O to start up properly.

Internal communication: Anonymous shared memory is not accessible to ex-
ternal programs. We have encountered several multi-threaded programs that
used anonymous shared memory to set up additional heaps, e.g., with large
contiguous pages. Anonymous shared memory can only be accessed by the
allocating program and its descendants. Since these descendants also run un-
der MVEE control, all communication through anonymous shared memory
can be controlled using the techniques described in Section 3.3.

Non-anonymous 2-way communication channels: Several programs try to
set up 2-way communication with the outside world through the System V

12 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

sys ipc system call. As indicated, this cannot be handled efficiently. We also
discovered, however, that all programs we studied have backup schemes for
when the System V call is not supported, i.e., when it fails. That backup
uses the above types of shared memory, as well as regular communication
channels like pipes, signals and system calls. As those channels can be han-
dled by MVEEs without a problem, it suffices to let the monitor intercept
the requested shared memory allocation by means of the System V system
calls and let them return as if the requests failed.

Several solutions have been proposed in the past to deal with the first three
cases [34, 9]. GHUMVEE builds on those solutions. Although the classification
above seems pretty straightforward, it is not easy to allow all safe uses of shared
memory while blocking the unsafe forms. Memory-mapped I/O is particularly
hard to support because memory-mapped files and regular 2-way communication
channels are set up the same way. Cavallaro [9] proposed to solve this problem
by using the CPU’s page exception mechanism but indicated that this approach
might incur a lot of overhead. For that reason we did not even consider this
solution. Instead GHUMVEE supports memory-mapped I/O by manipulating
the sys mmap and sys mmap2 used to map shared memory onto files. Normally,
memory-mapped files are mapped by passing the MAP SHARED flag to the mmap
call. Our monitor disables this flag and enables the MAP PRIVATE flag instead.
This way, the requested file is mapped into the address spaces of the replicae,
but any changes to the file are not written back to the file when the block is
unmapped. Instead the GHUMVEE monitor keeps track of these manipulated
blocks and performs the write-back of the file data itself.

This approach prevents programs from using shared memory based 2-way
communication channels without notifying the programs, but in practice, we
have not encountered any program that stopped working because of our solution.

3.7 Address Space Layout

Finally, we observed that many real-world applications and libraries (includ-
ing GTK+, Glib, Pango, KDE, and LibreOffice libraries) exhibit behavior that
depends on pointer values. As explained in Section 2, the main problem with
pointer values being hashed into keys to access data structures is that the data
structures are resized, restructured or iterated through in orders that depend on
keys obtained from hashing pointer values. As a result of these dependencies,
almost all non-trivial programs we tried fail on existing MVEE’s with ASLR en-
abled. Nonetheless, this problem is not mentioned in any MVEE-related paper.

We tackle this problem by interposing the hash functions that compute
pointer-dependent keys, similarly to the way we interpose synchronization oper-
ations. In the master replica, the interposer wraps the hash function and passes
the computed keys to shared queues. In the slave replicae, the interposers re-
place the hash functions. Instead of computing a hash key, they obtain them
from the queues. That way, all replicae use the same hash keys. This solution
is not fool proof, as it only works for limited uses of the hash keys, such as for

GHUMVEE: Efficient, Effective, and Flexible replication 13

indexing and ordering data structures. In more complex scenarios, e.g., where
the hashing is replaced by encryption and where the encrypted keys also get
decrypted, GHUMVEE can still fail. But for the applications we tested that use
the aforementioned libraries, GHUMVEE works fine.

4 Experimental Evaluation

Validation We tested GHUMVEE on numerous interactive, multi-threaded
programs, including Gnome tools such as gcalctool, KDE tools such as kcalc,
and LibreOffice on a quadcore Core i7 870 system running Ubuntu 11.04. For, e.g,
LibreOffice we tested operations such as opening and saving files, editing various
types of documents, running the spell checker, etc. In these tests GHUMVEE
spawned between one and four replicae from the same executable. Tests were
conducted with and without ASLR enabled. Without ASLR, all addresses oc-
curring in the replicae are identical. With ASLR, most addresses are different in
all replicae. This includes the addresses of data on the heap and on the stack,
as well as addresses of statically allocated data and code in dynamically linked
libraries. We also evaluated GHUMVEE on a number of SPEC benchmarks,
mainly to evaluate performance and to validate GHUMVEE on replicae with
code diversification. In particular, we compiled the SPEC2006 benchmark with
GCC 4.5.2 at optimization levels -O2 and -O3. This allows us to test GHUMVEE
on replicae in which even the static code addresses differ.

All tests succeeded. This demonstrates that GHUMVEE is more flexible than
existing MVEEs, in the sense that it supports a wider range of applications, as
well as a wider range of data and code diversification techniques, including full
layout randomization which presents a much less predictable target to attackers.

Transparency From a user perspective, GHUMVEE is completely transparent.
Except for having to launch an application with the GHUMVEE monitor and
the performance and memory consumption overhead involved with the use of
GHUMVEE, there is no noticeable effect.

From a developer perspective, however, GHUMVEE is not completely trans-
parent. In particular GHUMVEE’s reliance on interposers is not fully transpar-
ent. To handle synchronization as described in Section 3.3 and address space
layout differences as described in Section 3.7, someone has to implement the ap-
propriate interposers. Besides highly application-dependent use of pointer values
to index data structures, many real-world applications use custom synchroniza-
tion mechanisms [42] as well as custom memory allocators [7] besides the stan-
dard glibc and pthread primitives (despite the cited literature demonstrating
how bad that customization practice is). In all these cases, the application de-
velopers themselves are responsible (1) for ensuring that interposers can handle
all cases correctly, and (2) for providing the interposers.

For our whole test suite, we wrote 2863 lines of interposer C code. Their distri-
bution over different libraries is shown in Table 1. Of those 2983 lines, 2509 cover
the functionality in standard libraries and the header files of the GHUMVEE

14 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

standard library libc pthread
interposer
base lib total

lines of C code 654 766 829 2509

application library glib gtk orbit pango libreoffice total

lines of C code 105 54 78 54 183 474

interposer library
(header files)

260

Table 1. Programming effort for GHUMVEE’s interposers

interposer API. Those are readily available to all GHUMVEE users and need
not be reimplemented. For specific applications (Gnome and LibreOffice) and
the libraries they rely on, 474 lines of very simple C interposer code suffice. For
example, defining an interposer for the hash function gtk gc value hash that
takes an argument of type gpointer (as defined in that library) to produce a
hash of type guint looks as follows:

INTERPOSER_DETOUR_GEN_HOOKFUNC(guint, gtk_gc_value_hash, (gpointer key)) {

MVEE_DO_SYNC(guint, (key), int, MVEE_GTK_HASH_BUFFER, 0);

return result;

}

This code specifies that the slave replicae should obtain the hashed value
with the width of an int from the master through the MVEE GTK HASH BUFFER

instead of computing a hash themselves (0). INTERPOSER DETOUR GEN HOOKFUNC

and MVEE DO SYNC are preprocessor macro’s defined in one of the GHUMVEE
source code headers. The first macro generates an empty trampoline [18] and
generates detour registration code that automatically detours [18] the target
function (gtk gc value hash) when the interposer library is loaded. The second
macro generates all of the synchronization code. In the master replica this syn-
chronization code writes all computed hash values into a circular buffer that is
shared between all replicae. In the slave replicae, the code reads the computed
values from that same buffer.

Writing the code for other interposers is similarly mechanistic. The effort
required by the developer is therefore by and large limited to identifying the
functions that need to be interposed and to make them interposable. For the
latter, i.e., for ensuring that interposers can handle all cases correctly, we only
needed to modify 54 lines of code in the applications and their libraries to con-
vert static and hence non-interposable functions into dynamic, non-inlined inter-
posable ones. This only required removing the static keyword and inline at-
tribute from the code. Additionally, the LibreOffice link-script had to be adapted
to make the symbols corresponding to the hash functions visible in the linked
binary. This also is a trivial edit.

More changes were needed in glibc, which contains a large amount of inline
assembly. Besides the 654 lines of interposer code, our glibc patch is 845 lines
long. This patch can of course be reused by all GHUMVEE users.

GHUMVEE: Efficient, Effective, and Flexible replication 15

Altogether, this limited and mechanistic programming overhead (part of
which can probably be automated by a compiler working on the basis of prag-
mas) demonstrates the limited burden on application programmers to make their
applications compatible with GHUMVEE. Because of its reliance on widely ap-
plicable and easy to use interposers, GHUMVEE is a much more flexible tool
than existing MVEEs.

Performance Overhead To measure the performance overhead of GHUMVEE,
we measured the execution times of several multi-variant combinations of SPEC
benchmarks compiled at different optimization levels. The relative performance
(i.e., the relative execution times) are depicted in Figure 5.

Comparing the results of GHUMVEE with two O3 variants (yellow bars) to
those with one O3 variant (gray bars), we observe that on average GHUMVEE
comes with a 16% performance penalty. For O2 variants (orange vs. blue), the
performance penalty is 15%. The average overhead of GHUMVEE is hence
slightly smaller than the 17% reported for Orchestra [34], despite the fact that
GHUMVEE performs equivalence checks for many more system calls.

For 403.gcc, the only benchmark common to our evaluation and that of Or-
chestra, the overheads are 15% and 17% for O3 and O2 resp. with GHUMVEE,
and about 30% with Orchestra. Given that 403.gcc is an I/O intensive bench-
mark, this difference in performance can be attributed to the kernel extension
discussed in Section 3.2.

For 470.lbm, the overhead of 46% is particularly high. This overhead is not
due to the overhead of GHUMVEEs interventions, however. A similar overhead
can be observed when two variants of this benchmark run side by side without
an MVEE. As 470.lbm is a memory-intensive benchmark, the shared caches and
the shared memory buses on the Core i7 become the bottleneck when running
multiple variants concurrently, with or without the MVEE. This demonstrates
that although GHUMVEE limits the overhead of its interventions, it cannot
magically reduce the inherent overhead of replicating processes that are not fit
for replication due to resource contention. In this regard, GHUMVEE comes
with the same limitations as any other MVEE.

5 Conclusions

We presented the Ghent University multi-variant execution engine or GHUMVEE,
the first intrusion detection system based on the execution of diversified replicae
that supports full ASLR and real-life applications. We presented novel techniques
to support thread synchronization and pointer-dependent program behavior, as
well as other sources of non-determinism such as time stamp counters. To the
extent a comparison with existing systems was possible, GHUMVEE proved to
be more effective, more efficient, and more flexible than existing MVEEs.

16 Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

40
0.p
er
lbe
nc
h#

40
1.b
zip
2#

40
3.g
cc
#

42
9.m

cf#

45
6.h
mm

er
#

45
8.s
jen
g#

46
2.l
ibq
ua
nt
um
#

46
4.h
26
4r
ef#

47
0.l
bm
#

AV
ER
AG
E#

Re
la
%
ve
'P
er
fo
rm

an
ce
'

one#O3#variant,#no#MVEE## one#O2#variant,#no#MVEE##

one#O2#&#one#O3#variant,#no#MVEE# one#O2#&#one#O3#variant#in#MVEE#

two#idenNcal#O3#variants#in#MVEE# two#idenNcal#O2#variants#in#MVEE#

Fig. 5. Relative performance of SPEC benchmarks running under the GHUMVEE

References

1. Akritidis, P., Costa, M., et al.: Baggy bounds checking: an efficient and backwards-
compatible defense against out-of-bounds errors. In: Proc. USENIX SSYM. (2009)
51–66

2. Aleph One: Smashing the stack for fun and profit. Phrack Magazine 7(49) (1996)

3. Anckaert, B.: Diversity for Software Protection. PhD thesis, Ghent University
(2008)

4. Anckaert, B., Jakubowski, M., Venkatesan, R.: Proteus: virtualization for diversi-
fied tamper-resistance. In: Proc. ACM DRM. (2006) 47–58

5. Baratloo, A., Singh, N., Tsai, T.: Libsafe: Protecting critical elements of stacks.
White paper, Bell Labs, Lucent Technologies (December 1999)

6. Berger, E., Zorn, B.: DieHard: probabilistic memory safety for unsafe languages.
In: Proc. ACM PLDI. (2006) 158–168

7. Berger, E.D., Zorn, B.G., McKinley, K.S.: Reconsidering custom memory alloca-
tion. In: Proc. ACM OOPSLA. (2002) 1–12

8. Bruschi, D., Cavallaro, L.: Diversified Process Replicæfor Defeating Memory Error
Exploits. In: Proc. IEEE IPCCC. (2007) 434–441

9. Cavallaro, L.: Comprehensive Memory Error Protection via Diversity and Taint-
Tracking. PhD thesis, Universita Degli Studi Di Milano (2007)

10. Chen, S., Xu, J., Sezer, E., Gauriar, P.: Non-control-data attacks are realistic
threats. In: Proc. USENIX SSYM. (2005)

11. Chiueh, T.c., Hsu, F.H.: RAD: A Compile-Time Solution to Buffer Overflow At-
tacks. In: Proc. IEEE ICDCS. (2001) 409–417

12. Cowan, C., Pu, C., et al.: StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-Overflow Attacks. In: Proc. USENIX SSYM. (1998) 26–29

13. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: Protecting Pointers
from Buffer Overflow Vulnerabilities. In: Proc. USENIX SSYM. (2003) 91–104

14. Cox, B., Evans, D., et al.: N-variant systems: A secretless framework for security
through diversity. In: Proc. USENIX SSYM. (2006) 105–120

15. Curry, T.W.: Profiling and Tracing Dynamic Library Usage Via Interposition. In:
Proc. USENIX USTC. (1994) 267–278

16. Holtmann, M.: Secure Programming with GCC and GLibc (2008)

GHUMVEE: Efficient, Effective, and Flexible replication 17

17. Hubertus Franke Rusty Russell, M.K.: Fuss, Futexes and Furwocks: Fast Userlevel
Locking in Linux. In: Proc. Ottowa Linux Symposium. (2002)

18. Hunt, G., Brubacher, D.: Detours : Binary Interception of Win32 Functions. In:
Proc. USENIX WINSYM. (1999)

19. IBM Research: GCC extension for protecting applications from stack-smashing
attacks (2005)

20. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (aslp): Towards fine-grained randomization of commodity software. In: Proc.
ACSAC. (2006) 339–348

21. McGregor, J.P., Karig, D.K., Shi, Z., Lee, R.B.: A Processor Architecture Defense
against Buffer Overflow Attacks (2003)

22. Microsoft Corporation: Data Execution Prevention
23. Microsoft Corporation: Security Enhancements in the CRT
24. Microsoft Corporation: Visual C++ Linker Options: /GS (Buffer Security Check)

(2002)
25. Miller, T.C., de Raadt, T.: strlcpy and strlcat Consistent , Safe , String Copy and

Concatenation. In: Proc. USENIX ATEC. (1999) 175—-178
26. Molnar, I.: ”Exec Shield”, new Linux security feature
27. Nergal: The advanced return-into-lib(c) exploits. Phrack Magazine 12(58) (2001)
28. Nguyen-Tuong, A., Evans, D., Knight, J.C., Cox, B., Davidson, J.W.: Security

through redundant data diversity. In: Proc. IEEE DSN. (2008) 187–196
29. PaX Team: Address Space Layout Randomization (2004)
30. Roemer, R., Buchanan, E., et al.: Return-oriented programming: Systems, lan-

guages, and applications. ACM Trans. Inf. Syst. Secur. 15(March) (2012) 2:1–34
31. Ronsse, M., De Bosschere, K.: RecPlay: A Fully Integrated Practical

Record/Replay System. ACM Trans. Comp. Sys. 17(2) (1999) 133–152
32. Salamat, B., Gal, A., Franz, M.: Reverse stack execution in a multi-variant execu-

tion environment. In: CATARS Workshop. (2008)
33. Salamat, B., Jackson, T., et al.: Orchestra: A User Space Multi-Variant Execution

Environment. In: Proc. EuroSys. (2009) 33–46
34. Salamat, B.: Multi-Variant Execution: Run-Time Defense against Malicious Code

Injection Attacks. PhD thesis, University of California, Irvine (2009)
35. Salamat, B., Gal, A., et al.: Multi-variant Program Execution: Using Multi-core

Systems to Defuse Buffer-Overflow Vulnerabilities. In: Proc. CICIS. (2008) 843–848
36. Salamat, B., Jackson, T., et al.: Orchestra: intrusion detection using parallel exe-

cution and monitoring of program variants in user-space. In: Proc. EuroSys. (2009)
33–46

37. Shacham, H., Goh, E.j., Modadugu, N., Pfaff, B., Boneh, D.: On the effectiveness
of address-space randomization (2004)

38. The GNU C Library: Copying and Concatenation
39. Thorvalds, L.: Linux Programmer’s Manual
40. Tsai, T., Singh, N.: Libsafe 2.0: Detection of Format String Vulnerability Exploits

(2001)
41. Williams, D., Hu, W., et al.: Security through Diversity: Leveraging Virtual Ma-

chine Technology. IEEE Security & Privacy 7(1) (2009) 26–33
42. Xiong, W., Park, S., Zhang, J., Zhou, Y., Ma, Z.: Ad hoc synchronization consid-

ered harmful. In: Proc. USENIX OSDI. (2010) 1–8
43. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent Runtime Randomization for Secu-

rity. In: Proc. SRDS’03. (2003) 260–269
44. Younan, Y., Philippaerts, P., et al.: Paricheck: an efficient pointer arithmetic

checker for c programs. In: Proc. ASIACCS. (2010) 145–156

