
1

Adaptive Compiler Strategies
for Mitigating Timing Side Channel Attacks

Jeroen Van Cleemput, Bjorn De Sutter, and Koen De Bosschere

Abstract—Existing compiler techniques can transform code to make its timing behavior independent of sensitive values to prevent
information leakage through time side channels. Those techniques are hampered, however, by their static nature and dependence on
details of the processor targeted during the compilation. This paper presents a dynamic compiler approach based on offline profiles
and JIT compiler strategies. This approach reduces overhead significantly and enables a trade-off between provided protection and
overhead. Furthermore, it supports adaptive policies in which the protection adapts to run-time changes in the requirements. A
prototype implementation in the Jikes Research VM is evaluated on RSA encryption, HMAC key verification, and IDEA encryption.

Index Terms—JIT compiler, adaptive protection, time side channels, code transformations, efficiency, effectiveness, trade-off, profiling

F

1 INTRODUCTION

Cryptographic and other software operates on sensitive
data on a regular basis. When implemented properly, its
IO behavior provides strong guarantees against attacks on
privacy, authentication, and other security requirements.

In practice, however, the IO behavior is not the only
observable property. Depending on the kind of access (i.e.,
physical or networked) to devices, attackers can observe
electromagnetic radiation, power and resource consump-
tion, and execution times. These properties are called side
channels when they feature a correlation with protected
data such as secret keys. Side-channel attacks exploit this
correlation to attack software handling sensitive data.

Depending on the granularity at which an attacker can
observe side-channel information, he can mount different
types of attacks. Trace-driven attacks extract enough infor-
mation to reconstruct whole execution traces of attacked
algorithms [1], [2], [3], [4], [5], [6]. Access-driven attacks only
reconstruct the access patterns to architectural components
such as caches, branch predictions tables, and execution
units [7], [8], [9], [10], [11], [12], [13], [14]. Time-based attacks
solely observe execution time [15], [16], [17], [18], [19], [20],
[21]. For many attacks, the dependence between secret data
properties and side-channel information need not be known
to the attacker beforehand. Instead, it suffices to discover the
existence of a dependence during the attack, for example by
considering mutual information [22].

Mitigation strategies range from the hardware level [16],
[23], [14], [24], over software [16], [25], [26], [27], [28], [29],
[30], [31], [32], to the algorithmic level [33], [34], [21], [35],
and combinations thereof [36].

In some approaches, static compilers transform the code
such that the generated binary code no longer leaks infor-
mation via time side channels by ensuring that the com-
piled code’s execution time no longer depends on secret
data [26], [29], [37]. For example, the code is transformed
such that no conditional branches depend on values de-

The authors thank the Agency for Innovation by Science and Technology in
Flanders (IWT) and the Fund for Scientific Research - Flanders.

rived from secret data. Some techniques enable a trade-
off between efficiency (i.e., the overhead introduced by a
transformation) and effectiveness (i.e., the level of protection
provided) by giving the developer the option to choose or
parameterize alternative forms of a protection. For example,
Van Cleemput et al. showed how the information leakage
correlates with execution slowdown when injecting less or
more mitigation code into an application to push variable-
latency instructions off a program’s critical paths [37].

However, the static nature of the existing compiler tech-
niques comes with major drawbacks. For out-of-order archi-
tectures like Intel’s x86 processors, the effectiveness and the
efficiency of the transformations depend on the details of
the execution pipeline. As a result, the optimal combination
of transformations differs from one generation to another,
even within processor families that offer exactly the same
instruction set architecture. This is a serious issue at times
when developers see their apps downloaded and installed
on a multitude of different devices, when users upload their
applications into the cloud onto machines of which they
might not know the exact pipeline features, and when appli-
cations running on heterogeneous multiprocessors migrate
from one type of core to another transparently [38].

Moreover, even if the developer and user know the
exact processor on which their software runs, the run-
time circumstances and protection requirements can still
vary over time. For example, at any point in time (i) a
device might be offline or online in networks that introduce
varying amounts of jitter, which enables different types of
attacks [39]; (ii) the application might be handling very sen-
sitive or rather insensitive data; (iii) the application might
be or not be sharing resources with other applications that
can execute attacks based on resource contention [6], [40].
Current static compilers support only one protection level
per generated binary. While static binaries can in theory
include code compiled for several scenarios, the resulting
code bloat impedes the generation of code for many differ-
ent combinations of usage scenarios and target processors.

As an alternative, we propose just-in-time (JIT) compila-
tion to generate leak-free code specifically for the processor

2

on which the software runs. Moreover, JIT compilers can
limit the protective code transformations to the leaking code
fragments actually being executed on sensitive data for the
provided inputs. Finally, JIT compilers can adapt the level of
protection to the observed run-time environment. With JIT
compilation the deployed protection can be tuned for the
actual usage scenario, thus minimizing the code bloat and
performance overhead. By flushing the software cache and
regenerating code, the protection level can even be adapted
dynamically when the security requirements change.

To identify the minimal set of code fragments that should
be considered for protection, we base the JIT protection on
offline profiles. We rely on the developer to annotate the top
methods to be protected and to run the software on multiple
inputs to detect which fragments show diverging timing
behavior that depends on sensitive data and that can hence
leak information. By exercising the program on adequately
chosen inputs, the developer can ensure that a minimal,
but sufficient set of diverging behaviors are considered for
minimizing the set of fragments to be transformed, and
hence for minimizing the introduced run-time overhead.

We opt for a profile-based approach as opposed to pure
static analysis because we are interested in protecting code
that is actually executed. The dynamic information provided
by a profile-based approach significantly improves the pre-
cision of the resulting analyses. Furthermore, no formal-
ization of the relevant features of the inputs is required.
We selected offline profiling over online profiling because
online profiling suffers from the same imprecision problem
as static analysis: For protecting against attacks in which
the software is repeatedly executed on the same input, a
purely online technique needs to make (overly) conservative
observations about all possible other inputs.

Although our profile-based approach is also applicable
in the context of static compilation, it would require the
developer to have all the necessary inputs in his training set
for profiling, which is not necessarily trivial. To compensate
for when a developer overlooks certain relevant inputs,
the JIT compiler injects monitors along the execution paths
not covered by the developer’s training input set. When
such a path is triggered at run time, the existing code that
was generated under the now disproven assumption that
the path was not realizable, is flushed from the compiler’s
software cache and replaced by new code generated on
the basis of the old profile information expanded with the
new information collected by the monitor. This implies that
an attacker can collect at most one time sample for each
execution path not covered by the training phase. In many
attack scenarios, in particular the vast majority of attacks
on cryptographic software, collecting one sample does not
suffice to mount an attack.

The main contributions of this paper are the presentation
of the combined offline-online approach, and the evaluation
of a prototype implementation in JikesRVM on a three cryp-
tographic algorithms from real-life security libraries, with
which we demonstrate that the performance overhead of the
pre-existing state-of-the-art static compiler techniques can
be reduced with 75%-82%. This prototype and all the raw
experimental data will be open sourced after publication.

Section 2 presents the protective transformations our
JIT compiler applies. Section 3 presents our approach for

if (x)	{
y++;
y	+=	(y*y);
y	=	y	<<	2;
}	else {
y--;
p[0]=y;
}

if (x)	y++;
tmp1	=	y*y;
tmp1	=	y	+	tmp1;
if (x)	y	=	tmp1;
tmp1	=	y	<<	2
if (x)	y	=	tmp1;
tmp1	=	y	- 1;
if (!x)	y	=	tmp1;
tmp2=dummy_location;
if (!x)	tmp2	=	p;
tmp2[0]	=	y;

if-conversion

Fig. 1: If-conversion by means of conditional moves.

selecting fragments to transform and transformations to ap-
ply. Section 4 present an experimental evaluation, Section 5
discusses related work, and Section 6 draws conclusions.

2 MITIGATING TRANSFORMATIONS

Existing compiler techniques have proven effective to pro-
tect small code fragments [26], [37]. Here, we describe and
extend the existing transformations to cover more complex
code fragments typically found in large software libraries.

2.1 Control Flow Transformations
Execution time variation can be caused by control and data
flow being dependent on security-sensitive values in an
application. Control flow has, in many cases, the biggest
impact on execution time variation [26].

If-conversion [41] has been used successfully to mitigate
timing attacks by transforming control flow dependencies
into data flow dependencies [26]. On architectures that sup-
port full predication, if-conversion deletes branches around
blocks of instructions and replaces them with predicated
instructions. Figure 1 demonstrates the basic transformation
on architectures that lack full predication, but that support
conditional move instructions or select instructions, such
as the Intel x86 architecture [42] and the ARMv8 architec-
ture [43]. Such instructions allow the encoding of all state-
ments starting with if (...) on the right of Figure 1 in a single
instruction, of which the latency is typically independent of
the values of the source operands, including the condition.

As an alternative to predication, masking operations
have been proposed [29]. Masking cannot handle all op-
erations, however, and also with if-conversion, some in-
structions require special care. This includes instructions
with side-effects like loads, stores, and exception-throwing
instructions such as divisions [26].

Special care is needed for converting procedure calls. A
call instruction contributes not only its own execution time,
but also the execution time of the callee’s body and possibly
the bodies of callees further down the call chain. To make
the call’s execution time constant, the call instruction is not
executed conditionally; only the code inside the callee is
executed conditionally under the control of an additional
predicate parameter. Figure 2 demonstrates this: The condi-
tional call to f1 on the left is replaced by an unconditional
call to f2, the if-converted replacement of f1 in which the
code is adapted to only update the global program state
when the original call would have been executed.

Throughout this paper we use the term predicate of a
conditionally executed instruction, basic block or method in

3

int f1(int x)	{
p[0]=x;

}

g(int x,	boolean y)	{
if	(y)	 f1(x);

}

if-conversion

int f2(int x,	boolean cond)	{
tmp1=dummy_location;
if(cond)	 tmp1	=	p
tmp1[0]	=	x;

}

g(int x,	boolean y)	{
f2(x,y);

}

Fig. 2: If-conversion of conditional function calls.

if-converted code to denote the logical value that indicates
whether or not that instruction, basic block or method was
to be executed at some point in time in the original program.

2.2 Data Flow Transformations
Even if the control flow does not depend on a security-
sensitive value, data flow dependencies can still cause ex-
ecution time variation. These variations are often the result
of performance optimizations in the underlying hardware.

Variable-latency arithmetic instructions occupy execu-
tion units in modern processor pipelines for a varying
amount of cycles, depending on the values of their input
operands. Examples of such instructions that have proven
susceptible to side channel attacks [40], [26] are divisions
and multiplications implemented by means of early-exit
algorithms to optimize the use of their scarce resources.
Several existing compiler techniques can solve this.

First, variable-latency instructions can be replaced by
calls to fixed-latency emulation routines that do not contain
variable-latency instructions [26], [35]. This completely elim-
inates data-dependent timing variation for those instruc-
tions. It comes with a high execution time overhead, but
offers the advantage that the emulation routines typically
can be reused for whole processor families, within which the
set of variable-latency instructions typically does not vary.

Alternatively, complex code fragments replace single
variable-latency instructions such that a fixed latency is
enforced on all variable-latency instructions by manipu-
lating their operands [37]. This achieves data-independent
timing behavior at a much lower overhead. However, in
order to apply it successfully, it is necessary to know the
exact relation between input values and latencies of the
variable-latency instructions, which are known to change
even within processor families [37]. In static compilers, this
technique therefore suffers from limited portability. In our
JIT approach, there is of course no portability issue, as the
exact processor is known at compile time.

A third technique injects chains of fixed-latency oper-
ations into the code’s data dependence graphs to push
the variable-latency operations off the critical paths. This
technique can reduce timing variations to minimal levels,
but it cannot eliminate them completely [26], because of
resource contention between instructions on and off the
critical paths. Still, this technique enables a trade-off of
run-time overhead vs. achieved protection: Longer/shorter
injected critical paths result in a more/less reduced timing
variation at higher/lower overhead [37]. The precise level
of remaining variation for a specific injected critical path
cannot (easily) be predicted, however.

Data dependencies through memory can also introduce
time variation, e.g., when the cache access pattern depends

on the sensitive data [44]. This impact on execution time
is amplified by the way if-conversion handles memory
accesses in literature [26], [37]: Memory operations that are
predicated false but are executed unconditionally in the if-
converted code are fed a dummy operand value to access a
single dummy location. See the store through p in Figure 1.
This avoids unwanted change to the program state and page
faults, but the memory access pattern then strongly depends
on the predicate, and hence its timing can leak information.

Although it is in many cases impossible to avoid these
cache-related timing variations entirely, we have observed
that it is quite possible to significantly reduce them with
the following two adaptations. First, instead of one sin-
gle, global dummy location, provide a different dummy
memory location for each if-converted memory instruction.
While this will increase memory usage, it will avoid re-
peated accesses to the same memory location by memory
instructions that were not executed in the original program.

Secondly, allocate dummy arrays instead of single mem-
ory locations when performing array stores and loads, and
index them using the index that would have been used if
the instruction was predicated true, modulo the dummy
array size. For example, if the original instruction would
read from an array in a manifest loop, the protected in-
struction would read from the dummy array using a similar
access pattern when predicated false, instead of reading
from the same memory location each iteration. The program
semantics are not changed, and the cache pattern of code
predicated false resembles that of the code predicated true.

This transformation can still be refined, e.g., by using
alias analysis or profiling to let operations that likely ac-
cesses the same locations in memory when predicated true
also access the same dummy arrays when predicated false.
Most of the improvement in variable execution time can
already be absorbed by the simple scheme, however.

A second, less obvious cause of data-dependent timing
variation is the load-store forwarding and load bypassing
logic in out-of-order processor pipelines. Current state-of-
the-art techniques minimize timing variation by increasing
the distance between load and store instructions that may
alias, for example by inserting no-op instructions, such that
potential candidates are no longer together in the proces-
sor’s load-store forwarding/bypassing instruction window.
With enough no-ops, the variation can even be eliminated
completely [37]. The minimal number of no-ops needed to
achieve a certain level of protection cannot easily be pre-
dicted, however, due to undocumented pipeline behavior.
So in essence, the no-op insertion is a best effort mitigation.

So while in theory it is still possible to craft specific input
keys to force measurable execution time difference due to
cache behavior and memory pipeline behavior, in practice
we found that applying the above transformations in a JIT
compiler environment can effectively protect real applica-
tions using the methods described in the next section.

3 PROFILE-BASED JIT PROTECTION

This section discusses how profiles can be used to extend
the protection techniques described in the previous section
and to reduce their overhead by automating and optimizing
the selection of protected code regions.

4

3.1 Profile collection

The developer collects a separate application profile for each
input in a training input set I. Each profile contains edge
counts, i.e., the number of times each edge in the program’s
call graph and its procedures’ CFGs are followed during the
program’s execution. The edge counts and the instruction
counts derived from them are collected by running an
instrumented program version. In addition, this version
contains counters to count the number of iterations in each
loop and to measure recursion depths.

Ideally, the training inputs cover all extreme timing
behaviors dependent on secret data. This implies they at
least trigger the execution of all code fragments of which
the execution depends on secret data. Developers can rely
on their test inputs, real-life workloads, and more advanced
tools such as fuzzers (relying, e.g., on concolic execution) to
collect a large enough set of inputs. As we will discuss in
Section 3.3, we require the developer to tag so-called root
methods, i.e., methods whose timing behavior (including
that of their callees) should be made independent of data
values. This tagging at once marks the code region in which
a fuzzer should try to increase the coverage.

In practice, we found that cryptographic code typically
requires only a small set of training inputs to provide
enough coverage to successfully protect cryptography ap-
plications against timing attacks.

As we already mentioned in the introduction, it is not
strictly necessary for the developer to cover all extreme
timing behaviors or secret-data-dependent execution paths.
Section 3.6 discusses this in more detail.

3.2 Transforming Loops and Recursive Calls

Loops with variable iteration counts require extra attention.
Obviously the number of executed iterations has an impact
on the execution time of a program. Yet the conditional
branches that control loop exits cannot be if-converted.
Coppens et al. already suggested a possible solution based
on introducing an extra loop counter with a fixed, manually
selected iteration count [26]. If-conversion is then applied
on the loop body such that only the iterations that need to
be executed contribute to the global program state.

Our first adaptation to this scheme is minor: For each
loop, we automatically extract the largest iteration count
observed in the collected profiles. This automatic approach
facilitates the protection of legacy applications or third-party
libraries of which a developer has little knowledge.

Loops by means of recursive calls are handled similarly.
In that case, we add a counter parameter to the function
to pass the run-time recursion depth, and the recursion is
executed (with the body if-converted) until the maximal
depth that was observed during the profiling.

3.3 Automatic Detection of Code Regions to Transform

Existing compiler techniques to transform code to obtain
constant execution time require that developers tag one or
more methods as sensitive, implying that those handle sen-
sitive information. During compilation those methods and
all of their direct and indirect callees are then transformed

public byte[] encrypt(byte[] plaintext, Key k, int type){
switch(type){

case 1: return encrypt_RSA(plaintext,k)
case 2: return encrypt_DSA(plaintext,k)
case 3: return encrypt_ECC(plaintext,k)
default: throw new InvalidKeyException();

}
}

Listing 1: Example method to be protected

with the protections discussed in Section 2, resulting in a se-
cure application. If some callees should not be transformed,
the developer has to tag those explicitly.

That manual tagging is susceptible to human error. The
developer might overestimate or underestimate the proce-
dures that need to be transformed, as it may not be clear
which ones actually leak. In case he underestimates them,
applications might still leak information. If he overestimates
them, it results in unnecessarily high overhead.

In addition, applying if-conversion naively on all direct
and indirect callees of a procedure that needs to be protected
can cause a large, and often unnecessary overhead. This is
especially true for libraries with multiple levels of indirec-
tion and large call trees. Consider for example the library
method in Listing 1. A switch statement selects one of sev-
eral encryption algorithms. If we would blindly deploy if-
conversion on this code fragment and its callees, a protected
version of each algorithm would be executed. However, if
this method is always passed the same options in some main
program, such that the same encryption routine is always
invoked, much of this overhead is completely unnecessary.
The shown method can then remain untransformed.

This problem of selecting the methods to protect and the
extent to which they need to be if-converted is addressed
by using profiles to automate a large part of the selection of
code fragments to transform. In our approach, the developer
still manually needs to tag the root methods to protect,
i.e., the methods of which the execution time, incl. that
of its callees, should become independent of secret data.
Importantly, the developer does not need to select or tag
which (direct or indirect) callees actually need to be trans-
formed. That part will be automated. In other words, our
approach only requires the developer to specify the security
requirement on a root method, not which code needs to be
transformed to meet that requirement. (In fact, it might even
be that the root method itself need not be transformed at all.)
Our approach is therefore much less error prone.

The automated selection of code fragments to transform
then happens at two levels. First we use call edge counts
and instruction counts to determine the set of methods S to
be transformed. Secondly, we optimize how if-conversion is
applied within these methods based on branch profiles.

On the basis of the set R of root methods, we iteratively
build the set S of methods to be transformed, starting with
an empty set. Each iteration adds methods to S, thus increas-
ing the protection level. The end result is a fully protected
application in which only a reduced subset of methods are
transformed. Each intermediate set S can be considered as a
partially protected application suitable in scenarios with less
strict requirements, e.g., because attacks can only occur over
a network that introduces jitter on the measurements [39].

5

1 R = {m ∈ M | m is tagged as a root method }
2 C = {m ∈ M | m is an (in)direct callee of a method in R}
3 Eequal = {e ∈ E | ∀(i, j) ∈ I2 : Eci(e) = Ecj(e)}
4 S← ∅
5 n← 1
6 do
7 A← ∅
8 foreach m ∈ C \ S do
9 if (∀e ∈ In(m) : e ∈ Eequal)

10 ∧ (∃e ∈ Out(m) : e 6∈ Eequal) then
11 A← A ∪ {m}
12 Eequal ← Eequal ∪Out(m)
13 end
14 end
15 S← S ∪ A
16 Sen ← S
17 n← n+ 1
18 while A 6= ∅;

Algorithm 1: Method selection based on call edge counts.

3.3.1 Phase 1: Call Edge Heuristic
In a first phase, we build on the simple heuristic that in
the sensitive code, all method calls need to be executed
exactly the same number of times, independently of the
input data. The rationale is that if this requirement is not
met, the execution time will likely vary too much to provide
any useful level of protection.

Let R be the set of root methods that need to be secured,
M the set of all application methods, C the subset of M
containing direct and indirect callees of the root methods
in R, S the complete set of methods that need to be secured,
Sen the set of methods that need to be secured at iteration n
in the algorithm, I the set of input values of the application,
and E the set of call edges between methods. Let Eequal ⊆ E
initially be the set of call edges with equal edge counts for
all inputs I. Define Ec : I×E 7→ N, with Eci(e) the function
that returns the execution count of edge e under input i.
Define In : M 7→ P(E), with In(m) the set of incoming call
edges of method m. Define Out : M 7→ P(E), with Out(m)
the set of outgoing call edges of method m.

Algorithm 1 starts by building a set of methods C of
direct and indirect callees of the root methods R. These
root methods are tagged by either a developer or library
user to be secured against timing attacks. They are used to
determine the scope of candidate methods to protect.

Each iteration over lines 6–18 adds methods to the se-
cured set S if they meet the following conditions: on the
following conditions: (i) The method has equal edge count
for all of its incoming edges, and (ii) the method has at least
one outgoing edge that has unequal edge counts.

Because all methods in S will eventually be protected,
their outgoing edge counts will become equal for all input
values in I in the protected program. The algorithm already
simulates this by adding the outgoing edges of each selected
method to Eequal on line 11. After the algorithm is finished,
the following statement holds, indicating that in the pro-
tected application all methods from set C will have equal
outgoing edge counts: ∀m ∈ C | ∀e ∈ Out(m) : e ∈ Eequal.

Figure 3 illustrates the first three iterations of this process
on a fictitious call graph containing all methods in C. For
each iteration, dark gray squares represent methods in the
set of secured methods S before the start of that iteration.

B C

A

E F G

I J

=

=

D

H

K

=

≠ =

=

=

= = ≠

L M

≠ ≠

B C

A

E F G

I J

=

=

D

H

K

=

= =

=

=

= = =

L M

≠ ≠

B C

A

E F G

I J

=

=

D

H

K

=

= =

=

=

= = =

L M

= =

Iteration 1 Iteration 2 Iteration 3

Fig. 3: First three iterations of call-edge-based code selection.

1 foreach m ∈ C \ S do
2 if ∃t ∈ Inst(m) . ∃(i, j) ∈ I2 : Ici(t) 6= Icj(t) then
3 S = S ∪ {m}
4 end
5 end
6 Si = S
Algorithm 2: Method selection based on execution counts.

Light gray squares represent methods in A added to S in
the current iteration. Edges in Eequal are marked with an =,
all other edges with 6=. In the first iteration methods B and
G are the only methods that meet the requirements to be
protected. By adding them to S and their outgoing edges to
Eequal method I can be added in iteration 2. In iteration 3 all
edges have been added to Eequal and the algorithm finishes,
with S = {B,G, I}.

In each iteration n, the set of methods that have been
selected for protection up to that point is saved in a separate
set Sen (line 16). This enables the (potentially dynamic)
selection of one of these intermediate results when complete
protection is not required at some point during the actual
deployment of the application or library.

3.3.2 Phase 2: Instruction Count Heuristic

The set of methods selected based on call edge counts in
phase 1 is only a coarse-grained estimation of the methods
that might leak information. Its intermediate and final re-
sults will not provide meaningful protection in all scenarios.
So in a second phase, we use instruction execution counts to
identify those locations where intraprocedural control flow
can contribute to leaks. Let T be the set of application in-
structions; Inst : M 7→ P(T), with Inst(m) the function that
returns the set of instructions in method m; Ic : I× T 7→ N,
with Ici(t) the function that returns the execution count of
instruction t under input i.

Algorithm 2 iterates over all methods in C that were
not yet added to S in phase 1. If a method has a different
instruction count for at least one of its instructions for two
or more of the inputs in I, it has input-dependent control
flow, and is hence added to S on line 3.

Because the total execution time difference caused by
methods tagged in this phase is not influenced by their
callees (unless they are added to S themselves during this
phase), protecting methods tagged in this phase will on

6

average result in smaller reductions of execution time differ-
ence compared to methods tagged in phase 1. The overhead
of protecting these additionally added methods is also more
limited, however, because tagging them never triggers the
additional tagging of more methods down the call chain.

The end result of this phase is a set of methods Si. If
this set is protected during execution, the application will
no longer feature input-dependent control flow. So at that
point we effectively protect against both instruction cache
attacks and branch prediction attacks [1], [7], [4], [3].

In practice we observed that applying all control flow
and data flow transformations to this set of methods suffices
to eliminate most of execution time variation.

3.3.3 Input-Dependent Data Flow
The algorithms described above use input-dependent con-
trol flow variation as an indicator for execution time vari-
ation. This allows fast detection of the majority of code
regions to protect based on a single profile run for each
input in I. However, it does not detect methods that only
leak timing information through data flow features such
as variable latency instructions, memory access delays and
interactions between instructions in the pipeline.

In our experiments on implementations of cryptographic
algorithms, we did not encounter any additional methods
leaking timing information on top of those already selected
based on control flow variation in Phases 1 & 2. In case there
would be such methods, however, it is also possible to detect
them using profile information, albeit with a much slower
process. Concretely, sample-based execution time profiling
during many runs of the fully if-converted methods can
detect statistically relevant differences between methods’
execution times for different inputs. It is worth noting
here, that some of the most frequently used methods for
collecting per method timing information in other contexts,
such as code optimization, are not useful in this context. In
particular, the collection of time stamp counters by means of
injected RDTSC instruction and the necessary bookkeeping
code is not useful, as the insertion of this instruction affects
the pipeline behavior too much to measure the effect of
variable-latency instructions in non-instrumented code.

3.4 Selective If-Conversion
Current state-of-the-art techniques as described in Sec-
tion 2 if-convert whole procedures. This includes condi-
tional branches that are taken in one direction or switches
of which only a few cases are actually executed. Unexecuted
paths or code fragments in executed functions occur for sev-
eral reasons. One is library functionality that is not executed
in a specific program, as already discussed in Section 3.3.
A second reason involves code that is present because of
coding practices and guidelines but that is never executed,
such as superfluous default cases in switch statements. A
third reason involves checks that always evaluate to true
or always evaluate to false under “normal” circumstances,
including all scenarios that might leak information through
side channels. This includes checks for detecting out-of-
memory issues or for the presence of files to be opened.
Using branch profile information, we can select the branches
that actually exhibit input-dependent behavior and only
convert those to reduce the overhead.

B C

A

D E F

I

G

(a) original CFG

J

H

B F

A

I

D C

H

G

(b) if-conversion

J

E

B C

A

D

E
F

I

G

(c) selective if-conversion

J

H

Fig. 4: Example of complete and selective if-conversion.

A

B

C

E

D

if(x) goto B

if(y) goto D

A

B

C

E

D

if(y) goto D

a) original CFG b) unsafe
if-converted code

A

B

C

E

D

if(x ^ y) goto D

c) constant time
if-converted code

Fig. 5: Example of correct selective if-conversion.

Figure 4a illustrates the CFG of an unprotected applica-
tion. Gray squares and bold arrows represent basic blocks
and control flow edges resp. that are executed at least once
for at least one of the program inputs. In this simple case,
it is clear that only the conditional branch in basic block B
can cause input-dependent control flow. Compared to the
whole procedure being if-converted as shown in Figure 4b,
the selective if-conversion result shown in Figure 4c will
yield much less performance overhead.

In our current implementation, branches are left un-
protected only if they are profiled as always going in the
same direction for all inputs in I. Although branches with
identical branch history for all inputs (e.g. always taken in
the first half of the whole execution, and always not-taken
in the second half) do not leak timing information, enforcing
the same branch sequence in the protected application is not
trivial and currently not supported.

Selective if-conversion has to be performed with great
care, because it can actually introduce control flow variation
in the unconverted branches where no such variation was
present in the original program. Figure 5a shows a simple
example CFG, with only two executed paths during profil-
ing: A → E and A → B → C → E. Assuming the value
of y is always evaluated to false in this particular example,
basic block D will never be executed.

When the branch in basic block A is if-converted as
shown in Figure 5b, block B is always executed. If block B is
predicated false (when the jump in A was taken) the value of
y might be undefined or evaluate differently than profiled,
allowing the jump in block B to go in either direction.

To avoid this, the jump condition of unconverted
branches needs to be rewritten as follows: Let original

7

be the original jump condition of the branch, predicate
a boolean value calculated at run time indicating if the
basic block containing the branch instruction was executed
in the original program. The new jump condition new for
unconverted branches that are profiled as always taken
then becomes new = ¬predicate ∨ original. For never-
taken branches, it becomes new = predicate ∧ original.
This ensures the new jump direction defaults to the profiled
branch direction when the instruction is predicated false and
jumps in the same direction as the original branch condition
when predicated true. Figure 5c shows the CFG with the
branch condition of the branch in basic block B rewritten
according to the rules above. After if-converting the branch
in basic block A and rewriting the jump condition in basic
block B, the same path A → B → C → E will be taken
as long as not both x and y evaluate to true at the same
time, i.e., as long as they behave as during the profiling.
Section 3.6 discusses how we handle a situation in which x
and y would diverge from their behavior during profiling.

3.5 Security/Performance Trade-off
As mentioned in the introduction, the required level of
protection depends on the usage scenario. For example, in
Section 4 we evaluate three cryptographic use cases, for
which the leakage of timing information has widely varying
impacts on the search spaces of attackers searching for secret
keys. Moreover, the amount of useful timing information
leaked to a (remote) attacker will also be influenced by
the network setup, timing source, and whether or not an
attacker has control over the algorithms’ inputs [39], [18].

In some scenarios, reducing the timing variation instead
of eliminating it might therefore suffice. As a reduction
typically requires less transformations than a full elimina-
tion, the performance overhead will also be smaller. It is
hence useful to support a security/performance trade-off. A
reduction instead of elimination of timing variation can be
achieved by (i) protecting only a subset of methods S′ ⊆ S,
and (ii) by applying only a subset of protection techniques
P′ ⊆ P. Each subset S′ of S combined with a set of mitigation
strategies P′ of P used to protect these methods can be seen
as design point in a security/performance trade-off.

While we cannot yet present a good (i.e., user-friendly,
transparent, and reliable) method to support making this
trade-off in practice, we analyze our approach’s potential for
to this trade-off for one evaluation use case in Section 4.3.2.

3.6 Execution Paths Not Covered by Profiling Inputs
Our mitigation strategies are designed to correctly handle all
inputs, i.e., to conserve semantic behavior of the application
even when execution paths occur at run time that were not
observed during profiling. In the partially if-converted CFG
on the right of Figure 5, the path A→ B → D → E will still
be executed whenever x and y evaluate to true. Likewise,
converted loops and recursive call chains are still allowed to
complete all their iterations resp. calls, even if their number
exceeds the upper bounds observed during profiling.

When a new execution path is triggered, invariably some
timing information leaks. The amount of leaked informa-
tion is easily minimized, however. On the paths that were
not triggered during the profiling (incl. loops with higher

number of iterations than initially observed), but that are
still present in the transformed, protected code, we inject
monitors. If those get triggered, two actions are initiated.
First, the stored profile information is updated persistently
to reflect that some previously untaken path from now on
has to be considered taken or that some observed upper
bound has to be increased. Secondly, the involved methods
are flushed from the JIT compiler’s software cache and
recompiled taking into account the new information.

If the initial profiling by the developer was not incom-
plete but not entirely inadequate, these monitors have a
minimal impact on the performance of the protected code:
After being triggered once, they either disappear entirely
from the recompiled CFGs, or they are replaced by other
monitors further down in the CFGs to monitor subpaths
of the originally excluded paths. Those new monitors can
be replaced iteratively, but if the original profiling was any
good, very few iterations can occur. So very few monitors
will ever be triggered in practice, and being located off
the normally executed paths in the CFGs, they don’t hurt
regular performance significantly. In this regard, we should
note that after a monitor is triggered, the profile informa-
tion is updated persistently so future runs of the program
automatically incorporate all behaviors of previous runs.

The same reasoning applies to the amount of leaked in-
formation. Most timing attacks require an attacker to collect
a significant number of timing samples. While triggered
monitors will result in a limited number of samples with
relevant information for the attacker, he will then not be
able to collect enough samples to let an attack succeed.

In exceptional cases, timing attacks might require very
few samples to obtain useful information. One well-known
case involves string matching: in case a pre-check first com-
pares the lengths of the strings, not covering both outcomes
of that pre-check during the profiling will result in a pro-
tected program that can still leak the length of a secret string.
In cases like this, the developer can rely on fuzzing and
code coverage tools as already mentioned in Section 3.1. In
cryptographic code, the difference between different secret
values is typically observed in how often certain code paths
are triggered and in how the data flow impacts the execution
time, not in which code paths are triggered. We hence
conclude that in most scenarios, choosing sufficient profiling
inputs to obtain strong protection is feasible. This includes
the three use cases we evaluate in Section 4.

Finally, we want to point out that the insertion of run-
time monitors and the run-time recompilation of code im-
plies that our approach cannot be used as is with static
compilers. Only in case a developer is confident that his
profile inputs do cover all necessary behaviors, and he
knows the exact platform and protection requirements, a
static compiler can be used instead of a JIT compiler.

4 EXPERIMENTAL EVALUATION

We evaluated a prototype implementation of our approach
on three real-world cases known to leak timing information.

4.1 Prototype Implementation
For the run-time JIT compilation phase, we use the Jikes
Research Virtual Machine [45]. Our secure JIT compiler

8

makes use of the JikesRVM Adaptive Optimization System
(AOS) and its optimizing compiler [46] to (re)compile code
for different security scenarios. It never interprets Java byte-
code. Instead all bytecode is compiled to ensure that our
protections are applied on all code that is ever invoked.

To support our mitigation strategies, we implemented
four main modifications to JikesRVM infrastructure: the
compilation strategy database, a customized classloader, a
patched dynamic linker, and several extra compiler passes.

To minimize the overhead of the protections, it is im-
portant to realize that many of the sensitive code fragments
invoked from within the sensitive root methods are often
also invoked from within non-sensitive regions. To avoid the
protection overhead when executing the latter regions, and
to avoid that we need to recompile code when transferring
control between sensitive to insensitive regions, we adapted
the VM to support two versions of all methods: a secured
version and an unsecured version.

4.2 Methodology & Experimental Setup

To mimic the strongest possible attacker that can observe
many controlled executions in a low-noise setup, we ran
all time measurements locally on an otherwise unloaded
system. This avoids noise from network delay jitter. We also
disabled address-space layout randomization and frequency
scaling, and forced JikesRVM (v3.1.2) to use only one CPU
and to pin the Java processes to that CPU.

We then fed the appropriate options to JikesRVM to
make it bulk compile all methods at highest optimization
level, and to disable recompilations not related to chang-
ing security levels. This way, all timing measurements are
performed in the so-called steady state execution of the
software. This avoids that large variations in execution
time due to the (non-deterministic) invocation of compilers
mask the statistically relevant variations caused by the data-
dependent behavior that an attacker wants to exploit. To
reduce noise introduced by garbage collection we increased
the initial heap size to 2GB.

To measure execution times without intrusion in the
evaluated code’s pipeline behavior, we put x86 time stamp
counter instructions RDTSC preceded by CPUID (for in-
struction serialization) in a harness around the code.

Special care was taken for the measurement of execution
times on which statistical tests are performed. Such mea-
surements of the same code version on multiple secret key
values were always conducted in a single invocation of the
VM, with a harness that alternates between different key
values. This eliminates (non-deterministic) timing differ-
ences between different VM invocations. Our experiments
show that execution times of the same experiment with
the same key can differ up to 0.23% (almost 3ms for the
RSA encryption) between VM invocations, which is much
higher than the noise in our individual test cases. This also
accounts for intermittent variations due to potential external
influences such as CPU temperature or garbage collection.

To assess the impact of processor implementation details
on the opportunities for optimizing the overhead of the
available protection, and to assess the benefits of our adap-
tive, training-based approach that can tune code for specific
architectures, we performed experiments on two different

iteration 0 1 2 3 4 5 6

nr. of calls 0 8 20 35 41 44 45
nr. of methods 1 7 15 25 30 31 32

TABLE 1: Selected code regions based on call edge profiles.

generations of Intel processors: ® Core™ 2 Duo (CPU E8400)
and Intel® Core™ i7 (CPU 870). They feature different
pipeline designs, with, amongst others, different load/store
forwarding logic and different early-exit algorithms for di-
vision instructions. The Core™ 2 Duo features 6 early-exit
points, and hence 6 possible latencies, whereas the Core™ i7
features 7 points and latencies. Despite these differences, the
input combinations used for training and evaluation gave
extreme timing behavior on both processors. The reason is
of course that control flow dependencies have a much bigger
impact than data-flow-related variable latencies.

4.3 BouncyCastle RSA Encryption

First, we evaluated our approach on the RSA encryption
algorithm in a recent version of the BouncyCastle cryp-
tographic library (v1.52). The RSA algorithm can be used
to sign messages with a private key. Any key-dependent
timing variation therefore possibly leaks sensitive informa-
tion. By default the encryption algorithm uses blinding. This
common countermeasure against timing attack reduces the
amount of information leaked, but the complete information
is still eventually revealed to the attacker [47]. For its mathe-
matical operations BouncyCastle relies heavily on core Java
libraries, for which we used the GNU Classpath(V0.97.2) im-
plementation that is also used to build JikesRVM. To ensure
security of the encryption algorithm, both the algorithm and
the underlying libraries need to be protected.

This implementation of RSA encryption features rela-
tively deep call trees. Its control flow is highly dependent on
the input data consisting of the secret keys and plaintext in-
put. Excluding exception handling calls and native method
calls, the call chain from the root doFinal(byte[]) method,
which starts the encryption process, contains 104 methods
and 270 calls between those methods. This is much larger
and complex than the simple functions previously reported
for static compiler techniques [26], [29], [37].

4.3.1 Profile-Based Detection of Code Regions

We used an RSA key generator to generate hundreds of 1024
bit RSA keys. From this set of keys we selected the two keys
with the most variation in execution time, which we then
used as the input set I for our profile-based code selection.
We then profiled the algorithm for each key in I using
identical sets of 64-bit pseudo-random plaintext messages.

Table 1 shows the results of applying Algorithm 1 to
the sample application. The algorithm needs six iterations
to collect all methods and calls to be transformed. After the
final iteration, 45/270 = 16.7% of all calls have been marked
to be replaced by calls to a protected version their callees, for
which 32/104 = 30.8% of the methods need to be protected.
In this experiment, Algorithm 1 sufficed. Algorithm 2 did
not result in additional methods being selected.

9

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ex
e

cu
ti

o
n

 t
im

e
 d

if
fe

re
n

ce
 (

µ
s)

Overhead relative to unprotected application

Unprotected

CFG

CFG+Data

Fig. 6: Intel Core™ 2 Duo security/performance trade-off.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ex
e

cu
ti

o
n

 t
im

e
 d

if
fe

re
n

ce
 (

µ
s)

Overhead relative to unprotected application

Unprotected

CFG

CFG+Data

Fig. 7: Intel Core™ i7 security/performance trade-off.

4.3.2 Run-time Overhead vs. Execution Time Variation

The protection’s run-time overhead depends heavily on the
desired level of protection. To illustrate this we protected
the encryption algorithm with 18 different combinations
of protection techniques, i.e., 18 design points specifically
chosen to represent the broad scope of all possible combina-
tions. For each of those compilation points we measured the
average execution time difference between the two input
keys based on 1000 encryptions of a fixed 64-bit plain-
text message. The Compilation Strategy columns in Table 2
describe the 18 combinations of mitigation techniques. S
indicates the number of methods in the set S as selected with
Algorithm 1. These numbers correspond to those in Table 1.
The column array gives the size of the dummy array objects;
div indicates whether or not the division instructions are
replaced by constant time implementations; nop indicates
how many nop instructions are inserted in between memory
instructions. The column marked OH (overhead) shows
protected execution times relative to the execution time of
the slowest key in the unprotected application.

Figures 6 and 7 show the average absolute difference in
execution time between input keys and the relative execu-
tion times (relative to the slowest unprotected version) for
each design point for our two processors. The whiskers on
the graph represent the 5th and 95th percentile. The x marks
the unprotected application; circles represent compilation
points with different subsets of S protected with only CFG
transformations; the gray filled circles represent compilation
points protecting the full set S with CFG transformations
and different combinations of data flow transformations.
To interpret the absolute numbers correctly, it is useful to
know that the unprotected application using the slowest key
takes 69.97ms on the Core™ 2 and 68.66ms on the Core™
i7 in steady state. So the variations on the unprotected
application are in the order of 20–23%.

Using only CFG transformations, the delta in execution

S array div nop 20 50 100 200 300 500 700 990 20 50 100 200 300 500 700 990

1 1 0 0 0 1.00 1.00

2 7 0 0 0 1.01 1.00

3 15 0 0 0 1.73 1.67

4 25 0 0 0 3.76 3.75

5 30 0 0 0 4.84 11 6 4 1 4.99 1

6 31 0 0 0 4.91 11 9 9 8 5 1 2 1 5.00 1

7 32 0 0 0 4.95 12 10 8 6 3 5.05 10 9 6

8 32 64 0 0 6.06 12 12 12 12 12 12 6 4 5.79

9 32 0 1 0 7.25 12 9 5 1 7.53 9 8 2

10 32 0 0 6 7.55 10 2 8.26 1 2

11 32 64 1 0 8.40 12 10 12 12 12 11 12 12 8.51

12 32 64 0 6 8.98 12 10 7 1 9.58

13 32 0 1 6 9.94 12 11 7 6 3 2 2 2 10.90

14 32 64 1 6 11.52 12 10 6 1 12.27

15 32 0 0 12 12.90 12 12 12 12 10 9 11 10 13.46 10 9 11 9 9 9 7 7

16 32 64 0 12 14.85 9 9 9 6 6 1 1 1 16.52 12 12 12 12 12 11 12 11

17 32 0 1 12 15.24 10 12 12 12 10 9 12 12 16.12 11 9 10 5 4 3 7 1

18 32 64 1 12 17.46 11 10 11 12 11 11 11 11 19.38 12 12 12 12 11 10 9 8

Compilation

Strategy

Intel Core 2 Intel Core i7

OH
Sample Size

OH
Sample Size

TABLE 2: Test results for different compilation strategies.

time between input keys can be reduced by more than two
factors of magnitude, i.e., to 126µs on the Core™ 2 and to
82µs on the Core™ i7 at a remaining overhead of 4.96x for
the Core™ 2 and 5.05x for the Core™ i7. Besides protection
against timing attacks over noisy communication channels,
this compilation strategy also protects against instruction
cache attacks and branch prediction attacks because all
input-dependent control flow is if-converted.

Applying various data flow transformations further re-
duces the observed difference in execution time, although
there is a clear difference between architectures. On the
Core™ i7, only the 4 design points with the highest over-
head (rows 15, 16, 17, and 18 of Table 2) significantly reduce
the execution time difference compared to the design points
with only CFG transformations. All of these four compiler
strategies insert 12 nops in between memory operations
to avoid data-dependent load/store forwarding. On the
Core™ 2 processor almost all compilation points with data
flow mitigation techniques reduce the difference in execu-
tion time compared to CFG-only compilation points.

In summary, the majority of key-dependent timing varia-
tion can be removed by applying CFG tranformations. Data
flow transformations to further reduce the variation are
architecture-specific and come with a significant overhead.

4.3.3 Statistical Evaluation
Next, we apply statistical tests to identify for which de-
sign points the execution times of the two input keys are
indistinguishable, and thus provide complete protection.
We use the Anderson-Darling test [48] to evaluate how
many samples an attacker (with direct access to a system
to perform timing measurements) needs to collect to reli-
ably distinguish between the two input keys, and thus to
evaluate how difficult it is to perform an actual attack. For
each compilation strategy and for different sample set sizes
ranging from 20 to 990, we use the test to compare the
timing results. These 20–990 samples used in the statistical
test always exclude the first 10 collected samples during the
timing measurements to eliminate the influence of the initial
compilation on the processor pipeline, caches, buffers, etc.

In our initial test results, we observed that the test occa-
sionally reported false positives, such as when it reported a
significant difference in execution times over two samples
sets collected for the same input. Given the very small

10

time scale on which we try to measure differences, and the
chaotic nature of computers, such false positives are to be
expected [49], [50]. To prevent drawing false conclusions
from occasional false-positive results, we completely reran
each data collection and statistical testing 12 times for each
compilation strategy and sample set size, i.e., using a differ-
ent sample set for each of the 12 experiments.

The columns labeled 20–990 in Table 2 show the results.
Each cell contains the number of Anderson-Darling tests
that indicated it is impossible to distinguish the execution
times of the different input keys for a given sample set size.
Values on a dark background indicate that the majority of
the statistical tests indicate no significant difference between
the execution times, and thus that the application can be
considered secure for the given sample size. The lighter the
background, the more tests indicate a difference in execution
time, and hence the easier it is to perform an attack for an
attacker that can collect that amount of samples.

Again, we observe a clear difference between the two
processors. If an attacker has 990 timing samples for each
key, the JIT compiler provides full protection on the Core™
2 at the lowest overhead using the compilation strategy
on row 11. This strategy protects all methods in S, creates
dummy array objects of size 64 and replaces divisions by a
constant time implementation. For this design point, none of
the 12 tests were able to distinguish between the two input
keys. On the Core™ i7 complete protection can be provided
at the lowest overhead by compiling the application using
the design point on row 16. The application needs to have all
methods in S protected, dummy array objects of size 64 and
12 nop instructions inserted between memory instructions.
For this design point, 11 of the 12 statistical tests indicate no
significant difference between the two sample sets.

When an attacker in some scenario would only be able to
collect 20 samples, protected is possible with less overhead.
On the Core™ 2 the results for the compilation strategy on
row 5 show that only 30 of the 32 methods in S need to
be protected with only the CFG transformations for 11/12
tests to indicate no significant difference. On the Core™
i7protecting all methods in S with CFG transformations
results in 10/12 statistical tests indicating no difference
between the inputs, as shown by the results on row 7.

We conclude that each processor has its optimal compi-
lation strategies, depending on the attackers strength, and
we proved statistically that no timing information leaks.

4.3.4 Memory Usage and Garbage Collection
To measure the memory and garbage collection overhead of
our approach we performed 300 encryptions using 7 differ-
ent versions of our application: An unprotected version run-
ning on a clean JikesRVM build without modifications, an
unprotected version running on our modified JIT compiler
and five equally protected versions (row 11 of Table 2), but
each with differently sized dummy arrays ranging from 1 to
64 bytes. For each of these versions Table 3 reports the total
heap memory collected, the minimum required amount of
heap memory to run the encryption algorithm and the
percentage of time spent garbage collecting in steady state.

Between the clean build and the unprotected version,
203MB additional memory is collected and the minimum
required heap size is increased by 2MB. The latter is mainly

3341
3249

2653

276

2400

2800

3200

3600

Protected
execution

Unprotected
execution

Unmodified
compiler

C
o

m
p

ila
ti

o
n

 t
im

e
 (

m
s)

Standard Compilation
Protection Transformations

Fig. 8: Core™ 2 JIT compilation times.

due to the additional infrastructure needed for our protec-
tion framework. When protection is enabled with dummy
array sizes of 1, the total collected memory increases by
1445MB and increases further with growing dummy array
sizes. The minimum required heap size, however, remains
the same as when executing the unprotected application.
This is because the maximum heap size is reached during
the initial startup phase, when the VM is booted and the
application is loaded and compiled.

There is no difference in the amount of time spent
garbage collecting in steady state execution between the
clean build and unprotected version. When protecting the
application, the percentage of time spent in garbage collect-
ing increases with the size of the allocated dummy arrays.
The influence of garbage collection on the total execution
time remains minimal, with a maximum of 0.101% of total
execution time spent garbage collecting in the protected
application with dummy array sizes of 64.

4.3.5 Compilation Overhead
The compilation time increases for three reasons. First, more
code needs to be compiled: In case a method is invoked
from within and from outside of the protected code region,
the extended compiler needs to generate a secured one
and a non-secured one version. Secondly, the extended JIT
compiler applies its additional transformations, which also
requires computation time. Lastly, the modifications made
to the compiler infrastructure introduce some extra compiler
overhead, even when the application runs unprotected.

Figure 8 shows the JIT compilation times to compile the
application on the Core™ 2 for the unmodified JikesRVM
compiling an unprotected application, and for the modified
framework compiling a fully protected (with all transfor-
mations applied to all methods in S) and an unprotected
version. Due the modifications made in the compiler, the
unprotected application compiles 22.5% slower. We believe
there is a lot of room for improvement with additional
engineering because until now optimizing compilation time
was not a primary goal in our prototype implementation
effort. The compilation overhead of the protected applica-
tion compared to the unprotected application is 11.3%. This
overhead can be divided into additional compiled methods
(2.9%) and the extra security transformations (8.5%).

The reported slowdowns will be experienced during
the startup of the application (more precisely, at the first
invocation of a sensitive region), which will be slowed down
as all code then needs to be compiled from scratch. Further-
more, whenever code needs to be recompiled because a new
protection requirement is imposed, the price of full recompi-
lation of the methods in the secured code regions will have
to be paid, which will be experienced as a temporary halting

11

clean unprotected protected(1) protected(8) protected(16) protected(32) protected(64)

total memory collected (MB) 906 1109 2554 3585 4737 7069 11660
minimum required heap size (MB) 30 32 32 32 32 32 32

% of time spent in GC 0.015 0.015 0.017 0.024 0.035 0.057 0.101

TABLE 3: Memory and garbage collection statistics for different application versions running on the Intel Core™ 2 Duo.

66.3

44.4

28.6
22.2

16.2

62.7

40.2

26.1
20.8

11.2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

all methods,
full if-conversion

subset of methods selective if-conversion subset of methods,
selective if-conversion

optimal compilation
strategy

R
e

la
ti

ve
 o

ve
rh

e
ad

Intel Core ™ i7
Intel Core ™ 2

Fig. 9: Slowdowns for modPow with different protections.

of the application. In case the protection requirements are
lowered, it is conceivable to perform the recompilation in
the background while continuing to run the more heavily
protected code to avoid stuttering execution. Previously
compiled versions of methods can be stored in a cache to
avoid the cost of recompilation when switching between
protection levels that have already been compiled.

4.3.6 Comparison to Previous State Of The Art

Figure 9 reports the overhead of our protection techniques
for the BigInteger modPow(BigInteger exponent, BigInteger
modulus) method. This is the method detected in iteration
1 of Algorithm 1 as the source of timing variation for the
RSA encryption routine. The Y-axis denotes the execution
times relative to the execution time of the unprotected ap-
plication using the input key yielding the slowest execution
time. Protecting all methods reachable from the modPow
method, if-converting all branches within those methods
and applying all available protection techniques, which is
the approach used in the previous state of the art [37], results
in an overhead of 66.3x on the Core™ i7. Protecting only a
subset of methods reduces the overhead to 44.4x and partial
if-conversion reduces the overhead to 28.6x. Combining the
two techniques reduces the overhead further to 22.2x. The
graph shows similar results on the Core™ 2.

When compiling with the optimal security strategy the
overhead can be reduced further: On the Core™ i7 to 16.2x
using the compilation strategy on row 17 in Table 2 and on
the core 2 to 11.2x using the strategy in row 12. In total
we reduce the overhead by 75.6% on the Core™ i7 and
82.2% on the Core™ 2 while still providing the same level of
protection. As can be seen in Table 2, less secure application
versions have even lower overhead.

The cause of the still significant overhead of our trans-
formations on the RSA algorithm is that a large call tree
has to be protected. This is partly due to the structure of
the algorithm itself, and the fact that general purpose class
BigInteger is used internally by the BouncyCastle library
to do most computations. Furthermore, the BigInteger class
stores its values in memory, causing data flow mitigation
techniques to introduce additional overhead.

4598

4599

4600

4601

4602

4603

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e
 (

n
s)

Consecutive correct signature bytes

Fig. 10: Average HMAC execution time on the Core™ 2.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
-v

al
u

e
s

Difference in consecutive correct signature bytes

unprotected

protected

p = 0.05

Fig. 11: Anderson-Darling test results on the Core™ 2.

4.4 Keyczar HMAC Verification

For a second experiment, we used an older version of the
Google Keyczar library. The HMAC key verification in this
version is known to leak timing information because it
uses a standard Arrays.equals(byte[],byte[]) function call to
compare HMAC signatures [51]. This function leaks infor-
mation because it compares two byte arrays byte by byte
and returns as soon as it encounters two unequal bytes.
Although this particular leak has been fixed since May 2009,
it can still serve to show how our profile-based approach can
easily detect and fix this type of early-exit timing leaks.

Figure 10 shows the average execution time based on
10.000 samples per signature of the unprotected verification
function for 21 different signatures with increasing amounts
of consecutive correct bytes. Signature 0 with 0 correct bytes
has the fastest verification time, the correct signature 20 (in
theory) takes the longest to verify. Although the ordering
is not 100% correct due to noisy measurements, there is a
clear relationship between the amount of consecutive correct
signature bytes and the execution time. We marked the
Signer.verify(byte[] text,byte[] signature) as the root of protec-
tion and applied our profile-based protection techniques,
using a correct and completely incorrect key as test inputs.
In this experiment all (in)direct callees of the root method
have equal outgoing edge counts for both keys, hence Al-
gorithm 1 did not detect any methods to protect. However,
Algorithm 2, based on instruction counts, correctly tagged
Arrays.equals(byte[],byte[]) as the source of timing variation.

The optimal protection strategy in this experiment con-
sists of all control flow transformations and inserting 12
nops between memory operations. Figure 11 shows the re-
sults of the Anderson-Darling test comparing keys with dif-
ferent consecutive correct signature bytes for 10,000 samples

12

per key. P-values below the critical value of 0.05 indicate that
we can reject the null-hypothesis that there is no statistical
difference between the sample sets. In other words, a p-
value above 0.05 indicates it is impossible for an attacker
to differentiate between them. In the unprotected program
version we are able to differentiate between keys that have
two or more bytes difference, while in the protected version
there is no statistical difference between the signatures.

The overhead of our mitigation technique in this test case
is minimal: 7.5% with all mitigating transformatins enabled
and only 5.7% using the optimal protection strategy.

4.5 BouncyCastle IDEA encryption
Finally, we mitigated a well-known chosen-plaintext attack
on the IDEA encryption algorithm. The attack relies on
the timing behavior of the modular multiplication algo-
rithm used during encryption, which has a faster execution
time when the 16 least significant bits of the modulus
or exponent are 0. This timing side channel allows an
attacker to reconstruct the 16 least significant bits of the
secret key. We reproduced the attack described by Lux et
al. [52]: For a given secret key, we timed the encryption
of 16,777,215 8-byte pseudo-random plaintext messages. We
then grouped these timings in 65,536 clusters, based on
the 16 least significant bits of the produced ciphertext. The
16 bits (X) corresponding to the cluster with the fastest
average execution time then yield part of the secret key as
key[70 : 85]← (216 + 1)−X .

We reproduced the attack using the unprotected Boun-
cyCastle implementation of the IDEA algorithm. Figure 12a)
shows the clusters with the ten fastest average execution
times, generated by performing the above attack using
0x00e148d92641ecf99d428836b7bf0150 as secret key. The
cluster corresponding to 0xAF5F, indicated in gray, clearly
has the fastest execution time.

In this case, the call edge heuristic of Algorithm 1 did not
find any methods to protect. The instruction count heuristic
of 2, however, correctly tagged private int mul(int x, int y) of
the IDEAEngine class as the cause of timing variation. Profile
information marked a single branch in this method for if-
conversion. Since the protected method does not contain
any variable latency instructions or memory instructions,
no data flow transformations were needed at all.

Figure 12b) shows the timing results obtained on the
protected code. There is no significant difference between
the ten clusters with the lowest average execution times, so
the attack will fail on the protected application. Additional
statistical Anderson-Darling tests indicate that there is no
significant difference between the cluster corresponding to
the AF5F bits and the other clusters. We repeated the exper-
iment on the protected version of the application with 10
different encryption keys with identical results. The over-
head of our mitigation technique on this test case is 16%.

4.6 Limitations & Future Work
Our mitigation techniques, as implemented today, come
with some important limitations.

Granularity of applied transformations: In our current im-
plementation, the applied data flow transformations are the
same for all methods, and they are applied to their whole

35400

35500

35600

35700

1138 0F2D 0BE9 0B6A 0A86 09CD 0988 08FD 0447 AF5F

A
vg

. e
xe

cu
tio

n
tim

e
(n

s)

a) unprotected application

41200

41300

41400

41500

0218 0212 01A8 0141 011E 010F 00B4 008F 007C 0054

A
vg

. e
xe

cu
tio

n
tim

e
(n

s)

b) protected application

Fig. 12: Ten clusters with lowest average execution time for
the protected and unprotected application.

bodies. In the future, we plan to refine this, such that differ-
ent strategies can be applied to different methods and even
to parts of methods, and such that multiple secured versions
can co-exist, such that differently protected versions can be
invoked in different call chains.

Optimal strategy: Research is required to automate the
search for the optimal compilation strategies for an appli-
cation and target architecture based on code characteristics,
without having to rely on predefined compilation strategies.
Furthermore, more research is needed into a user-friendly
way for users to express their protection requirements for
different run-time scenarios, and to decide on the corre-
sponding compilation strategy.

Exceptions: We currently assume exceptions are a rare
occurrence and are not part of the time-critical sensitive
code. Code within an exception handling region can of
course be secured, but the throwing of an exception is not
if-converted. In cryptographic code, we observed exceptions
to be rare except for validating the correct format of inputs.
More research is needed, however, to protect code with
exceptions in other applications. Currently, the automated
support is limited to producing a warning if exceptions oc-
cur in code regions tagged for protection by our algorithms.

Native Code and System Calls: Our setup currently only
supports protecting bytecode against timing attacks. System
calls and native code can still cause the application to leak
timing information. For native code a solution could be to
provide both a normal version and one secured with static
techniques [26], [29], [37].

Multithreading: We currently protect only single-threaded
code regions, i.e., code that executes within one thread. That
thread can, however, be part of a multithreaded application.

Virtual method calls: Our current implementation assumes
that target methods of virtual calls remain constant during
the execution of the application. In other words, the run-
time type of the object on which the method is invoked
has to remain the same. This restriction does not pose
problems for the crypto libraries we experimented with. If
the need would arise in the future, it is possible to extend
our implementation based on class hierarchy analysis and
points-to analysis, and by converting polymorphic virtual
calls into switch-like constructs.

VM side channels: We assume side-channel free imple-
mentations of VM service routines (i.e., routines invoked
by the compiled bytecode) and native methods dealing
with sensitive information. In our experiments, it sufficed

13

to patch the intrinsics generating code for long conditional
move and long multiplications, which were leaking timing
information. Native functions can be compiled using exist-
ing static compiler techniques [37]. To what extent other VM
aspects have to be adapted to become leak-free is future
work. At least for cryptographic code, we could not identify
parts that might leak information. We already took care
of the JIT compiler, and the amount of allocated memory
(and hence the behavior of garbage collection) does not
depend on the values of (correctly formated) secret data in
cryptographic code.

Taint tracking: Rather than marking a root method, taint
tracking might be used to identify code regions that need
protection. That would likely be more user-friendly. As men-
tioned in the introduction, the identification by means of
taint tracking alone might be overly conservative, however.
In particular, existing techniques would either need to be
adapted to identify not the code of which the behavior
depends on secret values, but the code of which the timing
behavior depends on them, or taint tracking would still have
to be combined with our profiling-based approach.

5 RELATED WORK

Compared to existing (static) compiler techniques [37], [26]
our approach uses profile-based analysis to automate and
optimize the selection of the protected code base, reducing
the overhead up to 90%. This makes our approach suitable
to protect real-life security libraries, where existing tech-
niques would introduce unacceptable overhead. Secondly,
JIT compilation allows to optimize security transformations
for a target architecture and required security level. Only
one (unprotected) version of the application needs to be dis-
tributed where static compilation techniques require sepa-
rate binaries for each architecture and security requirement.

Our approach does not have to rely on operating system
modifications to inject enough noise, e.g., in the measurable
cache-behavior [30] or pad the execution time of methods
and provide resource isolation [53]. Our approach ensures
an application can run protected in any target environment,
without directly affecting the other processes that happen
to share resources with the protected application. Other
approaches using JIT compilation rely on dynamic software
diversity to mask information leakage [54], [55] while our
approach inherently provides complete protection against
branch prediction attacks and instruction cache attacks.
Whereas we provide statistical evidence that no differences
in execution time can be observed, the overhead of our
approach can be significantly higher.

While we do not provide a formal proof of our tech-
niques as has been done for complete language-based so-
lutions [32], we provide statistical evidence to show the
effectiveness of our approach.

Both hardware [16], [23], [14], [24] and algorithmic [33],
[34], [21], [35] approaches can be easily integrated in our
framework. The compiler can, e.g., automatically replace
instructions that leak timing information by calls to fixed
library functions [35], or generate code to take advantage of
hardware features such as the Intel AES instruction set [23]
or side channel free cache designs [24].

6 CONCLUSIONS

We presented a combined offline/online approach for miti-
gating timing side channels. A JIT compiler generates code
for sensitive code regions such that the execution time
becomes completely or largely independent of sensitive data
values. This approach supports adaptive protection with
regards to changes in the underlying hardware and changes
in the protection requirements, without requiring code du-
plication or specialization before the code is distributed.

We presented a profile-based approach with which we
significantly reduce the overhead of full protection, and that
allows (at least in theory) a trade-off between the provided
level of protection and the incurred overhead.

The approach was evaluated on real-life use cases. We
were able to protect an RSA encryption algorithm at an
overhead of 8.4x and 16.5x on Core™ 2 and Core™ i7
systems respectively. Compared to existing state-of-the-art
techniques, our approach reduced the overhead of protect-
ing the modular exponentiation algorithm from 66.3x to
16.2x on the Core™ i7 and from 62.7x to 11.2x on the Core™
2. Our approach also pinpointed a single method causing
leakage in an HMAC verification routine and secured it
automatically at an of 5.7%. Finally, we mitigated a timing
attack against an IDEA algorithm with an overhead of 16%.

REFERENCES

[1] O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-
Cache,” in Proc. ACM workshop on Computer security architecture
(CSAW’07), 2007, pp. 11–18.

[2] O. Aciiçmez and Ç. Koç, “Trace-driven cache attacks on AES,”
in Information and Communications Security, ser. Lecture Notes in
Computer Science, 2006, vol. 4307, pp. 112–121.

[3] O. Aciiçmez et al., “On the power of simple branch prediction
analysis,” in Proc. 2nd ACM Symposium on Information, Computer
and Communications Security (ASIACCS’07), 2007, pp. 312–320.

[4] ——, “Predicting secret keys via branch prediction,” in Topics in
Cryptology - The Cryptographers’ Track at the RSA Conf. (CT-RSA’07),
2007, pp. 225–242.

[5] P. C. Kocher et al., “Differential power analysis,” in Proc. 19th An-
nual Int’l Cryptology Conf. on Advances in Cryptology (CRYPTO’99),
1999, pp. 388–397.

[6] C. Lauradoux, “Collision attacks on processors with cache and
countermeasures,” in Western European Workshop on Research in
Cryptology (WEWoRC’05), 2005, pp. 76–85.

[7] O. Aciiçmez et al., “New results on instruction cache attacks,”
in Proc. 12th Int’l Conf. on Cryptographic Hardware and Embedded
Systems (CHES’10), 2010, pp. 110–124.

[8] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,”
in Proc. 15th Int’l Conf. on the Theory and Application of Cryptology
and Information Security (ASIACRYPT ’09), 2009, pp. 667–684.

[9] D. Gullasch et al., “Cache games - bringing access based cache
attacks on AES to practice,” Cryptology ePrint Archive, Report
2010/594, 2010.

[10] M. Neve and J.-P. Seifert, “Advances on access-driven cache
attacks on AES,” in Proc. 13th Int’l Conf. on Selected Areas in
Cryptography (SAC’06), 2007, pp. 147–162.

[11] D. A. Osvik et al., “Cache attacks and countermeasures: the case of
AES,” in Topics in Cryptology - The Cryptographers Track at the RSA
Conf. (CT-RSA’06), 2006, pp. 1–20.

[12] T. Ristenpart et al., “Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds,” in Proc. 16th
ACM Conf. on Computer and Communications Security (CCS’09),
2009, pp. 199–212.

[13] L. Uhsadel et al., “Exploiting hardware performance counters,”
in 5th Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC’08), 8 2008, pp. 59–67.

[14] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in Proc. 22nd Annual Computer Security Applications
Conf. (ACSAC’06), 2006, pp. 473–482.

14

[15] O. Aciiçmez et al., “Cache based remote timing attack on the AES,”
in Topics in Cryptology - The Cryptographers’ Track at the RSA Conf.
(CT-RSA’07), 2007, pp. 271–286.

[16] D. J. Bernstein, “Cache-timing attacks on AES,” The University of
Illinois at Chicago, Tech. Rep., 2005.

[17] J. Bonneau and I. Mironov, “Cache-collision timing attacks against
AES,” in Proc. Int’l Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES’06), 2006, pp. 201–215.

[18] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, August 2005.

[19] B. B. Brumley and N. Tuveri, “Remote timing attacks are still
practical,” Cryptology ePrint Archive, Report 2011/232, 2011.

[20] J.-F. Dhem et al., “A practical implementation of the timing attack,”
in Proc. The Int’l Conf. on Smart Card Research and Applications
(CARDIS’98), 1998, pp. 167–182.

[21] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Proc. 16th Annual Int’l
Cryptology Conf. on Advances in Cryptology, 1996, pp. 104–113.

[22] B. Gierlichs et al., “Mutual information analysis,” in Proc. 10th
Int’l Workshop on Cryptographic Hardware and Embedded Systems
(CHES’08), 2008, pp. 426–442.

[23] S. Gueron, “Advanced encryption standard (AES) instructions
set,” Intel Mobility Group, Tech. Rep., 2008.

[24] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” SIGARCH Computer Architec-
ture News, vol. 35, no. 2, pp. 494–505, 2007.

[25] E. Brickell et al., “Software mitigations to hedge AES against cache-
based software side channel vulnerabilities,” Cryptology ePrint
Archive, Report 2006/052, 2006.

[26] B. Coppens et al., “Practical mitigations for timing-based side-
channel attacks on modern x86 processors,” in Proc. 30th IEEE
Symposium on Security and Privacy (S&P’09), 2009, pp. 45–60.

[27] D. Hedin and D. Sands, “Timing Aware Information Flow Secu-
rity for a JavaCard-like Bytecode,” Electronic Notes in Theoretical
Computer Science, vol. 141, no. 1, pp. 163–182, Dec. 2005.

[28] B. Köpf and M. Dürmuth, “A provably secure and efficient coun-
termeasure against timing attacks,” in Proc. 22nd IEEE Computer
Security Foundations Symposium (CSF’09), 2009, pp. 324–335.

[29] D. Molnar et al., “The program counter security model: Automatic
detection and removal of control-flow side channel attacks,” in
Proc. Int’l Conf. Information Security and Cryptology (ICISC’05), 2005,
pp. 156–168.

[30] Y. Zhang and M. K. Reiter, “Düppel: retrofitting commodity op-
erating systems to mitigate cache side channels in the cloud,” in
Proc. ACM SIGSAC conf. on Computer & communications security.
ACM, 2013, pp. 827–838.

[31] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of
timing channels in interactive systems,” in Proc. 18th ACM Conf.
on Computer and Communications Security, 2011, pp. 563–574.

[32] J. Agat, “Transforming out timing leaks,” in Proc. 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’00), 2000, pp. 40–53.

[33] J. Guajardo and B. Mennink, “Towards side-channel resistant
block cipher usage or can we encrypt without side-channel coun-
termeasures,” Cryptology ePrint Archive, Report 2010/015, 2010.

[34] M. Joye and S.-M. Yen, “The montgomery powering ladder,” in
Revised Papers from the 4th Int’l Workshop on Cryptographic Hardware
and Embedded Systems (CHES’03), 2003, pp. 291–302.

[35] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,”
in IEEE Symposium on Security and Privacy, 2015, pp. 623–639.

[36] A. G. Bayrak et al., “A first step towards automatic application of
power analysis countermeasures,” in Proc. 48th Design Automation
Conf. (DAC’11), 2011, pp. 230–235.

[37] J. Van Cleemput et al., “Compiler mitigations for time attacks on
modern x86 processors,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 8, no. 4, p. 23, 2012.

[38] M. Kim et al., “Utilization-aware load balancing for the energy
efficient operation of the Big.LITTLE processor,” in Proc. Conf. on
Design, Automation & Test in Europe, 2014, pp. 223:1–223:4.

[39] S. A. Crosby et al., “Opportunities and limits of remote timing
attacks,” ACM Transactions on Information and System Security,
vol. 12, no. 3, pp. 17:1–17:29, January 2009.

[40] J. Groszschaedl et al., “Side channel analysis of cryptographic
software via early-terminating multiplications,” in Proc. 12th Int’l
Conf. on Information security and cryptology, 2009, pp. 176–192.

[41] J. R. Allen et al., “Conversion of control dependence to data
dependence,” in Proc. 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages (POPL’83), 1983.

[42] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, 2014.

[43] ARMv8 Instruction Set Overview, ARM, 2014.
[44] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of

Superscalar Processors. McGraw-Hill, 2005.
[45] B. Alpern et al., “The jalapeño virtual machine,” IBM Systems

Journal, vol. 39, no. 1, pp. 211–238, 2000.
[46] M. Arnold et al., “Architecture and policy for adaptive optimiza-

tion in virtual machines,” IBM Research, Tech. Rep. 23429, 2004.
[47] M. Backes and B. Köpf, “Formally bounding the side-channel leak-

age in unknown-message attacks,” in Computer Security-ESORICS
2008. Springer Berlin Heidelberg, 2008, pp. 517–532.

[48] M. A. Stephens, “Edf statistics for goodness of fit and some
comparisons,” Journal of the American statistical Association, vol. 69,
no. 347, pp. 730–737, 1974.

[49] T. Mytkowicz, A. Diwan, and E. Bradley, “Computer systems
are dynamical systems.” Chaos (Woodbury, N.Y.), vol. 19, no. 3, p.
033124, Sept. 2009.

[50] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Pro-
ducing wrong data without doing anything obviously wrong!”
in Proc. 14th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’09), 2009, pp. 265–276.

[51] N. Lawson, “Timing attack in Google Keyczar library,”
http://rdist.root.org/2009/05/28/timing-attack-in-google-
keyczar-library/, 2009, [Online; accessed 20-August-2015].

[52] A. Lux and A. Starostin, “A tool for static detection of timing
channels in java,” Journal of Cryptographic Engineering, vol. 1, no. 4,
pp. 303–313, 2011.

[53] B. A. Braun et al., “Robust and efficient elimination of cache and
timing side channels,” CoRR, vol. abs/1506.00189, 2015.

[54] S. Crane et al., “Thwarting cache side-channel attacks through
dynamic software diversity,” in Network And Distributed System
Security Symposium, NDSS, vol. 15, 2015.

[55] M. Hataba et al., “Diversified remote code execution using dy-
namic obfuscation of conditional branches,” in Proc. IEEE 35th Int’l
Conf. on Distributed Computing Systems Workshops (ICDCSW), 2015,
pp. 120–127.

Jeroen Van Cleemput worked as a postdoctoral
researcher at Ghent University in the Computer
Systems Lab. He obtained his Msc. degree in
Computer Science from Ghent University’s Fac-
ulty of Engineering in 2009 and his Ph.D. degree
in Computer Science from Ghent University’s
Faculty of Engineering in 2016. His research fo-
cuses on compiler based protection techniques
against side-channel attacks.

Koen De Bosschere is professor at Ghent Uni-
versity, where he teaches courses on computer
architecture and operating systems. His cur-
rent research interests are binary translation,
virtualization, and software protection. He au-
thored and co-authored over 170 papers. He
is the coordinator of the HiPEAC network, the
ACACES summer school and the the student
entrepreneurship program at Ghent University.

Bjorn De Sutter is professor at Ghent University
in the Computer Systems Lab. He obtained his
Msc. and Ph.D. degrees in Computer Science
from Ghent University’s Faculty of Engineering in
1997 and 2002. His research focuses on the use
of compiler techniques and run-time techniques
to aid programmers with non-functional aspects
of their software, such as performance, code
size, reliability, and software protection. He pub-
lished over 80 peer-reviewed papers on these
topics.

