
Poster: A Measurement Framework to Quantify
Software Protections

Paolo Tonella, Mariano Ceccato
Fondazione Bruno Kessler

Trento, Italy
{tonella,ceccato}@fbk.eu

Bjorn De Sutter, Bart Coppens
Ghent University

Belgium
{Bjorn.DeSutter,Bart.Coppens}@elis.ugent.be

ABSTRACT
Programs often run under strict usage conditions (e.g., li-
cense restrictions) that could be broken in case of code tam-
pering. Possible attacks include malicious reverse engineer-
ing, tampering using static, dynamic and hybrid techniques,
on standard devices as well as in labs with additional special
purpose hardware equipment. ASPIRE (http://www.aspire-
fp7.eu) is a European FP7 research project devoted to the
elaboration of novel techniques to mitigate and prevent at-
tacks to code integrity, to code/data confidentiality and to
code lifting. This paper presents the ongoing activity to de-
fine a set of metrics aimed at quantifying the effect on code of
the ASPIRE protections. The metrics have been conceived
based on a measurement framework, which prescribes the
identification of the relevant code features to consider and
of their relationships with attacks and protections.

1. MEASUREMENT FRAMEWORK
This paper presents the ASPIRE plan and ongoing work

about using code metrics to estimate the impact of protec-
tions on code. To this aim, we have defined a measure-
ment framework that extends the Goal-Question-Metric ap-
proach [1] and we have instantiated it in the ASPIRE con-
text. The goal and the questions that we consider depend
on the protections that the project is elaborating and on
the attacks that are relevant for such protections. Start-
ing from attacks and protections, we identified what are the
relevant features that metrics should capture quantitatively.
Our measurement framework consists of the following steps:

1. [goal] Succinct definition of the goal the metrics are
to achieve in the quantification of protections

2. [questions] Expansion of the goal into a set of ques-
tions that will be answered once metrics values are
available

3. [measurable features] Identification of a set of mea-
surable features, based on protections and attacks, rel-
evant for answering the questions

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
ACM 978-1-4503-2957-6/14/11.
http://dx.doi.org/10.1145/2660267.2662360.

3.1. [protections] Enumeration of the protections whose
strength is to be quantified by metrics

3.2. [attacks] Enumeration of the attacks whose dif-
ficulty of realisation is to be quantified by metrics

3.3. [coverage] Iterative definition of measurable fea-
tures based on the coverage matrices: protections
× features and attacks × features

4. [metrics] Derivation of metrics from the measurable
features

Step 3.3 is particularly critical, since it aims at producing
the list of measurable features from which metrics are de-
rived. This step is conducted iteratively. Initially, based on
protections and attacks, a first list of measurable features
is produced. Then, coverage matrices are computed to as-
sociate protections/attacks and features. In the protection
× feature matrix, an entry equal to 1 indicates that there
is a direct, measurable effect of the protection on the con-
sidered feature. The entry is 0 otherwise. In the attack ×
feature matrix, an entry equal to 1 indicates that the at-
tack is obstructed by the (massive) presence of the feature.
Whenever these two matrices indicate poor coverage of pro-
tections/attacks, new measurable features must be defined.
Whenever a feature does not contribute to coverage of any
protection/attack, the feature is removed from the list.

In the next sections we instantiate the framework for the
ASPIRE protections.

2. GOAL
Software protection aims at increasing the cost incurred to

mount a successful attack, so as to make it not economically
convenient, typically by augmenting the time required to
complete an attack. At the same time, software protection
aims at minimal execution overhead associated with its pro-
tections. We can thus state the general goal of the metrics
as follows:

Goal of the metrics is to quantify the benefits and
costs associated with the adoption of the software pro-
tections. On one hand, we want to obtain indications
about the increased effort incurred by an attacker when
trying to tamper with the protected program. On the
other hand, we want to measure the execution over-
head introduced by the ASPIRE protections.

Metrics should provide approximate indications about the
effort increase that can be expected, hence they are in the
category of the complexity metrics. Even if such metrics



cannot be easily turned into attack time, they provide use-
ful indications about the amount of code elements that are
made more complex to analyse for an attacker. The met-
rics values give a clear picture of the amount of protection
introduced into the code, relatively to the original sensitive
code base and with respect to alternative configurations of
the same protection. Users of the ASPIRE protections will
obtain precise, quantitative indications about the impact of
each protection in the code.

The costs for the protections are quantified by perfor-
mance metrics, since the protection logics will necessarily
introduce some execution overhead. We measure also such
negative impact of the protections, so as to provide the AS-
PIRE users with the full quantitative picture, including mea-
surable benefits (increased code complexity) and measurable
costs (runtime overhead).

3. QUESTIONS
From the general goals that guide the definition of the

measurement framework, we derived a set of specific ques-
tions that metrics are expected to be able to answer:

• Q1: How large and how complex is the portion of
program that contains protections to be defeated by
the attacker?

• Q2: How much does the protected program differ from
the unprotected (hence, easily attackable) program?

• Q3: What is the runtime overhead incurred due to the
ASPIRE protections?

Protections might be applied to a subset of the whole
program. Question Q1 deals with the size of the protected
part. In fact, the larger is the portion subject to protection,
the more difficult is for the attacker to locate the specific
place where to start an attack. In case the protected part
is very small, the remaining unprotected part could be still
sensitive and exposed to easy attacks.

Question Q2 refines question Q1 by taking into account
the distance between protected and unprotected code. The
larger the complexity gap between the original unprotected
code and the protected code, the more difficult it is for the
attacker to understand and modify the program under at-
tack. In fact, assuming that unprotected code can be easily
attacked, the search space for the attacker consists mostly
of the differential code that is introduced by the protections.

While questions Q1 and Q2 deal with the benefits of the
code protections, question Q3 deals with its costs, which are
basically performance degradation costs.

4. MEASURABLE FEATURES
In the following, we describe the scope in which metrics

are defined. Such a scope consists of the protections under
development in the ASPIRE project and of the attacks that
the ASPIRE protections intend to block or delay. For each
protection and attack in the scope of ASPIRE we determined
the associated measurable features. A measurable feature
for a protection represents the impact on the source/binary
code associated with the application of the protection to a
program. A measurable feature for an attack consists of the
source/binary code elements that represent an obstacle for
the attackers and that must be circumvented to mount a
successful attack.

The ASPIRE protections fall into the following groups:

PT1: Data hiding. Sensitive program data are obfuscated
in the code.
PT2: Renewability. Code portions are periodically replaced
at run time, so as to prevent the reuse of attack knowledge
gathered on previous versions of the program.
PT3: Splitting. Code portions are isolated from the main
program and executed on a trusted device or host, which
communicates with the main client to query and update pro-
gram state.
PT4: VM obfuscation. Code portions are executed in ob-
fuscated form inside a special purpose obfuscated virtual
machine.
PT5: Remote attestation. Sensitive code portions are peri-
odically checked for integrity, in response to a remote attes-
tation request coming from a trusted device or host.
PT6: Binary obfuscation. Code obfuscation at the binary
level.

The attacks in the scope of ASPIRE can be classified as
follows:
AT1: Static structural code and data recovery. Reverse en-
gineering of abstract, structured program representations
from the source/binary code. In the scope of this attack
are only static approaches to reverse engineering.
AT2: Structural matching of binaries. Attackers match the
program code against known or related code fragments to
identify procedures relevant for the attack. A variant con-
sists of computing the difference between program versions
to identify the security patches applied to the older version.
AT3: Static tampering attacks. The attacker modifies the
code to disable protections and security checks.
AT4: Attacks on communication channels. The attacker
can observe and manipulate the messages exchanged over
the network as well as the client code generating such mes-
sages.
AT5: Fuzzing. The program is executed by a fuzzing tool
for automated input data generation. The execution is mon-
itored for security errors and information leakage.
AT6: Debugging. The program’s execution is interrupted at
break points or stepped and program variables are inspected
and modified through a debugger.
AT7: Dynamic structure and data analysis. The attacker
recovers the program’s control flow and data flow by means
of dynamic information obtained from execution traces.
AT8: Dynamic tampering. The attacker modifies the execu-
tion of the program by means of code injection, debuggers,
emulators or binary code rewriting.
AT9: Hybrid analysis. The attacker combines static and
dynamic analyses to retrieve relevant information about the
program.

Attacks considered here include both manual human at-
tacks and automated attacks using tools. Thus, measurable
features should capture not only the potency of protection
against manual human attack, but also the resilience against
automated attacks.

We have iteratively refined a list of relevant measurable
features based on the ASPIRE protections and attacks. Specif-
ically, we eventually obtained the following measurable fea-
tures that are affected by the ASPIRE protections and that
obstruct the attacks to the ASPIRE protections:
MF1: Code size. Larger programs are potentially more dif-
ficult to attack.
MF2: Chains between variable definitions and variable us-
ages. Data origin is more difficult to identify if the data



dependencies are more complicated in the program.
MF3: Complexity of the control flow. Reverse engineering
of the program structure is more difficult if the control flow
of the program is made more complicated.
MF4: Access to data structures and functions through chains
of pointers. Data manipulation and control flow manage-
ment are difficult to reverse engineer if they involve exten-
sive pointer computations.
MF5: Invocation of functions. The call graph structure can
potentially disclose relevant information to attackers, so a
more complex call graph structure may represent a higher
barrier for attackers.
MF6: Size of the execution traces. Dynamic analysis is more
difficult if long execution traces have to be analysed.
MF7: Variable-value propagation at run time. Complex
data definition chains at run time make it more difficult for
an attacker to detect the origin of a value in the program.
MF8: Control flow complexity upon execution. The dynamic
structure of the program provides an abstract program rep-
resentation which helps attackers; hence, making it more
complex can potentially increase the attack effort.
MF9: Complexity of dynamically allocated data structures.
Use of complex, pointer intensive data structures makes the
dynamic recovery of information about such data structures
more complicated.
MF10: Dynamic call stack. A complex dynamic structure of
the invocation graph may reduce the possibility of program
comprehension during debugging.

Other relevant measurable features deal with the perfor-
mance impact of a protection, which may represent an obsta-
cle to its adoption. We identified the following performance
features:
PF1: Execution time. The execution time of protected code
is expected to be higher than the execution time of the orig-
inal code, because of the additional protection logics.
PF2: Memory allocated to the program at run time. Addi-
tional data structures are often required to implement the
protection logics, which increases the memory footprint of
the protected program in comparison with the original pro-
gram.

The selected measurable features provide a reasonably
good coverage of protections and attacks, so we deem them
as an adequate starting point for the definition of metrics.

5. PRELIMINARY METRICS
From the measurable features, we have derived a list of

preliminary metrics. Metrics fall into two categories: (M1)
static metrics; (M2) dynamic metrics.
M1: The static ASPIRE metrics measure the static differ-

ence between the protected program P’ and the unprotected
program P. The measurement is taken either on the source
or the binary code, and depends on various code elements
in which P and P’ may differ:
DSTs Delta STatements: number of statements in which
the source/binary code of P and P’ differ.
DDDs Delta Data Dependencies: number of def-use pairs
in which the source/binary code of P and P’ differ.
DCDs Delta Control Dependencies: number of conditional/loop
control dependencies in which the source/binary code of P
and P’ differ.
DPTs Delta PoinTers: number of points-to relations (be-
tween pointers and pointed locations) in which the source/binary
code of P and P’ differ.

DCGs Delta Call Graph: number of call relations in which
the source/binary code of P and P’ differ.

M2: The dynamic ASPIRE metrics measure the dynamic
difference between the protected program P’ and the unpro-
tected program P. The measurement is taken on a set of
execution traces reporting the sequence of source or binary
code statements executed in the considered execution sce-
narios:
DSTd Delta STatements: number of statements in which
the source/binary execution traces for P and P’ differ.
DDDd Delta Data Dependencies: number of def-use pairs in
which the source/binary execution traces for P and P’ differ.
DCDd Delta Control Dependencies: number of conditional/loop
control dependencies in which the source/binary execution
traces for P and P’ differ.
DPTd Delta PoinTers: number of points-to relations (be-
tween pointers and pointed locations) in which the source/binary
execution traces for P and P’ differ.
DCGd Delta Call Graph: number of call relations in which
the source/binary execution traces for P and P’ differ.
DET Delta Execution Time: difference between the execu-
tion time of P’ and P.
DMS Delta Memory Size: difference between the memory
allocated for the execution of P’ and P.

To obtain the dynamic traces necessary to compute the
dynamic metrics M2, a set of test cases or executable sce-
narios are needed. Such test cases may be either provided
with the program to be protected, or it can be generated
automatically, e.g. by random or search based test case
generators, or by dynamic symbolic executors. Test cases
should exercise the protected portions of the program (test
cases that do not exercise those program portions can be ex-
cluded from consideration, since they do not contribute to
the difference). When using automated test case generators,
it is possible to configure them so that they explicitly target
the statements in the protected program portions.

6. CONCLUSION AND FUTURE WORK
We have presented a measurement framework that can be

used for the definition of metrics in the context of software
protection. Metrics are expected to quantify the impact of
protections on the code complexity, as well as the increased
difficulty of an attack. To obtain metrics with such prop-
erties, we iteratively refined them based on two coverage
matrices: protections × features and attacks × features.

In our future work, we will complete the derivation of
the metrics from the measurable features, we will develop a
tool to compute them and we will validate them empirically
on the systems considered as case studies in the ASPIRE
project.

Acknowledgments
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 609734.

7. REFERENCES
[1] V. R. Basili. Software modeling and measurement: the

goal/question/metric paradigm. 1992.


