
It’s a TRaP: Table Randomization and Protection
against Function-Reuse Attacks

Stephen Crane∗, Stijn Volckaert†, Felix Schuster‡, Christopher Liebchen§, Per Larsen∗,
Lucas Davi§, Ahmad-Reza Sadeghi§, Thorsten Holz‡, Bjorn De Sutter†, Michael Franz∗

∗University of California, Irvine
†Universiteit Gent, Belgium

‡HGI, Ruhr-Universität Bochum, Germany
§CASED, Technische Universität Darmstadt, Germany

ABSTRACT
Code-reuse attacks continue to evolve and remain a severe
threat to modern software. Recent research has proposed
a variety of defenses with differing security, efficiency, and
practicality characteristics. Whereas the majority of these
solutions focus on specific code-reuse attack variants such as
return-oriented programming (ROP), other attack variants
that reuse whole functions, such as the classic return-into-libc,
have received much less attention. Mitigating function-level
code reuse is highly challenging because one needs to distin-
guish a legitimate call to a function from an illegitimate one.
In fact, the recent counterfeit object-oriented programming
(COOP) attack demonstrated that the majority of code-reuse
defenses can be bypassed by reusing dynamically bound func-
tions, i.e., functions that are accessed through global offset
tables and virtual function tables, respectively.

In this paper, we first significantly improve and simplify
the COOP attack. Based on a strong adversarial model, we
then present the design and implementation of a compre-
hensive code-reuse defense which is resilient against reuse of
dynamically-bound functions. In particular, we introduce
two novel defense techniques: (i) a practical technique to
randomize the layout of tables containing code pointers re-
silient to memory disclosure and (ii) booby trap insertion
to mitigate the threat of brute-force attacks iterating over
the randomized tables. Booby traps serve the dual purpose
of preventing fault-analysis side channels and ensuring that
each table has sufficiently many possible permutations. Our
detailed evaluation demonstrates that our approach is secure,
effective, and practical. We prevent realistic, COOP-style
attacks against the Chromium web browser and report an av-
erage overhead of 1.1% on the SPEC CPU2006 benchmarks.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive Software; D.3.4 [Programming Languages]: Pro-
cessors—Compilers, Code generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813682.

General Terms
Security; Languages; Performance

Keywords
Code reuse; Exploits; Mitigations; COOP; C++; Compilers;
Diversity; Randomization

1. MOTIVATION
Memory corruption vulnerabilities due to incorrect mem-

ory management have plagued software written in low-level
languages for more than three decades. Many defenses have
been proposed in the literature, but few meet the require-
ments for industry adoption [37]. Data Execution Prevention
(DEP) is one of the few successful defenses that has seen
widespread adoption. As a result, adversaries quickly shifted
from injecting malicious code to reusing legitimate code.
Code-reuse attacks, such as return-into-libc (RILC) [26] or
return-oriented programming (ROP) [29], are far harder to
mitigate with reasonable cost, and remain an active research
topic.

One effective and efficient line of defense relies on random-
ization. The widespread address space layout randomization
(ASLR) technique, for instance, randomizes the base ad-
dresses of various memory regions. However, adversaries
can often exploit a memory corruption vulnerability to dis-
close the code layout, and rewrite the code-reuse payload
accordingly. Initially, the problem seemed to be the coarse-
grained nature of ASLR. This motivated many finer-grained
code randomization schemes (systematized by Larsen et al.
[22]). However, Snow et al. [35] demonstrated just-in-time
code reuse (JIT-ROP) that exploits memory disclosure and
malicious scripting to read the randomized code layout and
construct a compatible code-reuse payload on the fly. Just-in-
time code reuse can be countered by preventing the adversary
from directly reading the code layout [3, 17]. However, pre-
venting reading of code pages with execute-only memory is
insufficient, because the adversary can disclose the code lay-
out indirectly by reading code pointers on data pages. Crane
et al. [11] presented Readactor, a security framework against
all types of JIT-ROP attacks. Their solution allows for hiding
code pointers and just-in-time compiled code from adver-
saries. However, very recently Schuster et al. [31] describe a
new type of attack called counterfeit object-oriented program-
ming (COOP), which reuses whole functions by abusing the
C++ virtual dispatch mechanism. Targets of C++ virtual
function calls and calls to dynamically linked functions are



looked up in various tables; they are thus also referred to as
dynamically-bound functions.

At a high level, COOP attacks are conceptually similar to
return-into-libc (RILC) attacks, but reuse virtual functions
rather than functions from procedure linkage tables. These
function reuse attacks remain unaffected by sophisticated
JIT-ROP defenses such as Readactor [11] because these de-
fenses do not introduce randomness into the various dynamic
dispatch mechanisms found in today’s software. Moreover,
function reuse attacks are particularly hard to mitigate be-
cause legitimate function calls are hard to distinguish from
malicious ones.

Goals and contributions: Although many exploit mit-
igations can be bypassed [6, 30, 31, 35], more advanced
defense techniques are set to enter practice in the near future.
Prominent examples of these security enhancing mechanisms
are control-flow integrity [1], code-pointer integrity [21], and
fine-grained code randomization [22]. While these defenses
raise the bar to exploitation relative to current countermea-
sures, they differ with respect to performance, practicality,
and security. Moreover, the COOP attack bypasses all pub-
lished binary-only control-flow integrity (CFI) systems. In
light of this attack and since software diversity is known to
be efficient [14, 19], practical, and comprehensive [11], the
goal of this paper is to tackle the gaps in existing random-
ization approaches by preventing function reuse attacks such
as COOP and RILC. Specifically, we extend state-of-the-art
code randomization defenses by (i) permuting tables contain-
ing code pointers while preserving program semantics, (ii)
inserting booby traps into these tables to mitigate probing
attacks, and (iii) transforming tables so we can use execute-
only page permissions to prevent memory disclosure. Our
main contributions are:
• Resilience to Function-Reuse Attacks We present

Readactor++, the first probabilistic defense against
function reuse attacks such as COOP and RILC that
are not mitigated by existing code randomization tech-
niques. We designed our defense under the challenging
and realistic assumption that an adversary can read
and write arbitrary memory.
• Novel Techniques We introduce compile-time and

load-time transformations that work in concert to trans-
form and randomize virtual function tables and dy-
namic linker tables.
• Realistic and Extensive evaluation We provide a

full-fledged prototype of Readactor++ that protects
applications against function reuse attacks and present
the result of our detailed evaluation. We report an
additional average overhead of 1.1% on the compute-
intensive SPEC CPU2006 benchmarks over existing
execute-only systems. We also show that Readactor++

scales to programs as complex as Google’s popular
Chromium web browser.

2. TECHNICAL BACKGROUND
To provide the necessary background for the subsequent

discussion, we briefly review the relevant implementation
aspects of function dispatch and offensive techniques that
reuse whole functions.

2.1 Virtual Function Calls
Object-oriented languages such as C++ and Objective-C

support polymorphism; the target of a function call depends

on the type of the object that is used to make the call. C++

supports object orientation based on classes, which are simply
user-defined data types with fields and functions (also called
methods). Classes can be extended through inheritance of
methods and fields. In contrast to many modern languages,
C++ supports multiple inheritance.

The C++ compiler generates different call mechanisms for
invoking a receiving object’s method depending on whether
the callee is a virtual function. A subclass can override func-
tions marked as virtual in its base class(es). Non-virtual calls
are simply compiled to a static, direct call to the correspond-
ing function. For virtual function calls however, the exact
callee depends on the type of the object that receives the
call at runtime. Therefore, at virtual function call sites, the
program first retrieves a pointer to a virtual function table
(vtable) from the receiver object and then indexes into this
table to retrieve a function pointer to the correct callee. As
explained in Section 2.3, adversaries abuse indirect calls to
virtual functions by corrupting objects to point to a vtable
of their choice, thus controlling the call destination.

2.2 Dynamic Linking
Dynamic linking allows programmers to group functions

and classes with related functionality into a single module.
Programs can share dynamically linked modules, which sim-
plifies maintenance and reduces code duplication both on
disk and in memory.

Symbols are the basic building blocks of dynamic linking.
Each module defines a set of symbols that it exposes to other
modules through a symbol table. These symbols typically
correspond to exported functions and variables. A module
can refer indirectly to symbols which are not defined within
the module itself. Symbol addresses in the table are resolved
at run time by the dynamic linker. Many binary file formats
support lazy binding. With lazy binding, the addresses of
external symbols are resolved when they are first used. Lazy
binding can improve the startup time of some applications,
which is why some binary formats enable it by default.

The tables that support dynamic linking are an ideal target
for attackers. Computed symbol addresses for instance are
usually kept in tables in writable (and readable) memory.
Furthermore, to support lazy binding, the meta-data nec-
essary to resolve a specific symbol’s address is also kept in
readable memory at all times. These sources of information
can be of use in an information leakage attack.

In ELF binaries, several specific dynamic linking tables are
prone to information leakage. Attackers can collect function
addresses from the Global Offset Table (GOT). The GOT
stores the addresses of global and static elements of the
program, including the addresses of all imported functions
for use in the Procedure Linkage Table (PLT). The PLT
on the other hand contains a set of trampolines that each
correspond to a code pointer in the GOT. An attacker can
infer the layout of both the GOT and the PLT tables from
the relocation, symbol and string tables in the binary.

2.3 Exploitation and Code Reuse
Memory corruption is a well-known way to exploit vul-

nerabilities in programs written in unsafe languages [37].
A buffer overflow is a type of spatial memory corruption
whereas use-after-free is a type of temporal memory corrup-
tion. Adversaries use memory corruption to inject code or



data, to read memory contents, and to hijack the execution
by overwriting control-flow data.

Because DEP prevents code injection in most programs,
code-reuse attacks are most common. Initially, adversaries
reused code from linked libraries such as libc [26]. Therefore,
this class of attacks is called return-into-libc (RILC), even
when the reused functions are from another library. The
simplest RILC attack uses memory corruption to (i) prepare
for a function call by writing the arguments on the stack
and (ii) redirect the control flow to a dynamically linked
function such as system() in libc. In case the adversary
wants to perform more than one call to a library function,
the stack needs to be prepared for the next call. To do so,
adversaries reuse short instruction sequences inside functions,
called gadgets. Attacks that chain together gadgets whose
last instruction is a return (or another free branch [7, 8]) are
now known as ROP attacks [29].

Conventional ROP attacks are stack-oriented because they
require the return instruction to read the next gadget address
from the corrupted stack [29]. Since stack-based vulnera-
bilities are rare, attackers shifted to heap-oriented ROP.
However, these attacks require a heap-based vulnerability
along with a stack pivot sequence which sets the stack pointer
to the start of the injected return-oriented payload on the
heap. The former is typically achieved by vtable hijacking
attacks [28]. As described above, a vtable holds pointers
to virtual functions. While the function pointers are stored
in read-only memory, the vtable pointer itself is stored in
writable memory. Hence, an adversary can inject a mali-
cious vtable, overwrite the original vtable pointer, write the
return-oriented payload, and wait until the next indirect call
dereferences the vtable pointer to invoke a virtual function.
The correct virtual function is not called, due to the vtable
pointer overwrite, but instead the code referenced by the
previously injected malicious vtable is executed. In many
exploits, the first invoked sequence is the aforementioned
stack pivot, which sets the stack pointer to the start of the
injected return-oriented payload.

The more recent COOP code-reuse technique described by
Schuster et al. [31] starts by hijacking the control flow, as
in other code-reuse attacks. Instead of directing the control
flow to a chain of ROP gadgets, COOP attacks invoke a
sequence of virtual function calls on a set of counterfeit C++

objects. This carefully crafted exploit payload is injected
in bulk into a memory region that the attacker can access.
Notice that constructing this payload requires knowledge of
the exact layout of the relevant objects and vtables.

Whereas ROP relies on return instructions to transfer
control from one gadget to another, COOP uses a so-called
main loop gadget (or ML-G), which is defined as follows: “A
virtual function that iterates over a container [...] of pointers
to C++ objects and invokes a virtual function on each of these
objects” [31]. In addition, there are certain platform-specific
requirements that a virtual function must meet in order to
be usable as an ML-G. On x86-64, for example, the calling
convention specifies a set of registers that are used for passing
explicit arguments to C++ functions and which should not
be overwritten within the ML-G’s loop. The ML-G is the
first virtual function that is executed in a COOP attack and
its role is to dispatch to the other virtual functions, called
vfgadgets, that make up the COOP attack. Similar to ROP
gadgets, vfgadgets fall into different categories such as those
that perform arithmetic and logic operations, read and write

 virtual ~Z() {      
 
     

 } };

  delete objA;

  objB->unref();

class X {
public:
  virtual ~X(); };

class Y {
public:
  virtual void unref(); };

class Z {
public:
  X *objA;
  Y *objB;

Z::~Z()

vfgadget #1 vfgadget #2 ...

initial attacker-
controlled virt. 

function call
02, 4, ...

1A

A

B

B

3A 5A

control flow in REC-G-based COOPREC-G code example

Figure 1: Left: C++ code example of a REC-
G (Z::~Z()); right: the corresponding adversary-
induced control flow; arrows indicate a calls rela-
tionship and are numbered in the order of their ex-
ecution. The labels A and B refer to the call sites
in Z::~Z() respectively.

to memory, manipulate the stack and registers, etc. We refer
to Schuster et al. for a full treatment of COOP [31].

3. EXTENDING COOP
It is natural to ask whether COOP attacks can be miti-

gated by eliminating potential ML-Gs in an application. To
disprove this hypothesis, we developed two refined versions of
COOP that do not require ML-Gs and emulate the original
main loop through recursion and loop unrolling. For brevity,
we only discuss the x86-64 platform in this section. However,
the described concepts directly extend to other platforms
such as x86-32.

Recursive COOP. In general, all computation expressed
through iteration can also be expressed via recursion. This
also applies to COOP’s main loop. We identified a common
C++ code pattern that can be used to emulate an ML-G
using recursion without compromising the expressiveness
of COOP. We refer to a virtual function that follows this
pattern as a REC-G (recursion vfgadget). To understand how
a REC-G works, consider the C++ code in Figure 1: Z::~Z()
is a typical (virtual) destructor. It deletes the object objA

and removes a reference to objB. Consequently, a virtual
function is invoked on both objects objA and objB. In case
Z::~Z() is invoked on an adversary-controlled counterfeit
object, the adversary effectively controls the pointers *objA

and *objB and he can make these pointers point to injected
counterfeit objects.

Accordingly, Z::~Z(), and REC-Gs in general, allow the
adversary to make two consecutive COOP-style vfgadget
invocations; we refer to these as invocations A and B . How-
ever, by using B to repeatedly invoke the REC-G itself again,
the adversary can invoke a new vfgadgets via A with each
recursion. This effectively enables the adversary to invoke an
arbitrary number of vfgadgets given a REC-G. The right side
of Figure 1 schematically depicts the adversary-induced con-
trol flow in a REC-G-based COOP attack: actual vfgadgets
are invoked via A , whereas B is used to branch recursively
to the REC-G (here Z::~Z()). Note how any compiler-



generated x86-64 assembly implementation of Z::~Z() is
unlikely to touch argument registers: Y::unref() does not
take any arguments and, by definition, the same applies to
the destructors X::~X() and Z::~Z(). Accordingly, for the
REC-G Z::~Z(), the adversary can freely use these registers
to pass arguments from one vfgadget to another (all invoked
via call site A ) as described by Schuster et al. [31]. We stress
that not only destructors but any virtual function that fol-
lows the pattern of Z::~Z() and consecutively invokes virtual
functions on (at least) two distinct and adversary-controlled
object pointers may be used as a REC-G.

Intuitively, REC-Gs should generally be prevalent in C++

applications. Indeed, by applying basic pattern matching on
x86-64 assembly code, we were able to identify a range of
easy-to-use REC-Gs in different common C++ libraries and
popular applications. For example, Figure 8 in the Appendix
shows the C++ code of a side-effect free REC-G in the Boost
C++ library collection; figures 9, 10, and 11 depict similar
REC-Gs in the Qt C++ framework, Microsoft’s Visual C++

runtime, and the Chromium web browser respectively.

Unrolled COOP. Given a virtual function with not only
two consecutive virtual function invocations (like a REC-G)
but many, it is also possible to mount a simple unrolled
COOP attack that does not rely on a loop or recursion.
Consider for example the following virtual function:

void C::func() {
delete obj0; delete obj1; delete obj2; delete obj3;}

If objects obj0 through obj3 each feature a virtual destruc-
tor, C::func() can be misused to consecutively invoke four
vfgadgets. We refer to virtual functions that enable un-
rolled COOP as UNR-Gs. Observe that, similar to Z::~Z(),
a compiler-generated x86-64 assembly implementation of
C::func() is unlikely to touch any argument registers. This
again enables the adversary to freely pass arguments from
one vfgadget to another.

We found that even long UNR-Gs are not uncommon in
larger C++ applications. For example, in recent Chromium
versions, the virtual destructor of the class SVGPatternEle-

ment is an UNR-G allowing for as many as 13 consecutive
virtual function invocations. In practice, much shorter UNR-
Gs are already sufficient to compromise a system; we demon-
strate in Section 7 that the execution of three vfgadgets is
sufficient for an adversary to execute arbitrary code.

4. ADVERSARY MODEL
We consider a powerful, yet realistic adversary model that

is consistent with previous work on code-reuse attacks and
mitigations [11, 13, 24, 31, 35]. We rely on several existing
and complementary mitigations for comprehensive coverage.

Adversarial Capabilities.
• System Configuration: The adversary is aware of

the applied defenses and has access to the source and
non-randomized binary of the target application.
• Vulnerability: The target application suffers from a

memory corruption vulnerability that allows the adver-
sary to corrupt memory objects. We assume that the
attacker can exploit this flaw to read from and write
to arbitrary memory addresses.
• Scripting Environment: The attacker can exploit

a scripting environment to process memory disclosure

information at run time, adjust the attack payload, and
subsequently launch a code-reuse attack.

Defensive Requirements.
• Writable ⊕ Executable Memory: The target sys-

tem ensures that memory can be either writable or
executable, but not both. This prevents an attacker
from either injecting new code or modifying existing
executable code.
• Execute-only Memory: We build on previous sys-

tems which enforce execute-only memory pages, i.e., the
CPU can fetch instructions but normal read or write
accesses trigger an access violation. See Section 5.2 for
further discussion of this component.
• JIT Protection: We assume mitigations are in place

to prevent code injection into the JIT code cache and
prevent reuse of JIT compiled code [11, 18, 36]. These
protections are orthogonal to Readactor++.
• Brute-forcing Mitigation: We require that the pro-

tected software does not automatically restart after
hitting a booby trap which terminates execution. In
the browser context, this may be accomplished by dis-
playing a warning message to the user and closing the
offending process.

5. Readactor++

We start by giving a conceptual overview of our approach,
Readactor++, and then discuss each of its major components.

5.1 Overview
Our goal is to show that probabilistic defenses can thwart

function-reuse attacks. When combined with memory leakage
resilient code randomization, we can protect against the full
range of known code-reuse attacks.

Unlike ROP attacks, which reuse short instruction se-
quences, COOP and RILC reuse dynamically-bound func-
tions called through code pointers in read-only memory. To
construct a COOP payload, the adversary must know (or
disclose) the exact representations of objects and vtables.
Similarly, RILC attacks invoke functions through the PLT
which requires knowledge of the layout of this table. Our key
insight is that we can permute and hide the contents of these
tables even from an adversary that can disclose arbitrary
readable memory.

Figure 2 shows a system overview. We use a staged random-
ization approach [5, 24] in which binaries are instrumented
during compilation so that they randomize themselves when
loaded into memory. Our compiler maintains all necessary
information for load-time randomization and stores this meta-
data in the binary for use at load time. Since we gather this
information during compilation, our prototype does not need
to perform static analysis at load time. Note that although
our prototype uses a compiler, our approach is compatible
with binary rewriting as long as the vtable hierarchy and all
virtual and PLT call sites can be recovered through static
analyis, as in VTint [40].

During compilation (left side of Figure 2), we first ensure
that code can be mapped in execute-only memory and per-
form code-pointer hiding to prevent function pointers and
return addresses from disclosing the code layout [11]. Most
importantly, we use a novel transformation step to make
vtables compatible with execute-only memory and protect
function pointers from disclosure. We split virtual tables into



  Compiler & Linker

Virtual table splitting

Booby trapping

  Protected App   Protected Process

Embed RandoLib

1

2

4

Executable

Library RandoLib
TraP Info

TraP Info

RW

R-only

X-only

Heap
Stacks

Functions

PLTs

RVTables
trampolines
XVTables

Collect TRaP info3

Figure 2: System overview. A specialized compiler (left) creates Readactor++ apps (middle) that randomize
their in-memory representation (right). A small runtime component, RandoLib, uses TRaP meta-data em-
bedded in binaries to safely permute the layout of vtables and procedure linkage tables without the need to
disassemble the entire application. We prevent disclosure of randomized code using execute-only memory.

Data pages (RW)

Function foo:
ins1

Code pages (RX)

&foo

adversary

Code disclosure prevented

Code 
disclosure
possible

Trampoline foo_tramp: 
JMP &foo

Code pages (X-only)

  Traditional App  Readactor++ App

Data pages (RW)

&foo_tramp

Function foo:
ins1

Code pages (X-only)

Figure 3: In traditional apps, adversaries can locate
and read functions by following code pointers (left).
We only store pointers to trampolines in readable
memory (right). Trampolines prevent indirect dis-
closure of the function layout because trampolines
are non-readable and their layout is randomized in-
dependently of other code.

a read-only part (rvtable) and an execute-only part (xvtable),
which we randomize at load time. Section 5.3 elaborates on
this step.

Second, we insert booby trap entries [10] in the xvtables.
We also insert booby traps into the PLT during linking.
Booby traps are code snippets that lie dormant during nor-
mal program execution and terminate the program and alert
the host system if they are ever invoked. Booby traps pre-
vent adversaries from randomly executing the vtable or PLT
entries to indirectly disclose the table layout; Section 5.5
provides the details.

The third compilation step collects meta-data which we
call “TRanslation and Protection” (TRaP) information. We
embed TRaP information in the output binaries to support
rapid load-time randomization. We link our runtime ran-
domization engine, RandoLib, into the output binary in the
final and fourth step.

The middle third of Figure 2 shows the contents of a
protected binary. The main executable and each program
library contains TRaP information that is read by RandoLib

and used to randomize the vtables and PLT at load time. We
elaborate on our vtable and PLT randomization techniques
in Section 5.3 and 5.4, respectively.

The right side of Figure 2 gives an overview of the in-
memory representation of applications protected by Readac-
tor++. Global variables, the program stacks, and the heap
are stored in readable and writable memory. All code areas
are subject to fine-grained randomization and are protected
against direct and indirect disclosure of the code layout;
Section 5.2 provides additional details. Vtables, which are
normally stored in read-only memory, are split into a read-
only part (rvtable) and an execute-only part (xvtable) which
is randomized. Because rvtables can be read by attackers,
they do not store any code pointers directly. Instead, rvtables
contain a pointer to their corresponding xvtable. Each entry
in an xvtable is a direct jump rather than a code pointer so
the table can be stored in execute-only memory to prevent
adversaries from reading its contents.

5.2 Countering Memory Disclosure
Attacks against web browsers and other software that host

scripting engines are particularly powerful because the com-
bination of adversarial scripting and memory corruption can
often allow adversaries to access arbitrary memory pages. In
general, we distinguish between direct memory disclosure,
where the adversary read code pages as data [35], and in-
direct memory disclosure, where the adversary reads code
pointers stored in program vtables, stacks, and heaps to
learn the code layout while avoiding direct accesses to code
pages [13]. Execute-only schemes such as XnR [3] and Hi-
deM [17] prevent direct memory disclosure. Readactor [11]
offers additional protection against indirect disclosure of
code through code pointer harvesting. To prevent indirect
disclosure, the Readactor system uses a technique called
code-pointer hiding. They replace all code pointers stored
into memory with pointers to trampolines instead as shown
in Figure 3. Trampolines are simply direct jumps with the
same target as the code pointer it replaces. Because tram-
polines are code stored in execute-only memory, adversaries
cannot “dereference” trampolines to disclose the code lay-
out. Execute-only memory and code-pointer hiding provides
the foundation that we build upon when randomizing tables
containing code pointers.

5.3 Vtable Randomization
C++ objects contain a hidden member, vptr, which points

to a vtable. We could randomize the layout of objects to
make the vptr harder to locate. However, C++ objects are
stored on the heap and stack which are necessarily readable,
so an adversary can use a memory disclosure vulnerability



A::func1

offset

rtti_ptr

vtable

Class A

A::func1

A::func2

data pages (RW)

code pages (RX)

A::func2

A::func2

offset

rtti_ptr

rvtable

Class A

xvtable

data pages (RW)

randomized code pages (X)

A::func1

  (trap)

jmp A::func2

xvtable

  (trap)

jmp A::func1

adversary
Code 
disclosure
prevented

Code 
disclosure 
possible

1 1

2

  Traditional App  Readactor++ App

Figure 4: Without protection, an adversary that
can read arbitrary memory can read the vtable con-
tents and disclose the function layout. In Readac-
tor++ apps, the readable part of vtables (rvtable)
contain no code pointers and the executable and ran-
domized part (xvtable) is not readable.

to parse the heap and discover how objects of a given class
are randomized. We therefore chose to randomize the layout
of vtables instead.

If we only randomize the ordering of vtable entries, an ad-
versary can still follow vptr’s in the heap or stack to disclose
the vtable layout. Legitimate vtables are most commonly
stored on pages with read permissions. To prevent disclosure
of the vtable layout after randomization, we want to prevent
adversaries from reading the part of vtables that contains
code pointers. Our solution is to transform read-only code
pointers into execute-only code. We encode each code pointer
p as a direct jump using the value of p as the immediate
operand. In addition to code pointers, vtables contain other
data such as Run-Time Type Information (RTTI). We there-
fore split each vtable into two parts: a read-only part called
the rvtable and an execute-only part called the xvtable. We
can either place the rvtable and xvtable on successive mem-
ory pages or we can add a pointer from the rvtable to the
xvtable. If we choose the former approach, we need to pad
rvtables to the nearest page boundary which wastes mem-
ory. We instead add a new field to the rvtable, xpointer,
referencing the corresponding xvtable. Figure 4 shows how a
traditional vtable (left) is split into an rvtable and an xvtable
(right).

After splitting the vtable and inserting booby trap entries,
we can securely randomize the ordering of each class’s virtual
functions. Since we store the xvtable in execute-only memory,
an attacker cannot de-randomize the ordering of functions
in the xvtable. We randomly permute the ordering of each
class’s virtual functions and rewrite all vtables in a semantics
preserving way; Section 6.2 describes how we do this. After

randomizing the function ordering in the vtables, we must
rewrite all virtual call sites in the program to use the new,
permuted ordering. These virtual calls use a static offset
from the start of a vtable to dispatch to the correct function.
We rewrite this offset to correspond to the new, randomized
index of the callee. As Readactor++ extends Readactor, all
virtual call sites are also augmented with trampolines that
hide actual return addresses at run time.

5.4 Procedure Linkage Table Randomization
A call to a dynamically linked function goes though the

PLT of the calling module. Each entry in the PLT is a code
sequence that (i) loads a function pointer from the GOT into
a register and (ii) transfers control to the target function
through an indirect jump. To enable lazy binding, each
function’s default address in the GOT initially points to a
function that resolves the external function address. The left
side of Figure 5 shows the lazy binding process.

RILC attacks must know or discover the layout of the
PLT to succeed. For ASLR’ed Linux applications, PLT
entries are laid out contiguously and only the base address
is randomized. One way to improve security is to eliminate
the PLT altogether. However, this approach is problematic
because the PLT or similar tables on Windows are essential
to support dynamically linked functions.

As shown on the right side of Figure 5, we chose to random-
ize the order of PLT entries, insert booby traps, and store the
result in execute-only memory. If we had only done this, an
adversary could still read GOT or relocation information to
disclose the ordering of PLT entries indirectly. We therefore
switch from lazy to eager binding resolution of PLT entries.
This allows us to discard the GOT. Our specialized compiler
determines which calls will be routed through the PLT and
stores the location of each such call site in the TRaP section
of the output ELF file. At load time, our runtime randomiza-
tion engine, RandoLib, converts all pointers in the readable
GOT into execute-only trampolines in the PLT. To do so,
we precompute all of the function addresses in the GOT.
Then, we rewrite all the trampolines in the PLT so they
jump to the target function directly rather than reading the
function address from the GOT and indirectly jumping to it.
This allows us to remove the code pointers from the GOT
altogether. By stripping the GOT from all code pointers, we
can also remove its associated relocation information from
the memory. We then shuffle the trampolines in the PLT.
This transformation prevents attackers from inferring the
layout of the PLT or leaking the code pointers it contains.
Finally, we use the TRaP information stored by our compiler
to rewrite all call sites that point into the PLT with the
corresponding randomized address.

5.5 Countering Guessing Attacks
Since we prevent attackers from directly reading valuable

tables such as the PLT and vtables, we expect that attackers
may try to execute xvtable entries and other addresses in
execute-only memory to guess their contents. Researchers
have shown that brute-force attacks can bypass diversity,
especially in services that automatically restart without re-
randomization after crashing [6, 15, 33, 34]. We use software
booby traps to counter this threat [10]. The idea is that
booby traps lie dormant during normal program operation
but are likely triggered by adversarial probing. Booby traps
therefore terminate the program immediately and notify an
administrator or security software of the issue. Terminating



PUSH .hello_str
CALL printf@plt

.text (RX)

JMP *(printf@got)
PUSH printf_idx
CALL resolveaddr

.plt (RX)

.got (RW)
printf@plt+5

PUSH .hello_str
JMP printf_trampoline
return_site_1:

randomized .text (X)

MOV printf_addr, eax
JMP *eax

randomized .plt (X)

 (trap)

adversary
Code pointer
disclosure 
prevented

Pointer 
disclosure 
possible

CALL printf@plt
JMP return_site_1

randomized trampolines (X)1 1

2

3

  Traditional App  Readactor++ App

2

Figure 5: In traditional apps, functions call PLT
entries directly (left). In Readactor++ apps, func-
tions first jump to a trampoline which performs the
actual call, so that actual return addresses are not
leaked. Moreover, we resolve the targets of PLT
entries, remove the GOT, and add booby traps to
deter probing.

the program causes it to re-randomize as it starts up again,
invalidating whatever knowledge the adversary has collected
so far. When randomizing xvtables and procedure linkage
tables, we insert booby traps. These are simply direct jumps
to a booby trap handling routine. This probabilistically
bounds the number of undetected guesses.

We take special care to ensure that there are many possible
permutations for each table. Specifically, we ensure that
each permuted table contains at least nmin = 16 entries. As
explained Section 6.2, portions of each xvtable, which we
call sub-xvtables, are permuted together. However we cannot
alter the relative ordering of sub-xvtables. Thus, we ensure
that each sub-xvtable has at least nmin = 16 entries. We
also require that at least k = 1

4
of the entries of each table

are booby traps, so guessing the table entries by executing
them will quickly lead to detection. Given a class with n
virtual functions, we add max(dk · ne, nmin − n) booby traps
to its xvtable to meet these requirements. Both nmin and k
are fully tunable for increased security. See Section 7.1 for a
discussion of the security impact of these parameters.

6. IMPLEMENTATION
Our prototype implementation targets x86-64 Linux appli-

cations compiled with the LLVM/Clang compiler. However,
our techniques are fully generalizable to other combinations
of operating systems, compilers, and microarchitectures.

We prepare applications for load-time randomization using
a modified compiler which we describe in Section 6.1. We
then link the runtime randomization engine, described in
Section 6.2, into the resulting binary. When the binary is
loaded, the randomization engine uses the embedded TRaP
information to randomize the host binary without the need
for disassembly or complex binary analysis to recover the
necessary information. Protected binaries are as simple to
distribute and patch as current binaries and preserve com-
patibility with virus scanners, code signing, and whitelisting.

A system that hosts Readactor++ binaries must support
execute-only memory permissions; we build our implementa-
tion of Readactor++ on top of the Readactor system [11] in
order to also mitigate indirect code disclosure.

6.1 Compiler Support
We modified the LLVM compiler to (i) generate code

that can be mapped with execute-only permissions, (ii) split
vtables into read-only and execute-only parts, and (iii) collect
TRaP information to facilitate randomization of vtables and
linker tables at load time.

Code and Data Separation As with other systems
which require execute-only code pages, we must ensure that
legitimate code never tries to read itself. We modify the
LLVM compiler infrastructure and the Gold linker to ensure
that the compiler will never mix code and readable data.

Splitting Vtables As we discuss in Section 5.3, we must
split vtables into a read-only rvtable and an execute-only
xvtable in order to protect the randomized table contents
from disclosure. We modify the Clang C++ front end to split
vtables accordingly.

We must also modify all virtual call sites to handle the new,
split layout. Rewritten call sites must first dereference the
vtable pointer from the object, as usual, to get the address
of the correct rvtable. The call must then dereference the
xvtable pointer found in this rvtable. After the xvtable
address is obtained, the virtual call indexes into this table to
find the correct trampoline address for the virtual function,
which can then be called. Altogether, we add one additional
memory reference to each virtual method call.

In C++, one can also store the address of a class method
into a method pointer and later dereference this pointer to
call the method. We also handle this slightly more complex
case by storing an index in the method pointer struct, as
normal. We then handle the xvtable pointer dereference
whenever a method pointer is invoked.

Collecting TRaP Information We use several types of
information, available at compile time, to properly randomize
the PLT and vtable at load time. We embed this meta-data
in a special section of the output object files to avoid the
need for static binary analysis.

To randomize the xvtables, we need the location of each
class’s vtable, as well as the number of virtual functions in
the class, which is not present in the binary. We modify both
the C++ front end and the code emission back end of LLVM
to add additional metadata (TRaP information) which marks
the location of and number of functions in each vtable for use
at load time. We also mark the class inheritance hierarchy
for each component of the vtable, since this information is
difficult to derive from the vtable alone.

Additionally, we need the location of each reference to the
PLT and each virtual call in the program code, in order to
rewrite these uses after randomization. We modify the Clang
C++ front end to find all PLT references and virtual function
call sites and modify the compiler back end to mark these
locations in the binary. Specifically, we mark instructions
which hold the index of a virtual function so that these
indices can be rewritten.

6.2 Runtime Randomization Engine
Our runtime randomization component, RandoLib, con-

sumes the TRaP information emitted by the compiler, per-
mutes the PLT and all vtables, and finally updates all ref-



A::func1
A::func2

A-in-A

primary vtable

A::func1
B::func2

A-in-B

primary vtable

B::func3 B-in-B

C::func1
C::func2

A-in-C

primary vtable

A::func1
D::func2

A-in-D1

primary vtable

C::func1
D::func2

secondary vtable

B::func3
D::func4
D::func5

A-in-D0

B-in-D0

D-in-D0

Class D

Class B

Class A

Class C

Figure 6: Example class hierarchy rooted in class A.
The direct subclasses of A use single inheritance and
provide their own implementation of func2. Class
D uses multiple inheritance and therefore has two
virtual function tables.

erences to these tables to refer to a new, randomized index.
We built RandoLib as a dynamically linked module that ran-
domizes the other loaded modules as the program starts.
Our modified compiler automatically emits an initialization
routine into each module that registers the module with
RandoLib. RandoLib then randomizes all registered modules
together after all modules have been loaded but before the
dynamic linker passes control to the program entry point.
RandoLib can then be safely unloaded after it has random-

ized the registered modules. When it unloads, it frees all of
the memory it had allocated and overwrites all of the code
pointers in its private data with zeros. It therefore does not
increase the attack surface.

Identifying tables First, RandoLib collects the locations
and sizes of the PLT and xvtables from the TRaP section. Af-
ter identifying all xvtables, we must identify and distinguish
all copies of each class’s xvtable. Vtables contain sub-vtables
corresponding to the vtables of their base classes, and each
of these corresponding sub-vtables must be randomized in
the same order. To see why this process is necessary, we
give an example of a simple inheritance hierarchy and the
corresponding vtable layouts. Figure 6 shows the “diamond”
inheritance pattern in which a class D has two base classes,
B and C that both inherit from a single class A. If a call is
made to func1 on an instance of D, the target of the call
depends on the call site. If the call site expects an instance
of C, C::func1 is invoked, and A::func1 is invoked in all
other cases. This behavior is implemented using a primary
and secondary vtable for instances of class D (see bottom
third of Figure 6). The primary vtable is used from call sites
that expect objects of type A, B, or D and the second vtable
is used when a call expects an instance of class C. For this
reason, all instances of class D contain two vtable pointers.

To explain why xvtables must be split into sub-xvtables
for randomization, let us consider randomizing the class
hierarchy shown in Figure 6. Three classes derive directly or
indirectly from class A. Each of these subclasses therefore

has a set of vtable entries that correspond to the virtual
methods defined by class A; we call such sets sub-vtables.
The layout of a sub-vtable must be the same for all classes
related by inheritance.

In Figure 6, the first sub-vtables shared among the class A
and its descendants share the A-in- prefix in their names. A
virtual method call that operates on an object of type A can
effectively use any entry in the A-in- sub-vtables because any
object of one of A’s sub-types can be assigned to a pointer
of type A. This is why we must ensure that the layouts of
each of these sub-vtables are mutually compatible.

Since the TRaP section contains the locations and sizes of
whole xvtables, RandoLib must first split the xvtables into
sub-xvtables and then group sub-xvtables together by their
type. RandoLib relies on the vtable inheritance relationships
to identify sub-xvtables. Consider again the previous exam-
ple. If we know that B’s xvtable is based on A’s xvtable,
then the compiler will guarantee that the lower part of B’s
xvtable will be the A-in-B sub-xvtable.

Information about the inheritance relationships between
xvtables is not readily available at run time. This informa-
tion can in principle be derived from the Run-Time Type
Information (RTTI) structures that are embedded in C++

programs by default [9]. During the course of this research,
however, we have found several ambiguous cases where un-
used vtables are not emitted and therefore we could not
always correctly disambiguate complex vtable layouts. Addi-
tionally, we found that compilers implementing the Itanium
ABI do not always agree on sub-vtable layouts, although
this is presumably due to compiler bugs. We have therefore
chosen to embed the names of the bases for each sub-vtable
in the TRaP information as well. For example, we mark
classes A, B, D as the bases of the primary vtable of Class
D in Figure 6. This information, combined with the RTTI
structures, is sufficient to recover the whole xvtable hierarchy
in the program. If it is undesirable to embed C++ RTTI
information in the binary, we can easily extend the TRaP
information to store all necessary meta-data.

Identifying references Next, RandoLib resolves the tar-
get of all table references. These references must be updated
to reflect the new table layouts after permutation.

The TRaP section contains the locations of all index op-
erations into the PLT and vtables. To save space we do
not embed the indices used in these references in the TRaP
section, since they can be read by disassembling the marked
instructions. We can disassemble references quickly and
accurately because they are valid, single instructions.

The TRaP section also contains the name of the intended
target class for each xvtable reference. RandoLib can then
resolve the target to the set of sub-xvtables corresponding
to receiving class, which are all randomized using the same
permutation as described previously.

Randomization Finally RandoLib randomly permutes all
tables identified in the first step and updates the references
identified in the second step.

We use Algorithm 1 to update xvtable references. In this
algorithm, G is a directed graph that represents the class
hierarchy. We calculate G based on the RTTI information.
Each node in G represents a class that has an array of sub-
xvtable pointers (V Tables). For each sub-xvtable, we store a
link to the sub-xvtable that preceded it in the original (whole)
xvtable (Preceding) and the offset of the sub-xvtable within
that original xvtable (Offset). XRefsV ector is an array of



(Location, ClassName, Index) tuples. Each tuple represents
one xvtable reference. The ClassName, which represents
the name of the intended object type for the virtual method
call, as well as the Location are read from the TRaP section.
We determine the Index by disassembling the reference.

For each xvtable reference, we start by finding the primary
xvtable for the call’s intended target type (line 4). We then
resolve the reference to an exact sub-xvtable group based
on the sub-xvtable offsets (line 5-7). We then calculate the
index of the intended target of the reference within that
sub-xvtable and update the reference (line 8-10).

Algorithm 1 Update vtable references after randomization.

1: function AdaptVirtualCalls(G,V CallV ector)
2: for all XRef in XRefsV ector do
3: Class ← G.Find(XRef.ClassName)
4: SubV tbl ← Class.VTables[0]

5: while XRef.Index < SubV tbl.Offset do
6: SubV tbl ← SubV tbl.Preceding
7: end while

8: Idx ← XRef.Index− SubV tbl.Offset
9: Tmp ← SubV tbl.Permutation[Idx]

10: XRef.Index ← SubV tbl.Offset+ Tmp
11: end for
12: end function

7. SECURITY EVALUATION
We aim to prevent attacks utilizing whole-function reuse

such as RILC and COOP; our techniques complement the
existing Readactor approach which was shown by Crane et al.
to be resilient to all known ROP variants in realistic attack
scenarios [11]. Here, we evaluate the defensive strength of
Readactor++ in the face of an adversary aiming at mounting
a whole-function reuse under the conditions described in
Section 4.

Readactor provides the invariant that, modulo side chan-
nels and plain guessing, the adversary cannot disclose any
code pointers except for those pointing to trampolines. How-
ever, given control over an indirect branch, knowledge of
the address of a function’s trampoline is still sufficient for
the adversary to invoke that function. Locating a function’s
trampoline is in many cases simple for the adversary, be-
cause trampoline pointers are typically stored at fixed offsets
in vtables and other readable data structures such as the
PLT. Accordingly, this invariant does not conceptually hinder
whole-function reuse.

With Readactor++ in place, the adversary can still disclose
the addresses of trampolines that get stored into readable
structures. However, as Readactor++ randomizes the layouts
of vtables and the PLT, identifying the matching trampoline
to a function becomes a challenge for the adversary. Ne-
glecting possible side channel attacks, we observe that an
adversary can follow two strategies to overcome this obstacle:
(i) reusing functions whose trampoline pointers are stored
in large non-randomized and readable data structures (e.g.,
an application may employ custom function pointer tables
with fixed or predictable entries); or (ii) guessing of entries in
randomized xvtables or the PLT. Readable tables of trampo-
line pointers are problematic, and we propose to extend the
Readactor++ protections to these through either source code
modification, or detection and automatic rewriting during
compilation, when possible. We discuss this case further in

Section 9. We examine the probability of the latter strategy,
guessing of randomized tables’ entries, next.

7.1 Guessing Table Layouts
Our adversary model (Section 4) assumes a brute-forcing

mitigation that permanently terminates an application after
a booby trap was hit. Booby traps will not be hit during
correct program execution. Even benign programming errors
have extremely low likelihood of accidently triggering a booby
trap, since we place booby traps in tables the programmer
should never access directly.

Since hitting a booby trap will terminate the attack, a
successful adversary needs to make an uninterrupted sequence
of good guesses. What exactly constitutes a good guess
depends on the concrete attack scenario. In the best case,
the adversary always needs to guess a particular entry in
a particular xvtable or the PLT; in the worst case, a good
guess for the adversary may be any entry that is not a booby
trap. Considering the nature of existing COOP and RILC
attacks [31, 39], we believe that the former case is the most
realistic. Further, assuming in favor of the adversary that
he will only attempt to guess entries in tables with exactly
16 entries (the minimum), we can roughly approximate the
probability for Readactor++ to prevent an attack that reuses
n functions with P ≈ 1 − ( 1

16
)n. Our experiments in the

following indicate that an attacker needs at least two or
three hand-picked functions (from likely distinct tables) to
mount a successful RILC or COOP attack respectively. Thus,
the probability of preventing these attacks is lower bounded
by PRILC,min ≈ 1− ( 1

16
)2 = 0.9960 and PCOOP,min ≈ 1−

( 1
16

)3 = 0.9997.

7.2 Practical Attacks
To evaluate the practical strength of Readactor++, we re-

introduced an exploitable bug (CVE-2014-3176) to a recent
version of Chromium on Ubuntu 14.04 64-bit. The vulnera-
bility allows an attacker to manipulate JavaScript objects in
memory and, consequently, to construct an arbitrary memory
read-write primitive. This can be used to reliably disclose
memory pointers and hijack the control flow.

We created RILC and COOP exploits for the vulnerability.
As is common practice, our exploits change the protection
of a memory region in order to execute injected shellcode.
For a successful RILC attack, an attacker must correctly
guess two function pointers. The first function loads all
needed arguments into the register and the second is the
memory protection function. In contrast to RILC attacks
where the gadgets are chained implicitly through return
instructions, COOP attacks require an extra function to
chain the gadgets. This third function may be a conventional
ML-G, a REC-G, or an UNR-G (see Section 3). In our
experiments we successfully executed both attacks, including
all COOP variants, on an unprotected version of Chromium.
After we applied Readactor++ all attacks failed, as expected.

8. PERFORMANCE EVALUATION
We evaluate the performance of Readactor++ on computa-

tionally-intensive code with virtual method dispatch using the
C++ benchmarks in SPEC CPU2006. Additionally we test
Readactor++ on a complex, real-world C++ application, the
Chromium web browser. Overall, we find that Readactor++

introduces a minor overhead of 1.1%. We measured this
slowdown independently of the slowdown introduced by the



namd
dealII

soplex

povray*

omnetpp*
asta

r

xalancb
mk

Geo M
ean

0

5

10

15

20

25
P
e
rf

o
rm

a
n
ce

 S
lo

w
d
o
w

n
 (

%
)

Table Randomization (10 entries)

Table Randomization (16 entries)

Full Readactor++

Figure 7: Overhead of table randomization on SPEC
CPU2006 C++ benchmarks.

execute-only system itself, which depends on the protection
system used and whether hardware natively supports execute-
only memory. For a complete system evaluation we also used
the Readactor system to enforce execute-only memory and
hide code pointers [11]. However, even with this additional
slowdown, we find that Readactor++ is competitive with
alternative mitigations with an average overhead of 8.4% on
SPEC, while offering increased security.

In particular, Readactor++ compares favorably to the per-
formance of recent CFI implementations, after accounting
for the need to protect return addresses from disclosure and
modification using a shadow stack. VTV [38], a C++ aware
forward-CFI implementation, which can thus defend against
COOP, incurs an average geometric mean overhead of 4.0%
on the SPEC CPU2006 C++ benchmarks using comparable
optimization techniques. Dang et al. [12] report that a pro-
tected traditional shadow stack, necessary to defend against
an attacker with arbitrary memory read/write capabilities,
incurs an average overhead of 9.7% on SPEC CPU2006. Thus,
the comparable overhead to fully protect against both tradi-
tional ROP attacks and COOP attacks using state-of-the-art
CFI is 13.7%, in contrast to our average total overhead of
8.4%.

We performed our performance evaluation on an Intel Xeon
E5-2660 server CPU running at 2.20 GHz with Turbo Boost
disabled running Ubuntu 14.04. To properly evaluate the
impact of our transformations on the entire program as well
as all relevant libraries, we applied our protections to libc++

and used this library as the standard C++ library. The
baseline uses an unprotected version of libc++ to avoid any
differences due to variations between C++ standard library
implementations.

SPEC CPU2006.
Figure 7 shows the results of our evaluation on SPEC

CPU2006. We first evaluated our transformations indepen-
dently of any execute-only system, shown in the first two
columns. For a smaller minimum xvtable size of ten entries
(nmin = 10), we observed a geometric mean slowdown of
0.8%. We observed a 1.1% geometric mean performance
slowdown with a minimum xvtable size of nmin = 16. Since
the additional performance slowdown is so minimal, we rec-
ommend a minimum xvtable size of at least 16 entries.

We also evaluated Readactor++ in combination with Readac-
tor’s execute-only memory protection and code-pointer hiding
(labeled Full Readactor++ in Figure 7). For this test we used
a minimum vtable size of 16 entries. We observed an average

performance slowdown of 8.4% for the combined system on
the C++ benchmarks. Crane et al. report a performance over-
head of 6.4% for their full system on all of SPEC CPU2006,
which is comparable to our results.

Chromium.
To show the impact of our transformations on a complex,

real-world application, we built and protected the Chromium
web browser.1 Since our defenses target the C++ components
of the browser and not the JavaScript engine in particular,
benchmarking the JavaScript performance of Chromium, as
most browser benchmarks do, is not useful. Instead, we use
the Chromium internal performance test suite to measure
scrolling smoothness. This measures the overall performance
of the browser when rendering web content. The test suite
consists of 25 popular websites, chosen by the Chromium de-
velopers, including 13 of the Alexa USA Top 25 sites; Google
properties such as Google search, GMail, and Youtube; news
websites such as CNN and Yahoo; and Facebook. To ac-
count for system noise, we ran each benchmark three times
and calculated the geometric mean over these runs. We
used a minimum xvtable size of at least 16 entries for this
experiment.

We found that the table randomization component of
Readactor++ incurred a geometric mean overhead of 1.0%.
This measurement was independent of any execute-only mem-
ory protection. To evaluate the full impact of Readactor++

with execute-only memory and code-pointer hiding, we com-
bined table randomization with the full Readactor system,
including small modifications to disable stack unwinding
which is incompatible with Readactor code-pointer hiding.
With all Readactor and Readactor++ protections enabled,
we measured a combined geometric mean overhead of 7.9%.

9. DISCUSSION
Extensions: We focus on protecting the two main targets

of function-reuse attacks: dynamic linking tables and C++

vtables. However, similar tables sometimes exist in other
contexts where dynamic dispatch is required. For example,
C programs which emulate a variant of object orientation
sometimes keep tables of function pointers to perform virtual
dispatch, depending on the type in question. Previous work
has explored randomizing the layout of data structures [23],
and these techniques could be extended to randomize struc-
tures or arrays of function pointers. In combination with
code-pointer hiding, data structure randomization could pro-
tect these pointers from disclosure and reuse.

Dynamic loading of libraries via dlopen on Linux and
analogous methods on Windows is a special case of dynamic
linking. The dlopen function is used to load a new library
at run time, after the program has started. The program
can then use the dlsym function to retrieve the address of
an exported function from the newly imported library. We
can extend Readactor++ to randomize any C++ libraries im-
ported during execution and update all relevant unmodified
call sites referring to classes from the imported library.

Limitations: We support all C++ programs that comply
with the language specification and do not rely on compiler-
specific vtable implementation details. Rare C++ programs
which parse or modify their own vtables would need minor
modification in order to handle our new split vtable layout.

1Chromium sources checked out on 2014-11-04.



In practice we have not seen this issue, since vtables are not a
part of the C++ standard at all and vary between compilers,
e.g. Itanium-style vtables on Linux and MSVC vftables on
Windows. Thus, compiler-agnostic programs must not rely
on vtable structure.

Due to these application binary interface (ABI) incom-
patibilities, programs which import C++ library interfaces
must always be compiled with the same C++ ABI version
as the external library. Since we modify the vtable portion
of the ABI to split vtables, we must also recompile any C++

dependencies with the same ABI. In practice, the only ex-
ternal dependency we found for Chromium or SPEC was
the C++ standard library. We rebuilt the libc++ standard
library with our modified compiler without any difficulty.

10. RELATED WORK
The literature on memory corruption and countermeasures

is vast. One line of defense aims at preventing corruption of
code pointers [21, 25]. Most other defenses stop later stages
of an attack by enforcing control-flow integrity properties
or randomizing the code layout to prevent code reuse. We
relate our work to previous defenses of each kind and focus
on those most similar to Readactor++.

Code Layout Randomization.
Address space layout randomization (ASLR), a weak form

of diversity [32, 33], is widely deployed today and many di-
versification approaches with finer granularity have been pro-
posed in the literature (see Larsen et al. [22] for an overview).
Specifically relevant to this work is the previous proposal to
randomize the order of elements in the PLT [4]. Unfortu-
nately, without execute-only code memory most approaches
are vulnerable to just-in-time code reuse [35] and other at-
tacks that rely on information disclosure [6, 34].

To defeat JIT-ROP attacks, Backes and Nürnberger [2]
propose Oxymoron which hides direct code references embed-
ded in direct call and jump instructions. Hence, an attacker
can no longer follow these references to identify and disas-
semble valid code pages. Unfortunately, Oxymoron can be
bypassed with an improved JIT-ROP attack that exploits
indirect memory disclosure [13]. The improved JIT-ROP
attack is possible because code pages still remain readable
in Oxymoron. As a consequence, several schemes have been
recently presented that are based on marking code pages
as non-readable such as XnR (eXecute-no-Read) [3] and Hi-
deM [17]. However, both schemes suffer from limitations:
HideM requires a split-TLB based architecture which no
longer exists in modern processor architectures. As pointed
out by Crane et al. [11], XnR leaves some code pages readable,
and requires very fine-grained randomization to mitigate in-
direct memory disclosure. To tackle these shortcomings,
Crane et al. [11] present Readactor which hides code pointers
through a layer of indirection and uses Intel’s Extended Page
Tables (EPT) feature to enable hardware-enforced execute-
only memory rather than emulating the feature. However,
the readable trampoline pointers still provide a code base
which an attacker can exploit to perform a classic RILC or
advanced COOP attack [31]. We thwart these function-reuse
attacks by permuting all function tables such as C++ virtual
tables and PLT entries with performance overheads that
allow industry adoption.

Davi et al. [13] recently presented an alternative defensive
technique, Isomeron, which combines fine-grained ASLR with

control-flow randomization. In particular, it maintains two
copies of a program image of which one is diversified. The
program control flow is randomized at each function call.
However, Isomeron adds significant performance overhead
since it leverages dynamic binary instrumentation. In addi-
tion, it provides limited protection against RILC and COOP
attacks because its policies restrict indirect calls to target a
valid function the program links to.

Finally, Mohan et al. [24] present Opaque CFI (O-CFI),
a binary instrumentation-based solution which combines
coarse-grained CFI with code randomization. Similar to
Isomeron, the code layout is no longer a secret. O-CFI works
by identifying a unique set of possible target addresses for
each indirect branch instruction. Afterwards, it leverages the
per-indirect branch set to restrict the target address of the
indirect branch to only its minimal and maximal members.
To further reduce the set of possible addresses, it arranges
basic blocks belonging to an indirect branch set into clusters
(so that they are located nearby to each other), and also
randomizes their location. Unlike Readactor++, the security
of O-CFI relies on the precision of the available CFG. Mohan
et al. use CFGs recovered from binaries which leads to coarse-
grained policies that may allow function-reuse attacks.

Control-Flow Integrity.
To defend against vtable-based attacks, a number of de-

fenses have recently been proposed [16, 20, 27, 38, 40]. The
compiler-based approaches of Tice et al. [38] and Jang et
al. [20] focus on protecting virtual function calls in C++.
Both ensure that an adversary cannot manipulate a vtable
pointer so that it points to an adversary-controlled, fake
vtable. Unfortunately, these schemes do not protect against
classical return-oriented programming attacks which reuse
return instructions. The aforementioned approaches require
the source code of the application which might not be al-
ways readily available. In order to protect binary code, a
number of forward-edge CFI schemes have been presented
recently [16, 27, 40]. Although these approaches require no
access to source code, they are not as fine-grained as their
compiler-based counterparts. In particular, COOP under-
mines the assumptions of these binary instrumentation-based
defenses by invoking a chain of virtual functions through le-
gitimate call sites to induce malicious program behavior [31].

Code-Pointer Integrity.
Recently, Szekeres et al. [37] proposed code pointer in-

tegrity (CPI), and Kuznetsov et al. [21] evaluated several
implementations for x86 and x86-64 systems. CPI separates
code pointers as well as pointers to code pointers from non-
control data by placing them in a safe memory region that
can only be accessed by instructions that are proven to be
safe at compile-time. CPI operates very efficiently on C code,
but may incur performance overheads of more than 40% for
C++ applications. With respect to security, CPI relies on the
protection of the safe memory region which is efficiently pos-
sible on x86 by leveraging segmentation. However, on x86-64
where segmentation is not fully available, CPI protects the
safe region though information hiding or software-fault isola-
tion. Evans et al. [15] recently demonstrated a weakness in
one of the x86-64 CPI implementations that can be leveraged
to locate and compromise the safe region.



11. CONCLUSIONS
While ROP-based attacks have received considerable at-

tention from the research community, sophisticated attacks
such as COOP show that whole-function reuse is equally
worrisome. Our paper demonstrates two new ways to con-
struct COOP attacks against C++ code and describes a
minimized yet realistic COOP attack that bypasses DEP. We
also introduce a novel probabilistic defense against COOP
and other attacks that abuse dynamically-bound function
calls. Our techniques are designed to fully resist information
disclosure vulnerabilities. Our evaluation shows that these
techniques provide quantifiable and tunable protection, scale
to real-world software, and add an average run-time overhead
of just 1.1%. When combined with execute-only memory
and fine-grained code randomization, the combined overhead
(8.4%) is less than that of a fully comparable CFI solution.

Acknowledgments
We acknowledge Sajo Sunder George’s efforts to implement
PLT randomization and boobytrapping and thank Andrei
Homescu, Stefan Brunthaler, and the anonymous reviewers
for their suggestions and constructive feedback.

This material is based upon work partially supported by
the Defense Advanced Research Projects Agency (DARPA)
under contracts D11PC20024, N660001-1-2-4014, FA8750-15-
C-0124, and FA8750-15-C-0085 as well as gifts from Google,
Mozilla, Oracle, and Qualcomm. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA), its Contracting Agents, the National Science Foun-
dation, or any other agency of the U.S. Government.

This work has been co-funded by the German Federal
Ministry of Education and Research (BMBF) under support
code 16BP12302 (EUREKA project SASER), the German
Science Foundation as part of project S2 within the CRC 1119
CROSSING, the European Union’s Seventh Framework Pro-
gramme under grant agreement No. 609611 ( project PRAC-
TICE), and the Intel Collaborative Research Institute for
Secure Computing at TU Darmstadt.

Finally we thank the Agency for Innovation by Science
and Technology in Flanders (IWT) for their support.

References
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.

Control-flow integrity principles, implementations, and
applications. ACM Transactions on Information
System Security, 13, 2009.

[2] M. Backes and S. Nürnberger. Oxymoron - making
fine-grained memory randomization practical by
allowing code sharing. In USENIX Security Symposium,
2014.

[3] M. Backes, T. Holz, B. Kollenda, P. Koppe,
S. Nürnberger, and J. Pewny. You can run but you
can’t read: Preventing disclosure exploits in executable
code. In ACM Conference on Computer and
Communications Security (CCS), 2014.

[4] S. Bhatkar and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error
exploits. In USENIX Security Symposium, 2005.

[5] S. Bhatkar, D. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a broad
range of memory error exploits. In USENIX Security
Symposium, 2003.

[6] A. Bittau, A. Belay, A. J. Mashtizadeh, D. Mazières,
and D. Boneh. Hacking blind. In IEEE Symposium on
Security and Privacy (S&P), 2014.

[7] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: a new class of code-reuse
attack. In ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2011.

[8] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In ACM Conference on
Computer and Communications Security (CCS), 2010.

[9] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red
Hat, and SGI. Itanium C++ Application Binary
Interface (ABI), 2001.

[10] S. Crane, P. Larsen, S. Brunthaler, and M. Franz.
Booby trapping software. In Workshop on New
Security Paradigms (NSPW), 2013.

[11] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readactor:
Practical code randomization resilient to memory
disclosure. In IEEE Symposium on Security and
Privacy (S&P), 2015.

[12] T. H. Dang, P. Maniatis, and D. Wagner. The
performance cost of shadow stacks and stack canaries.
In ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2015.

[13] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose. Isomeron: Code randomization resilient to
(just-in-time) return-oriented programming. In
Symposium on Network and Distributed System
Security (NDSS), 2015.

[14] L. V. Davi, A. Dmitrienko, S. Nürnberger, and
A. Sadeghi. Gadge me if you can: secure and efficient
ad-hoc instruction-level randomization for x86 and
ARM. In ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2013.

[15] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard,
and H. Okhravi. Missing the point: On the
effectiveness of code pointer integrity. In IEEE
Symposium on Security and Privacy (S&P), 2015.

[16] R. Gawlik and T. Holz. Towards Automated Integrity
Protection of C++ Virtual Function Tables in Binary
Programs. In Annual Computer Security Applications
Conference (ACSAC), 2014.

[17] J. Gionta, W. Enck, and P. Ning. HideM: Protecting
the contents of userspace memory in the face of
disclosure vulnerabilities. In ACM Conference on Data
and Application Security and Privacy (CODASPY),
2015.

[18] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz.
Librando: transparent code randomization for
just-in-time compilers. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[19] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz. Profile-guided automatic software diversity.



In IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2013.

[20] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH:
Securing C++ virtual calls from memory corruption
attacks. In Symposium on Network and Distributed
System Security (NDSS), 2014.

[21] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-pointer integrity. In
USENIX Security Symposium, 2014.

[22] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
SoK: Automated software diversity. In IEEE
Symposium on Security and Privacy (S&P), 2014.

[23] Z. Lin, R. Riley, and D. Xu. Polymorphing software by
randomizing data structure layout. In Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2009.

[24] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and
M. Franz. Opaque control-flow integrity. In Symposium
on Network and Distributed System Security (NDSS),
2015.

[25] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. SoftBound: Highly compatible and
complete spatial memory safety for C. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2009.

[26] Nergal. The advanced return-into-lib(c) exploits: PaX
case study. Phrack Magazine, 11, 2001.

[27] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict
Protection for Virtual Function Calls in COTS C++
Binaries. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[28] rix. Smashing C++ VPTRS. Phrack Magazine, 56(8),
2000. URL http://phrack.org/issues/56/8.html.

[29] R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-oriented programming: Systems, languages, and
applications. ACM Transactions on Information
System Security, 15, 2012.

[30] F. Schuster, T. Tendyck, J. Pewny, A. Maaß,
M. Steegmanns, M. Contag, and T. Holz. Evaluating
the Effectiveness of Current Anti-ROP Defenses. In
International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2014.

[31] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code
Reuse Attacks in C++ Applications. In IEEE
Symposium on Security and Privacy (S&P), 2015.

[32] F. J. Serna. The info leak era on software exploitation.
In BlackHat USA, 2012.

[33] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In ACM Conference on Computer and
Communications Security (CCS), 2004.

[34] J. Siebert, H. Okhravi, and E. Söderström. Information
Leaks Without Memory Disclosures: Remote Side
Channel Attacks on Diversified Code. In ACM
Conference on Computer and Communications Security
(CCS), 2014.

[35] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A. Sadeghi. Just-in-time code reuse:

On the effectiveness of fine-grained address space
layout randomization. In IEEE Symposium on Security
and Privacy (S&P), 2013.

[36] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski.
Exploiting and protecting dynamic code generation. In
Symposium on Network and Distributed System
Security (NDSS), 2015.

[37] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
Eternal war in memory. In IEEE Symposium on
Security and Privacy (S&P), 2013.

[38] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,

Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in GCC & LLVM.
In USENIX Security Symposium, 2014.

[39] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. W.
Freeh, and P. Ning. On the expressiveness of
return-into-libc attacks. In International Symposium on
Research in Attacks, Intrusions and Defenses (RAID),
2011.

[40] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song.
VTint: Defending virtual function tables’ integrity. In
Symposium on Network and Distributed System
Security (NDSS), 2015.

APPENDIX
Figures 8–11 below depict excerpts from widely used C++

software resulting in REC-Gs. Each REC-G exists in at least
the x86-64 version of the respective software. In each figure,
the call sites A and B are marked analogously to Figure 1.

virtual name *clone() const
{
    plural_ptr op1_copy(op1->clone());
    plural_ptr op2_copy(op2->clone());
    return new name(op1_copy, op2_copy);
}

B

A

Figure 8: mo_lambda.cpp in the Boost library (version
1.58 and others); causes a side-effect free REC-G on
Ubuntu 14.04 and Windows 10.

QBlittablePlatformPixmap::
    ~QBlittablePlatformPixmap()
{
#ifdef QT_BLITTER_RASTEROVERLAY
    delete m_rasterOverlay;
    delete m_unmergedCopy;
#endif
}

B

A

Figure 9: qpixmap_blitter.cpp in the Qt library (ver-
sion 5.5 and others); causes a side-effect free REC-G
in libQt5Gui.so on Ubuntu 14.04 and a REC-G with
side effects in Qt5Gui.dll on Windows 10.

~_Order_node_base()
{
    delete _M_pReceiveMessage;
    delete _M_pSendMessage;
}

B

A

Figure 10: agents.h in Microsoft Visual C++ 2013;
causes a side-effect free REC-G in Microsoft’s C++

runtime library msvcp120.dll.

size_t SkComposeShader::contextSize() const 
{
    return sizeof(ComposeShaderContext) 
        + fShaderA->contextSize() 
        + fShaderB->contextSize();
}

B

A

Figure 11: SkComposeShader.cpp in Chromium (ver-
sion 44 and others); causes a side-effect free REC-G
in Chromium.

http://phrack.org/issues/56/8.html

	Motivation
	Technical Background
	Virtual Function Calls
	Dynamic Linking
	Exploitation and Code Reuse

	Extending COOP
	Adversary Model
	Readactor.30ex++
	Overview
	Countering Memory Disclosure
	Vtable Randomization
	Procedure Linkage Table Randomization
	Countering Guessing Attacks

	Implementation
	Compiler Support
	Runtime Randomization Engine

	Security Evaluation
	Guessing Table Layouts
	Practical Attacks

	Performance Evaluation
	Discussion
	Related Work
	Conclusions

