
0

Feedback-Driven Binary Code Diversification

Bart Coppens, Computer Systems Lab, Ghent University

Bjorn De Sutter, Computer Systems Lab, Ghent University

Jonas Maebe, Computer Systems Lab, Ghent University

As described in many blog posts and in the scientific literature, exploits for software vulnerabilities are often

engineered on the basis of patches. For example, “Microsoft Patch Tuesday” is often followed by “Exploit
Wednesday” during which yet unpatched systems become vulnerable to patch-based exploits. Part of the

patch engineering includes the identification of the vulnerable binary code by means of reverse-engineering

tools and diffing add-ons. In this paper, we present a feedback-driven compiler tool flow that iteratively
transforms code until diffing tools become ineffective enough to close the “Exploit Wednesday” window of

opportunity. We demonstrate the tool’s effectiveness on a set of real-world patches and against the latest

version of BinDiff.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General—Protection mechanisms;

D.3.4 [Programming Languages]: Processors—Code generation, Compilers, Optimization

General Terms: Experimentation, Measurement, Security

Additional Key Words and Phrases: compiler transformations, software diversity, binary diffing, program

matching, patches

1. INTRODUCTION

Every second Tuesday of the month, Microsoft releases its Patch Tuesday software updates.
These updates include security patches, most of which are documented to inform system
administrators what they are vulnerable to. Microsoft typically words this without giving
concrete hints on how to exploit the fixed vulnerabilities. But their descriptions do not
always match the vulnerabilities being patched, and some patched vulnerabilities might not
be mentioned at all [Core Security Technologies 2010].

So when crackers get their hands on the binary patches, they start inspecting them in
preparation of Exploit Wednesday, the cracker’s window of opportunity to target unsuspi-
cious users that did not immediately apply the update. In some cases, crackers can also
target users that did apply it immediately, but that were left vulnerable because a fix was
not complete [Economou 2010]. With the help of so-called diffing tools like Darungrim and
BinDiff, the crackers set up collusion attacks in which they compare the binary code before
and after the patch to identify the fixed code fragments and the applied fixes, to determine
the vulnerabilities closed by those fixes, and ultimately to devise actual exploits for those
vulnerabilities.

Similar collusion attacks can be used to identify the code that implements important new
functionality in major software updates, as a first step towards the reverse-engineering or
theft of its intellectual property. Such attacks and diffing tools can also be used to port
information from one program version to another. When crackers can identify the corre-
sponding parts in consecutive program versions, they can more easily reuse their existing
reverse-engineering knowledge. This knowledge can consist of informal insights, but also of

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/-ART0 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:2 Bart Coppens et al.

more formal information. For example, Barthen relied on a diffing tool to transfer debug-
ging information obtained from an older version of World of Warcraft to a newer version
that was distributed without debugging information [Barthen 2009]. And in yet another
related attack scenario, collusion attacks try to extract information such as cryptographic
keys from differences between program versions [Boneh and Shaw 1998; Ergun et al. 1999].

Brumley et al [Brumley et al. 2008] demonstrated that sometimes exploits can be devised
without any human analysis or understanding of the patched code. All their attack needs is
an accurate identification of the modified instructions. On that basis, they apply constraint
solving techniques on the program inputs to generate attacks fully automatically.

All published attacks that we are aware of similarly build on the assumption that expert
crackers assisted by diffing tools can easily identify the relatively few relevant differences
between unpatched and patched binaries. Many authors simply do not even consider it
worthwhile to discuss how they identify the patched code fragments. Others discuss it very
briefly. For example, Protas and Manzuik briefly describe their use of BinDiff to analyze
undiversified Microsoft patches for Windows [Protas and Manzuik 2006]. Brumley et al men-
tion their use of the e-Eye Binary Diffing Suite (EBDS) to analyze the syntactic difference
between the two binaries [Brumley et al. 2008]. Oh observes that the engineering of most
security exploits starts with the manual or automatic analyses of the differences created by
security patches, and briefly describes how EBDS and Darungrim can be used to analyze
those differences [Oh 2009]. Many other security researchers, hackers, and hobbyists tell a
similar story, implicitly assuming that spotting the relevant differences is trivial with the
existing tools [Loveless 2006; Varghese 2008; Moore 2008; Sotirov 2006; Lee and Jang 2012;
Walia 2011; Frijters 2010; Slawlerguy 2008; Johnson 2011; Harris et al. 2008].

In our previous work [Coppens et al. 2012], we evaluated the effectiveness of four auto-
mated diffing tools to reduce the manual code investigation effort required from attackers.
We concluded that the tools in combination with scriptable heuristics effectively prune over
99.9% from the attacker’s search space, thus limiting the required manual investigation
effort to less than 0.1% of the code. We also demonstrated that software diversification,
with which we mean the transformation of code fragments that do not strictly need to be
changed to implement a patch, can reduce the effectiveness of the diffing tools with a factor
100. The attacker then has to manually search about 10% of the code for changes, which
significantly reduces his window of opportunity.

The factor 100 reduction in pruning effectiveness we obtained in our previous work,
however, came at a high price of up to 39% execution slowdown. The main culprit of
this unacceptable overhead was the uncontrolled manner (based only on a pseudo-random
number generator and on profile information) in which the compiler transformations were
applied to generate the necessary diversity.

In this paper, we present a novel, iterative, feedback-driven compiler diversification ap-
proach. Initially, the diversifier only applies diversifying transformations with near zero
overhead to the patched program in order to thwart the diffing tools. We then run those
diffing tools on the generated binary to diff it against the original (unpatched) binary, and
feed the result back to the diversifier for the next iteration. In that iteration, the diversi-
fier applies more diversifying transformations, but those are only applied to the fragments
that were still matched correctly by the diffing tool in the previous iteration. In the fol-
lowing iterations, the diversifier will then gradually start to apply more transformations
that potentially introduce more overhead, but those transformations are only applied to
code fragments for which the lower-overhead transformations proved to be insufficiently
effective. With this approach, we are able to make the diffing tools almost completely use-
less, without introducing significant performance overhead. We demonstrate this on several
real-world applications and real-world security patches.

The remainder of this paper is structured as follows. Section 2 discusses in more detail
how diffing tools aid attackers to exploit vulnerabilities on the basis of released binary code

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:3

binary'v1'

source'v1'

compiler'

bsdiff'

patch'tool'

source'patch'

binary'patch'

binary'v2'

compiler'

source'v2'

Fig. 1. Standard development of successive software versions.

patches. Section 3 present our new feedback-driven diversification approach to thwart those
diffing tools. This approach is evaluated on real-life case studies in Section 4. Section 5
discusses the related work, after which the pros and contras of the approach are discussed
in Section 6. Finally, conclusions are drawn in Section 7.

2. DIFFING TOOLS FOR PATCH-BASED ATTACKS AND DIVERSIFICATION

In this section, we first discuss the relation between source code patches and binary code
patches and the information they contain. We then discuss how diffing tools help attackers
in bridging the gap between the two, after which we focus on BinDiff ([zynamics 2012; Flake
2004; Dullien and Rolles 2005]), the particular tool we used to evaluate our approach.

2.1. Source vs. Binary Patches

To understand why and how attackers use diffing tools to engineer attacks on vulnerabilities
fixed in released software updates, it is important to understand the relation between the
released updates and the vulnerabilities. This relation is depicted in Figure 1. At the top of
the figure, a source code patch fixes vulnerabilities in some program version 1. This patch can
be applied to the original source code with, e.g., the open-source patch command-line tool.
Besides fixes to security vulnerabilities, the patch might also include other changes, such as
optimizations and extended functionality. For an Exploit Wednesday attacker, this patch
would be extremely useful, as it almost directly leads him the vulnerable code fragments.

Attackers often don’t get to see the source code patch, however. Instead they only get the
binary of the original software v1, along with the binary patch that enables them to update
their v1 into v2. As shown in the lower half of Figure 1, this binary patch is generated by the
developer from the compiled binaries v1 and v2, for example by means of the open-source
bsdiff [Percival 2003] command-line tool.

For several reasons, this binary patch is not nearly as useful to attackers as the source
code patch would have been:

(1) The patch identifies code changes on binary code, which is a much lower abstraction
level than source code. After having identified the locations in the binary code that were
patched, the attacker will still have to reverse-engineer the code and the code changes.

(2) Because of two reasons, small source code patches typically result in significantly larger
binary code patches:

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:4 Bart Coppens et al.

(a) In source code, most references to code or data are symbolic, e.g., by means of
procedure names or variable names. Those do not change globally because of a local
source code patch. In binary executables, however, most references are encoded by
means of absolute and relative addresses. As soon as code or data is inserted or
removed by a software patch, it typically results in many small changes to hard-
coded constants spread throughout the binary code. Typically, these changes occur
in immediate operands and literal data pools.

(b) Global compiler optimizations can cause local patches to have much wider effects
on the binary code. For example, a source code patch that corresponds to a local
modification in the data dependence graph (DDG) of a procedure might result in
very different register allocation and code scheduling of otherwise unrelated data
flow. It might also result in loop unrolling being disabled or enabled. Similarly, small
changes to the control flow graph (CFG) of a procedure can result in very different
code layout. And small changes to a procedure’s size can make the compiler switch
between not inlining, full inlining, partial inlining, or cloning the procedure at some
of its callers. The code in figures 7(c) and 8(c) illustrates this.

In general, when the semantics of a program are changed by patches at specific source
code locations, the compiled binary will incur semantic code mutations at corresponding
locations, but in addition, many smaller or bigger syntactic mutations will typically be
spread throughout the binary.

So in summary, before developing an exploit, an attacker will have to reverse-engineer the
vulnerable code fragments and the patches on those fragments. To minimize that effort, he
will try to identify the most promising fragments by pruning the purely syntactic mutations
from the binary patch. This is where diffing tools such as BinDiff1, BinaryDiffer2 (a variant
of Darungrim3, which in turn is part of EBDS4), PatchDiff25, and TurboDiff6 come into
play.

2.2. Diffing Tools

Diffing tools try to find matching and differing code fragments in two program versions at
a higher abstraction level than the byte level at which tools like bsdiff operate. Figure 2
depicts their use by attackers.

From the original binary software and the patch, the attacker generates the patched binary
version in the same way any ordinary user would do, for example by means of the bspatch
counterpart of bsdiff. Then the attacker feeds the two binary versions to a diffing tool.
These tools are typically plug-ins for the IDA Pro7 disassembler. IDA Pro is an interactive
disassembler that offers users a graphical interface to study binary code. It not only gives
users an editable disassembly of binaries, but it can also build and show their CFGs and
call graphs (CGs). Furthermore, it is fully extensible through plug-ins such as the diffing
tools. These plug-ins can then use the disassembly and analyses done by IDA Pro in their
matching techniques.

The results are presented to the attacker in different ways in the different tools. They all
have in common that the attacker can easily browse the graphs of completely or partially
matching procedures side by side in a GUI as shown in Figure 2. Through colors that indicate
the level of matching/difference, the attacker can quickly identify the most promising code

1http://www.zynamics.com/bindiff.html
2https://code.google.com/p/binarydiffer/
3http://www.darungrim.org/
4http://www.eeye.com/resources/security-center/research/tools/eeye-binary-diffing-suite-ebds
5https://code.google.com/p/patchdiff2/
6http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff
7http://www.hex-rays.com/products/ida/

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:5

binary'v1' binary'patch'

binary'v2'

bspatch'tool'

manual'code'
inspec6on'

vulnerability'

foo()'v1'

GUI'diffing'tool'

foo()'v2'

Fig. 2. Tool flow for patch-based attacks.

fragments. Because the matching techniques are applied at the CFG and CG level, they
make abstraction of the first cause of syntactic differences discussed above. As such, they
provide excellent search space pruning for the attackers.

Besides in the code matched but not fully identical fragments marked in light and dark
gray in Figure 2, relevant semantic changes might also occur in procedures for which BinDiff
did not find a matching counterpart at all, or even in code that was not recognized as
code by IDA Pro, and that hence did not get disassembled and included in the CFGs.
Obviously an attacker will also have to consider those fragments. So an attacker will have
to investigate all code in unmatched procedures, as well as all differing code in (partially)
matched procedures.

Our previous work evaluated the effectiveness of BinDiff, BinaryDiffer, TurboDiff and
PatchDiff2 as tools for patch attackers [Coppens et al. 2012]. The main observations and
general conclusions were the following:

— All tools first try to match corresponding procedures in both programs, after which
TurboDiff, BinDiff and BinaryDiffer also try to match basic blocks within matched pro-
cedures. Only BinDiff then tries to match instructions within matched basic blocks.

— BinDiff is overall more efficient than the other tools in matching procedures, basic blocks,
and instructions, as well as in pruning non-interesting code.

— However, BinDiff sometimes prunes too much code. When a patch involves the simple re-
placement of one constant value by another, BinDiff’s heuristics (at their specific abstrac-
tion level) sometimes overlook this difference. One such case occurs with the png debian

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:6 Bart Coppens et al.

off-by-one patch presented in Section 4.1 and visualized in figures 7(b) and 8(b). PatchD-
iff2 and BinaryDiffer suffered from this problem as well.

— All diffing plug-ins suffer from IDA Pro’s problem to handle unconventional code. This
is particularly the case for procedures of which the code is not stored contiguously and
for obfuscated code. Obviously, when IDA Pro cannot partition the code into procedures
correctly, its plug-ins face difficulties matching procedures.

In Section 3, we will present an approach that aims for making the matching heuristics
of diffing tools ineffective. Given the above observations, BinDiff is the best tool to evaluate
the effectiveness of this approach. In the remainder of this paper, we therefore focus on
BinDiff.

2.3. BinDiff

BinDiff is a commercial, closed-source tool from Zynamics, now Google. Its high-level in-
ternal operation is described in its manual [Zynamics 2012] and in a couple of publica-
tions [Dullien and Rolles 2005; Flake 2004]. Most important in the context of this paper is
the procedure matching strategy in BinDiff.

For all procedures in both programs to be matched, numerous signatures are computed
based on their names (if not stripped from the binaries), on the binary code in the procedure
bodies, on properties of their CFGs (such as number of loops in them, number and topology
of the edges, number of basic blocks, etc), on their (nested) callers and callees, and on the
strings they reference. In both programs, the sets of procedures are first partitioned on the
basis of the most discriminative, stronger signature(s). When a singleton partition (i.e., one
procedure) with the same signature(s) occurs in both versions, those two procedures are
considered a match. When partitions in both programs with matching signatures consist of
more than one procedure, BinDiff will iteratively partition those partitions into smaller sub-
partitions on the basis of more (ever weaker) signatures until singleton subpartitions occur.
At any iteration, all procedures without matching signatures in the other program version
are grouped into the “unmatched” partition. This partition is repartitioned iteratively in
the same way as non-singleton partitions with matching signatures.

The main result of BinDiff then is a list of matched functions in order of decreasing
matching quality. For each pair of matching procedures, BinDiff computes all possible sig-
natures. The matching quality, which is essentially a confidence metric, is then computed
on the basis of the number of signatures that are identical for both versions and on the
strengths of those identical signatures. Furthermore, BinDiff reports the signature on the
basis of which procedures were matched, i.e., the signature on the basis of which singleton
partitions were obtained during the iterative subpartitioning. It is this feedback that will
drive the tool we present in the Section 3, as shown in Figure 3.

Besides the above outputs, BinDiff also reports the similarity between two matched func-
tions. An attacker will use all this information to select matched procedures for manual
inspection: procedures that BinDiff believes to correspond with high quality but that are
not completely similar likely feature promising code fragments. The attacker can simply
click through to them and observe the similarities and the differences as shown in Figure 2.

3. FEEDBACK-GUIDED DIVERSIFICATION

In this section, we first present an overview of our approach. This is followed by a description
of the code transformations that are applied to generate diversification and a description of
the decision logic of their application.

3.1. Overview

Figure 3 shows the tool flow of our approach. Compared to the tool flow of Figure 1, we
have replaced the original compiler toolbox with one that can apply diversification. This

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:7

binary'v1'

source'v1'

compiler'
toolbox'

diffing'tool'

patch'tool'

source'patch'

diffing'results'

binary'v2'

diversifying'
compiler'
toolbox'

source'v2'

bsdiff'

binary'patch'

Fig. 3. Iterative tool flow for generating protected patches..

toolbox is applied iteratively on the basis of feedback obtained from one or more diffing
tools that model the attack tools against which one tries to defend.

In our proof-of-concept implementation, our diversifying compiler toolbox consists of the
standard GCC 4.6 compiler plus an evolution of the binary code diversification tool Pro-
teus [Anckaert 2008] that comes with the free and open Diablo link-time rewriting frame-
work (http://diablo.elis.ugent.be). Proteus supports a number of standard code generation,
optimization and obfuscation techniques, but rather than optimizing a performance or soft-
ware protection objective, the diversifier applies the transformations in a stochastic manner
using a pseudo-random number generator (PRNG). Different versions of a binary can be
generated simply by feeding the PRNG with different seeds. To trade-off the level of diversi-
fication with the overhead introduced by this stochastic application of transformations, the
user can select the probabilities with which transformations are applied. When generating
two program versions with all transformation probabilities set to 0.5, Proteus generates the
most diverse binaries.

In our evolution of Proteus, the application of the transformations is not a pure stochastic
process. Instead its decision logic is based on the PRNG, on profile information obtained
on the original binary, on the feedback obtained from the diffing tools, and on the number
of iterations already performed.

3.2. Diversifying Transformations

Our diversifier can apply combinations of five transformations.

Code Layout Randomization. The code diversifier randomizes the order in which basic
blocks chains (i.e., sequences of basic blocks chained together in fall-through paths) are
placed in the executable’s code section. As a result, most procedure bodies are not stored
contiguously. This complicates IDA Pro’s partitioning of the disassembled code in proce-
dures and its construction of the CG and the CFGs.

The performance impact of chosing a different order of the basic block chains is minimal.
Because chains of frequently executed basic blocks are not split by introducing additional
unconditional branch instructions, only the instruction cache behavior can deteriorate.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:8 Bart Coppens et al.

1

2 3

4

1 2 3 4

switch1

2 3

4

1 2 3 4

switch

(a) Original CFG (b) Flattened CFG

Fig. 4. Control flow flattening

Partial Control Flow Flattening. Control flow flattening replaces an original CFG by
one where all original basic blocks have the same predecessor and successor [Wang et al.
2001]. The transformation is illustrated in Figure 4. Semantic equivalence is guaranteed by
inserting a redirection variable guiding the execution through the switch statement.

In the original application context of flattening, being control flow obfuscation, as much
as possible control needs to be flattened, in particular of the most interesting code, i.e., the
code that is executed (frequently). Hence outside of this work, flattening is typically applied
on whole procedures at a time.

Our diversification tool can flatten parts of procedures, hence the name partial flattening.
The reason is that flattening in our context aims not for obfuscation, but for thwarting diffing
tool heuristics based on CFG topology properties. Changing parts of the CFGs, such as the
coldest parts, suffices for that purpose.

By applying flattening to cold code only, its impact on performance can be minimized.

Conditional Branch Flipping. To thwart some very simple matching heuristics, much sim-
pler CFG transformations suffice. Conditional branch flipping flips the branch-taken and
fall-through edge following a conditional branch instruction in a CFG, while at the same
time inverting the branch condition, e.g., from branch-if-greater to branch-if-less-or-equal.

This transformation has almost no influence on performance, in particular when limited
to cold code only. The influence on code size is minimal as well.

Two-way Opaque Predicate Insertion. As illustrated in Figure 5, two-way opaque predi-
cate insertion involves the duplication of (part of) a basic block, and insertion of a random
branch condition [Collberg et al. 1998]. The duplicate blocks can be transformed indepen-
dently by later transformations. This transformation targets very simple matching heuristics
such as instruction counts. Its impact on performance can be limited by applying the trans-
formation to cold code only.

Branch Function Insertion and Call Function Insertion. For each direct control transfer,
be it a jump or a fall-through path, we can redirect it through a branch function [Linn
and Debray 2003]. Branch functions are functions that do not return to their caller; instead
they transfer control to a different address computed from the return address and an offset
passed to the branch function as a parameter. So a direct jump or fall-through can be
replaced by a call and an indirect jump based on the call’s arguments. Figure 6(a) shows an
unconditional jump which is transformed into a call to the branch function in Figure 6(b).

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:9

C C C’

P?

(a) Original block

C C C’

P?

(b) Predicated, duplicated block

Fig. 5. Predicating a basic block by a two-way opaque predicate

1

jump 2

2

1

call branch

2

garbage
Branch

Function

(a) Original code

1

jump 2

2

1

call branch

2

garbage
Branch

Function

(b) Code using branch function

Fig. 6. Branch function insertion

The main reason for inserting branch functions is to split procedure bodies in parts
that are no longer connected through direct control flow transfers. This thwarts the CFG
construction in IDA Pro, and hence the matching in the diffing plug-ins. Branch functions
can also be used to replace direct procedure calls by indirect control flow. It suffices to replace
the call by a push of the return address on the stack and a call to the branch function to
transfer control to the callee. Branch functions can therefore thwart both CFG-based and
CG-based matching heuristics.

In the remainder of this paper, we use the term Branch Function Insertion to refer to
the replacement of direct jumps or fall-through paths, and the term Call Function Insertion
to refer to the replacement of direct calls. On the case of Branch Function Insertion, we
sometimes specify where it needs to be applied to achieve different goals. For example,
by inserting a branch function in the entry block of a function, most of its body becomes
disconnected from that entry point. By inserting a branch function before a call, that call
is not removed, but it becomes disconnected of the preceding code.

Branch functions are clearly expensive in terms of performance overhead when applied
to frequently executed code. Besides the overhead of additional instructions, the indirect
jump out of the branch function is typically not predicted well by the processor’s branch
predictor.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:10 Bart Coppens et al.

3.3. Transformation Selection

The selection of diversifying transformations to be applied is based on a set of rules encoded
in a rule set table. The table used for the experimental evaluation in Section 4 is depicted
in Table I.

Each row in the table specifies a necessary condition to apply a transformation. A row
with signature S (we refer to the BinDiff manual [Zynamics 2012] for a detailed description
of the exact signatures) , relative weight8 W , iteration I and transformation T specifies
that in any iteration i ≥ I, transformation T can be applied to basic blocks with a relative
weight w ≤ W in procedures reported by the diffing tool to have been matched on the basis
of signature S in iteration i− 1.

For example, the first row in Table I indicates that conditional branches may be flipped
in any iteration, in any procedure matched by means of the “Hash Matching” signature,
independent of the weight of the block of the branches. The third row indicates that from
the first iteration on, two-way predicates can be inserted in or before basic blocks that
have weight zero (i.e., that are not executed) in procedures that were matched on the basis
of the “Edges Flowgraph” signature. It is clear that gradually transformations with higher
overhead will be considered, and that their application onto ever hotter blocks is considered.

During the successive iterations, a diversification strategy is built for each procedure. This
strategy is another table that stores each applied transformation, the program point where
it was applied, the iteration in which it was applied, the reason why it was applied (i.e.,
the BinDiff signature targeted with it, which comes from the rules table), and the PRNG
seed that was used for selecting that transformation. An example table for a function f()
is shown in Table II.

Initially, i.e., after iteration zero in which only the code layout is randomized, each pro-
cedures strategy is empty. Then during each iteration, three actions can be performed on
the strategy: it can remain identical, it can be extended, or it can be adapted. Assume we
are in iteration i ≥ 1.

(1) When a procedure is not matched by BinDiff according to the feedback of iteration
i − 1, the strategy remains untouched. This happens when the strategy succeeded in
thwarting BinDiff completely for this procedure. It implies that we will apply exactly
the same transformations in iteration i.

(2) When a procedure is matched by BinDiff with some signature s according to the feed-
back of iteration i−1, and that s is not the same as the last signature s′ in the strategy,
this implies that the strategy was successful in thwarting matching based on s′, but
not in thwarting matching based on s. In this case, the strategy is extended: From
all transformations that meet the necessary conditions as specified by the rule table,
one is selected randomly and appended to the strategy. By construction, this will be a
transformation that targets signature s.

(3) When a procedure is matched by BinDiff with the same signature s as already occurred
in the last rows of the existing strategy, this implies that the strategy was not successful
for this procedure. We then remove the transformations from the last iteration from
the strategy, and replace them with a new selection of transformations. This selection
happens on the basis of another random seed. Furthermore, we now select one more
transformation than we selected in the previous iteration. Moreover, the set of applicable
transformations can have become bigger because new rules become applicable in later
iterations.

8The weight of a block is its execution count given a training profile, multiplied by the number of instructions
in the block. The total weight of the program equals the summed weights of all blocks. The relative weight
of a block is its weight divided by the total program weight.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:11

Table I. Diversification rule set

Signature Weight Iteration Transformation
Hash Matching 1.00000 1 Conditional Branch Flipping
Edges Flowgraph 1.00000 1 Conditional Branch Flipping
Edges Flowgraph 0.00000 1 Two-way Opaque Predicate Insertion
Edges Flowgraph 0.00005 5 Two-way Opaque Predicate Insertion
Edges Flowgraph 0.00005 6 Partial Control Flow Flattening
Edges Callgraph 0.00000 1 Branch Function Insertion (anywhere)
Edges Callgraph 0.00005 5 Branch Function Insertion (anywhere)
Edges Callgraph 0.00000 1 Two-way Opaque Predicate Insertion
Edges Callgraph 0.00005 5 Two-way Opaque Predicate Insertion
Instruction Signature 1.00000 1 Conditional Branch Flipping
Call Sequence 0.00000 5 Call Function Insertion
Call Sequence 0.00005 7 Call Function Insertion
Call Sequence 0.00015 9 Call Function Insertion
Call Sequence 0.00000 11 Branch Function Insertion (before calls)
Call Sequence 0.00005 13 Branch Function Insertion (before calls)
Call Reference 0.00000 5 Call Function Insertion
Call Reference 0.00005 7 Call Function Insertion
Call Reference 0.00015 9 Call Function Insertion
Call Reference 0.00000 11 Branch Function Insertion (before calls)
Call Reference 0.00005 13 Branch Function Insertion (before calls)
Call Sequence (Exact) 0.00000 7 Call Function Insertion
Call Sequence (Exact) 0.00005 9 Call Function Insertion
Call Sequence (Exact) 0.00015 11 Call Function Insertion
Call Sequence (Exact) 0.00000 13 Branch Function Insertion (before calls)
Call Sequence (Exact) 0.00005 15 Branch Function Insertion (before calls)
Call Sequence (Topology) 0.00000 7 Call Function Insertion
Call Sequence (Topology) 0.00005 9 Call Function Insertion
Call Sequence (Topology) 0.00015 11 Call Function Insertion
Call Sequence (Topology) 0.00000 13 Branch Function Insertion (before calls)
Call Sequence (Topology) 0.00005 15 Branch Function Insertion (before calls)
Hash Matching 0.00000 2 Branch Function Insertion (in entry blocks)
Edges Flowgraph 0.00000 2 Branch Function Insertion (in entry blocks)
Edges Callgraph 0.00000 2 Branch Function Insertion (in entry blocks)
Instruction Signature 0.00000 2 Branch Function Insertion (in entry blocks)
Call Sequence (Exact) 0.00000 2 Branch Function Insertion (in entry blocks)
Call Sequence (Topology) 0.00000 2 Branch Function Insertion (in entry blocks)
Call Sequence 0.00000 2 Branch Function Insertion (in entry blocks)
Call Reference 0.00000 2 Branch Function Insertion (in entry blocks)
String Reference 0.00000 2 Branch Function Insertion (in entry blocks)
Hash Matching 0.00005 3 Branch Function Insertion (in entry blocks)
Edges Flowgraph 0.00005 3 Branch Function Insertion (in entry blocks)
Edges Callgraph 0.00005 3 Branch Function Insertion (in entry blocks)
Instruction Signature 0.00005 3 Branch Function Insertion (in entry blocks)
Call Sequence (Exact) 0.00005 3 Branch Function Insertion (in entry blocks)
Call Sequence (Topology) 0.00005 3 Branch Function Insertion (in entry blocks)
Call Sequence 0.00005 3 Branch Function Insertion (in entry blocks)
Call Reference 0.00005 3 Branch Function Insertion (in entry blocks)
String Reference 0.00005 3 Branch Function Insertion (in entry blocks)

Table II. Diversification strategy for a procedure f()

Transformation Program Point Iteration Signature Random Seed
Conditional Branch Flipping BBL 2356 1 Hash Matching 14562
Branch Function Insertion (anywhere) BBL 2347 3 Edges Flowgraph 16382
Branch Function Insertion (anywhere) BBL 2349 3 Edges Flowgraph 16382

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:12 Bart Coppens et al.

es#=#%1;#
N#=#1;#
do#{#
####!if#(N#>=#2*1024*1024)#RETURN(BZ_DATA_ERROR);##
#####if#(nextSym#==#BZ_RUNA)#es#=#es#+#(0+1)#*#N;#else#
#####if#(nextSym#==#BZ_RUNB)#es#=#es#+#(1+1)#*#N;#
#####N#=#N#*#2;#if#(N#>=#2*1024*1024)#RETURN(BZ_DATA_ERROR);#

(a) bzip2 patch

#define&PNG_tIME_STRING_LENGTH&30&29#

png_strncpy(tIME_string,&&
&&&&&&&&&&&&&&&&&&&&&&&png_convert_to_rfc1123(read_ptr,&mod_Fme),&
&&&&&&&&&&&&&&&&&&&&&&&PNG_tIME_STRING_LENGTH);&
tIME_string[PNG_tIME_STRING_LENGTH]&=&'\0';&

(b) png debian patch

#define&PNG_tIME_STRING_LENGTH&30&29#

png_strncpypng_memcpy(tIME_string,&&
&&&&&&&&&&&&&&&&&&&&&&&png_convert_to_rfc1123(read_ptr,&mod_Fme),&
&&&&&&&&&&&&&&&&&&&&&&&PNG_tIME_STRING_LENGTH);&
tIME_string[PNG_tIME_STRING_LENGTH]&=&'\0';&

(c) png beta patch

Fig. 7. Three of the four source code patches

Given these rules, the diversification strategy from Table II can be interpreted as follows:
Assuming we are now after iteration 5, Conditional Branch Flipping succeeded in thwarting
signature “Hash Matching” in iteration 1. From then on signature “Edges Flowgraph”
became the target. Two transformations needed to be applied in thwart this signature, which
was discovered in iteration 3. When all three transformations are applied in combination
with code layout randomization, BinDiff is not able to match procedure f() anymore.

4. EXPERIMENTAL EVALUATION

In this section, we first discuss the case studies we evaluated our approach on. Next, we
discuss some of the extensions to IDA Pro and BinDiff we implemented to overcome some
of their limitations. We then analyze the effectiveness and the efficiency of our approach on
the use cases.

4.1. Case Studies

The first patch on which we evaluated our approach, hereafter called bzip2, fixed vulnerabil-
ity CVE2010-0405 in the program bzip2 by inserting a validation check on an intermediate
value as indicated in Figure 7(a). In the binary, this corresponds to a short instruction
sequence being inserted as shown in Figure 8(a).

Our second patch is an off-by-one fix for vulnerability CVE-2008-3964 in the pngtest
utility. The fix decrements a hard-coded value as shown in Figure 7(b). We will refer to this
patch, which was distributed by the Debian GNU/Linux distribution as a separate patch,
as png debian. In the binary this patch resulted in four immediate instruction operands
being replaced: in two similar fragments a constant operand 30 is replaced by 29 and the
absolute address of tIME string[30] is replaced by that of tIME string[29]. One of those
changed fragments is shown in Figure 8(b).

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:13

0x080538b4:)movl)))$0xffffffff,0x60(%esp))))
0x080538bc:)movl)))$0x1,0x5c(%esp)))))))))))))
0x080538c4:)cmpl)))$0x1fffff,0x5c(%esp))
0x080538cc:)mov))))$0xfffffffc,%esi))))))
0x080538d1:)jg))))0x8052892)<BZ2_decompress+386>)

(a) bzip2 patch

0x0804924e:))mov))))0x124(%esp),%eax)
0x08049255:))mov))))%eax,(%esp))
0x08049258:))call)))0x804a8c0)<png_convert_to_rfc1123>)
0x0804925d:))mov))))%eax,0x4(%esp))
0x08049261:))movl)))$0x1e)0x1d,0x8(%esp))
0x08049269:))movl)))$0x80d9010,(%esp))
0x08049270:))call)))0x80806b0)<strncpy>)
0x08049275:))incl)))0x80d900c)
0x0804927b:)movb)))$0x0,)0x80d902e)0x80d902d(
0x08049282:)jmp))))0x8048b44)

(b) png debian patch

0x804927e: *mov****0x124(%esp),%eax*
0x8049285: *mov****%eax,(%esp)**
0x8049288:** *call***0x804a920*<png_convert_to_rfc1123>*
0x804928d: *mov****%eax,0x4(%esp)*
0x8049281: *movl***$0x1e,0x8(%esp)*
0x8049289:* *movl***$0x80d9010,(%esp)*
0x8049290:* *call***0x80806b0*<strncpy>*
0x804928d:)))))mov))))(%eax),%ebp)))
0x804928f:)))))mov))))%ebp,0x80d9010)))
0x8049295:)))))mov))))0x4(%eax),%edi)))
0x8049298:)))))mov))))%edi,0x80d9014)))
0x804929e:)))))mov))))0x8(%eax),%esi)))
0x80492a1:)))))mov))))%esi,0x80d9018)))
0x80492a7:)))))mov))))0xc(%eax),%ebx)))
0x80492aa:)))))mov))))%ebx,0x80d901c)))
0x80492b0:)))))mov))))0x10(%eax),%ecx))
0x80492b3:)))mov))))%ecx,0x80d9020)))
0x80492b9:)))))mov))))0x14(%eax),%ebp)))
0x80492bc:)))))mov))))%ebp,0x80d9024)))
0x80492c2:)))))mov))))0x18(%eax),%edi)))
0x80492c5:)))))mov))))%edi,0x80d9028))
0x80492cb:))))movzwl)0x1c(%eax),%eax)))
0x80492cf:**** *incl***0x80d900c*****
0x80492d5:))))mov))))%ax,0x80d902c)
0x80492db:)** *movb***$0x0,0x80d902e*0x80d902d)
0x80492e2:)** *jmp****0x8048b44*

(c) png beta patch

Fig. 8. Semantic changes in three of the four binary code patches

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:14 Bart Coppens et al.

Table III. Case studies

Use case Binary code size Binary patch size
bzip2 407 kB 1.4kB

png debian 514 kB 0.15kB
png beta 538 kB 54.17kB
soplex 911 kB 14.26kB

In other distributions, this fix was part of a larger update from libpng 1.2.23-beta01 to
beta02. In that larger update, which also contains a lot of patches not related to CVE-
2008-3964, the code fragments using the changed constant were patched as shown in Fig-
ure 7(c). In addition to the changed constant, the call to png strncpy is replaced by a call
to png memcpy. The compiler inlines that call and unrolls the loop responsible for copying
the actual data in it, so in the patched binary the call to png strncpy, including the prepa-
ration of arguments, is replaced by a sequence of mov instructions as shown in Figure 8(c).
The constant value 29 does therefore not occur in the patched binary anymore. We refer to
this patch as png beta.

Finally, we chose the SPEC benchmark program soplex as the target of a patch that
replaces two (out of several more) calls to quicksort with calls to a newly added mergesort.
This patch is called soplex.

We compiled and statically linked the original and patched source code on Linux with gcc
4.6 at optimization level -03. Table III shows the patched binary sizes as well as the sizes
of the binary patches generated with the bsdiff tool that are typically distributed to the
end-users. The three relatively large patch sizes indicate that those patches indeed involve
many syntactic mutations as discussed in Section 2.1. The attacker’s goal is therefore to
weed those syntactic mutations out by means of BinDiff.

In the experiments we performed, we used the SPEC training inputs to collect profile
information for bzip2 and soplex. Whenever we report performance overhead, we used
reference inputs.

4.2. Extensions to IDA Pro and BinDiff

IDA Pro and its plug-ins are interactive GUI tools, and that is how attackers normally use
them. For example, when hackers load a binary into IDA Pro and have it disassembled, they
will likely observe that not all code is disassembled by IDA Pro’s standard recursive-descent
disassembler [Eagle 2011]. They can then mark additional addresses in the code section of
the binary and instruct IDA Pro to continue disassembling from those addresses.

With our approach, our main concern is not to thwart IDA Pro’s disassembly process.
Instead, we want to measure the effectiveness of IDA Pro and BinDiff in the hands of a
real-world attacker that exploits IDA Pro’s interactivity to circumvent disassembly issues.

To model such attackers, we engineered a script that instructs IDA Pro to continue
disassembling code at additional addresses until the whole code section in the binary is
disassembled. This script is invoked on each binary before it is fed to BinDiff. That way,
all of our experiments model an expert attacker that is not fooled by static disassembly
thwarting [Linn and Debray 2003].

4.3. Diffing Results

Using the rule set of Table I, we generated diversified binaries for our four use cases.
For bzip2, the chart in Figure 9 depicts the fraction of the code that BinDiff is able to

match in different iterations. For the precise meaning of the different matching heuristics,
we refer to the BinDiff manual [Zynamics 2012]. For each iteration, the left bar indicates the
matches reported by BinDiff. Some of those matches, in particularly the ones based on low
quality heuristics and signatures, are false positive matches, however. The right bars there-
fore show the fractions of instructions that were matched correctly. It is this fraction that is

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:15

Fig. 9. Diffing results for the bzip2 use case, indicating the decisive matching heuristics. For each point on
the X-axis, the left bar shows the percentage of all instructions that Bindiff reports as having been matched.
The right bar shows the percentage of instructions that it actually matched correctly.

Fig. 10. Diffing results for the bzip2,indicating match quality of the decisive matching heuristics. The labels
in the bars indicate the number of relevant instructions (i.e., that implement the actual security patch) that
have been matched with the match quality indicated in the bar. Numbers outside the bar indicate the
instructions of the patch that have not been matched.

most useful to an attacker. The chart in Figure 10 displays the same fraction, but this time
with an indication of the match quality according to the BinDiff manual [Zynamics 2012].
The numbers above or in the different bars indicate how many of the relevant instructions
(i.e., the bold italic instructions in Figure 8) are found in each category. Numbers above the
bars indicate the number of those instructions that are in the unmatched part of the code,
i.e., the part of the code within which BinDiff provides no help to the attacker at all9.

9The total number of relevant instructions can vary from one iteration to the other when the relevant
instruction sequences are diversified itself.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:16 Bart Coppens et al.

Fig. 11. Diffing results for the pngtest debian use case according to match quality.

The leftmost “iteration” in both charts corresponds to diffing the unpatched binary with
the undiversified patched binary. It is clear that in that case BinDiff is doing a really
good job. As indicated in blue, many procedure matches are found by computing hashes
over the ordered instructions in the procedures. The hashes neglect immediate operands
to abstract away changed offsets and changed absolute addresses. Most of the matches are
then found recursively on the CG through so called “call sequence” matchers: these build on
the assumption that procedures of which the callers match are likely matches themselves.

The second iteration from the left in both charts is iteration zero, in which only code layout
randomization is applied. It is clear that while BinDiff is hampered by this randomization, it
still does a pretty good job. The matching is mainly based on more abstract CFG properties,
however, that do rely less on the order and occurrence of individual instructions.

As soon as we start diversifying the code, the effectiveness of BinDiff starts to drop.
Almost immediately, the “very good” quality matchers start to fail and the lower quality
metrics take over. The matcher based on the strings that are referenced in procedures then
becomes quite important, along with the different recursive matchers based on the CG. As
more and more diversification is introduced during our iterative approach, the amount of
matched code drops significantly, and the amount of correctly matched code drops even
lower.

The reason why the amount of (correct) matches fluctuates in the later iterations is due
to the random layout randomization. Every time a CFG is transformed, the layout, which
is determined by successive invocations of the PRNG, changes globally. In some iterations
it changes for the worse, sometimes for the better.

In this experiment, the best result is obtained after 14 iterations. For the binary generated
in that iteration, BinDiff can match less than 5% of the code, and all relevant instructions
are in the 95% unmatched code. So clearly BinDiff is of almost no use to an attacker at this
point.

After 18 iterations, an even better results was obtained, but as we will see, that result
was achieved at the expense of more performance overhead.

For completeness, figures 11, 12, 13 show the diffing results for the other three use cases.
It is clear that also in these cases, our approach makes BinDiff almost completely useless
to attackers.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:17

Fig. 12. Diffing results for the pngtest beta use case according to match quality.

Fig. 13. Diffing results for the soplex use case according to match quality.

4.4. Overhead

Figure 14 depicts the overhead of the diversification in terms of code section size. Starting
with layout randomization, every transformation adds some additional code. In iterations 7
and 13, when new transformations become applicable on executed fragments according to
the rules in Table I, the most overhead is added. That is precisely why we wait so long for
applying these transformations. For the most interesting versions of the binaries, the code
size overhead is 15-25%. We believe this to be acceptable.

Figure 15 depicts the overhead of diversification in terms of binary patch size. The patches
become significantly bigger, up to the point where their size becomes between 30% and 40%
of the full code section size. For isolated patches, such as in the pngtest debian use case,
diversification can increase the binary patch size with a factor 1000. For bigger patches, as for
pngtest beta, the overhead is limited to a factor 2.5. The overhead to distribute diversified

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:18 Bart Coppens et al.

Fig. 14. Relative binary code sizes

Fig. 15. Relative binary patch sizes

patches, e.g., over the Internet, is hence extremely variable. The trade-off between this
overhead and the provided protection against patch-based attacks is one of the trade-offs
that developers will have to make.

For the benchmarks for which we have training and reference inputs from the SPEC
benchmark suite, Figure 16 presents the performance overhead of our approach.

For bzip2, we observe very low overheads until the last but two iterations. The overhead
is even negligible for the first 9 iterations. For soplex, we obtain very low overhead as well,
but it is significant from the very first iterations onwards, and it surpasses 5% as of iteration
13. At that iteration, BinDiff was only able to correctly match about 6% of all code.

So we can conclude that our approach is able to thwart BinDiff effectively and efficiently.
Moreover, as the chart in Figure 17 shows, the developer can clearly trade-off protection
vs. overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:19

Fig. 16. Execution times relative to the times of the undiversified binaries.

Fig. 17. Relative execution times vs. percentage of correctly matched instructions.

5. RELATED WORK

5.1. Software Matching

Matching two versions of some piece of information has many applications, ranging from text
file comparison to DNA matching. In this section, we briefly discuss related work relevant
to the matching of binary program versions.

An excellent overview of existing program matching techniques is available from Kim and
Notkin [Kim and Notkin 2006]. However, the techniques they survey are all situated in the
context of software development and software engineering, where program changes need to
be tracked during the evolution of a program (branches). Such tracking may be required, e.g.,
to update regression test suites or to update profile information. That context is completely

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:20 Bart Coppens et al.

different from ours, and the techniques they survey are not applicable in our context of
attack diversified programs. And neither is their own matching technique [Kim et al. 2007].

5.1.1. Text-based Matching Approaches. Text-based matching algorithms are about finding
the minimum script of symbol deletions and insertions that transform one sequence into
another. This type of matching is used in, e.g., spelling correction systems and file compari-
son tools [Miller and Myers 1985; Wagner and Fischer 1974]. However, due to the limitations
on the types of changes (insertions and deletions), they cannot fully capture the degrees of
freedom in the language of programs. While this typically is not a problem in the appli-
cation domain of text-based matching algorithms, it does become problematic when, e.g.,
statements have been deliberately reordered.

5.1.2. Graph-based Matching Approaches. More recently, graph-based binary matching algo-
rithms [Dullien and Rolles 2005; Flake 2004; Sabin 2004; Gao et al. 2008] have been proposed
like the ones that are used in BinDiff. They compare high-level structures like control flow
graphs, as opposed to source code, assembly or code bytes. Often this offers a more il-
luminating view of relevant differences between two program versions. This approach can
foil diversification methods that do not alter the control flow graph much, e.g., reordering
transformations. BMAT [Wang et al. 2000] is a another binary matching tool that has been
developed with the primary goal of reusing profile information in subsequent builds.

As we demonstrated in this paper and as we observed in some experiments we ran with
BinHunt with similar results, these approaches are easily thwarted by diversification tech-
niques that alter the CFGs and CGs.

5.1.3. Trace-based Matching Approaches. Trace-based matching approaches collect informa-
tion about the execution of the program, such as control flow, values produced, addresses
referenced and data dependencies exercised. Techniques based on compact representations
of dynamic program slices [Zhang and Gupta 2005b] have been evaluated by comparing
unoptimized and optimized versions of a program [Zhang and Gupta 2005a].

Similar techniques have been used to compare original and obfuscated versions as well [Na-
garajan et al. 2007]. Nagarajan et al. describe a technique that consists of two steps: an
interprocedural matching step and an instruction matching step. The goal of the first step
is to produce a mapping between the functions of two program versions. To enable this
matching, each function is associated with a signature. By comparing signatures, compat-
ible functions can be determined. The compatible functions are then matched using the
structure of dynamic call graphs (DCGs) of the two executions, which essentially yields
the function mapping. In the second step, an attempt is made to match the instructions
within the matching functions. To enable this matching, each instruction is associated with
a signature. By comparing signatures, compatible instructions can be determined. The com-
patible instructions are then matched using the structure of the dynamic data dependence
graphs (DDDGs) of the two program versions. The DDDGs are matched using the iterative
algorithm discussed in [Zhang and Gupta 2005a]. First, the root nodes of the DDDGs are
matched by comparing the signatures. Then the interior nodes of the DDDGs are matched
using an algorithm that iteratively applies two passes. In the forward pass, nodes, all of
whose parent nodes match, are in turn matched. In the backward pass, nodes, at least one
of whose children nodes match, are in turn matched. Repeated iteration of each of these
passes, iteratively refines the instruction matches. Nagarajan et al. evaluated their tech-
nique by matching original program versions to obfuscated versions that were generated
with the a previous version of the tool used later in this paper to generate diverse versions
for this paper. Their results were very good, and they obtained extremely low false-positive
and false-negative rates.

However, when that matching technique was applied to two diversified versions of a
program, the results were extremely bad, even after attempts to tune the algorithm for

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:21

this new application context. For example, after matching two diversified versions of bzip2,
the tuned technique still reports more than 100000 instruction matches, even though the
number of covered instructions in the original program version of bzip is only 13609. The
100000 matches result in a false-positive rate of 97%, and still there is a false-negative rate
of 81%. As with BinDiff and other tools, the reason for this ineffectiveness is in the failing
procedure signature matching. So also this technique will not likely be very useful to an
attacker when software is diversified as we proposed.

5.1.4. Polymorphic Malware Analysis. One specific context in which software matching tech-
niques is playing an increasingly important role is the analysis of polymorphic malware [An-
derson et al. 2011]. The malware tries to avoid being detected by mutating, Anti-malware
tools try to abstract the mutations. Reasons for this abstraction include being able to collect
and combine information from multiple versions of the malware [LeDoux et al. 2012] and
faster classification of malware samples [Bayer et al. 2010].

One specific method to abstract mutations between different samples is to normalize
them before analyzing and matching them [Walenstein et al. 2008]. It is an open research
question to what extent such normalization could damage the effectiveness of our approach.
We know of no publicly available prototype tools that implements normalization.

5.2. Diversification

To thwart diffing and matching tools, we will rely on software diversification techniques.
To defend against malicious code attacks, software diversification (a.k.a. individualization)
was first proposed by Cohen [Cohen 1993] under the term “program evolution”. Since,
numerous transformation techniques have been presented, including control flow transfor-
mations [Anckaert 2008], memory layout randomization [Bhatkar et al. 2003; Forrest et al.
1997] and randomizing the instruction set [Barrantes et al. 2005; Kc et al. 2003]. It has
been shown that these techniques are vulnerable to attacks as well [Shacham et al. 2004;
Sovarel et al. 2005]. Other research assumes the presence of diversity and studies the assign-
ment of distinct software packages to individual systems in a network [O’Donnell and Sethu
2004] or uses different versions in a framework for detection and disruption of attacks [Cox
et al. 2006] similar to N-version programming for fault tolerance [Avizienis and Chen 1977].
Software diversity as a protection mechanism against a malicious host, in which case some
sensitive software is run on a host computer to which an attacker has full access, seems
to have received less attention. Existing work is focused on randomization before distri-
bution. Anckaert et al. [Anckaert et al. 2006] propose to rewrite the program in a custom
instruction set and to ship it with a matching virtual machine. Zhou et al. [Zhou and Main
2006] present code transformations based upon algebraic structures compatible with 32-bit
operations commonly present in code.

5.3. Instruction Set Limitation

Diffing tools can also be thwarted by making code more similar instead of more dissimilar.
In particular, when multiple code fragments within a single program version are made more
similar, diffing tools have a harder time differentiating between them. For example, all
signatures computed on opcodes occurring in a procedure would fail on a single-instruction
computer [Jones 1988].

A more practical demonstration of this approach was presented by De Sutter et
al. [De Sutter et al. 2008]. They replace infrequently occurring x86 instructions, which
provide matching hooks for matching tools, by sequences involving more frequently instruc-
tions. With that approach, the false matching rates of a trace-based matcher that involved
instruction opcode signatures but also CFG and DDG properties, went up by several tens
of percentages.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:22 Bart Coppens et al.

6. DISCUSSION

The results from Section 4 indicate that strong protection against patch attacks with BinDiff
can be obtained at a negligible performance overhead, but at a significant cost in patch size.
Several issues can still be raised about the proposed approach, however.

First, one can question whether the proposed approach is specific for BinDiff or whether it
is more general. Our experiments with other IDA Pro diffing plug-ins, including the results
presented earlier [Coppens et al. 2012], demonstrate that the approach is equally effective
against all other publicly available plug-ins. However, it is always possible to extend the
attack tools with new analyses and transformations, which could improve the success rate of
an attacker. Attackers could try to detect and undo specific transformations, including the
obfuscations applied in our approach. Deobfuscating transformations are designed to return
simplified binaries, however, not binaries that can be more easily compared with other bi-
naries. So deobfuscating transformations do not necessarily return a unique representation
when given two differently obfuscated but semantically equivalent binaries. Moreover, some
of the most effective attacks like dynamic or hybrid static-dynamic deobfuscation [Sharif
et al. 2009; Madou et al. 2005] cannot be used to exploit patches. In such dynamic attacks,
the program’s execution is first monitored and traced. The traces are then used to remove
some of the never-taken execution paths from the program. This builds on the assumption
that never-taken execution paths with certain signatures probably originate from obfuscat-
ing transformations such as opaque predicates, and hence were not present in the original
program. In the case of patches that insert input validation checks that the attacker cannot
trigger yet, the traces he collects on the patched program will indicate that the inserted
checks are potential opaque predicates. So instead of helping the attacker to obtain a better
diffing result, his deobfuscation will hide the patch. Against more advanced tools such as
deofbuscators and code normalization tools, the effectiveness of our approach remains to
be studied. However, this situation is not uncommon in the software protection arms race:
once a software protection scheme is in use, attackers will try to break the transformations
used. However, the fact that particular transformations are defeated does not imply that the
whole approach using those diversifying transformations is flawed or broken. When attacker
tools become more effective, we can extend the set of relatively simple transformations in
our current implementation with more complex ones to make attackers require even more
complex tools. While the complexity of our current set of link-time transformations is lim-
ited because of the lack of high-level semantic information in object files, similar as well as
much more complex diversifying transformations can easily be integrated into a compiler.
In general, the more complex the tools in the attacker tool box need to become to overcome
the protection provided by diversification, the more time-consuming they will be, and hence
the smaller the attacker’s window of opportunity will become. So we are quite confident
that our approach, although it might have to be tuned and extended in the future, provides
a solid foundation for protecting against patch-based attacks.

Secondly, it is worth mentioning that our approach can easily be extended to protect
successive patch releases. When a patch to v3 is released, and protection against collusion
attacks against both v1 and v2 is required, it suffices to use a new set of PRNG seeds and
to run the diffing tool twice in each iteration to diff v3 against v1 and against v2, and to
consider the union of the sets of matched procedures in the next iteration.

Third, it is important to discuss some more qualitative, less quantitative types of costs
of our approach. In particular, we have to look at the impact our approach has on the
customer support and code maintenance cost. This depends on the ease with which one can
debug the code and interpret bug and crash reports. In this regard, we should point out
that our approach so far only involves control flow transformations. The original code is
not rescheduled, register allocation is not changed, and all data layout remains untouched.
The latter includes the statically allocated data, as well as the stack (frames) and the heap.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:23

As the developers know the mapping between code fragments in the non-diversified binary
and in the diversified binary, and all data addresses remain unchanged, we conjecture that
debugging the diversified binaries or interpreting crash reports of them is not significantly
harder.

With regard to both qualitative and quantitative costs of using our approach, one also
has to consider the trade-off between protection and overhead that can be made on a case
by case basis. Whether or not the protection is worth the overhead will, e.g., depend on
the criticality of a patch. When a white-hat hacker contacts a developer about a zero-day
vulnerability for which he has an exploit, it can be critical to fix the vulnerability without
exposing it publicly by means of an all too obvious patch. When some bug has been known
publicly for a long time and no exploit has ever been constructed, there will be little need
to protect a patch.

Finally, we should mention that our approach does not rely on security through obscurity.
What we try to protect against is the identification of the semantic changes resulting from
a binary code patch. We do so by engineering a secret rule set and by using secret PRNG
seeds. But the approach itself and the tools used can be public.

Once enough users have applied the patch, there is no longer a need for the details of the
semantic changes to remain protected. It is then up to the software vendor to make a trade-
off between the time the semantic changes are protected and how much time users have to
apply the patch. In fact, a similar trade-off exists in the open source community, where it
can be argued that security patches should be developed into a private repository and only
put into a public repository at a later time to hide the semantics of security patches before
they are released to the public [Barth et al. 2011].

7. CONCLUSIONS AND FUTURE WORK

We have presented an iterative, feedback-driven compiler tool flow to diversify patched soft-
ware with the goal of preventing the identification of patched code fragments by attackers.
We have demonstrated that the approach is able to render the most commonly used diffing
tool, BinDiff, and similar tools almost completely useless for attackers, at minimal or even
negligible performance overhead.

Our approach significantly increases the manual investigation effort required to mount
exploits against patched vulnerabilities, and thus shortens the window of opportunity for
patch-based exploits.

As future work, we consider fine-tuning the rule sets to make the approach even more
efficient and effective. The currently used set was engineered manually, we plan to make
this an auto-tuning feature by means of machine learning. Furthermore, we plan to include
more types of diversifying transformations and to evaluate our approach against trace-based
diffing tools.

REFERENCES

Anckaert, B. 2008. Diversity for software protection. Ph.D. thesis, Ghent University.

Anckaert, B., Jakubowski, M., and Venkatesan, R. 2006. Proteus: virtualization for diversified tamper-
resistance. In Proceedings of the workshop on Digital Rights Management. 47–58.

Anderson, B., Quist, D., Neil, J., Storlie, C., and Lane, T. 2011. Graph-based malware detection using
dynamic analysis. Journal in Computer Virology 7, 247–258. 10.1007/s11416-011-0152-x.

Avizienis, A. and Chen, L. 1977. On the implementation of N-version programming for software fault
tolerance during execution. In The 1st IEEE Computer Software and Applications Conference. 149–
155.

Barrantes, E. G., Ackley, D., Forrest, S., and Stefanovi, D. 2005. Randomized instruction set emu-
lation. ACM Trans. on Info. and Syst. Secu. 8, 1, 3–40.

Barth, A., Li, S., Rubinstein, B., and Song, D. 2011. How open should open source be? arXiv:1109.0507v1.

Barthen. 2009. [WoW] [3.0.9] Symbolic info. Forumpost at http://www.mmowned.com/forums/
world-of-warcraft/bots-programs/memory-editing/219320-wow-3-0-9-symbolic-info.html.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

0:24 Bart Coppens et al.

Bayer, U., Kirda, E., and Kruegel, C. 2010. Improving the efficiency of dynamic malware analysis. In
Proceedings of the 2010 ACM Symposium on Applied Computing. SAC ’10. ACM, New York, NY, USA,
1871–1878.

Bhatkar, S., DuVarney, D., and Sekar, R. 2003. Address obfuscation: An efficient approach to combat
a broad range of memory error exploits. In The 12th USENIX Security Symposium. 105–120.

Boneh, D. and Shaw, J. 1998. Collusion-secure fingerprinting for digital data. IEEE Transactions on
Information Theory 44, 5, 1897–1905.

Brumley, D., Poosankam, P., Song, D., and Zheng, J. 2008. Automatic patch-based exploit generation
is possible: Techniques and implications. In IEEE Symposium on Security and Privacy.

Cohen, F. 1993. Operating system evolution through program evolution. Computers and Security 12, 6,
565–584.

Collberg, C., Thomborson, C., and Low, D. 1998. Manufacturing cheap, resilient, and stealthy opaque
constructs. In Proceedings of the 25th Conference on Principles of Programming Languages. ACM
Press, 184–196.

Coppens, B., De Sutter, B., and De Bosschere, K. 2012. Protecting your software releases. IEEE
Security & Privacy. Accepted for publication on 5 September 2012.

Core Security Technologies. 2010. Windows SMTP service DNS query id vulnerabilities. CoreLabs
Security Advisory.

Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong, A.,
and Hiser, J. 2006. N-variant systems: A secretless framework for security through diversity. In The
15th USENIX Security Symposium. 105–120.

De Sutter, B., Anckaert, B., Geiregat, J., Chanet, D., and De Bosschere, K. 2008. Instruction set
limitation in support of software diversity. In 11th International Conference on Information Security
and Cryptology ICISC 2008. Number 5461 in LNCS. 152–165.

Dullien, T. and Rolles, R. 2005. Graph-based comparison of executable objects. In Symposium sur la
Sécurité des Technologies de l’Information et des Communications.

Eagle, C. 2011. The IDA Pro Book 2nd Ed. No Starch Press.

Economou, N. 2010. Microsoft Virtual PC: The hyper-hole-visor bug & MS10-048: Win32k window creation
vulnerability (CVE-2010-1897).

Ergun, F., Kilian, J., and Kumar, R. 1999. A note on the limits of collusion-resistant watermarks. 1592,
140–149.

Flake, H. 2004. Structural comparison of executable objects. In Proceedings of the Detection of Intrusions
and Malware & Vulnerability Assessment, GI SIG SIDAR Workshop. 161–173.

Forrest, S., Somayaji, A., and Ackley, D. 1997. Building diverse computer systems. In The Workshop
on Hot Topics in Operating Systems. 67–72.

Frijters, J. 2010. Reverse engineering the MS10-060 .NET security patch. Blogpost.

Gao, D., Reiter, M. K., and Song, D. 2008. Binhunt: Automatically finding semantic differences in binary
programs. In Proceedings of the 10th International Conference on Information and Communications
Security. ICICS ’08. Springer-Verlag, Berlin, Heidelberg, 238–255.

Harris, S., Harper, A., Eagle, C., and Ness, J. 2008. Gray hat hacking: the ethical hacker’s handbook.
McGraw-Hill.

Johnson, N. 2011. From patch to proof-of-concept: MS10-081. Blogpost.

Jones, D. W. 1988. The ultimate risc. SIGARCH Comput. Archit. News 16, 3, 48–55.

Kc, G., Keromytis, A., and Prevelakis, V. 2003. Countering code-injection attacks with instruction-set
randomization. In The 10th ACM Conference on Computer and Communications Security. 272–280.

Kim, M. and Notkin, D. 2006. Program element matching for multi-version program analyses. In Proceed-
ings of the 2006 international workshop on Mining software repositories. 58–64.

Kim, M., Notkin, D., and Grossman, D. 2007. Automatic inference of structural changes for matching
across program versions. In Proceedings of the 29th international conference on Software Engineering.

LeDoux, C., Walenstein, A., and Lakhotia, A. 2012. Improved malware classification through sensor
fusion using disjoint union. In Proceedings of the 6th International Conference on Information Systems,
Technology and Management (ICISTM). 360–371.

Lee, B. and Jang, Y. 2012. Exploit shop website.

Linn, C. and Debray, S. 2003. Obfuscation of executable code to improve resistance to static disassembly.
In Proc. ACM Conf. on Computer and Communications Security. 290–299.

Loveless, M. 2006. Corporate security: A hacker perspective.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

Feedback-Driven Binary Code Diversification 0:25

Madou, M., Anckaert, B., De Sutter, B., and De Bosschere, K. 2005. Hybrid static-dynamic attacks
against software protection mechanisms. In Proceedings of the 5th ACM workshop on Digital Rights
Management. 75–82.

Miller, W. and Myers, E. 1985. A file comparison program. Software - Practice & Experience 15, 11,
1025–1040.

Moore, H. 2008. Exploiting IIS via HTMLEncode (MS08-006). Blogpost.

Nagarajan, V., Zhang, X., Gupta, R., Madou, M., De Sutter, B., and De Bosschere, K. 2007.
Matching control flow of program versions. In Proceedings of the 23rd IEEE International Conference
on Software Maintenance. 83–94.

O’Donnell, A. and Sethu, H. 2004. On achieving software diversity for improved network security using
distributed coloring algorithms. In Proceedings of the 11th ACM conference on Computer and Com-
munications Security. ACM Press, 121–131.

Oh, J. 2009. Fight against 1-day exploits: Diffing binaries vs anti-diffing binaries. In BlackHat USA.

Percival, C. 2003. Naive differences of executable code. http://www.daemonology.net/bsdiff/.

Protas, A. and Manzuik, S. 2006. Skeletons in Microsoft’s closet - silently fixed vulnerabilities. BlackHat
Europe.

Sabin, T. 2004. Comparing binaries with graph isomorphisms. Tech. rep., BindView RAZOR Team.

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and Boneh, D. 2004. On the effective-
ness of address-space randomization. In Proceedings of the 11th ACM Conference on Computer and
Communications Security. ACM Press, 298–307.

Sharif, M., Lanzi, A., Griffin, J., and Lee, W. 2009. Automatic reverse engineering of malware emulators.
In IEEE Symposium on Security and Privacy.

Slawlerguy. 2008. Reversing the ms08-067 patch... Blogpost.

Sotirov, A. 2006. Reverse engineering Microsoft binaries. CanSecWest.

Sovarel, A., Evans, D., and Paul, N. 2005. Where is the FEEB? The effectiveness of instruction set
randomization. In Proceedings of the 14th USENIX Security Symposium. 145–160.

Varghese, N. 2008. Reverse engineering for exploit writers. Clubhack.

Wagner, R. and Fischer, M. 1974. The string-to-string correction problem. Journal of the ACM 21, 1,
168–173.

Walenstein, A., Mathur, R., Chouchane, M. R., and Lakhotia, A. 2008. Constructing malware nor-
malizers using term rewriting. Journal in Computer Virology 4, 4, 307–322.

Walia, H. 2011. Reversing Microsoft patches to reveal vulnerable code. Nullcon.

Wang, C., Davidson, J., Hill, J., and Knight, J. 2001. Protection of software-based survivability mecha-
nisms. In Proceedings of the 2nd International Conference of Dependable Systems and Networks. IEEE
Computer Society Press, 193–202.

Wang, Z., Pierce, K., and McFarling, S. 2000. Bmat – a binary matching tools for stale profile propa-
gation. The Journal of Instruction-Level Parallelism 2, 1–20.

Zhang, X. and Gupta, R. 2005a. Matching execution histories of program versions. In ESEC/FSE-13: Pro-
ceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering. 197–206.

Zhang, X. and Gupta, R. 2005b. Whole execution traces and their applications. ACM Trans. on Archi-
tecture and Code Optimization 2, 3, 301–334.

Zhou, Y. and Main, A. 2006. Diversity via code transformations: A solution for NGNA renewable security.
In NCTA - The National Show.

zynamics. 2012. BinDiff. http://www.zynamics.com/bindiff.html.

Zynamics 2012. Zynamics BinDiff Manual. Zynamics.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2012.

